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Abstract Buoyancy-driven flow in deformable porous media is important for understanding sedimentary
compaction as well as magmatic and metamorphic differentiation processes. Here mathematical analysis of
the viscoplastic compaction equations is used to develop an understanding of the porosity wave instability
and its sensitivity to the choice of rheological model. The conditions of propagation, size, speed, and shape
of the porosity waves depend strongly on the properties of the solid rock frame. Whereas most of the
previous studies on porosity waves were focused on viscous or viscoelastic mode, here we consider the
ability of a solid matrix to undergo simultaneous plastic (rate-independent) and viscous (rate-dependent)
deformation in parallel. Plastic yielding is identified as a cause of compaction-decompaction asymmetry
in porous media—this is known to lead to a strong focusing of porous flow. Speed and amplitude of a
porosity wave are given as functions of material parameters and a volume of a source region. Formulation is
applicable to fluid flow in sedimentary rocks where viscous deformation is due to pressure solution as well as
in deep crustal or upper mantle rocks deforming in a semibrittle regime.

1. Introduction

Two-phase models of fluid flow in deformable porous media are widely used to explain the various processes
that occur in the Earth’s interior and subsurface. The traditional fields include tectonic motion, crustal
evolution, Earth’s formation, petroleum and deepwater migration, and many other problems. However,
attempts to model geological processes based on models of porous flow sometimes face issues in that the
rate of fluid ascent predicted by the model is too low to adequately explain the observations. The oceanic
crust covering two thirds of the Earth’s surface is formed by extracting a small-degree partial melt at rates
several orders of magnitude faster than predicted by the well-established models for pervasive porous
flow [McKenzie, 2000; Slater et al., 2001]. A similar problem is reported for the remaining one third of the
Earth’s surface—the continental crust that is partly formed by granitoid batholiths. Segregation of granitic
magmas is estimated to have taken at the very least 2 orders of magnitude longer than the likely
maximum duration of the melting event due to a high melt viscosity [Wickham, 1987]. Similarly, fast rates
of primary petroleum migration necessitate reconsideration of the mechanisms by which hydrocarbons
move from source beds to carrier beds and reservoirs [Appold and Nunn, 2002]. Numerous gas chimneys
and pipes in marine sediments also indicate very rapid upward fluid migration on a time scale of hours to
weeks [Loseth et al., 2011; Plaza-Faverola et al., 2011].

Interestingly, the “secondary”migration of the hydrocarbons, i.e., their flow in the carrier beds and reservoirs
on time scales of exploration and production, is relatively well quantified by current reservoir simulators
[Sayers and Schutjens, 2007; Wurbs, 1993]. These simulators are based on well-developed groundwater flow
models and soil mechanics consolidation theory pioneered by von Terzaghi [1923]. These classical models
treat compaction as rate-independent poroelastic or elastoplastic. This treatment is often referred to as
“mechanical compaction” to discriminate it from “chemical compaction,” which is rate dependent and
mathematically equivalent to the compaction of Newtonian viscous materials. Chemical compaction is a
thermally activated process and becomes important at a few kilometers of depth. In some cases, however,
these two processes can act in parallel. The literature [Appold and Nunn, 2002] has discussed the Gulf of
Mexico basin as an example where the hydrocarbons travel rather fast from the source sediments into the
traps in the reservoirs. In this example, mechanical compaction models are sufficient for the shallower
traps, but the problem of primary migration through the high-temperature deep source rocks may be
related to viscous-like chemical compaction.
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Viscous compaction of fluid-filled porous media can trigger the propagation of solitary porosity waves, which
travel with high speed versus the background Darcian flux. Such waves were previously observed in
experiments where low-viscosity buoyant fluid was injected into the highly viscous matrix [Olson and
Christensen, 1986; Scott et al., 1986] and most recently in experiments where a buoyant viscous fluid was
injected into a mixture of deformable hydrogel beads submerged in viscous fluid [Kumagai and Kurita, 2015].

Most of the previous theoretical research on this phenomenon has focused on its implications for magma
transport [Connolly and Podladchikov, 2007], but increasing recognition that the compaction of viscous
porous media can occur in sedimentary basins has suggested the possibility that porosity waves could
similarly be important for hydrocarbon and CO2 transport [Appold and Nunn, 2002; Connolly and
Podladchikov, 2000; Raess et al., 2014]. Unlike pervasive background flow that exploits existing porosity,
fluid-carrying porosity waves move through a void space that propagates or grows dynamically. While
it is accepted that porosity waves can accelerate at least the initial stages of pore fluid segregation
[Richter and Mckenzie, 1984; Scott and Stevenson, 1984], their role in efficient transport is much less clear. It is
believed that even though the porosity waves do propagate faster than the background flow, their speed is
still not high enough to explain the rapid melt ascent [McKenzie, 2000; Slater et al., 2001].

However, this argument holds only for simple viscous models that treat decompaction in the same way as
compaction. There is growing evidence that rocks respond differently to compaction and decompaction
[Nguyen et al., 2011]. Assuming the existence of such a rheology, Connolly and Podladchikov [2007] have shown
that rheological asymmetry leads to a mechanical flow channeling instability propagating upward with high
velocity. These authors used the simplest bilinear functional form to approximate effective viscosity. In this
study, we utilize viscoplastic compaction rheological relationships derived from methods of effective media
theory and analyze their impact on the existence of the porosity wave-like solutions of the compaction equations.

2. One-Dimensional Compaction: Mathematical Formulation

Equations governing the behavior of fluid-filled porous materials have been developed in a number of studies
[Bercovici et al., 2001; Biot, 1941; Mckenzie, 1984; Scott and Stevenson, 1984]. Earlier [Yarushina and Podladchikov,
2015], we proposed a new model for porous viscoelastoplastic materials filled with a fluid. It is based on the
standard balance equations for mass, momentum, entropy, and energy written for fluid and solid phases.
Admissible expressions for fluxes and sources are chosen in such a way that the first and second laws of
thermodynamics be enforced. Classical nonequilibrium thermodynamics approaches were modified to account
for dissipative and path-dependent processes such as irreversible rate-independent (plastic) deformation and
difference in rock behavior during compaction and decompaction (decompaction weakening). The mechanical
closure relationships were obtained from interpretation of the microstructure considering the evolution of
noninteracting pores of cylindrical and spherical shape. It was shown that elastic, viscous, and elastoplastic
end-members of the proposed viscoelastoplastic theory are consistent with experimentally verified models.

