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Abstract

The near-surface compaction regime of most sedimentary basins is characterized by hydrostatic fluid pressures and
is therefore determined entirely by sediment matrix rheology. Within this regime, compaction is initially well described
by a pseudoelastic rheological model. With increasing depth, precipitation—dissolution processes lead to thermally
activated viscous deformation. The steady-state porosity profile of the viscous regime is a function of two length scales;
the viscous e-fold length, related to the compaction activation energy; and a scale determined by the remaining
parameters of the sedimentary process. Overpressure development is weakly dependent on the second scale for activation
energies >20 kJ/mol. Application of the steady-state model to Pannonian basin shales and sandstones indicates a
dominant role for viscous compaction in these lithologies at porosities below 10 and 25%, respectively. Activation
energies and shear viscosities derived from the profiles are 20-40 kJ/mol and 10*°~10%! Pa-s at 3 km depth. The analytical
formulation of the compaction model provides a simple method of predicting both the depth at which permeability
limits compaction, resulting in top-seal formation, and the amount of fluid trapped beneath the top-seal. Fluid flow
during hydraulically limited compaction is unstable such that sedimentation rate perturbations or devolatilization cause
nucleation of porosity waves on the viscous e-fold length scale, ~0.5-1.5 km. The porosity waves are characterized by
fluid overpressure with a hydrostatic fluid pressure gradient and propagate through creation of secondary porosity in
response to the mean stress gradient. The waves are a mechanism of episodic fluid expulsion that can be significantly
more efficient than uniform Darcyian fluid flow, but upward wave propagation is constrained by the compaction front
so that the waves evolve into essentially static domains of high porosity following cessation of sedimentation. Yielding
mechanisms do not appreciably alter the time and length scale of episodic fluid flow, because fluid expulsion is ultimately
controlled by compaction. The flow instabilities inherent in viscous compaction are similar to, and a possible explanation
for, fluid compartments. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction (e.g. Hunt, 1990; Powley, 1990). The fluid pressure
gradient within these domains or ‘fluid compart-

High-porosity domains of overpressured pore ments’ is near to hydrostatic, and the domains are
fluid are a ubiquitous feature of sedimentary basins bounded by relatively impermeable seals. The
detailed structure of a fluid compartment beneath
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approaches lithostatic pressure with increasing
depth. The geometry and scale of the compart-
ments are often entirely controlled by geologic
structure or lithologic heterogeneity. However, in
many basins, the top seal occurs at approximately
constant depth and shows only local correlation
to structure and lithology (e.g. Hunt, 1990;
Al-Shaieb et al., 1994; Surdam et al., 1994). In
these cases, the depth of onset for fluid overpres-
sures is ~3 km and appears to show some relation
to the geothermal gradient. These observations
suggest that compartmentalization may be intrinsi-
cally related to sedimentary compaction and, in
particular, thermally activated features of compac-
tion, a hypothesis that is examined here with a
one-dimensional mathematical model of the com-
paction process.

Most studies of compaction driven fluid flow in
sedimentary basins presume that porosity is a
known function of distance from the sediment—
water interface, thus they model the consequences
of compaction rather than the compaction process
itself. Sedimentary compaction at shallow depth is
by rotation and crushing of the sediment grains.
Although this mechanism results in a plastic rheol-
ogy, if reasonable assumptions are made about the
deformation path, a pseudoelastic model can
describe the compaction process (e.g. Shi and
Wang, 1986; Audet and Fowler, 1992; Wangen,
1992). These models can explain overpressure
development in a pre-existing compartment in
response to perturbations caused by processes such
as heating or devolatilization, but are usually
inadequate to explain seal formation and compart-
mentalization (Kooi, 1997). With increasing depth
and temperature, compaction occurs largely
by dissolution—precipitation  processes  (e.g.
Lundegard, 1992; Qin and Ortoleva, 1994;
Bjorkum, 1995). Because the resulting deformation
is time-dependent and irreversible, the rheology is
viscous. Dissolution—precipitation processes are
incompletely understood, but are generally thought
to result in thermally activated linear viscous rheol-
ogy (e.g. Angevine and Turcotte, 1983; Rutter,
1983; Schneider et al., 1996). Steady sedimentation
of a matrix with thermally activated viscous rheol-
ogy was investigated numerically by Schneider
et al. (1996), but analytical treatments discount

thermal activation (e.g. Sumita et al., 1996; Fowler
and Yang, 1999), an important limitation in the
context of low-temperature, near-surface environ-
ments. Accordingly, this paper begins with the
presentation and parameterization of a steady-
state mathematical formulation to account for
thermally activated compaction that is then verified
by comparison to transient numerical calculations
and applied to a natural example.

Steady fluid flow through a viscous matrix is
unstable, such that perturbations that create an
obstruction to upward fluid flow induce fluid-filled
porosity waves (Richter and McKenzie, 1984,
Scott and Stevenson, 1984). Porosity waves are
self-propagating domains of overpressured poros-
ity. McKenzie (1987) briefly considered the devel-
opment of porosity waves in the context of
sedimentary basins and argued that the rapid
deposition of sediments onto a partially compacted
sediment layer would initiate waves. More thor-
ough analysis shows that the waves are more likely
to initiate in response to a reduction in sedimenta-
tion rate (Sumita et al., 1996). Regardless of this
detail, the observation that fluid compartments are
common in rapidly accumulated sedimentary
sequences (e.g. Hunt, 1990) provides a compelling
argument for the relevance of McKenzie’s model.
However, the assumption of constant matrix vis-
cosity creates a cosmetic flaw in that the waves
propagate upward rapidly. The waves are therefore
incapable of forming compartments that would
persist on the time scale of sedimentation, a charac-
teristic of sedimentary fluid compartments demon-
strated by the presence of mature hydrocarbons.
McKenzie’s model might be reconciled with the
observation that top seal formation is, at least
sometimes, related to temperature, if thermally
activated mineral precipitation were capable of
forming an obstruction to the upward propagation
of porosity waves (e.g. Hunt, 1990; Aharanov
et al., 1997). Equilibrium transport of saturated
solutes is inadequate to create obstructions because
of low solubility gradients (e.g. Connolly and
Thompson, 1989; Robinson and Gluyas, 1992).
Consequently, it is necessary to invoke disequilib-
rium phenomena to explain flow obstructions by
mineral precipitation. Mechanisms of disequilib-
rium seal formation exploit local lithologic hetero-
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geneity (e.g. Birchwood and Turcotte, 1994; Qin
and Ortoleva, 1994; Oelkers et al., 1996) but, on
a mesoscopic scale, are equivalent to viscous com-
paction as considered here. Under metamorphic
conditions, viscous compaction with temperature-
dependent rheology leads to the formation of
essentially static one-dimensional porosity waves
(Connolly, 1997; Connolly and Podladchikov,
1998). In the second part of this paper, we seek
to establish whether such waves are likely to form
on significant time and length scales in sedimentary
basins as a result of compaction or diagenetic
devolatilization.

Porosity waves are a mechanism of fluid flow
in which porosity dilation and compaction propa-
gates a domain of high porosity toward conditions
of lower mean stress, i.e. in most cases upward. In
prior studies of viscous compaction, it has been
assumed that matrix viscosity is independent of
the sign of the effective pressure. This assumption
implies that the negative effective pressure respon-
sible for pore dilation must be comparable in
magnitude to the positive effective pressure that
induces compaction at depth. It is improbable that
sediments support large negative effective pressures
without yielding (e.g. Bjerlykke and Hoeg, 1997).
We implement a viscoplastic model in which pore
compaction and dilation are viscous and plastic,
respectively, to account for this possibility.

2. Mathematical formulation and parameterization

We consider Darcyian flow of an incompressible
fluid through a viscoelastic sediment matrix com-
posed of incompressible solid grains. Although the
solid and fluid components are incompressible, the
sediment is compressible because fluid may be
expelled from the pore volume. Conservation of
solid and fluid mass requires:

o(l—

a= - /) +V(1=¢)v)=0 (1)
ot

and

o9

m +V (¢v) =0, (2)
t

where ¢ is porosity, and subscripts f and s distin-
guish the velocities, v, of the fluid and sediment
(see Table1 for notation). The force balance
between the matrix and fluid is by Darcy’s law:

k
(e —v)=——Vp, (3)
u

where: k is the matrix permeability; p is the fluid
viscosity, which, in view of the large variation
possible in permeability, we consider constant; p
is the fluid overpressure defined relative to
hydrostatic conditions such that p=p;— pgz, with
downward increasing depth coordinate, z; and p;
is the fluid density. The sediment matrix rheology
is introduced through Terzaghi’s effective stress
principle for a Maxwell viscoelastic bulk rheology:

De dp.
Vvs= —¢<€ +p dt>’ (4)

where p, is the effective pressure, f and { are the
coefficients of bulk matrix compressibility and
viscosity, and d/dr=(0/0t+v,V) is the material
derivative of the sediment properties. The effective
pressure is the difference between the mean stress
and the fluid pressure, i.e. p. =6 —p;. The porosity
dependence of the rheological equation is necessi-
tated by the requirement that the matrix must
become incompressible as ¢ —0. This dependence
follows directly from the first-order non-zero terms
of a Taylor series expansion of Vv, as a function
of ¢, p., and dp./dt; thus, we refer to the simplest
rheology in which f and { are independent of
porosity as a linear viscoelastic rheology. Non-
linear rheology results if f and { are dependent on
porosity, a possibility that we explore subsequently
for the viscous term. The near-surface compaction
of sediment is plastic, but if the sediment load
increases monotonically, plastic and elastic formu-
lations are mathematically equivalent (Audet and
Fowler, 1992; Wangen, 1992; Fowler and Yang,
1998). We therefore adopt Eq. (4) to describe
plastic compaction, which we designate as pseudo-
elastic to differentiate the physical process from
truly reversible elastic behavior. The coefficient, f3,
is then the coefficient of the effective pore com-
pressibility during monotonic loading, i.e. the
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Table 1
Common symbols and characteristic parameter values®

Symbol Meaning Units Typical value
De Local Deborah number, Egs. (20) and (30)

k, k, Permeability, Eq. (21); reference value at ¢, m? 101310~
/ Viscous e-fold length, Eq. (27) m 500-1500 m
m Bulk viscosity porosity exponent, Eq. (23) 0-1

n Permeability porosity exponent, Eq. (21) 3

Do De Fluid pressure; effective pressure, p, gz —ps Pa

p Overpressure, py— pgz Pa

Q Creep activation energy, Eq. (25) kJ/mol 20-70

qs Sediment (sedimentation rate) flux m/My 10-10°

S, Sy Fluid and porosity source terms m3/m3-s Eq. (65)

T, T, Temperature; reference value, Eq. (25) K 473

t Time s or My

Ve, Vg Fluid and sediment velocity m/My

Vo Porosity phase velocity m/My

z, Z, Depth; reference value for #,, Eq. (26) m 3000

Z, Depth of top seal formation, Eq. (38) m 2000-4000

B Coeflicient of pore compressibility Pat 1078

K Hydraulic constant, Eq. (41) Fig. 5

Ao Rheological constant, Eq. (32) m Fig. 5

¢, ¢, Porosity; reference value for &, Eq. (21) 25%

Pes Dss Top seal and fluidization porosity, Fig. 2 Eq. (40), Eq. (46)
$o> 1 Porosity at onset of compaction, Fig. 2

7, 1, Sediment shear viscosity, Eq. (25); i at z, Pa-s 10%0-10%*

{ Coefficient of sediment bulk viscosity Pa-s Eq. (23)

Pp> Pss Ap Fluid density; sediment density; p,— p¢ kg/m? 900, 2600, 1700
u Fluid shear viscosity Pa-s 1074

w Local hydraulic parameter, Egs. (20) and (41)

A As superscript, an estimator

# See Fig. 2 for additional notation.

inverse of the tangential bulk hardening modulus
in loading.

The mass conservation constraint [Eq. (1)] can
be rearranged to express the divergence of the
matrix velocity in terms of the material derivative
of the porosity:

1 d¢
VVS_@E' (5)

Addition of Egs. (1) and (2) gives the divergence
of the total volumetric flux of matter as:

V(v +¢(ve—v,))=0. (6)

Egs. (6) and (3), together with the definition of

effective pressure, give:
k

4 vs_i(V6_pfguz_Vpe) =0 (7)
U

where u, is the unit vector directed toward increas-
ing depth. Egs. (1), (4), and (7) then form a
system of three equations in four unknown quanti-
ties {§, p., v, V&} that becomes closed if Vg is
specified as a function of depth.

2.1. One-dimensional compaction

Sedimentary compaction is primarily a process
of sediment consolidation orthogonal to the
Earth’s gravitational field. We thus approximate
the process as one-dimensional. In this context,
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Eq. (7) may be integrated to express the sediment
velocity at depth

k (06 op.
vs=qt+; — —pg— , (8)

) )

where ¢, is the total volumetric flux of matter
through the sedimentary column. Employing Eq.
(5) to express the divergence of the matrix velocity
in terms of porosity, Egs. (4) and (7) are

Lo e dpe)

1—¢ dt ¢<g+ﬁ dt ®)
1 d¢ 0 (k[0 P
Hsd,—az<u<az‘pfg‘az>>’ (10

where, from Eq. (8), the material derivative is

d a+< +k<66 ﬁpe>>6 o
ar o \ M \a: TP ) )

and 0/0z is the partial derivative in a reference
frame defined relative to the sediment-water inter-
face. In truly isostatic compaction, the mean stress
gradient is well approximated by the gradient of
the sediment load

06

—=((1=d)ps +dp)g (12)
0z

where p, is the solid density. Eq. (12) introduces
arithmetic complexity into the compaction equa-
tions (cf., Fowler and Yang, 1999) without
accounting for the potentially important contribu-
tion of deviatoric stresses into the force balance
for consolidated sediments. Deviatoric stresses in
partially consolidated sediments are sensitive to
far-field stresses, basin fill history, topographic
slope and rheology. In light of these sources of
inaccuracy, we simplify Eq. (12) by taking the
mean stress gradient as a constant external param-
eter such that

0G (13)
aZ _psg’

where p, becomes the effective density of the
sedimentary column. We justify this simplification

by the subsequent result that our formulation
provides an adequate description of the compac-
tion of near-surface poorly consolidated sediments,
where the greatest variations in bulk density occur.

2.1.1. Steady-state compaction

During uniform sedimentation, transient com-
paction evolves toward a steady-state limit; the
time scale of this evolution increases strongly with
depth due to the reduction in permeability caused
by consolidation. Consequently, for the character-
istic sedimentation time, the near-surface regime
is expected to be in closer proximity to the steady-
state limit. We therefore begin by supposing the
existence of a stationary state extending from the
sediment—water interface to a depth, z, such that
the porosity profile is independent of time, a
situation often referred to as equilibrium compac-
tion. In the one-dimensional steady state, integ-
ration of Eq. (1) gives

vss(l _¢ss) _ 4qs
(1-¢)  (1—-¢)

where ¢, is the sediment flux vy(1—¢,) at the
sediment—water interface, i.e. the sedimentation
rate, and subscripts ‘ss’ and ‘0’ denote values at
z, and at z=0. Material derivatives then expand
as d/dt=gq,/(1—¢)3/0z. Eq. (9) requires that con-
nection of the steady-state porosity to the more
slowly compacting transient regime must occur
at conditions such that the effective pressure
and its gradient are vanishingly small, i.e. as
z>Zg, po—0 and dp./0z—0. These conditions,
together with Eqgs. (8) and (13), constrain the
total flux to

(14)

S

SSs

qt=vss—7Apg (15)

with Ap=p,—p; Using Eq. (14) to express the
local sediment velocity, v, in terms of v, Egs. (8)
and (9) form a closed system of two ordinary
differential equations in two unknown functions

{9, pe}

6pe kss WUV ¢ _¢ss
—Apg 1— =)= 16
0z pg( > k 1—¢ (16)
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0
“ o ¢(1—¢><”°<1—¢)+ﬁ

P 2 > (17)
Defining the dimensionless effective pressure and
depth as p’=p,/p* and z'=z/L, with p* = LApg and
L a measure of the compaction length scale, Egs.
(16) and (17) can be expressed in non-dimensional
form as

Ope
0z

op’ k —

p :1_ SS _w¢ ¢SS zl_w¢ (18)
oz’ k 1—¢

¢

— (g
=1 ¢)/3<De(1 b+ 62,> (19)

Al

in terms of three dimensionless parameters

s g e_qs[fé

w= ~ )
kApg  kApg

,» B'=BLApg.

(20)

The approximation in Eq. (18) holds when the
permeability and porosity of the steady-state
domain are much larger than in the subjacent
transient domain. Eq. (18) gives the effective pres-
sure gradient as a function of @ such that when
w<«1 the effective pressure gradient is Apg, a
condition corresponding to a hydrostatic, i.e.
normal, fluid pressure gradient. The inverse rela-
tionship between sediment velocity and permeabil-
ity embodied in o is sometimes used to distinguish
regimes of slow w—0 and fast w— oo compaction
(Audet and Fowler, 1992; Wangen, 1992; Fowler
and Yang, 1998). The Deborah number, De
(Judges 5:5; Reiner, 1964), in Eq. (19) is a measure
of the relative influence of the viscous and pseudoe-
lastic mechanisms on the shape of the compaction
profile, such that when De~1, both components
are comparable, and De—0 and De— oo represent
the viscous and pseudoelastic limits. Both w and
De may be strongly dependent on the compaction
process; therefore, to complete the formulation, it
is necessary to specify the relationships of perme-
ability and bulk viscosity to porosity and depth.

2.2. Porosity—permeability

A non-linear porosity—permeability relationship
is a necessary condition for the development of

flow instabilities during viscous compaction (e.g.
Barcilon and and Richter, 1986). Such a relation-
ship is represented by

k—(’”) o (21)
g

where k, is the permeability at a reference porosity,
¢.. From theory, permeability is expected to vary
as a quadratic or cubic function of the connected
porosity (e.g. Gueguen and Dienes, 1989), whereas
network modeling of natural pore distributions
suggests porosity exponents near three (Zhu et al.,
1995). Permeability—porosity trends in clay-rich
rocks (Neuzil, 1994; Schneider et al., 1996) are
also consistent with a cubic porosity—permeability
relationship, and because such lithologies are likely
to limit the effective permeability of sedimentary
basins, a cubic (n=3) porosity—permeability rela-
tionship is generally assumed here. Experimentally
determined porosity—permeability relationships
often have much higher porosity exponents (e.g.
n>10, David et al., 1994) that may partially reflect
transient phenomena that are unimportant on the
compaction time scale (Connolly, 1997). In com-
parison to empirical logarithmic porosity—perme-
ability relationships (e.g. Bethke, 1985; Van Balen
and Cloetingh, 1994) used in basin modeling,
a cubic function provides for a conservative
model. Logarithmic relationships lead to more
rapid reduction in permeability with compaction
and depth, resulting in overpressuring and
undercompaction at shallower depths and higher
porosity. Such relationships would amplify flow
instabilities that develop from compaction
disequilibrium.

The permeability of sediment with 25% poros-
ity, which is taken as ¢,, varies from 107! to
107! m? (e.g. Gueguen and Palciauskas, 1994;
Neuzil, 1994; Schneider et al., 1996). Shales and
clay-rich rocks define the lower five decades of this
spectrum, which grades continuously into values
characteristic of sandstones. This spectrum is
broader than the ranges often assumed for basin
modeling (107 12-10" 18 m?, e.g. Bethke, 1985; Van
Balen and Cloetingh, 1994), which may be consid-
ered more typical.
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2.3. Bulk matrix viscosity

There is variation concerning the definition of
bulk viscosity and its dependence on porosity. In
distinction to works that equate the divergence of
the matrix velocity to —p./{ (e.g. Birchwood and
Turcotte, 1994; Schneider et al., 1996; Connolly,
1997; Connolly and Podladchikov, 1998), our for-
mulation gives the viscous compaction rate,
obtained by rearrangement of Eq. (9), setting f
equal to zero, as

Ldp (1-9)
¢ dr ¢

With this formulation, in the limit of non-inter-
acting pores (e.g. Nye, 1953), the proportionality
coefficient, {, in Eq. (22) is comparable to the
shear viscosity and independent of porosity. We
therefore identify this parameter as an analog to
the bulk viscosity. Constant { is frequently
assumed in compaction modeling (e.g. Fowler,
1990; Birchwood and Turcotte, 1994; Sumita et al.,
1996). For materials with Newtonian shear viscos-
ity, more complex models of porosity reduction
indicate a weak dependence of { on porosity such
that

De- (22)

n

~ ¢m*1

{ (23)

with m between zero and unity (e.g. Scott and
Stevenson 1984; Ashby, 1988). Formulations of
the compaction equations consistent with our for-
mulation when m=0 (e.g. McKenzie, 1984;
Schneider et al., 1996; Fowler and Yang, 1999)
may be appropriate for pressure solution creep at
porosities above 10% (Helle et al., 1985). However,
at small porosities, m<1 is inconsistent with the
non-interacting pore limit and seems unrealistic
because the compaction rate becomes infinite, in
conflict with intuition that compaction should
become increasingly difficult as porosity decreases;
moreover, m <0 permits the development of nega-
tive porosity. In non-Newtonian sediment such as
carbonates and evaporites (e.g. Spiers and
Schutjens, 1990), at constant effective pressure, {
is a weakly decreasing function of porosity (e.g.

Ashby, 1988)
(1—gy"
(1-9)

where ¢ is identical to the stress exponent in the
constitutive equation for the effective shear viscos-
ity. Compaction dictated by such rheologies does
not differ in a fundamental way from that of
Newtonian shear rheology with g¢g=1 (e.g.
Connolly, 1997). Accordingly, we assume
Newtonian shear rheology and, unless otherwise
indicated, constant { in Eq. (23), i.e. m=1.

Grain-scale dissolution—precipitation processes
are sometimes referred to as ‘pressure solution
creep’ to distinguish them from ‘chemical compac-
tion’ processes that involve diffusional mass trans-
port on greater length scales (~0.01-1 m, e.g. Qin
and Ortoleva, 1994; Oeclkers et al., 1996). Both
mechanisms are complex and incompletely under-
stood. To avoid this complexity, the effective sedi-
ment shear viscosity is expressed

Q(I—T/Tr)>

Coc (24)

(25)

=1, ex
n=n P< RT

where Q is the creep activation energy, 7, is the
viscosity at temperature, T,. This approach masks
potentially important mesoscopic effects caused by
lithologic heterogeneity, but captures the essence
of the thermally activated character of viscous
compaction. To obviate consideration of temper-
ature and activation energy as independent vari-
ables, an alternative expression for the shear
viscosity is

Z,—Z
=1, exp ; (26)

where 7, is the viscosity at depth z,, and / is the
‘viscous e-fold length’, the length scale over which
the shear viscosity changes by a factor equal to
the natural log base (e¢). For a linear geotherm,
comparison of Egs. (25) and (26) gives (Connolly
and Podladchikov, 1998)

_RT
CovT

(27)

Experimental data suggest that activation energies
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of 20-70 kJ/mol are appropriate for pressure solu-
tion creep in sedimentary rocks (e.g. Shimizu,
1995; Schneider et al., 1996). For geothermal gradi-
ents VI'=25-150 K/km, these activation energies
give e-fold lengths of 500-3000 m at a depth of
3 km (Fig. 1a). Because the e-fold length is not a
strong function of depth, the error introduced by
assuming a constant e-fold length over a depth
interval of ~ 5/ is minor, but generally leads to a
more rapid decrease in viscosity above z, and a
less rapid decay at depth. The effect of varying
either the geothermal gradient or the activation
energy can be assessed from calculations for
different e-fold lengths. Numerical calculations
here based upon Eq. (26) are for a geothermal
gradient of 50 K/km with Q equal to either 20 or
60 kJ/mol, which correspond to values of / equal
to 1500 and 500 m with z,=3000 m.