In this paper, we apply the developed formalism to study the effect of complex rheologies on developing
porosity waves in fluid-filled porous media. We assume thermal and phase equilibria and consider only
equilibrium mass exchange between the phases. This is true only when the rate at which mass is
transferred from one phase to another is zero. The effect of simultaneous melting on compaction has
been studied in Schmeling [2000] and Sramek et al. [2007]. Porosity waves in a viscous matrix with damage
from magma fracturing during melt migration are also considered in Cai and Bercovici [2013]. Fluid flow in
reactive systems is given in the literature [e.g., Aharonov et al., 1997; Connolly, 1997; Tantserev et al., 2009;
Tian and Ague, 2014]. The effect of shear stresses on compaction of porous media is neglected. It is known
that the presence of fluids does not affect shear properties of porous materials [Gassmann, 1951]. Scott
and Stevenson [1986] and Scott and Stevenson [1984] using linear stability analysis and numerical modeling
showed that finite shear viscosities influence porosity wave properties but do not affect the qualitative
behavior and scaling predicted from the compaction equations.

Most of these publications describe isothermal compaction of porous media with incompressible
constituents by fluid and solid mass conservation equations:

∂ 1� φð Þ
∂t

þ ∇j 1� φð Þvsj
� �

¼ 0 (1)
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∂φ
∂t

þ ∇j φ vfj
� �

¼ 0 (2)

and total force balance equation in the presence of the gravity field:

∇jσij � gρẑ i ¼ 0:

In the absence of shear stresses (σij ¼ �pδij , σfij ¼ �pf δij , and σsij ¼ �psδij), the latter reduces to

∇ipþ gρẑ i ¼ 0: (3)

These must be accompanied by Darcy’s law

φ vfi � vsi
� � ¼ � k

ηf
∇ip

f þ gρf ẑ i
� �

(4)

and the porosity equation of the form

pe ¼ �ηφ φ̇; (5)

where φ is the porosity, ηφ is the effective viscosity, k is the matrix permeability, g is the gravity, ẑ i are the
components of an upward directed unit vector, and ∇j are the components of the del operator. The superscript
and subscript f and s distinguish the fluid and solid velocities, vj; densities, ρ; stresses, σij; and pressures, p (see
Table 1 for notations). The bar represents the total values of corresponding quantities so that ā= afφ+ as(1�φ).
The upper dot marks the material time derivatives (d=dt ¼ ∂=∂t þ vj∇j). Effective pressure is defined as

pe ¼ p� pf ¼ ps � pf
� �

1� φð Þ: (6)

Although the solid and fluid components are incompressible, the matrix is compressible because fluid may
be expelled from the pore volume. Effective bulk viscosity ηφ reflects properties of porous rock and
depends on the viscous and failure parameters of the mineral grains composing the rock as well as on the
pore structure. In our previous paper [Yarushina and Podladchikov, 2015], we derived a functional form of
the effective viscosity based on simplifying assumptions about the geometry of the pore space. Table 2
gives an overview of the results for various types of rock rheologies. At low to moderate stresses, the rocks
behave in a linear viscous manner, which can be due to pressure solution or diffusion creep. At higher
stress levels, rocks start to fail and exhibit permanent plastic deformation (yielding). Hence, viscous and
plastic deformation mechanisms act in parallel leading to viscoplastic pore collapse in porous rocks. We
consider two end-members of plastic deformation mechanisms: (1) pressure-sensitive yield, which we term
further as dilatant brittle failure, and (2) pressure-insensitive yield. Dilatant brittle failure is due to

Table 1. Common Symbols and Their Definitions

Symbol Meaning Units

h(φ) Hydraulic potential, equation (22)
k, k0 Permeability, equation (14); reference value at φ0 m2

L* Compaction length scale, equation (34) m
m, em Pore geometry indicator;m = 1, em ¼ 1 for cylindrical pores and m = 2, em ¼ 4=3 for spherical pores
n Permeability porosity exponent, equation (14)
ps, pf Solid and fluid pressures Pa
p, pe Total pressure; effective pressure Pa
p* Characteristic pressure scale, equation (35) Pa
qs, qf Fluxes of fluid and solid matter m s�1

vsj ; v
f
j Components of the velocity vector in solid and fluid m s�1

Vexc Amount of fluid filled porosity in excess to a background level m
ω Dimensionless sedimentation parameter (phase velocity of porosity wave)
Y Yield stress for frictionless materials and cohesion for frictional materials Pa
ẑ , z Upward directed unit vector; vertical depth coordinate m
φ Internal angle of friction
φ, φ0 Porosity; background value of porosity
ηs, ηf, ηφ Shear viscosity of solid mineral grains; fluid shear viscosity; effective viscosity of porous aggregate Pa s
ρs, ρf, Δρ Solid density; fluid density; ρs� ρf kgm�3

ξ Direction of loading, ξ = 1 for compaction, ξ =� 1 for decompaction
ψ Angle of dilation
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homogeneous cataclastic flow around pores governed by the Mohr-Coulomb criterion on a pore scale, and
pressure-insensitive yield is due to crystal plasticity or mode II shear failure concentrated in the vicinity of
pores. This is described by von Mises microscopic criterion. The viscoplastic deformation occurs when the
effective pressures lie within a certain range of effective pressures.

2.1. One-Dimensional Steady State Isothermal Compaction of Porous Media With
Incompressible Constituents

One- and two-dimensional equations for fluid flow in porous media with a compactable matrix have been
studied [Barcilon and Richter, 1986; Barcilon and Lovera, 1989; Connolly and Podladchikov, 1998, 2000, 2007,
2015; Richter and Mckenzie, 1984; Scott and Stevenson, 1986; Simpson and Weinstein, 2008; Spiegelman,
1993; Sumita et al., 1996]. These studies found that the shape of a two-dimensional solution along the
vertical axis of symmetry is similar to a solution obtained for one-dimensional setup at high velocities
[Barcilon and Lovera, 1989; Connolly and Podladchikov, 2007]. Therefore, many important features of
multidimensional compaction can be studied in the simplified one-dimensional setup.