For normal fluid pressures, i.e. p,=Apgz, the
local time scale, 7, required for an e-fold decrease
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in porosity, from Eqgs. (22) and (26), is

<dll’l¢>1_ (1_¢)’1r eXp<Zr_Z>
/ .

dr " zApg

Taking / as a measure of the length scale over
which the time scale is relevant, with m=1, the
velocity that a particular level of porosity propa-
gates upward by compaction under normally pres-
sured conditions is independent of the porosity
and given by

) / zIApg z—z,
V¢ = — = — eXp
T N )

(28)

(29)

where 7, is used to distinguish the approximation
from the true phase velocity, v,. Because —i;
increases rapidly with depth, during viscous com-
paction, a stationary porosity profile can be
expected to develop in which downward porosity
advection is compensated by compaction, such

)| T I T I T

\ ---V7=25K/km

—V7=50K/km A
---- VT=150 K/km

1 \

T T N T T T
b) logn, (Pa-s)] \

S 1=1500m . 1
— /=500m
\

1000

|
1500
[ (m)

1
2000

2500

log[~v, (m/My)]

Fig. 1. (a) Viscous e-fold length (/, Eq. (27)) as a function of depth, activation energy and geothermal gradient. (b) Approximate
viscous compaction velocity [V, Eq. (29)] for hydrostatic fluid pressure as a function of z, /, and #, (with m=1 and parameters as
in Table 1). If ¥, <v,, then porosity is advected downward by burial; the maximum depth to which porosity can be advected without
the development of fluid overpressure is that at which —¥,=v,. Maintenance of normal pressures to 3 km depth therefore requires
1, =10*'-10%* Pa-s for sedimentation rates of 10—10° m/My. If sedimentation ceases, v, approximates the velocity of the compaction
front toward the surface; preservation of normally pressured sedimentary porosity profiles on a geological time scale therefore requires
short viscous e-fold lengths, i.e. a strong temperature dependence of viscous compaction.
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that the porosity at any depth remains constant,
ie. —vy=¢/(1—¢). Incipient overpressuring at
3 km depth as a consequence of viscous compac-
tion therefore constrains 5, to 102°-10%* Pa-s
(Fig. 1b) for plausible time-averaged sedimenta-
tion rates (10-3000 m/My; e.g. Audet, 1996; Kooi,
1997). Likewise, for normal fluid pressures, Eq.
(26) gives the local Deborah number [Eq. (20)] as

qsn: B exp
Z¢m* 1

which gives the maximum width of the transition
between pseudoelastic and viscous compaction as
~2[ for m<1. It follows that if the near-surface
compaction regime is pseudoelastic, overpressure
development by viscous dominated compaction
at 3km depth requires values of /<1500 m.
Preservation of sedimentary porosity profiles once
sedimentation ceases is difficult to explain if poros-
ity phase velocities do not decay somewhat more

De=

(30)
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rapidly surfaceward than estimated for /=1500
(Fig. 1b), an observation that supports our thesis
that viscous compaction in sedimentary basins is
thermally activated.

3. Quasi-steady-state compaction

Elementary consideration admits two limiting
compaction regimes (Fig. 2) dependent on the local
value of w [Eq. (20); Wangen, 1992; Audet and
Fowler, 1992; Fowler and Yang, 1998], which is a
strong function of porosity through Eq. (21). If
w<«1, then negligible deviations from hydrostatic
fluid pressure are necessary to accommodate com-
paction-generated fluid fluxes, and compaction is
dictated entirely by rheology [Eq. (9) or (17)].
Because normal fluid pressures imply a linear
increase in effective pressure with depth, the rheologi-
cally limited regime gives rise to an interval of rapid

a) . b) ¢) d) .
0 porosity ol Qo, 0 Pe o, . =0
theologically /pseudoelastic, Eq 33 PO
limited regime, %\Q
compaction front 2 = S
o . = G - )
O viscous, Eq 36 % v(oﬁ( /%0 —) =
z=1z, ¥ =4 2 /@
/ transitional regime = top seal :
T z=2z,+tAz
fluidized steady state
hydraulically
z=(gev)t ——  limited regime
fluidized compaction, Eq 47
=]
_q;} z= gt

Fig. 2. Schematic sedimentary porosity (a) and effective pressure (b) depth profiles illustrating the quasi-steady-state compaction
model. (c) Strong variation in w and De [Egs. (20), (21) and (30)] with depth and compaction is envisioned to divide the upper
portion of the profile into four steady-state regimes. The fluid flux necessary to support the steady state must be derived by transient
fluidized compaction at greater depth. Note that v, is the velocity of the transition between the essentially non-compacting fluidized
steady state and the compacting fluidized porosity measured relative to the sediment basement interface, i.e. —v,<g,. (d) Schematic
of the inverse model parameter / [Eq. (52)] obtained by fitting the gradient, curvature and porosity of a porosity profile with the
analytical solution for viscous compaction [Eq. (36)] for m<1. Because the weakest, i.e. when /— + oo, curvature of the viscous
compaction profile is generally stronger than the profiles characteristic of pseudoelastic and hydraulic compaction, and because finite
positive values of / increase the viscous profile curvature, />0 is diagnostic of viscous compaction.
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porosity reduction, designated the compaction front
(McKenzie, 1987). The compaction front is sub-
tended by a transitional regime, characterized by
w~1, in which fluid overpressure grows rapidly as
a consequence of consolidation. This regime is the
model analogy of the top-seal of an overpressured
sedimentary sequence. The transitional regime leads
to conditions such that o> 1, whereupon fluid pres-
sure is limited by the sediment load, i.e. the sediment
is fluidized, and compaction is controlled entirely by
drainage [Eq. (10) or (16)]. In this hydraulically
limited regime, lithostatic pressures may not be
realized if fracturing occurs at sublithostatic fluid
pressure. However, if the yield condition that limits
the proximity of the fluid pressure to the lithostat is
a linear function of depth, as appears to be true in
natural sedimentary environments (Mann and
MacKenzie, 1990), our arguments remain applicable
with fluid pressure gradient limited by an appropri-
ately reduced mean stress gradient [Eqs. (9) and
(10)].

Our treatment differs from earlier models of
entirely pseudoelastic (Audet and Fowler, 1992;
Wangen, 1992; Fowler and Yang, 1998) and
entirely viscous (Sumita et al. 1996; Fowler and
Yang, 1999) compaction in that we presume that
the exponential dependence of the Deborah
number [Eq. (30)] on depth leads to a transition
from near-surface pseudoelastic compaction to vis-
cous compaction. Such a transition is only of
consequence if it occurs within the rheologically
dominated regime, which is therefore the case we
consider (Fig. 2d). Supposing the existence of a
steady-state compaction regime at near-surface
conditions requires that the steady-state domain
must connect to a transient domain that produces
exactly the fluid flux necessary to maintain the
steady state. Such a connection is non-trivial
because steady-state solutions of the viscous and
viscoelastic compaction equations for arbitrary
boundary conditions have a periodic antithetic
variation of effective pressure and gradient (Sumita
et al., 1996; Connolly and Podladchikov, 1998), a
periodicity that is unlikely to be mimicked by any
transient process. A near-surface steady state is
thus only possible if the viscous regime approaches
the non-periodic solitary steady state, in which
both effective pressure and its gradient vanish at

depth. As these conditions characterize the hydrau-
lically limited regime, we seek a steady-state solu-
tion that extends into the hydraulically limited
compaction regime as a means of quantifying the
steady sedimentary compaction process. Our
quasi-steady-state model thus consists of pseudoe-
lastic (w« 1, De>1), viscous (w« 1, De« 1), tran-
sitional (w~1, De<1), and fluidized (w>1,
De<1) steady-state domains, succeeded by a
domain of transient fluidized compaction. We
follow the approach of Sumita et al. (1996), in
that we approximate the fluidized steady-state
domain as non-compacting. Because our interest
is in the instability of the fluidized steady state, we
do not attempt to characterize the viscoelastic
transition (w<«1, De~1) that occurs within the
rheologically limited domain over a depth interval
~1[Eq. (30)].

3.1. Rheologically limited compaction

During rheologically limited compaction the
effective pressure is Apgz and, using Egs. (23) and
(26) to describe the bulk viscosity in Eq. (17), the
variation in porosity with depth is
0 (1—¢)gpm 'z e

)2

-
0z 2

=—<1—¢)¢< +ﬁApg> (31)

with

s'lr ezr/l
o= | BET (32)
Apg

The dependence of A, on [ is artificial due to the
specification of the reference viscosity, 1,, at finite
depth, z,. Thus, Eq. (31) can be made, i.e. if z, is
chosen as zero, to separate the temperature depen-
dence of the compaction process from the remain-
ing physical parameters of sedimentation (4, and
$o). Although there is no general solution for the
viscoelastic steady state [Eq. (31)], analytical solu-
tions exist for the viscous and pseudoelastic limits.
We explore these solutions as a means of constrain-
ing the rheological parameters of compaction.

3.1.1. Pseudoelastic compaction
The steady-state compaction profile during
pseudoelastic compaction is given by the solution
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of Eq. (31) in the pseudoelastic limit (A,— o0)

o
Po +(1—,) ePrres”

This solution, which gives the quantity (1/¢ —1)
as an exponential function of depth that is indepen-
dent of sedimentation rate, is functionally similar
to the simple exponential dependence originally
proposed by Athy (1930) to describe near-surface
sediment porosity

p=—to_, (34)

ehhrez

¢ (33)

a solution obtained for Eq. (31) if the 1 —¢ term
is approximated as unity. Thus, both the exact
and Athy solutions are capable of reproducing
near-surface profiles if f is regarded as a free
parameter; and the Athy solution approaches the
exact solution as the initial sediment porosity
becomes small. In detail, the complete solution has
a weaker curvature that nears that of the Athy
distribution with increasing depth or decreasing
initial sediment porosity (Fig. 3a). The exact solu-
tion therefore explains overcompaction relative to
the Athy distribution as commonly observed in
the deeper sections of natural porosity profiles
(Biot and Ode, 1965) and demonstrated by the
profiles developed in intercalated shales and sand-
stones of the Pannonian Basin (Fig. 4, Szalay 1982,
cited in Dovenyi and Horvath, 1988). This expla-
nation has the virtue of simplicity in that it does
not resort to the complexities, such as irregular
variation in tectonic stress with depth, often
invoked in basin modeling.

The coefficient of pore compressibility derived
by regressing data from the upper 1200 m of the
Pannonian porosity profiles is (+3) 8.4+1.4x
1078 and 4.0+0.5x 1078 Pa~! for the shales and
sandstones, respectively. Neglect of true poroelas-
tic effects in Eq. (9) is therefore justified given that
typical elastic coefficients are an order of magni-
tude lower than these values (Palciauskas and
Domenico, 1989). The compressibility of water is
somewhat larger ~10~8 Pa~! at the conditions of
interest, but the assumption of fluid incompress-
ibility appears reasonable. Although the deviations
from the pseudoelastic trend for the Pannonian
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Fig. 3. Relative porosity as a function of dimensionless depth
for pseudoelastic (a) and viscous (b) rheologically limited com-
paction. In the pseudoelastic limit, the exact solution [Eq. (33)]
to the compaction equation approaches the Athy solution [Eq.
(34)] as the initial sediment porosity becomes small. Heavy
curves distinguish the exact viscous steady solution of Eq. (31)
from the approximate solutions [Egs. (35) and (36)] shown by
thin curves for different values of /A, and the limiting cases
m=0 and m=1. In contrast to the pseudoelastic solution, the
viscous solution is dependent on the sedimentation rate, as
reflected in the parameter A.. With the exception of the approxi-
mate solution given by Eq. (35), the viscous steady state is
dependent on the value of ¢, which was taken to be 25% and
identical to ¢,. The viscous profiles are bounded by the constant
viscosity solution (/— oo, Eq. (37)], a reasonable approximation
for //A.,>1, which implies that thermal activation of viscous
compaction is insignificant under such conditions.
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Fig. 4. Porosity trends of intercalated shale and sandstone
lithologies of the Pannonian Basin as synthesized from borehole
measurements in deep wells (Szalay, 1982 cited in Dovenyi and
Horvath, 1988). Square and circular symbols represent averages
over 100 m depth intervals. Dashed and solid curves show the
Athy [Eq. (34)] and pseudoelastic [Eq. (33)] solutions regressed
to shallow (<1260 m) bore-hole data. In both cases, the exact
solution results in a significant improvement of the regression.
The relative quality of the Athy solution is better for the sand-
stones, a behavior consistent with the result that the Athy solu-
tion is exact as 1 —¢—1 (Fig. 3). The exact solution explains
overcompaction relative to the Athy profile as commonly
observed in sedimentary sequences (Biot and Ode, 1965). The
irregular variation in porosity at depth in the Pannonian Basin
is due to hydrocarbon generation and devolatilization (Szalay,
1988; Clayton et al., 1990), mechanisms that are unlikely to
cause overcompaction. Dotted curves show the viscoelastic
solution of Eq. (31) with parameters discussed later in the text.

Basin profiles are subtle, we show subsequently
that they are consistent with the existence of a
viscous compaction mechanism.

3.1.2. Viscous compaction

With increasing depth, elevation of the effective
pressure in combination with reduced sediment
viscosity, increases the efficiency of the viscous
compaction exponentially (Fig. 1b) so that the
porosity profile must evolve toward a viscous
steady state. To simplify the analytical solution for
the viscous limit (f—0), we approximate 1 —¢ by

unity. With this simplification, the general solution
of Eq. (31) is

1 I(1—z) et — [P\~ Ym=1
¢=< 1—(m—1).2>
¢ Z

(35)
and for the linear viscous case
[(l—z)ed' —]?
b=grexp| —— (36)

where ¢, is the porosity at z=0, which is identical
to ¢, if the viscous domain extends to the surface.
Comparison of these solutions with the exact solu-
tions (Fig. 3b) suggests that for porosities similar
to those at which viscous compaction commonly
becomes evident during burial (~25%, Lundegard,
1992), the 1—¢ term in Eq. (31) is of minor
consequence in view of the strong dependence of
the steady state on the ratio //A.. The dependence
of the viscous steady state on /4. indicates that
the thermal activation is an essential feature of the
compaction process when //A, < 1. The significance
of A, is apparent in the limit that temperature
dependence vanishes (/— +00), in which case, a
Taylor expansion of Eq. (36) simplifies to the
Gaussian function similar to the solutions obtained
in previous studies (Sumita et al., 1996; Connolly
and Podladchikov, 1998; Fowler and Yang, 1999)

122
d=¢, eXp<_2)f> (37)

such that the porosity falls to 1% of its initial
value ¢, at z=3/,. For finite positive /, and m<1,
Egs. (35) and (36) define porosity—depth profiles
that have a stronger variation in porosity with
depth than, and are bounded by, the corresponding
Gaussian profile (Fig. 3b). Thus, A, defines the
upper limit on the length scale over which under-
pressured porosity can be maintained during
steady sedimentation. For example, if porosity is
reduced by 87% of its initial value at depth z where
the compaction process is arrested by the develop-
ment of fluid overpressure, then /. z/2. This logic
is independent of whether other mechanisms com-
pete with viscous compaction, since the existence
of these mechanisms merely requires that /. is



J.A.D. Connolly, Yu.Yu. Podladchikov | Tectonophysics 324 (2000) 137-168 149

greater than would be inferred for viscous compac-
tion alone. Because /4, is dependent on ¢, (Figs. 4
and 5b), viscous compaction profiles are influenced
by the sedimentation rate, in contrast to the
pseudoclastic case.

In the context of sedimentary compaction, the
pure viscous steady state described by Eqgs. (35)
and (36) must apply at depth when De—0.
However, because pseudoelastic compaction
affects the near-surface porosity, the value of ¢,
from the viscous steady state must be less than the
true surface porosity. Consequently ¢, becomes a
fitting parameter that approximates the porosity
at which viscous compaction becomes significant.

The maximum depth z, of the viscous rheologi-
cally limited regime, from Egs. (35) and (36), is
given by the transcendental functions

e
(zc—l)ezc/l=l< Lom_ }’">—l m#1  (38)

(Zc—l)ez°”=i;1n<¢1/¢c>—l m=1 (39)

that can be expressed analytically in terms of the
Lambert function and where ¢, is the porosity at
the base of the rheologically limited regime. These
equations give a weak dependence of z, for
d.< ¢4, a result that suggests that porosity—depth
profiles formed by viscous compaction are dictated
primarily by / and A.. Since A, defines the maximum
extent of the compaction front and is a strong
function of #, and ¢, (Fig. 5a), top seal formation
at 2-4 km depth implies that values of / relevant
to viscous compaction must be such that A, has
little influence on the depth of the compaction
front. Eq. (38) gives the ranges of /. consistent
with these arguments as 1500-5000 and 5000-
50000 m for /=1500 and 500 m, respectively
(Fig. 6). The range of A, supported for /=1500
seems narrow in view of natural variability, sug-
gesting this value as an upper bound for viscous
e-fold lengths characteristic of sedimentary envi-
ronments. The upper limits on A, increase roughly
threefold as m—0 (Fig. 6), an effect that does not
substantially alter this conclusion. At 2-4 km
depth, [ is strongly dependent on the activation
energy of the compaction process, with a relatively
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Fig. 5. (a) The rheological parameter 4. [Eq. (32)] as a function
of sedimentation rate and reference shear viscosity; parameters
as in Table 1. (b) The hydraulic parameter x [Eq. (41)] as a
function of sedimentation rate and reference permeability. In
the quasi-steady-state model, « is the square root of the porosity
at the depth of top-seal formation ¢, and /. is the compaction
length scale in the limit of a constant viscosity matrix.

weak dependence on the geothermal gradient
(Fig. 1a), a behavior also consistent with top seal
formation over a narrow depth range. As observed
effective pressure gradients are rarely <Apg/4
(Mann and MacKenzie, 1990), 5, and v, are the
primary physical variables in A.. If time-averaged
sedimentation rates are 10—1000 m/My, the range
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Fig. 6. Depth of top-seal formation (z., Egs. (38) and (39)]
during steady sedimentation as a function of ¢, ¢,, m, I, and
/. For m=1, z_ is dependent on ¢./¢, but independent of the
individual porosities. In this case, provided viscous compaction
causes a significant reduction in porosity, i.e. ¢./¢;<0.5, z, is
primarily a function of / and A.. In the general case, illustrated
here by the extreme choice, m=0, z, depends on both ¢./¢,
and ¢,, which is taken as 25%. To attain a given value of z,
with m=0, A/l increases by half an order of magnitude com-
pared to the linear viscous case, implying that for a given / and
Z, Vs, must increase by an order of magnitude. Thin dashed
lines indicate the range of A, supported by /=500 and 1500 m,
with m=1 and ¢./¢, =0.1, for top-seal formation at depths of
2-4 km. For /=1500 m, A,=1500-5000 m, whereas for /=
500 m, A,=5000-50000 m. A narrow range of top-seal depth
in nature, despite the likely variability of /., therefore requires
values of /<z,.

for i, from this analysis is 10'°~10% Pa-s with m=
1, and an order of magnitude higher for m=0.

3.2. Transitional compaction regime

The transitional steady-state compaction regime
(Fig. 2a) is bounded by the conditions under which
the effective pressure gradient vanishes, so that the
porosities ¢, and ¢ are the roots of Eq. (16) at
its upper and lower limits. As ¢, is presumed large
compared to ¢, the approximate form of Eq. (16)
with Eq. (21) gives the transitional porosity at
which overpressure begins to deviate strongly from

that of normal fluid pressures as

d. ~ VK (40)
where k (Fig. 5b) represents the constant compo-
nent of the approximate form of w, i.c.

o Prug

¢"  kApg

Given the implausibility of values of m <1 at small
porosity, we assume hereafter that m=1 at z<z,.
To determine the asymptotic limit of the steady-
state porosity ¢, (0¢/0z) in Eq. (17) is expanded
as (0¢/0p.)(0p./0z), and Eq. (16) is used to define
(0pe/0z) in terms of the model parameters. The
resulting expression for (0¢/dp,) then is integrated
from p,=z,Apg to p.=0 to obtain the change in
porosity across the transitional regime. For
1—¢~1 and ./, >2, the result of exact integ-
ration is well approximated by

272\
fus ~< > : (42)

22 e*'n(n—1)
We show below that conditions such that ¢~ ¢,
are not of interest because the steady state is then
inherently unstable. Within the transitional regime,
the effective pressure gradient is a strong function
of depth, but to characterize the conditions, we
introduce the proxy function, k(dp./0z), which
must reach a maximum within the regime. The
characteristic porosity obtained by equating the
second derivative of the proxy to zero is "Vxm.
Substituting this porosity into Eq. (16), the charac-
teristic effective pressure gradient (Jdp./0z)" is
(1—n)Apg. The porosity within transitional regime
is then approximated by a second-order Taylor
expansion of the solution to Eq. (17) about z=z,
for the characteristic effective pressure gradient

(41)

and the Dboundary conditions ¢=¢, and
Pe=Apgz. at z., as
P4,
[(n—1)(z—1)+nz] e +[(n—1)]+z] e="
xexp| / = .
/L'C
(43)

Because (dp./dz)" is ad hoc, Eq. (43) may reach a
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minimum at ¢ > ¢, (Fig. 2a), in which case, the
profile in the transitional regime must be extrapo-
lated to the steady-state porosity by other means.

3.3. Transient compaction and stability of the
steady state

Maintenance of the steady-state porosity ¢
requires a constant fluid flux that, in the absence
of an external source, must be derived by transient
fluidized compaction at a greater depth. For tran-
sient fluidized compaction, Eq. (10) with Eq. (21),
can be rearranged to

1 04 o (n
1_¢af‘aZ<K¢ o) B

Since the perturbation caused by fluidized compac-
tion on the sediment velocity is smaller than for
steady-state compaction [Eq. (8)], we approximate
1 — ¢ by unity and assume that the fluidized region
grows upward from the sediment-basement inter-
face at which the porosity is zero. The solution to
Eq. (44) obtained by the method of characteristics
is then

KV; 1/(n—1) Z/ 1/(n—1) Z/
o= —— 1+ — 0<——<I
n Vit Vit

(45)

where v, is the velocity of the transition to fluidized
compaction relative to the sediment basement,
z'=z—z,—(vs+v)t, and t=0 when the sediment-
basement interface first reaches z=z, (Fig. 2a).
Since the porosity at z’=0 must be ¢ if the
compaction equations have a steady-state solution,
Eq. (45) requires

KVq 1/(n—1)

n

Equating Eqgs. (42) and (46) to solve for v,, with
VR (s, gIVES

Ve —2/2 @7
g, z2en(n—1)

If v/vy< —1, then the steady state extends to a
growing region of non-compacting fluidized poros-
ity (Fig. 2a) that is truncated by the region of
fluidized compaction. The alternative to this condi-

tion implies that the sedimentary column grows
less rapidly than the region of transient compac-
tion, and therefore that steady-state compaction is
not possible. For likely parameter ranges (Fig. 6),
72/(z.e%") < z,; thus, we conclude that the steady
state is generally the appropriate model for the
compaction process during uniform sedimentation.
This conclusion implies that the formation of a
top seal is a natural consequence of sedimentary
compaction, but it does not preclude the develop-
ment of transient instabilities beneath the top seal
in response to perturbations of the sedimentary
process, a possibility that we treat subsequently.
The width, Az, of the transitional regime estimated
by equating a second-order Taylor expansion of
Eq. (43) to Eq. (46) is

2
Az —— (48)

Ze ezc/l ’
which, for parameters as above, gives top seal
thicknesses generally less than, or comparable to,

the viscous e-fold length. From Eqgs. (45) and (3),
the fluid velocity below z is

! 1
vf=Z—Vt<l—> (49)
t'n n

giving a minimum, downward, fluid velocity of
—2/3v, [i.e. —v(1—1/n) for n=3] that increases
with time and depth. This result is consistent with
the expectation that once fluidization occurs, fluid-
filled porosity is advected downward by burial
with little compaction, a necessary condition for
the steady state.

3.4. Numerical verification and transient
calculations

To assess the applicability of the quasi-steady-
state model, we solve the transient compaction
equations numerically. Since the maximum tran-
sient deviations from the steady-state model must
develop in the transitional regime, for numerical
simplicity, we consider viscous compaction with
an initial porosity of 25%. Under these conditions,
the approximations that 1—¢~1 and that the
sediment velocity is constant are justified, as
demonstrated earlier (Fig. 3b), and Egs. (9) and
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(10) simplify to
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where primes indicate the non-dimensional vari-
ables as defined for Eqgs. (18)—(20), with L=A4_,
and dimensionless time, #/t*, is defined relative to
the characteristic time, t*=L/q,; and A, and x are
as in Egs. (32) and (41). The non-dimensional
form of the transient compaction equations show
that if #, is increased by an order of magnitude,
and k, and ¢, are decreased by an order of magni-
tude, the transient evolution is unaffected in non-
dimensional time, but that the dimensional time
scale increases by an order of magnitude.