Porosity waves represent a special type of fluid flow instability. Their size, velocity, shape, and conditions of
propagation depend strongly on the properties of the solid rock frame. Any alteration in the rock rheology
can lead to variations in the properties of a porosity wave. Purely viscous rocks can accommodate a single
solitary porosity wave or a periodic wave train, both of which propagate preserving shape and size [Scott
et al., 1986]. In viscoelastic porous rocks, both a single solitary wave and periodic waves are possible, but
they would attenuate losing their energy and amplitude [Connolly and Podladchikov, 2000]. In poroelastic
rocks, obstructions to fluid flow would generate shock waves that do not detach from the source Rice
[1992]. If the rock requires less effort to open new porosity than to close already existing pores, then the
so-called decompaction weakening takes place—this is responsible for strong focusing of the fluid flow
[Connolly and Podladchikov, 2007]. Porosity waves in nonlinear viscous rocks with power law rheology are
similar to the purely viscous porosity waves. However, wavelengths that determine the spatial focusing
of the wave are significantly influenced by the power law exponent [Connolly and Podladchikov, 2013].
Nonlinearity amplifies the effects of temperature and upward strengthening of the crust on the porosity
wave geometry, compaction length, and time scales. Thus, the existence of porosity waves in the general
case of complex rock rheologies is not guaranteed, and their properties need to be investigated. In this
paper, we consider the effect of plastic yielding in solid matrix on porosity waves. Plasticity adds strong
nonlinearity into constitutive equations resulting in a different behavior of the solid matrix in the regimes
of precritical viscous flow and plastic yielding. It also leads to compaction/decompaction asymmetry.

Table 2. Effective Bulk Viscosity: Summary From Yarushina and Podladchikov [2015]

Viscous: ηϕ ¼ emηs=ϕ

Viscoplastic: Pressure-insensitive yielding
ηϕ ¼ ηs

ϕ 1�ϕð ÞR � pe
Y

�� �� 1� φ ≤ peemY

��� ��� ≤ ln 1
φ

where peemY

��� ��� ¼ 1þ lnR� Rφ

ηϕ ¼ ηs
ϕ � pe

Y

�� ���exp 1� peemY

��� ���� �
φ<< 1, pej j ≥ emY

Viscoplastic: Dilatant brittle failure

ηϕ ¼ 2κηs
ϕ

pe
Y� 1� ϕePχ þ χ

γ
ePγ � 1
� �� ��1 em

2κ 1� ϕð Þ ≤ pe
Y� ≤ 1

κ�1 1� ϕ
em κ�1ð Þ

2κ

� �
where eP ¼ 2κmem 1þ 1�κð Þpe=Y�

κþm 1þφ κ�1ð ÞR2κ=em� �
1

κ�1 þ emχ
2κ R

1�κ � emφ
2κ R

χ 1�κð Þ ¼ pe
Y�

ηϕ ¼ 2κηs
φ

pe
Y� 1þ χ

γ
ePγ � 1
� �� ��1

φ<< 1, peY� ≥ em2κ
where eP ¼ 2κemχ 1�κð Þ 1þ 1� κð Þ pe

Y�
� �

Plastic pore collapse
Pressure-insensitive yielding: Dilatant brittle failure:

pe ¼ emYξ ln 1
φ pe ¼ Y�

κ�1 1� φ κ�1ð Þem2κ� �
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Numerical experiments show that over time
a transient porosity wave evolves toward a
steady state regime that can be studied as a
stationary solution in compaction equations
[Connolly and Podladchikov, 2000; Vasilyev
et al., 1998]. Therefore, we here investigate
one-dimensional stationary solutions to com-
paction equations (1)–(5) of isothermal com-
paction of viscoplastic porous media with
incompressible constituents. There are two
different model problems that have similar
mathematical descriptions and stationary
porosity wave solutions—equilibrium com-
paction of sedimentary layer and a propa-
gating upward fluid pocket.

2.2. Equilibrium Compaction
(Uniform Sedimentation)

Equilibrium compaction or uniform sedi-
mentation of a vertical column of fluid-
saturated porous rock has been considered
[Connolly and Podladchikov, 2000]. During

sedimentation, low-density fluid segregates from deformable porous matrix. Over time, compaction in the
upper part of the sedimentary column extending from the sediment-fluid interface (z= zsf) to a depth, zss,
evolves toward a steady state, while the porosity profile becomes independent of time and forms a part of
a stationary porosity wave (Figure 1). Compaction is slow below z= zss and therefore is still in the transient
regime. We do not consider this here. One-dimensional stationary solutions to compaction equations (1)–(5)
can be obtained by putting ∂/∂t=0 and replacing material time derivative in equation (5) with d=dt ¼ vszd=dz,
where vsz is a vertical component of solid velocity.
2.2.1. Hydraulic Equation
In a steady state regime, conservation of mass for fluid and solid yields

φvfz ¼ �qf (7)

1� φð Þvsz ¼ �qs; (8)

where qf and qs are the constant fluxes of fluid and solid, respectively. Boundary conditions at the solid-fluid
interface (Figure 1) define solid flux, qs, in terms of the sedimentation rate and surface porosity as

qs ¼ � 1� φsfð Þvsf : (9)

Using equations (3) and (6), the Darcy’s law can be rewritten in the form

φ vfz � vsz
� � ¼ k

ηf

dpe
dz

þ 1� φð ÞgΔρ
� �

; (10)

where Δρ= ρs� ρf. Equations (7)–(10), together with z= zss (Figure 1), constrain fluid flux, so that

qf ¼
φ0

1� φ0
qs �

k0
ηf

1� φ0ð ÞgΔρ: (11)

Substitution of equations (7), (8), and (11) into equation (10) leads to the following form of hydraulic equation:

dpe
dz

¼ φ� φ0
1� φ0ð Þ 1� φð Þ

qsηf
k

þ Δρg
k0
k

1� φ0ð Þ � 1� φð Þ
� �

; (12)

where k0 is a background permeability value.

Figure 1. Problem setup for 1-D uniform sedimentation.
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2.2.2. Rheology
The hydraulic equation alone cannot define the porous
flow in a deformable solid matrix. The permeability law
and the closure relationship governing the compaction
of the matrix in the form of the porosity equation are
needed. In a stationary regime, the porosity equation (5)
takes the form:

dφ
dz

¼ 1� φ
qs

pe
ηφ

: (13)

For permeability, we choose the expression:

k ¼ k0 φ=φ0ð Þn; (14)

where k0 and φ0 are the background values of the
permeability and porosity, respectively; the exponent n is
taken to be constant.

2.3. Propagating Upward Solitary Waves

A problem setup for a propagating upward fluid pocket
during a uniform free subsidence of solid matrix is shown
in Figure 2. A solitary porosity wave is initiated in
response to a local alteration in porosity. A localized area
of elevated porosity is formed above the disturbance and
starts to propagate upward preserving its own shape. The
background value of porosity φ0 and zero effective

pressure are restored below the wave (Figure 2). We introduce a coordinate frame that travels together
with the porosity wave such that the porosity profile stays unchanged in this reference frame by substitution:

ez ¼ z � ct;
∂
∂z

¼ d
dez ; ∂

∂t
¼ �c d

dez ; (15)

where c is the ascent velocity of a porosity wave. Assuming that the new frame of reference is barycentric
(i.e., φvfz þ 1� φð Þvsz ¼ 0), the mass balance equations (1) and (2) lead to

vfz ¼ c þ qs
φ
; vsz ¼ � cφþ qs

1� φ
: (16)

We also assume that the wave transition from the background porosity to disturbed state must be slow
(i.e., dφ=dez→0 and dpe=dez→0 at z→±∞). Thus, Darcy’s law (equation (4)) and the porosity equation (5)
becomes equation (17) via equation (16):

dpe
d ez ¼ φ� φ0

1� φð Þ
cηf
k

þ Δρg
k0
k

1� φ0ð Þ2
1� φ

� 1� φð Þ
 !