For parameters near the extremes pertinent to
natural environments, numerical solutions to Egs.
(50) and (51) (Fig.7) show no significant time
dependence of the porosity profile above the fluid-
ized compaction regime. The proximity of the
profiles to the analytical steady-state model con-
firms the validity and accuracy of the analytical
approximation as a tool for the prediction of the
depth of top-seal formation and the amount of
fluid likely to be trapped beneath the top-seal. In
detail, fluid overpressure within the compaction
front hinders compaction in the rheological limited
regime, resulting in profiles that are slightly
undercompacted relative to the analytical steady
state. Factors that increase the curvature of the
compaction front, i.e. lower m or /, cause a more
rapid dissipation of this overpressure and a closer
approach to the conditions assumed for the analyt-
ical model [Egs. (35 or 36)].

If sedimentation is interrupted, the upper por-
tion of the porosity profile remains pinned by the
surface boundary, where the effective pressure
vanishes, but the lower portion of the profile is
propagated upward with velocities that decay
exponentially upward due to thermal activation
(Fig. 1a). It follows that although the porosity
distribution within the compaction front may be
sensitive to sedimentation rate, after the cessation
of sedimentation, the compaction front must
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Fig. 7. Comparison of the analytical quasi-steady-state model
(solid curves) with numerical models (dashed curves) of the
transient evolution of porosity (a) and overpressure (b) during
sedimentation. The results have been made dimensional taking
¢s=3000 m/My for ¢, =r"?>=5% [k,=1.2 x 10~ ¥ m?, Eq. (46)]
with remaining parameters as in Table 1. Numerical results for
constant  viscosity (I=o0, A.,=500m, 5,=4.5x 10'° Pa-s)
demonstrate the general result that within the compaction front
(¢ > ¢s,), transient effects are insignificant. For the finite viscous
e-fold length calculations, A, has been chosen to give the transi-
tional compaction regime, i.e. top seal formation, at
z,=3000 m. In all models, the width of transitional regime is
predicted well by Eq. (48). The discrepancy between the analyti-
cal and numerical steady state within the compaction front is
due to overpressure that is not accounted for in the rheologically
limited compaction regime. The maximum overpressure
increases as ¢./¢, and is dissipated more rapidly in models with
low m or I.

rapidly evolve toward a common state that is
dictated largely by / and only weakly dependent
on the initial sedimentation rate. Moreover,
because the initial difference between the velocity
of the compaction front and subjacent fluid is
« —2/3¢, [Eq. (49)], this evolution is independent
of sediment permeability. This state is not truly
stationary because the base of the compaction
front has a finite velocity [approximated by Eq.
(29)], but it is none the less described well by Egs.
(35 or 36) if the sediment velocity is replaced by
an estimate of the velocity of the front (Fig. 8).
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Fig. 8. Numerically computed porosity and fluid overpressure
evolution and incipient flow instability following the cessation
of steady sedimentation at z=0. Calculations were made
dimensional by choosing ¢,=3000 m/My at <0, k,=12x
1078 m? 5,=2.8 x 10*° Pa-s with /=1500 m, A,=3424 m and
Vk=5%. The porosity phase velocity (at ¢ =6.25%) compares
well with the phase velocity obtained by computing 4, for the
stationary state [thin dotted curves, Eq. (36)] from the depth at
which ¢=6.25% in the transient profile; phase velocities esti-
mated from Eq. (29) are about three times those obtained numer-
ically. The compaction front propagates upward with an initial
velocity & —¢,, whereas the maximum fluid velocity beneath the
front is « —2/3¢, [Eq. (49)]. Consequently, the porosity col-
lapses as the front propagates, creating an obstruction to fluid
flow from beneath the front that causes supralithostatic fluid
pressure and secondary porosity generation. A high sedimenta-
tion rate is not a requirement for instability, e.g. if ¢, and k, are
decreased by two orders of magnitude and 7, increased by two
orders of magnitude, the evolution is unchanged except that the
time scale increases in direct proportion to ;.

3.5. Application to the Pannonian Basin

Direct application of the quasi-steady-state
compaction model is not feasible because of the
uncertainty in the rheological parameters of the
model. As an alternative, we employ an inverse
model to constrain the parameters and porosity
dependence of natural compaction processes from
sedimentary porosity profiles as illustrated here by
application to the Pannonian Basin, which con-
tains 67 km of sediment accumulated over the

last 17.5 My (Royden and Horvath, 1988). The
basin stratigraphy can be simplified to a mixture
of shales and sandstones with different porosity
trends (Fig. 9, Szalay 1982, cited in Dovenyi and
Horvath, 1988).

The shape of porosity profiles formed by viscous
compaction is limited by a Gaussian function
(m<1, Egs. (35) and (36)], a shape consistent
with commonly observed deviations from the Athy
porosity—depth distribution in the deeper sections
of natural profiles (e.g. Biot and Ode, 1965;
Schneider et al., 1996). At z< /., the curvature of
the Gaussian profile [Eq. (37)] is stronger than
both the exponential pseudoelastic distribution,
and the distribution attainable during hydrauli-
cally limited compaction [Eq. (43)]. Thermal acti-
vation in a normal geothermal gradient results in
positive values of /, which gives rise to a porosity
depth dependence that is even stronger than the
limiting Gaussian profile (Fig. 3b). It follows that
to fit the viscous steady-state solution [Eq. (36)]
to a profile characteristic of hydraulic or pseudoe-
lastic compaction, the fitted value of the viscous
e-fold length, /, must be negative and approach
negative infinity as the curvature becomes increas-
ingly influenced by viscous compaction (Fig. 2d).
In contrast, if the equations are fit over a depth
interval where viscous compaction is dominant,
=1, but will deviate toward positive infinity if the
influence of hydraulic or pseudoelastic compaction
becomes significant. If an observed porosity trend
is fit by an arbitrary function, then equating this
function to Eq. (36) (i.e. m=1) and its derivatives
gives a system of non-linear equations that can be
solved for the fitting variables:

. zhpg’

A — 52
2¢$" —z¢” —p¢’ (>2)

2 z¢ i

N (53)

A ¢,e

X P+iz—1l)e

b= exp <()l)e> (54)

where /, 4, and 451 become identical to the model
parameters, [, A,, and ¢, in the limit of pure
viscous steady-state compaction, and ¢’ and ¢" are



154

J.A.D. Connolly, Yu.Yu. Podladchikov | Tectonophysics 324 (2000) 137-168

T T T T T TT T T T T |
‘ I
a) Pannonian shales 1 — Viscous inverse model

I
1
I

i

£l | 1 1 1 | 1 | L |

viscoelastic inverse model

T T I T T T T T T T T

T

. [}

b) Pannonian sandstones I
I

viscoelastic inverse model

viscoelastic fit

"o
ey

) ’
. )
o '\TL‘ Pannonian trend

10 15 20 25
o (%)

10 15
b (“0)

Fig. 9. Porosity trends in shales (a) and sandstones (b) of the Pannonian Basin (see Fig. 4 for complete data and description). Dashed
curves show the near-surface pseudoelastic trend (Fig. 4). Dotted curves show the porosity trend (excluding sandstone data indicated
by shaded circles, Fig. 10). Deviations from the pseudoelastic trend are attributed to viscous compaction. Dash-dotted curves show
the viscous component of the compaction profile, as inferred from the inverse of the viscous steady-state solution (Fig. 10). The
rheologically limited compaction model becomes invalid as the porosity approaches ¢, for the shales (short-dashed curve). The thin
solid curve shows the viscoelastic solution of Eq. (31) obtained with ¢, and SApg from the pseudoelastic trend (Fig. 4) and /. and
[ from the inverse viscous solution. The heavy solid curve shows the viscoelastic solution (see also Fig. 4) obtained when /. is varied
to fit the porosity at 2800 m depth. For both profiles, this procedure requires Z.= 10300 m, corresponding to a two- to fivefold

increase in the inferred value of 7,.

the first and second derivatives of the profile. Egs.
(52)—(54) ideally lead to a solution in which there
is a broad local minimum at /=/, defining a depth
interval of viscous dominated compaction;
bounded by maxima representing the transitions
to the pseudoelastic and hydraulic compaction
regimes (Fig. 2d).

As discussed earlier (Fig. 4), the near-surface
Pannonian porosity trends are consistent with
pseudoelastic compaction, but the trends deviate
markedly from this behavior at depth. In the case
of the sandstones, the scatter of the data at 1300—
2200 m depth suggests two distinct populations:
one that follows the near-surface pseudoelastic
trend (open circles, Fig.9), and another that
appears to be continuous with the overcompacted
trend at depth. Excluding the former data, each
profile was fit with an arbitrary polynomial func-
tion (Fig. 10), which was then used to express the

porosity and its derivatives with respect to depth
in Egs. (52)-(54). The results are satisfying in
that the depth of the transition to hydraulically
limited compaction is virtually identical (2790 vs.
2822 m, Fig. 10a), as consistent with the expecta-
tion that the lithology with the lower effective
permeability dictates the development of overpres-
sure in both lithologies. In contrast, the transition
from pseudoelastic to viscous compaction is likely
to be lithologically controlled, with pseudoelastic
compaction operating at greater depths in clay-
rich sediment (e.g. Ashby, 1988), as also suggested
by the Pannonian profiles. Although these profiles
are nearly a realization of the ideal scenario, the
local minima in / are not broad (Fig. 10a). In the
context of the model, this indicates that hydraulic
and pseudoelastic compaction are significant in the
viscous regime, with the result that the minima in
[ give upper limits on /. Because / has almost
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Fig. 10. Inverse solution to the viscous steady-state profile for
the sandstone and shale porosity trends of the Pannonian basin
(Fig. 9). (a—c) Inverse model parameters assuming m=1 [Egs.
(52)—(54)]; under this assumption, I>0is diagnostic of viscous
compaction, and the minimum value of / must approach /
(Fig. 2d). Estimators for Q (d) and 7, (e) from the inverse
solution, assuming a geothermal gradient of 50 K/km and an
average sedimentation rate of 350 m/My. (f) If the assumption
m=1is relaxed, m [Eq. (55)] estimates m. Values of 1 for which
I<0 [from Eq. (56)], indicated by thin dotted portions of the
curves, are not physically meaningful. The exponent, m, is
expected to have values between zero and unity (shaded region).
For the solution, observed porosities (Fig. 9) were fit to ¢ =
a+bz+c?+d? +ez* +f2° in the range z=1000-3500 m,
giving (£5): {a=0.62406 +0.02, b= —1.4422+0.4x1073,
c=—44919404x 1075, d=3.7647+02x 1078, e= —1.1784 +
1.1x10713, f=—1.3323 +£0.1 x 107!} and {«=0.8097340.01,
b=—1.278040.08 x 1073, ¢c=1.1809+0.01 x 10~°, d= —5.3875+
0.005x 1078, ¢=1.130940.1 x 10712, f= —8.80234+1.0 x 10718}
for shales and sandstones, respectively.

perfectly sympathetic and antithetic relationships
to ¢, and [, the analysis gives lower and upper
bounds on ¢, and A.. These bounds are {/<671 m,
Ac<6417m, and ¢;>12.8%} and {/<1161 m,
Ao <4572 m, and ¢,>27.0%} for the shales and
sandstones, respectively. For Pannonian geother-
mal gradient (~50 K/km, Dovenyi and Horvath,
1988), the bounds on / correspond to activation
energies of 19.3 and 40.6kJ/mol [Eq. (27),
Fig. 10d]; the former value, for the sandstones, is
essentially the wvalue of 20kJ/mol commonly
quoted for pressure solution creep of quartz-rich
rocks (e.g. Angevine and Turcotte, 1983; Rutter,
1983; Shimizu, 1995; Schneider et al., 1996). For
the average sediment velocity at 2km depth
(~350 m/My) and normal fluid pressures, the
limits on /., give 1,>10%°-10%! Pa-s [Eq. (39),
Fig. 10e], in agreement with independent estimates
of effective viscosity of near-surface sediments
from models of salt diapirism (Poliakov et al.,
1993b) and basin subsidence (Gratz, 1991).

The values of /4, and / deduced from the inver-
sion of the viscous steady state combined with the
values of ¢, and fApg obtained by regression of
the pseudoelastic model to the near-surface poros-
ity (thin solid curves, Fig. 10) completely parame-
terize the rheologically limited viscoelastic steady
state [Eq. (31)]. The profile obtained by solving
Eq. (31) with the shale parameters is remarkably
similar to the observed profile. That the same
exercise for the sandstone parameters is less suc-
cessful is not surprising in view of the inconsisten-
cies in the sandstone data discussed previously.
For both lithologies, the steady-state profiles are
overcompacted relative to the data, a discrepancy
consistent with the influence of pseudoelastic
mechanisms and incipient overpressuring at the
depths at which the viscous parameters were
inferred. The porosity at the depth of incipient
fluidization in both lithologies is fit with
A.=10300 m (heavy solid curves, Fig. 9). If the
remaining variables that comprise 4, are held con-
stant, then this value would correspond to a two-
to fivefold increase in the value of #, inferred by
the inverse method.

The Pannonian shales are three orders of magni-
tude less permeable than the sandstones (Szalay,
1982, cited in Van Balen and Cloetingh, 1994) and
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therefore determine the effective permeability of
the hydraulic regime (Qin and Ortoleva, 1994).
The increase in the porosity of the shales at depths
>3 km is due to secondary porosity generation
thought to be caused by overpressures resulting
from compaction, hydrocarbon maturation, and
decarbonation reactions (Szalay, 1988; Clayton
et al., 1990). The irregular porosity profile of the
sandstones at depth is understandable as sandstone
porosities would be dictated by the fluid flux
supported by the shales. For the depth of the
transition to hydraulically controlled compaction
indicated by both Pannonian porosity profiles
(z,=2800 m, Fig.10), Eqgs. (38) and (40) give
$.=xY?=1.3% with parameters from the viscous
steady-state solution for the shales. This range
compares to the minimum porosity (1.36% at z=
3200 m) of the shale profile and the empirical
trend, for which ¢ =1.3% at 2800 m.

Numerical calculations using «, /. and / deduced
from the analytical solution show that the
Pannonian basin overpressures are at least partially
explicable as a consequence of the transition to
hydraulically controlled compaction. If the cal-
culations are made dimensional by taking
¢s=7350 m/My, and parameters as in Table 1, the
reference permeability (k,=2 x 10~ 1° m?) required
for the numerical calculation to match the mini-
mum porosity compares with the permeability
k,~10"3m? from empirical functions fit to
Pannonian sediment data (Van Balen and
Cloetingh, 1994). The numerical calculations in
which sediment viscosity was computed as an
explicit function of temperature [Eq. (25)], show
that the approximation that / does not vary with
depth is justified (Fig. 11). Because the effective
pressure gradient is large within the compaction
front (Szalay, 1988), the value of 1, deduced from

z (km)

— Numerical, with Q
-=-- Numerical, with /
— Analytical, viscous

------- Analytical, viscoelastic

. 3 . . : .
. &
4 ™ -4 * —
[ 2
1 | 1 | 1 | 1 | 1 1 1 | 1 1 I
0 5 10 15 0 10 20 30 40
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Fig. 11. Porosity (a) and pressure (b) profiles for Pannonian shales made dimensional with g,=350 m/My and viscous model parame-
ters inferred from the inverse model (Fig. 10) compared with Pannonian trends (porosities from Szalay, 1982 cited in Dovenyi and
Horvath, 1988, overpressures from Clayton et al., 1990). The permeability used for the calculations, k,=2x 10~ m?, chosen to
reproduce the observed porosity at 2820 m depth is an order of magnitude lower than estimated from the inverse model, but agrees
well with shale permeability measurements (k,~ 10~ '°° m?, Szalay, 1982 cited in Van Balen and Cloetingh, 1994). A comparison of
numerical calculations made with a constant viscous e-fold length (671 m) with those made with constant activation energy (Q =
40.5 kJ/mol, VT'=0.05 K/m), shows that the assumption of constant / has minor influence on the computational results.
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the profiles is largely independent of the overpres-
sure, as demonstrated by the similarity of the
numerical and analytical solutions.

The general form of the viscous steady state
[Eq. (35)] can, in principle, be used to deduce the
porosity dependence of the bulk viscosity as well
as the remaining parameters of viscous compac-
tion. For the general form

PP+ %27

= 55
S Cr (39)
= - (56)
zp¢" — iz — ¢’
. z¢™
Jo=_| — ——¢! (57
v )
(ﬁ _< 1 (M—l)i((i—z)ez/i_i)>1/(rﬁ1)
1= ¢n”1*1 ):(2: .
(58)

The values of m from the Pannonian porosity
profiles (Fig. 10f) are of doubtful significance
because of the error in assessing the third derivative
of the profile, but the local extrema in I J, and
¢, when m=1 is assumed correspond to the depth
at which 7z =1 when m is not constrained. The
minimum value of #i at which the remaining
parameters have meaningful values from the shale
profile is 0.5 at z=2466 m {/<o0, A, <2376 m,
$,>23.4%, 0>0,n,<1.1 x 10?> Pa-s}, whereas for
the sandstone profile, 71 spans the entire theoretical
range, with m=0 at z=1799m {/<2312m, A,
<6740 m, ¢,>27.5%, Q0>9.5kJ/mol, n,<3.1x
102! Pa-s}. Values of m>1 weaken the depth
dependence of the curvature of the steady-state
profile. Therefore, large m values for the
Pannonian profiles at depth are interpreted as an
indication of hydraulically limited compaction.

4. Compaction-generated flow instabilities

Compaction gives rise to a quasi-steady-state
porosity—depth profile in which two distinct com-
paction regimes are connected by a narrow transi-
tional zone. The proximity of the upper,

rheologically limited regime to a stationary state
demonstrates that the upper portion of the profile
responds rapidly to perturbations of the sedi-
mentary process, i.e. on a time scale of ~/vg
(Fig. 1b). In contrast, beneath the compaction
front, the porosity profile is essentially static in a
reference frame that moves with the sediments.
Consequently, if the sedimentation rate changes,
the porosity at the base of the compaction front
will evolve toward a new value that is largely
independent of processes at greater depth. This
porosity varies as ¢" ! [Eq. (46)], and as the depth
of this value of the porosity is proportional to the
sedimentation rate through 4., a reduction in sedi-
mentation rate creates a low-porosity obstruction
to fluid flow from beneath the compaction front
(Fig. 8). It is well established that a flow obstruc-
tion will cause nucleation of flow instabilities mani-
fest as porosity waves (e.g. Barcilon and and
Richter, 1986). In contrast, an increase in sedi-
mentation rate does not generate flow instabilities
because it causes the compaction front to develop
higher porosities at a greater depth than the initial
quasi-steady state.

4.1. Porosity waves in a viscous matrix

The numerical calculation depicted by the heavy
solid curves in Fig. 12 provides a basis for under-
standing the evolution of porosity waves during a
sedimentary hiatus (commencing at 1=0). Because
the velocity of the compaction front grows expo-
nentially with depth (Fig. 1a), the front forms a
significant obstruction to fluid flow shortly after
the cessation of sedimentation. The fluid pressure
then increases beneath the obstruction, but because
the obstruction has a finite permeability, the pres-
sure diffuses into the obstruction creating a domain
of negative effective pressure about the initial
depth of the compaction front (i.e. supralithostatic
pressures, at t=12My and z=2.5-3.2km,
Fig. 12b). Within this domain, pore dilation
increases the permeability, but the fluid flux within
the dilated region must be less than in the deeper
undeformed rocks. From Darcy’s law, the fluid
flux is proportional to the product of the overpres-
sure gradient and the permeability, thus the
fluid pressure gradient within the domain relaxes
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Fig. 12. Numerically calculated porosity (a) and overpressure
(b) profiles for viscous sediment at approximately exponentially
increasing time intervals after the cessation of steady sedimenta-
tion (¢,=3000 m/My, ¢, =25%). The calculations were made
for constant Q (20 or 60 kJ/mol) with V7'=50 K/km, and the
respective values of Q give / values to equal 500 and 1500 m at
3km depth. For #,=228x10?Pa-s (/=1500m) and
k,=117x10"8¥m%  /1=4300m, z,=3km, ¢.=5%, 1.=
0.088 My. For #5,=10*°Pa-s (/=500m) and k,=1.17x
107®m?% A,=17700m, z,=3km, ¢.=5%, 7,=0.014 My.
Decreasing k, raises ¢, thereby increasing z, and . [Eq. (28)].
The local viscous compaction length, J, is determined by A,
during the initial phase of sedimentation. Thus, a comparison
of models for different A, values illustrates that the porosity
wavelength has little dependence on ¢, but is dependent on /.
The shorter time scale of the /=500 m models causes the models
to evolve toward a quasi-stationary state, with the compaction
front at a greater depth, more rapidly than the /=1500 m
models. Because the fluid pressure gradient is more nearly
hydrostatic in large waves than it is in small waves, large-ampli-
tude wave trains propagate more rapidly. However, the wave
trains propagate more slowly than the associated compaction
front, with the exception of low-permeability, long viscous
e-fold length model in which the wave front is constrained by
the compaction front.

toward a hydrostatic gradient (at t=3.7 My and
z=1.5-2.8 km, Fig. 12b). The domain broadens,
and the fluid overpressures increase with time as
fluid is supplied from below and hydraulic diffu-
sion and pore dilation propagate the domain
upward into the obstruction. The increase in pore
pressure leads to conditions such that the rate of
pore dilation, integrated over the depth interval
where supralithostatic pressures maintain, exceeds
the volumetric fluid flux from below, whereupon
effective pressures at the base of the domain
become positive and cause the porosity to collapse
(at t=3.7 My and z=2.1-3.3 km, Fig. 12b). When
the porosity collapses to values comparable to the
porosity of the obstruction, the fluid fluxes into
and out of the porous domain balance each other,
and the domain ceases to grow. Thereafter, the
effect of pore dilation at the top of the domain,
together with pore compaction at a greater depth,
is to propagate the region of dilated porosity
upward as a wave of anomalous porosity. The
collapsed porosity beneath the initial wave forms
an obstruction to compaction-driven fluid expul-
sion at greater depth, causing the nucleation of a
second wave. This mechanism effectively propa-
gates the initial obstruction downward against the
direction of fluid flow and results in the formation
of a wave train that extends over the entire depth
interval of hydraulically limited compaction. The
ultimate effect of this process is to form a series
of sill-like fluid compartments within which the
fluid is overpressured, but the fluid pressure gradi-
ent is hydrostatic.

The amplitude of porosity waves, the analogy
of secondary porosity in sedimentary fluid com-
partments, is proportional to the difference
between the porosity of the flow obstruction and
the unobstructed porosity at a greater depth (e.g.
Richter and McKenzie, 1984). Large-amplitude
porosity waves would therefore be favored by
rapid burial of low-permeability sediments, i.e.
large ¢, followed by a sedimentary hiatus. The
porosity of the obstruction formed by the compac-
tion front is largely independent of permeability,
unlike the porosity at a greater depth, therefore
both the absolute and relative amplitude of the
waves increases as sediment permeability is
decreased. The porosity beneath the compaction
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front is a non-linear function of the ratio of burial
rate to initial sediment permeability [Eq. (46)].
Consequently, a relatively small increase in sedi-
ment permeability leads to a substantial reduction
in amplitude (Fig. 12a).

The length scale, L, over which an effective
pressure gradient can be maintained in viscously
compacting sediment determines the flow instabil-
ity wavelength. For thermally activated compac-
tion, L has been shown (Connolly and
Podladchikov, 1998) to be either / or the local
viscous compaction length (4, e.g. McKenzie,
1984), with the shorter tending to dominate. For
the formulation adopted here, the local viscous
compaction length is (Connolly and Podladchikov,
1998)

k¢
o=_[ —. (59)
o
Substituting Eqgs. (21) and (23) into Eq. (59), and
taking ¢ as characteristic of the fluidized porosity
yields:

Ao z42z,\\ 2
5=<n(n—1)exp<>> (60)
Z, /

Thus, the counterintuitive result that wavelength
is a weak function of k, (Fig. 12) is explicable
because ¢ is only weakly dependent on permeabil-
ity through z.. The decay of § with depth increases
its influence, resulting in a reduction in wavelength
that is more pronounced for short /.