(17)

dφ
d ez ¼ 1� φ

qs þ c
pe
ηφ

; (18)

where

qs ¼ 1� φ0ð Þ2Δρgk0=ηf � cφ0:

Thus, it is clear that the two model problems of uniform sedimentation and propagating upward fluid pocket
considered in sections 2.2 and 2.3 have similar mathematical formulations.

3. Steady State Compaction: Small-Porosity Approximation

With a given permeability law, equations (12) and (13) as well as equations (17) and (18) form a system of two
ordinary differential equations for two unknowns pe and φ. For simplicity, we adopt a small-porosity
approximation, which implies that 1�φ≈ 1 and 1� φ0≈ 1. This is justified at initial stages of melt

Figure 2. Problem setup for 1-D steady state propa-
gation of porosity wave. A vertical column of porous
rock with homogeneous porosity ϕ0 is subsiding
under its own weight, while steady porosity wave
travels upward through the column with velocity c.
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segregation when porosities reach only a few tenths of a percent. We later verified this simplification by
considering the full solution. At small porosities, equations (12) and (13) become

dpe
dz

¼ qs
ηf
k

φ� φ0ð Þ þ Δρg
k0
k
� 1

� �
(19)

dφ
dz

¼ pe
qsηφ

: (20)

Equations (17) and (18) also reduce to equations (19) and (20), where qs is replaced with c in the hydraulic
equation and with c+ qs in the porosity equation. We further examine in detail equations (19) and (20) for
uniform sedimentation. All of our results can be easily adapted to the case of propagating fluid pockets.

At the initial stages of melt segregation, the impact of porosity changes on effective viscosity is rather weak.
In several studies focused on pure viscous materials [Barcilon and Richter, 1986; Barcilon and Lovera, 1989;
Mckenzie, 1984], the bulk viscosity is assumed to be constant. This assumption simplifies the analysis of the
governing equations while preserving the quantitative behavior of the solution. Following these previous
works and for the sake of clarity we ignore the dependence of effective viscosity on porosity. For purely
viscous materials, this means that the bulk viscosity is constant and depends on the viscosity of the solid
grains, pore space geometry, and background porosity. In the viscoplastic case, the dependence on
effective pressure is added. Under this assumption, compaction equations (19) and (20) become

dpe
dz

¼ �∂h
∂φ

Δρg;
dφ
dz

¼ f peð Þ; (21)

where h is a dimensionless hydraulic potential depending on porosity only:

�∂h
∂φ

¼ k0
k
� 1þ qsηf

kΔρg
φ� φ0ð Þ: (22)

The right-hand side of the porosity equation, f(pe), is a driving force for compaction given as

f peð Þ ¼ pe
qsηφ peð Þ : (23)

In a purely viscous case, term f(pe) is a linear function of effective pressure.

3.1. Oscillating Ball Analogy

Before starting the rigorous analysis of equation (21) governing compaction-driven fluid flow we notice that
another physical system has a similar mathematical description [see also Connolly and Podladchikov, 2015].
Imagine an initially stationary ball of mass m placed on a frictionless one-dimensional curved surface
whose shape is described by function h representing the height of the surface as a function of the
position x of the ball along this surface (Figure 3a). If the forces holding the ball at its initial position are
removed, then the ball starts moving along surface h in response to gravity. Newton’s second law and the
kinematic relation describe its motion:

dv
dt

¼ �∂h
∂x

g;
dx
dt

¼ v: (24)

Here t is the time and v is the velocity along the surface. Equation (24) defines velocity and position as
functions of the time. Using the following substitutions, compaction equation (21) can be converted into
the oscillating ball equation (24) and vice versa:

compaction oscillating ball

z t

φ x

f peð Þ v

Δρg g

h h

:

We further utilized the similarity of both systems to study compaction using well-established mathematical
tools for the oscillating ball system (see more on the oscillating ball analogy in the Appendix).
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3.2. Viscous Matrix

By excluding depth from the compac-
tion equations one can present pressure
as a function of porosity (see Appendix
for mathematical details).

f peð Þ dpe
dϕ

¼ � ∂h
∂ϕ

Δρg:

Separation of variables in the last
equation results in

f peð Þdpe ¼ �Δρg ∂h
∂ϕ

dϕ: (25)

Subsequent integration leads to

E ¼ ∫f peð Þdpe þ Δρgh: (26)

The quantity E on the left-hand side of
equation (26) is conserved along the
trajectory. It has the dimension of Pa/m
and represents the sum of the hydraulic
gradient (the second term on the right)
and the pressure gradient due to
resistivity of the deformable solid
matrix (the first term on the right).
Porous flow in deformable rock is a
result of competition between the
hydraulic gradient and resistivity of the
solid rock frame. As can be seen
from equation (26), the hydraulic part
stays unchanged for all rock types,
while changes in rock rheology might
significantly influence the first term.

In purely viscous porous rocks, the effec-
tive viscosity might be represented in
the form [Yarushina and Podladchikov,
2015] (see also Table 2):

ηφ ¼ emηs=ϕ0:

Here em ¼ 1 for cylindrical pores and em ¼ 4=3 for spherical ones. Substitution of this expression for effective
viscosity into equation (25) together with equations (22) and (23) results in the following first integral for
purely viscous compaction equations in a small-porosity approximation:

p2e
2 p*ð Þ2 ¼ ωemh φð Þ; (27)

where

h φð Þ ¼ ωþ n n� 2ð Þ
n� 1ð Þ n� 2ð Þ �

k0
k

φ
φ0

φ
φ0

ω
n� 2

� ω� 1
n� 1

� �
� φ
φ0

(28)

is a hydraulic potential. Here we introduce compaction length (L *) and the pressure difference due to
buoyancy on this length scale (p *) as follows:

L* ¼
ffiffiffiffiffiffiffiffiffi
k0ηs
φ0ηf

s

p* ¼ Δ ρgL*:

Figure 3. Oscillating ball analogy to compaction equations. (a) The ball of
mass m is placed on a frictionless one-dimensional curved surface, which
shape is described by function h = x2(x� 3/2x0). There are three different
possible initial positions of the ball: above the critical level Ec, below the
critical level Ec, and exactly on Ec. (b) Hydraulic potential as a function of
porosity corresponding to solitary wave solution. (c) Hydraulic potential as
a function of porosity corresponding to oscillations of porosity around
stable background level.
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Parameter

ω ¼ qsηfφ0
Δρgk0

gives the ratio of the solid flux, qs, to the Darcy’s flow rate, Δρgk0/(ηfφ0). Large values of this parameter
indicate rapid sedimentation or slow Darcy’s flow rate (low hydraulic conductivity). Compaction equations
can have different types of solutions depending on the functional form of the hydraulic potential (see
Appendix for more details). By putting ∂h/∂φ= 0 in equation (22), we find that h has at least one equilibrium
point at φ=φ0. It is the local maximum if ω> n (h″(φ0)< 0) and the local minimum if ω< n (h″(φ0)> 0). When
ω< n and n> 1, the φ0 is a point of stable equilibrium and any perturbations in the background porosity φ0
lead to small oscillations around this value (Figure 3c). Compaction equations have a solitary wave solution
only if φ0 is a point of unstable equilibrium (Figure 3b), i.e.,

ω > n > 1: (29)

In other words, the porosity wave can only propagate when sedimentation is rapid in comparison to the
Darcy’s flow rate.

While phase trajectories on the (φ, pe) plane give valuable information about the type of solution, numerical
integration of equation (21) is required to obtain pressure and porosity profiles with depth. One of the
solutions to Figure 4 shows a solitary wave solution to equation (21). Above the wavefront (point 1),
homogeneous distribution of porosity is maintained under zero effective pressure. As the wave arrives,
fluid overpressure starts to grow beneath the front (below point 1), causing the pore space to dilate until
the resistance from the surrounding solid rock matrix limits the overpressure growth at point 2. After that,
the fluid pressure reduces below the total pressure of the host rock and goes back to the initial
background value at point 4. This causes compaction underneath the crest point back to the background
porosity φ0. The vectors on Figure 4c indicate gradients ∂φ/∂z and ∂pe/∂z—these are tangential to the
trace of the stationary solution. For a solitary wave, the gradients of porosity and effective pressure do not
converge as porosity and pressure decrease to background levels. The trace of a solitary solution

Figure 4. Purely viscous analytical stationary solution for porosity and effective pressure distribution within porosity wave (small-porosity approximation; ω = 5, n= 3).
(a) Porosity profile with depth in a barycentric frame, (b) effective pressure (�pe ¼ pf � p ), (c) pressure-porosity phase diagram, and (d) oscillating ball analogy: positions
of the ball corresponding to points 1–4 on the phase diagram.
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approaches point pe= 0, φ=φ0 asymptotically, i.e., at infinite distance from the wave center. (Please, notice
positions of the oscillating ball corresponding to critical points on a solitary wave in Figure 4d.)

The amplitude and the wavelength of the solitary wave depend on material parameters (Figure 5). An
increasing permeability exponent reduces the amplitude of the wave and the magnitude of wave anomaly
(Figures 5a–5c). At the same time, an increasing ω leads to a stronger pressure anomaly and increases the

Figure 5. Purely viscous analytical stationary solution for porosity and effective pressure (small-porosity approximation) for
different values of sedimentation parameter ω and permeability exponent n.
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wavelength and the amplitude of the wave (Figures 5a and 5b). In other words, larger-amplitude porosity waves
are generated in response to rapid burial of low-permeability sediments.

3.3. Pressure-Insensitive Viscoplastic Matrix

Effective viscosity in pressure-insensitive viscoplastic porous rocks takes the form [Yarushina and
Podladchikov, 2015]:

ηφ ¼
emηs=ϕ0 if pej j ≤ emY

ηs
ϕ0

pej j
Y

exp 1� pej j= Y emð Þð Þ if pej j > emY

8<: : (30)

Use of this expression in equation (21) yields phase trajectories of the form:

exp
pe
Y em��� ���� 1

� �
� 1
2
¼ ωem p*

Y

� �2

h φð Þ if pej j > emY: (31)

For pej j ≤ emY, phase trajectories are given by equation (27). Figure 6 shows the porositywave in pressure-insensitive
viscoplastic porous matrix (solid line). For comparison, a pure viscous solution is plotted as a dotted line. Plasticity
preserves the solitary wave solution but alters its properties. In the presence of pressure-insensitive yield, the
amplitude of the wave is preserved but the wavelength is reduced. This is because plasticity reduces the
effective viscosity, which reduces the viscosity contrasts between solid and fluid. Note that a reduction in ω
equivalent to a reduction in viscosity contrast in pure viscous waves also reduces the wavelength of the
solitary wave (Figure 5). Plasticity reduces the amplitude of the pressure anomaly. The impact of plasticity on
the porosity wave strongly depends on the magnitude of the yield stress. The decrease in the yield stress
(=more pronounced plastic flow) causes a stronger reduction in the wavelength and in the amplitude of the
pressure anomaly. High values of the yield stress would only slightly alter the viscous wave (Figure 6).

3.4. Viscoplastic Matrix With Dilatant Brittle Failure

Effective viscosity for viscoplastic rocks with dilatant brittle failure takes the form:

ηφ ¼
emηs=ϕ0 if

pe
Y�
��� ��� ≤ em

2κ

2ηsκ
φ0

pe
Y� 1þ

ePγ � 1
� �

κ þmð Þ
γm 1� κð Þ

0@ 1A if
pe
Y�
��� ��� > em

2κ

8>>>><>>>>: : (32)

Figure 6. Analytical solution for porosity wave in a viscoplastic matrix with pressure-insensitive yielding (ω = 5, n = 3):
variations of porosity and effective pressure with depth and phase diagram. The solid and dashed lines correspond to
the viscoplastic solution obtained for two different values of the yield stress. The dotted lines represent a purely viscous
solution obtained for the same values of ω and n.
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Parameters Y* and κ reflect the failure
properties of the rock matrix as well as
the sign of loading (compaction or decom-
paction; see also Table 3 for notations). This
leads to different yield limits and effective
viscosities for compaction and decompac-

tion. Viscous compaction takes place for pe
<

ffiffiffi
3

p
Y or pe < 4

ffiffiffi
3

p
Y=3 depending on

pore geometry, while viscous decompaction proceeds as long as pe > �Y=
ffiffiffi
3

p
or pe > �4

ffiffiffi
3

p
Y=9. Before the

yield stress is reached, the phase trajectories are defined by equation (27), while in the plastic regime:

� Y
p*

� �2 3
ffiffiffi
3

p
pe þ Yffiffiffi

3
p

pe þ 3Y
¼ 6ωh φð Þ if pe < � Yffiffiffi

3
p decompactionð Þ

pe þ
ffiffiffi
3

p
Y

� �3
6
ffiffiffi
3

p
Y p*ð Þ2 � Y

p*

� �2

¼ 2ωh φð Þ if pe >
ffiffiffi
3

p
Y compactionð Þ

for cylindrical pores and

Y
p*

� �2 2
3

5
3

� �5=4

3þ
ffiffiffi
3

p pe
Y

� ��1=4
� 1

 !
¼ ω

2
h φð Þ if pe < � 4

ffiffiffi
3

p

9
Y decompactionð Þ

Y
p*

� �2 2
3

1

77=4
3þ

ffiffiffi
3

p pe
Y

� �11=4
� 1

� �
¼ 11

6
ωh φð Þ if pe >

4
ffiffiffi
3

p

3
Y compactionð Þ

for spherical pores. For simplicity, we assumed here that the angle of internal friction is φ= π/6 and the dilatancy
angle is ψ =0. A numerical solution of compaction equation (21) for viscoplastic matrix with dilatant brittle
failure shows that asymmetry in the effective viscosity (equation (32)) leads to a strong asymmetry of the wave
—this significantly reduces the overpressure required for wave propagation (Figure 7). The amplitude of the
wave in the (φ, z) plane is not affected by the presence of brittle failure in a small-porosity limit (Figure 7, left).

Figure 7. Analytical stationary solution for porosity and effective pressure distribution within solitary wave in a viscoplastic
matrix with dilatant brittle failure (ω = 5, n = 3). The dotted lines correspond to purely viscous solution obtained for the
same values of parameters.

Table 3. Shorthand Notations

Y* = 2ξ cosϕY/(1 + ξ sinϕ)

κ = (1� ξ sinϕ)/(1 + ξ sinϕ)
ς = (1� ξ sin ψ)/(1 + ξ sin ψ)
γ = 1� κ/(κ� 1) � (1/ς + 1/m)
χ = (κ +m)/(m(1� κ))em ¼ 2m= mþ 1ð Þ
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4. Steady State Compaction: Full Solutions

In some cases, the full compaction equations can be integrated exactly. If we accept the Carman-Kozeny
porosity-permeability relationship in the form:

k ¼ k0
φ
φ0

� �3 1� φ0
1� φ

� �2

; (33)

then the solution of the purely viscous compaction equations will take the form of equation (27) where the
hydraulic potential and characteristic scales are modified versus the small-porosity, such that

h φð Þ ¼ ω φ� φ0ð Þ2 φþ 2φ0
6φ3

� 1� φ0ð Þln φ
φ0

� φ� φ0
3φ

3φ0 � 2ð Þφþ φ0
2φ

� φ0
2

φ2

� �

L* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0ηs
φ0ηf

1� φ0ð Þ
s

(34)

p* ¼ ΔρgL*: (35)

However, no analytical solutions are available in a viscoplastic case, and only numerical solutions to full
compaction equations are possible. At nonnegligible porosities, plastic failure has a much stronger impact
on the porosity wave than in the case of small porosities (Figure 8). This affects not only the wavelength
and the magnitude of the pressure anomaly but also increases the amplitude of the wave. Comparison of
the full and approximate solutions from previous sections shows that the small-porosity approximation
gives acceptable predictions for φ ≤ 1%.

At low-yield stresses and high-sedimentation parameter ω values, the fluid overpressure generated by the
porosity wave can eventually meet the criterion for the full plastic pore collapse. Such a system is given as
the upper pressure limit in Table 2. As this occurs, the viscoplastic porosity equation (5) has to be
substituted by one of the equations of full plastic pore collapse listed in Table 2. Full pore collapse
precludes further pressure buildup and creates a propagating upward shock wave (Figure 9). The
amplitude of the shock is fully controlled by the hydraulic potential. Unlike viscous and viscoplastic
porosity waves, plastic shock waves do not detach from the source region. That is, it does not restore the
initial background values of pressure and porosity below the wave.

Figure 8. Viscoplastic solution to full compaction equations in a matrix with pressure-insensitive yielding (ω = 10, n = 3,
ϕ0 = 0.01): porosity profile with depth, fluid pressure anomaly profile with depth, and corresponding phase diagram.
The dotted line corresponds to the purely viscous solution to full compaction equations obtained for the same values of
sedimentation parameter, permeability exponent, and background porosity.

Journal of Geophysical Research: Solid Earth 10.1002/2014JB011260

YARUSHINA ET AL. VISCOPLASTIC POROSITY WAVES 4855



5. Speed, Amplitude, and Excess Volume of Porosity Wave
5.1. Small Porosities

We next examine the relationship between the fluid volume carried by the porosity wave including its speed
and amplitude. As we noticed in the previous section, developing plastic flow in a low-porosity limit does not
change the amplitude of porosity waves. The viscoplastic trajectory in the phase plane (φ, pe) starts from a
trajectory of viscous solution and returns to exactly the same viscous trajectory as pressure drops below
the yield point (Figures 6 and 7, right). Thus, to find the relationship between the maximum amplitude, A,
of the viscoplastic porosity wave and its nondimensional speed, ω, we put pe= 0 at φ/φ0 = A in equation
(27). This also defines purely viscous waves. These results in the following dispersion relation are for one-
dimensional waves in a small-porosity limit:

ω ¼ 1þ 2A: (36)

Thus, plastic flow does not affect wave speed unless the background porosity is high.

It is known that porosity waves arise in response to an obstruction to fluid flowwhen a critical amount of fluid
gets trapped in the pore space. The fluid volume carried by the wave can be defined in terms of the excess
volume, which is a volume of fluid-filled porosity above the background level integrated over the
source region:

Vexc ¼ ∫
þ∞

�∞

φ� φ0ð Þdz: (37)

Excluding depth from the last equation via equation (20), one can rewrite excess volume in terms of the
porosity integral, namely,

Vexc ¼ ∫
φmax

φ0

φ� φ0ð Þ dz
dφ

dφ ¼ qs ∫
φmax

φ0

φ� φ0ð Þ ηφ φð Þ
pe φð Þ dφ:

Excess volume contained in the source region affects the wave amplitude, which in turn determines the wave
speed according to equation (36). Therefore, a direct relationship between wave speed and amount of fluid

Figure 9. Shock wave solution to full compaction equations in a purely plastic matrix with pressure-insensitive yielding
(ω = 10, n=3,ϕ0 = 0.01, Y/p * = 0.2): porosity and fluid pressure anomaly profiles with depth and corresponding phase diagram.
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available for generation of porosity waves can be obtained (Figures 10 and 11). The excess volume also
reduces the presence of yielding because in a small-porosity case, the plastic flow reduces the wavelength
of the wave but does not alter its amplitude. The extent of plastic flow caused by the wave depends on
the wave amplitude and strength of the matrix material. Decreasing yield stresses increases the ability of
the solid matrix to yield. In a matrix with lower-yield stress, the plastic flow will be more pronounced and
waves would be more focused. Accordingly, the excess volume carried by such a wave would be smaller
versus a nonyielding matrix. Plastic yielding of the solid matrix reduces the excess volume necessary to
generate a porosity wave with a certain wave speed. Waves generated from a larger source travel faster.
Decreasing yield strength (cohesion) aids the onset of plastic yielding during wave propagation and

Figure 10. Dimensionless wave speed as a function of excess volume available in the source region and the extent of
pressure-insensitive plastic flow defined by the ratio of the characteristic pressure p * to the matrix yield strength Y (small-
porosity approximation). (a) Collapse of data (blue crosses) for wave speed ω at different values of Vexc and p */Y> 1 on a
single master curve (red line). The results are presented for two different deformation modes, namely, viscous corresponding
to low values of ω and viscoplastic at large ω. Wave speed has a different dependence on pressure and porosity for both
regimes, which explains the scatter of data at low values of ω. (b) Dependence of dimensionless wave speed ω on the
dimensionless yield stress and excess volume. At high-yield strength and low Vexc solitary wave will be purely viscous. Notice
that at low values of Vexc and p */Y (lower left corner of the diagram), the level set is vertical, which indicates that velocity is
independent of p */Y and corresponds to purely viscous waves.

Figure 11. Dimensionless wave speed as a function of excess volume available in the source region and the extent of
dilatant brittle failure (small-porosity approximation). (a) Collapse of data (blue crosses) for wave speed ω at different
values of Vexc and p */Y> 10 on a single master curve (red line). The scatter of data at low values of ω is explained by the
absence of plastic flow. (b) Dependence of dimensionless wave speedω on the ratio p */Y and excess volume. Notice that at
low values of Vexc and p */Y (lower left corner of the diagram), the level set is vertical, which indicates that velocity is
independent of p */Y and corresponds to purely viscous waves.
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decreases the excess volume necessary to generate
a wave propagating with a given speed ω.
Viscoplastic waves travel faster than purely viscous
waves generated from the source with the same
excess volume (Figures 10b and 11b). In turn, their
amplitudes are higher. For p */Y> 1, the speed of
the wave in a pressure-insensitive viscoplastic
matrix can be approximated as (Figure 10a):

ω ¼ Vexcffiffiffiffiffi
10

p
φ0L*

p*
Y
:

In a viscoplastic matrix with dilatant brittle failure,
the speed of the wave for p */Y> 10 can be
approximated as (Figure 11a):

ω1:67 ¼ 100:14
Vexc

φ0L*
p*
Y

� �1=3

:

5.2. Full Solution

The dispersion relation (equation (36)) is linear at a
small-porosity limit. However, at higher values of

background porosity, the dependence of bulk viscosity on porosity strongly influences the dispersion
relation [Barcilon and Richter, 1986; Connolly and Podladchikov, 2007]. This results in the following
nonlinear dependence of the purely viscous wave speed on its amplitude and background porosity:

ω ¼ 6A3 1� φ0ð Þ
Aþ 2ð Þ A� 1ð Þ2 ln A� A Aþ 1ð Þ 2� 3φ0ð Þ þ 2

Aþ 2ð Þ A� 1ð Þ : (38)

Wave amplitude, A, is themain factor controlling the speed of the wave, while variations in φ0 lead only to slight
deviations from the main trend (notice the thickening of the master curve at small values of the amplitude in
Figure 12). At large A values, equation (38) simplifies leading to the following dispersion relationship:

ω ¼ 6 1� φ0ð Þln A� 2:

For viscoplastic rocks, the bulk viscosity is a nonlinear function of porosity. Therefore, plasticity affects the
wave speed in the case of large and moderate background porosities φ> 1% (Figure 13). As in a small-
porosity limit, the excess volume necessary to generate a porosity wave in a viscoplastic matrix is smaller
than the excess volume needed for the purely viscous case. At low values of p */Y and Vexc, the amplitude

Figure 12. Phase speed of porosity wave as a function of its
amplitude A =ϕmax/ϕ0 for different values of background
porosity calculated according to the purely viscous solution
to full compaction equations.

Figure 13. Amplitude and velocity of porosity wave in a pressure-insensitive viscoplastic matrix (full solution obtained for
ϕ0 = 0.01). (a) Dependence of the dimensionless wave amplitude on the ratio p */Y and excess volume. (b) Dependence of
the dimensionless wave speed on the ratio p */Y and excess volume.
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and speed are independent of p */Y, and the wave is purely viscous (note the vertical level sets of amplitude
and speed in Figure 13). Waves generated from the larger source would travel faster. Plastic yielding increases
the amplitude of the wave versus the purely viscous wave generated from the same source.

Fast-propagating porosity waves can even eventually develop full pore collapse due to significant increases
in fluid pressure. This is especially true if the yield strength of the matrix is low or the excess volume is high
(note the white area in Figure 13). As this occurs, porosity wave degenerates into a shock wave. As a result, in
a matrix with nondilute levels of background porosity, the viscoplastic porosity waves can be generated only
in a limited range of p */Y and Vexc/φ0L*. This corresponds to a narrow area adjacent to the shock wave zone
where the level set diverges from the vertical direction.