Unlike the compaction front, which forms
under the influence of the surface boundary condi-
tions, subjacent porosity waves are effectively iso-
lated from the surface boundary by the compaction
front. Therefore, there is no reason for the waves
to evolve to a stationary steady state, although
such a state does exist for the case that the waves
propagate with a velocity identical in magnitude
but opposite to that of the matrix. Excepting this
case, the matrix viscosity varies as a wave changes
its position relative to the surface precluding the
attainment of a true steady state. Despite this
effect, insight into wave propagation is gained by
considering the steady-state solution for large-
amplitude waves in a matrix without depth-depen-
dent shear viscosity, i.e. /= 00. As the fluid pressure

gradient necessary to sustain a fluid flux varies
inversely with permeability and therefore ¢", the
stipulation of large amplitude waves permits the
assumption that Vp,=Apg over a large fraction of
the wave. For example, if the maximum porosity
(¢max) 1s four times the minimum (¢,;,), then Vp,
is 0.98Apg at ¢,.x and 0.88Apg at 0.5¢,,., if n=3.
Expanding the substantial derivative of porosity
in Eq. (9) and taking the partial time derivative
of porosity as zero, in conjunction with Eq. (23)
(with m=1), the steady state is a Gaussian solitary
wave

1 [z—2\? -
po( 3 () Jwin = 20
2 A Apg
(61)

where p,=0 at the wave center (at z=z,) and
¢’ =/ If the wavelength A is comparable to
the viscous compaction length 6 [Eq. (59)], then
the velocity required by Eq. (61) is approximately

e —— (62)

identical to the velocity necessary for fluidization
at the maximum porosity (¢..x) of the wave. Wave
trains formed by an obstruction to a region
of uniform porosity cannot become attenuated
with time (Spiegelman, 1993; Connolly and
Podladchikov, 1998), which implies that Eq. (62)
is an upper limit for waves formed in response to
a sedimentary hiatus. The assumption that the
pressure gradient is equal to Apg maximizes the
deformation rate within the wave and therefore
also gives Eq. (62) as an upper limit on the velocity
of smaller waves. Because the pressure gradient at
the wave center varies as (¢ max/Pmin)", low sediment
permeabilities, which result in a large flow obstruc-
tions, lead to more rapidly propagating waves, an
effect demonstrated by the numerical models
(Fig. 12).

The stationary state of porosity waves in a
matrix with finite /, is conveniently described in
terms of dimensionless depth z'=(z—z,)// relative
to the wave center at z,

(1 —z)ez'—1>

¢'=exp< (63)
A
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where A'=// with J as in Eq. (61), which is
identical to the steady-state wavelength of the
compaction front at z,=z, and varies with depth
as

I <zc—z>
L=, X .
P\

The stationary states (Fig. 13) show that the
constant viscosity solution [Eq. (61)], whereby
A~9, is appropriate if 1//<0.1. However, large
values of A/l induce strong asymmetry. That this
asymmetry is not well developed in the transient
models (Fig. 12, where 4/[=2-6 for /[=1500 m and
A/l=8-80 for /=500 m) reflects that the waves

logo(M1)

4

z/l

0.2 0.4 0.6 0.8 1.0
O/ Oma

Fig. 13. Stationary states for large (¢max/@min> ~2) porosity
waves as a function of 4// for m=1. The depth coordinate is
chosen so that p,=0 at z=0. If 1//< ~0.1, then waves develop
on a scale that is short compared to the viscous e-fold length.
Consequently, the variation in viscosity is small over the wave
length scale, and the Gaussian stationary state of the constant
shear viscosity model is realized. Attainment of the stationary
state for finite /, requires that the phase velocity of the wave is
exactly opposite the sediment velocity. This condition is unlikely
to be met, but results in a weak porosity depth dependence
above the wave center at z=0. Upward propagation of transient
waves tends to suppress the development of this asymmetry,
leading to the formation of Gaussian waves at large 1//, as
illustrated by the numerical results (Fig. 12), for which A//=
35.4 (/=500 m) and 2//=1.67 (/=1500 m).

propagate in the direction in which the asymmetry
is pronounced. Thus, transient wave shapes are
determined primarily by the compaction of the
relatively weak sediment below the wave center
and are reasonably approximated by the constant
viscosity solution. Since the width of the compact-
ing region varies as (4//)'/? (Fig. 13), but transient
velocities decay exponentially (Fig. 12), wave
velocities are reasonably estimated from Eq. (62)
by assuming A=/

I’A z—z,
Vo=— npgexp< ; ) (64)

In distinction to the constant viscosity limit, this
approximation indicates that wave velocities are
independent of permeability and a strong function
of depth and /, a limit realized in the numerical
models. This result suggests that rheology, rather
than hydrology, dominates the growth and propa-
gation of the flow instabilities. Neglecting the weak
dependence of the pressure gradient on amplitude
in large waves, the effective pressure responsible
for wave propagation is only a function of depth
relative to the wave center because of the effective
isolation of the fluid within the wave from the
surface boundary. In contrast, within the compac-
tion front, the effective pressure is a function of
the absolute depth. From Egs. (29) and (64), this
difference causes the compaction front to propa-
gate with a velocity ~z// times that of a porosity
wave at the same depth. This behavior is manifest
in models where wave trains that initiate at a depth
z/I>1 (i.e. the dashed and thin solid curves,
Fig. 12) initially propagate slower than the com-
paction front, leading to an initial broadening of
the flow obstruction formed in the wake of the
compaction front.

Numerical and mathematical studies of porosity
waves have shown that in a constant viscosity
matrix, the one-dimensional sill-like waves
obtained here are unstable and decompose into
spherical waves (Scott and Stevenson, 1986;
Wiggins and Spiegelman, 1995). However, in ther-
mally activated compaction, upward strengthening
stabilizes the one-dimensional wave geometry pro-
vided d//<1 (Connolly and Podladchikov, 1998),
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the case that appears relevant to sedimentary
compaction.

4.2. Porosity waves in a yielding viscous matrix

Negative effective pressures (~ —/Apg/2) are an
inescapable result of flow instability and porosity
wave nucleation in viscously compacting sediment.
Although, the existence of ‘secondary’ porosity
induced by hydrocarbon migration (e.g. Szalay,
1988) is evidence that negative effective pressures
are possible, it is improbable that sediments sup-
port large negative effective pressures without fail-
ing by hydrofracturing or other yielding
mechanisms. To account for yielding in numerical
calculations, the shear matrix viscosity was reduced
by three orders of magnitude at effective pressures
below the yield threshold, taken as zero effective
pressure. The factor is arbitrary, but does not
sensibly influence results provided the matrix vis-
cosity during decompaction is at least an order of
magnitude lower than the viscosity during
compaction.

The porosity waves generated in a yielding
matrix (Fig. 14) differ fundamentally from the
simple viscous case only in that the mean fluid
pressure within the waves is sublithostatic. This
has the effect of producing a step-like fluid pressure
distribution with depth, a feature characteristic of
compartmentalized sedimentary sequences (e.g.
Hunt, 1990). In detail, plastic yielding reduces the
symmetry and size of the waves, and accelerates
the drainage of fluid trapped beneath the compac-
tion front, but does not fundamentally alter the
development or scaling of flow instabilities. That
yielding does not cause waves to dissipate may be
counterintuitive, but is explicable in the context of
the conceptual model discussed earlier for viscous
waves. For the case of true plastic yielding ({=0)
at zero effective pressure, any occlusion of the
porosity underlying the compaction front would
be propagated upward, producing a profile charac-
teristic of fluidized compaction. However, if the
sediment has a finite resistance to yielding at zero
effective pressure, then the occlusion in the poros-
ity formed consequent to a sedimentary hiatus
must cause a small increase in the maximum
porosity within the fluidized region beneath the

a) ¢, viscoplastic matrix
i 877

10%

z (km)

= k=107 m?
k=108 m?

— 1,=3%x10% Pa-s, /=1500 m

== 1,=10% Pa-s, 1%500 m 7

____hydrostat

Fig. 14. Numerically calculated porosity (a) and overpressure
(b) profiles, for viscous sediment with yielding at zero effective
pressure, at approximately exponentially increasing time
intervals after the cessation of steady sedimentation, with the
same parameters as in Fig. 12. In a yielding matrix, porosity
waves that initiate in response to the cessation of sedimentation
propagate faster and have wavelengths roughly half that of
waves in the simple viscous case. Yielding reduces the overpres-
sure necessary for wave propagation, resulting in step-like fluid
pressure profiles similar to those of compartmentalized sedi-
mentary sequences. Porosity waves that propagate in a vis-
coplastic matrix without losing fluid volume are characterized
by a shock front, below which the porosity decreases with depth,
as in viscous waves. In the latter part of the model evolution,
the waves lose fluid across the compaction front and decay in
both amplitude and wavelength.

compaction front (heavy solid curve for t=1.2 My
at z=2.8 km, Fig. 14a). Fluid fluxes in this region
are greater than in the underlying porosity, which
must eventually collapse by viscous compaction
(t=3.7My at z=1.5-3 km Fig. 14a), creating a
wave of porosity in a manner exactly analogous
to the simple viscous model (Fig. 12). In a yielding
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matrix, wave propagation is limited only by the
rate at which viscous compaction can drive fluid
flow to the wave front and, because dilation is
more rapid than compaction, this front is sharper
than in the viscous case. The maxima in fluid
pressure and porosity are thus more nearly coinci-
dent in a viscoplastic wave and, provided the
condition for plastic yielding is near zero effective
pressure, must be smaller and propagate more
rapidly than waves in a viscous matrix. A conse-
quence of this acceleration is that the numerical
models for the viscoplastic case illustrate a more
advanced evolution in which the waves have begun
to decay as a result of interaction with the compac-
tion front. Decay occurs when the wave train
impinges on the compaction front and raises the
intervening porosity to a value large enough to
accommodate the fluid flux from beneath the com-
paction front. Thereafter, wave propagation
cannot occur without loss of fluid mass. In the
viscoplastic case, viscous compaction caused by
the loss of fluid mass is slow compared to the
propagation of the wave by plastic dilation so that
the maximum in porosity is displaced behind the
wave front, resulting in wave forms that are super-
ficially similar to the viscous case. The decay is
asymptotic with time, and, even with accelerated
drainage caused by yielding, porosity waves may
be retained on a 100 My time scale.

Similar results are obtained if yielding is
accounted for by the pseudoelastic term in the
compaction equation [Eq. (9)], provided De>1,
(Connolly and Podladchikov, 1998). Step-like
pressure—depth profiles can also be obtained from
viscous models if compaction becomes less efficient
with decreasing porosity, as observed for non-
Newtonian rheologies [Eq. (24)], Ashby, 1988).