6. Conclusions

We formulated a mathematical model of segregation and migration of fluids in a viscoplastic compacting
porous matrix consistent with thermodynamics and microscale physics. We studied porosity waves
propagating through the matrix of low and moderate background porosity. The model predicted that the
solitary porosity waves can propagate through a viscoplastic porous matrix. In general, viscoplastic waves
resemble the purely viscous waves studied in the literature. However, the presence of plastic yielding alters
their properties and brings some new phenomena. Plastic yielding reduces the wavelength and increases
the amplitude of the wave. The pressure anomaly within the viscoplastic wave is significantly reduced versus
the purely viscous case. Thus, only moderate overpressures are generated by the wave. Viscoplastic waves
generated from the source with the same excess volume travel faster than purely viscous ones. Porosity
waves generated in rocks exhibiting decompaction weakening are strongly asymmetric. Previously, this
asymmetry was shown to cause strong flow channeling [Connolly and Podladchikov, 2007]. Shock waves are
observed in a purely plastic regime of matrix deformation. The velocity and the amplitude of a porosity wave
are given as functions of the ability of a solid matrix to yield and the volume of the fluid-filled porosity in
excess of a background value. We identified parameter values at which purely viscous, viscoplastic, or purely
plastic waves can generate. Purely viscous waves arise from small sources in the matrix with high-yield
strength. Weak rocks of moderate background porosity accommodate only purely plastic shocks due to their
inability to sustain high hydraulic pulses. Viscoplastic waves of finite amplitude are generated only at limited
values of parameters. However, viscous, viscoplastic, and plastic waves can transform into each other while
propagating. The proposed formulation is applicable to melt migration in the Earth’s deep interiors, fluid
migration in sedimentary basins, as well as CO2 upward migration at injection sites.

Appendix A: The Oscillating Ball Analogy
A1. Phase Portrait, First Integral, and Direction Field

Integration of equation (24) for an oscillating ball in a closed form is not always possible depending on the
complexity of the surface geometry h. However, even without integration one can learn about the qualitative
behavior of the solution from its phase portrait and a direction field. For any t, the position of the ball on the
surface h and its velocity can be represented as a point on a phase plane (x, v). When the ball starts to move
its position x and velocity v change, and the point (x, v) moves along a phase trajectory (Figures 4 and A1).

All phase trajectories of equation (24) correspond to different initial conditions and can be obtained as
solutions to equation:

dv
dx

¼ �∂h
∂x

g
v

(A1)

that follows from equation (24) after excluding time. Separation of variables in equation (A1) leads to

v dv þ g
∂h
∂x

dx ¼ 0:

The final equation can be easily integrated, such that

E ¼ v2=2þ gh; (A2)

where E is the total energy of the ball, which is conserved along trajectories. The energy of the ball E is
determined by its initial position xini on the surface h and its initial velocity vini (Figure 3). The contour plots
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of energy in the plane (x, v) define implicit dependence v(x) and give all possible phase trajectories for
equation (24).

The evolution of x and v with time can be shown by imposing the direction field (dx/dt, dv/dt) on top of a
phase trajectory. The plot of possible phase trajectories and corresponding direction fields constitutes a
phase portrait (Figure A1). Its structure shows the quantitative features of ball behavior on the
curved surface.

Figure A1. Solutions and phase portraits for equations governing the oscillations of a ball on a curved surface corresponding
to three different total energy levels. (a) The solution with open phase trajectory (the uppermost plot) corresponds to the ball
with total energy E2 that is higher than the critical value Ec (Figure 3). (b) Solution with self-intersecting phase trajectory. (c) A
periodic solution with closed phase trajectory is obtained for a ball with initial position x1, and zero velocity providing the ball
has total energy E1 lower than critical value Ec.
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Equations (24) and (A1) have a special solution that is not described by the energy integral (equation (A2)). It
corresponds to equilibrium points where the ball is motionless, such that

dx
dt

¼ 0 and
dv
dt

¼ 0:

Equilibrium points separate regions where solutions to equations (24) and (A1) have different quantitative
behavior and therefore are very important for the structure of the phase portrait.

A2. Example: Cubic Shape Function

As a simple example, let us consider h= x2(x� 3/2x0) with x0> 0 (Figure 3a). The equation ∂h/∂x= 3x(x� x0)
= 0 has two roots, which means that the oscillating ball equation (24) have two equilibrium points. The first

point x ¼ x0 h ¼ �x30=2
� �

corresponds to a minimum on the curve h. This is a point of stable equilibrium. If

external forces cause a slight deviation of the ball from the position of stable equilibrium it begins to oscillate
around this point trying to return to its initial position. Another equilibrium point, x= 0 (h= 0), is a point of
unstable equilibrium and corresponds to the maximum on the curve h. Being placed in this position, the
ball remains there in the absence of external interference, but if slightly disturbed the ball slides away.
Contour plots of the total energy, E, and the corresponding direction fields are very different for these
situations and correspond to different special solutions (Figure A1). A self-intersecting homoclinic orbit
separates the phase plane (x, v) into two different domains. There are closed curves inside the homoclinic
orbit trajectories, and the outside trajectories are open. Each type of phase trajectory corresponds to a
certain mode of ball motion. All phase trajectories are symmetrical with respect to the line v=0. In the
upper half of the phase plane the velocity is positive and corresponds to the motion of the ball to the
right. The lower half of the phase plane corresponds to the leftward motion.

A2.1. Closed Trajectories: Periodic Motion

Let us consider a ball initially placed in position x1< xc. Its initial state is characterized by a point (x1, v1 = 0)
lying inside the homoclinic orbit on a closed trajectory (Figure 3a). The ball oscillates between the initial
position x1 and a position of equal height at which its kinetic energy vanishes (Figure 3a). During the
motion, the ball maintains its total energy E1< Ec. The behavior of the ball is periodic, and a solution to
equation (24) is also periodic (Figure A1a).

A2.2. Open Trajectories: Nonwave Solutions

Now consider the ball initially placed at x2> xc. Its initial state is given by the point (x2, v2 = 0) lying on an open
trajectory outside the homoclinic orbit. On the surface h, the ball is placed above the critical level h=0
corresponding to x2> xc. During the motion, the ball maintains the total energy E2> Ec. Once it starts sliding
from its initial position, such a ball would have enough energy to overcome the barrier at x=0 and to go
infinitely far away from the initial position. Correspondingly, x and v are unlimited functions of time
(Figure A1b).

A2.3. Self-Intersecting Trajectory: Solitary Wave Solution

Imagine now the ball with initial state on the homoclinic orbit (xc= 3/2x0, vc=0). Such a ball possesses the
critical energy level Ec. Set in motion, the ball has enough energy to climb the hill at x=0. However, it
takes an infinitely long time for it to do so. The behavior of x and v with time is shown on Figure A1c. The
shape of the x-t curve resembles a solitary wave.

Whether or not periodic or solitary wave solutions are possible for the oscillating ball depends on the shape
of the surface. If it is convex, then only periodic solutions are possible. If it is concave then all solutions are
nonbounded, nonperiodic functions of time. Solitary wave solutions are possible only if the surface h has a
potential well and inflection points defined as roots of the equation ∂2h/∂x2 = 0 at which ∂2h/∂x2 changes
sign. The shape of the function h determines both the amplitude and the stability of oscillations, whereas
the gravitational constant controls the velocity of the ball and therefore the period of oscillation.
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