4.3. A numerical model of devolatilization-induced
flow instability

Two potential difficulties in relating the vis-
coplastic porosity wave model to basin processes
are posed by the time required to generate a flow
obstruction following a perturbation to steady
sedimentation, and by the large value of x (i.c.
low k or high g,) required to retain sufficient fluid

below the compaction front. Devolatilization reac-
tions offer a mechanism of producing both fluid
and porosity below the compaction front without
requiring extraordinary permeabilities or sedi-
mentation rates. Moreover, devolatilization is
capable of producing a depth interval of finite
porosity bounded by fully compacted sediments
on a time scale that is limited only by reaction
kinetics. Such a scenario is analogous to the gener-
ation of a flow obstruction with infinite relative
amplitude purely by viscoplastic compaction, but
without the restrictive time scale. In terms of the
depth interval of interest here, the dehydration of
clay minerals (smectite and kaolinite), diagenetic
decarbonation, and kerogen decomposition that
occur at T~423-573 K are potentially important
fluid sources (e.g. Clayton et al., 1990; Bjorlykke,
1993). To account for the effects of such reactions
in a numerical model, the right-hand sides of the
dimensional forms of Egs. (50) and (51) were
modified by the addition of source terms for the
volumetric production of fluid (Sy) and porosity
(Sy). At the low confining pressures characteristic
of sedimentary basins, devolatilization generally
occurs such that S,<S;. Under poorly drained
conditions, incipient diagenetic devolatilization
therefore tends to generate overpressures (e.g.
Hubbert and Rubey, 1959; Wong et al., 1997), a
potentially important effect in sedimentary envi-
ronments (e.g. Szalay, 1988; Clayton et al., 1990;
Hunt, 1990). In a viscous matrix, such overpres-
sures affect local deformation, but the ratio S;/S;
and the dependence of reaction kinetics on fluid
pressure are of minor consequence to the develop-
ment of flow instabilities that ultimately modulate
the overpressure on the compaction length scale
(e.g. Connolly, 1997). We therefore discount these
effects and assume equilibrium devolatilization
with S, =S;. For simplicity, burial is isothermal,
and there are no pressure effects on the temper-
ature of devolatilization so that devolatilization
occurs across eustatic reaction fronts. The source
term, Sy, is then expressed in terms of the sediment
velocity and reaction front width (w)

Se=f (65)
w
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where f is the volume of fluid generated per unit
volume of rock. The values f of employed here
(2.9-5.8%, i.e. 1-2 wt%) are plausible, given that
diagenetic volatile budgets in sedimentary basins
may exceed 20vol% (e.g. Bjerlykke, 1993).
Because a narrow reaction front generates a large
relative flow obstruction that amplifies flow insta-
bility, the front width is a potentially important
factor if it is significantly less than the compaction
length scale. To provide conservative models for
the generation of porosity waves by devolatiliza-
tion, the reaction front is taken to be relatively
wide, i.e. 500 m. Broad reaction fronts are also
consistent with the high thermodynamic variance
of low-temperature devolatilization processes (e.g.
Connolly, 1997). Heterogeneity in fluid production
on the porosity wavelength scale has little impact,
but to simulate larger-scale heterogeneity, the
numerical models are configured with two sources
separated by a 1 km depth interval. There is evi-
dence that hydrocarbons currently trapped in
secondary porosity at ~3km depth in the
Pannonian Basin have migrated from depths of
~6km (Clayton et al., 1990), but hydrocarbon
generation typically commences at somewhat shal-
lower depths. Although the depth of the upper
model source (5.5 km) is perhaps excessive, it is
chosen to illustrate the dynamics of the flow insta-
bilities. Models with shallower sources give similar
results, but wave interactions obscure the factors
controlling the evolution of the instabilities.

The numerical models (Fig. 15) demonstrate
that devolatilization in conjunction with viscoplas-
tic compaction is capable of producing a com-
partmentalized sedimentary sequence from homo-
geneous initial conditions with plausible sedi-
mentary parameters. In distinction to the previous
models of waves induced entirely by compaction,
in which the sediment velocity during wave initia-
tion was zero, in the devolatilization models, the
waves must propagate against the downward
movement of the matrix during sedimentation.
Consequently, a requisite for wave nucleation is
that waves propagate upward more rapidly than
the rate at which the sediment is buried. Two
factors favor wave nucleation and detachment in
the short viscous e-fold length model: (1) lower
sediment viscosity at depth increases the wave

) »=300 mMy (1 <6.7 My), £=107"% m?
— =10 Pa-s, /=500 m
-- 1=3x10%' Pa-s, /=1500 m

=70 .-

1 10%

2=
|25 38 50 63 75,

Fig. 15. Porosity (a) and overpressure (b) profiles for models
of devolatilization in a viscoplastic sediment matrix, as a func-
tion of time following the onset of devolatilization. The calcula-
tions were made for constant Q (20 or 60 kJ/mol) with VT'=
50 K/km and other parameters as indicated or in Table 1.
Reaction fronts are indicated by thin dotted horizontal lines,
upper and lower reactions release 1 and 2 wt% water respec-
tively, and devolatilization ceases with the end of sedimentation
at t=6.7 My. The shaded gray field at t=2.5 My shows the
distribution of porosity that would be generated by the reactions
if compaction did not occur. The models assume isochoric
devolatilization. Pressure effects normally associated with diage-
netic devolatilization would enhance development of porosity
waves. In distinction to flow instabilities that develop entirely
from compaction processes (Figs. 12 and 14), initiation of
porosity waves by devolatilization occurs on a short time scale
and does not require extraordinary sediment velocities or per-
meability. The profiles at 1/=30 and 70 My demonstrate that
porosity waves are capable of forming fluid compartments that
would persist in inactive basins.

velocities [Eq. (64)]; and (2) less reaction is
required to generate the porosity of the relatively
small waves. Indeed, in the long e-fold length
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model, the waves only become large enough to
propagate beyond the reaction front at a model
time almost coincidental with the cessation of
sedimentation. Thus, high sedimentation rates may
suppress the wave nucleation, but even in such
cases, devolatilization results in a domain of
occluded porosity from which waves nucleate once
the sedimentation rate decreases. Although the
models were not constructed to simulate the
Pannonian basin, the wave velocities of the short
e-fold length model are consistent with the rates
of wvertical fluid migration (~250-500 m/My)
inferred from geochemical evidence (Clayton et al.,
1990) and the development of secondary porosity
(Szalay, 1988). Heterogeneous fluid production on
a length scale >/ can lead to more complex
interactions between waves than is the case for
coherent waves generated from a single obstruction
such as the compaction front. The short viscous
e-fold length numerical model (Fig. 15) provides
an example of such interactions when the large
amplitude wave from the deeper source gains fluid
at the expense of the smaller and more slowly
propagating waves that it overtakes. This mecha-
nism causes fluid generated by isolated sources to
be swept into larger porosity waves that accumu-
late beneath the compaction front. Thus, multiple
fluid sources at depth have the same ultimate effect
as a homogeneous source in that they produce a
sequence of porosity waves that diminish with
depth. As in the case of wave trains generated
entirely by compaction, the wave trains generated
by devolatilization slow and decay asymptotically
as they approach the compaction front and are
therefore features that could be retained in inactive
basins on a time scale in excess of 100 My.

5. Discussion and conclusion

Thermal activation of precipitation—dissolution
processes in sedimentary basins can cause fluid
overpressure to develop over a narrow depth
interval comparable to the viscous e-fold length.
This interval is marked by a rapid decrease in
sediment porosity . The observation that, despite
sources of natural variability, overpressure devel-
opment occurs at the same depth in many sedi-

mentary basins is explicable if the viscous e-fold
length is small in comparison to the normally
pressured depth interval. To quantify this behavior
we have explored steady state solutions to the
viscoelastic compaction equations. The solution
for the viscous limit can be inverted to identify
porosity profiles consistent with the viscous model
and to constrain its parameters. The approach is
distinct from typical fitting procedures in that it
exploits the peculiar curvature of viscous compac-
tion profiles. The linear viscoelastic model is
remarkably successful in reproducing the porosity
profiles observed in the Pannonian basin with three
parameters: the viscous e-fold length; /., the length
scale of the viscous compaction front in the limit
of no thermal activation; and the pseudoelastic
pore compressibility. For both the pelitic and
psammitic Pannonian lithologies, the activation
energies are similar to those inferred for pressure
solution creep in quartzites (Angevine and
Turcotte, 1983; Rutter, 1983; Shimizu, 1995;
Schneider et al., 1996). Effective sediment viscosi-
ties from the inverse model are consistent with
estimates derived from geodynamic considerations
of subsidence and diapirism (Gratz, 1991; Poliakov
et al., 1993a). Although success is not proof of
validity, the ability of the viscoelastic model to
reproduce natural trends with physically meaning-
ful parameters lends the model credence. However,
deviations from near surface porosity trends can
be explained in the context of pseudoelastic models
by a non-linear increase in the mean stress with
depth, due to sediment induration and tectonic
stresses (e.g. Shi and Wang, 1986). Such models
have been applied to describe the fluid pressure
evolution of the Pannonian Basin (Van Balen and
Cloetingh, 1994). It is noteworthy that the porosity
profile of the Pannonian basin Hod-I borehole
(Szalay, 1988) shows no significant deviation from
the normal pseudoelastic trend. This difference
may be attributed to the effects of overpressuring
as a result of hydrocarbon generation, but there is
little reason to expect that effective viscous proper-
ties deduced from a single profile should be valid
in general. It is therefore premature to ascribe a
general significance to the viscous parameters
inferred here.

Although non-Newtonian viscous behavior is
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tractable by the methods employed here, our ana-
lytical formulation assumes a linear stress depen-
dence. While there is evidence that pressure
solution creep is Newtonian (e.g. Rutter, 1983),
the stress dependence of macroscopic precipita-
tion—dissolution compaction mechanisms (Qin and
Ortoleva, 1994; Bjerkum, 1995) is not necessarily
linear, and some lithologies are known to compact
with a non-linear stress dependence (e.g. carbon-
ates and evaporites, Spiers and Schutjens, 1990;
De Meer and Spiers, 1995). Non-linear viscous
compaction would generally strengthen porosity
variation with depth and would be in many
respects indistinguishable from the effect of ther-
mal activation. A potentially important exception
would be a non-linear viscous rheology with a
negative stress exponent. Such a rheology has been
proposed as an explanation for the weak stress
dependence of sedimentary compaction by precipi-
tation dissolution (B. Den Brok, pers. commun.
1999) and would produce an opposite effect to
that of thermal activation.

The characterization of sediment by effective
properties is a simplification that obscures natural
complexity. Indisputably, lithological hetero-
geneity must play a role in basin compaction and
compartmentalization, but these effects are super-
imposed upon the patterns that result from the
compaction process. Our goal here was to quantify
these patterns. Rheologically controlled compac-
tion leads to a reduction in permeability that
causes a transition, that is analogous to the top
seal of an overpressured sedimentary sequence, to
a hydraulically limited compaction regime charac-
terized by fluid pressures comparable to the sedi-
ment load. Perturbations to a regime of steady
sedimentation that result in a reduction in sedi-
mentation rate cause the compaction front to
propagate upward, forming an interval of lowered
porosity that acts as an obstruction to fluid flow.
This obstruction initiates flow instability that is
manifest by porosity waves that propagate infor-
mation about the obstruction downward against
the direction of fluid flow, resulting in compart-
mentalization of the hydraulically limited compac-
tion regime. The quasi-steady-state model is
simplified in that we assume that the transition
to hydraulically limited compaction occurs in

the viscous limit. Elsewhere (Connolly and
Podladchikov, 1998), we have shown that for
small, but finite, De, the viscoelastic stationary
state is characterized by wave-like oscillations in
porosity and effective pressure that decay with
depth. Should such values of the Deborah number
be relevant at the depth of the transitional regime,
compartmentalization would be an intrinsic feature
of the steady state.

For plausible sedimentary parameters, the
length scale of the porosity waves, i.e. compart-
ments, is determined largely by the viscous e-fold
length (~0.5-1.5km), but wavelength is also
weakly dependent on local sediment viscosity,
which decays downward. Wave amplitude is pro-
portional to the reduction in the sedimentation
rate that initiates flow instability, such that rapid
sedimentation followed by a sedimentary hiatus
is the optimal scenario for compaction-induced
compartmentalization. Although porosity waves
propagate upward with velocities that are an expo-
nential function of depth, the waves are con-
strained by the compaction front. Thus, waves
that form at depth tend to coalesce into larger,
essentially eustatic, waves immediately beneath the
compaction front. A discrepancy between the vis-
cous porosity wave model and natural fluid com-
partments is that the mean fluid pressure within
porosity waves is almost lithostatic, whereas in
natural compartments, fluid pressures approach
lithostatic. This type of fluid pressure distribution
is produced by porosity waves if yielding is incor-
porated into the rheological model. The yield
mechanism has little influence on the time and
length scales of compartmentalization because
fluid expulsion remains limited by the viscous
compaction. In one-dimensional compaction, the
effect of yielding on the porosity—permeability
relationship is immaterial because the direction of
fluid flow is fixed. More generally, the yield
mechanism may influence porosity wave geometry.
Thus, the one-dimensional geometric model in
which flow instabilities take the form of horizontal
sill-like structures might be justified by fracturing
at sublithostatic fluid pressure (Simpson, 2000),
whereas ideal plastic yielding promotes channeling
instabilities and creates more complex structures
(Connolly and Podladchikov, 1998). Viscous rhe-
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ology is not a necessary condition for the develop-
ment of flow instabilities during hydraulically
limited compaction. However, the flow instabilities
that would develop in an elastic or pseudoelastic
sediment matrix have no intrinsic length scale
(Rice, 1992; Connolly and Podladchikov, 1998).
The viscous model is therefore more satisfying in
that the formation of both a top-seal and subjacent
fluid compartments is explicable as an inherent
feature of the compaction process.

Devolatilization reactions are sources of both
fluid and pore volume that vary as a function of
time and depth. If such a reaction commences at
depth, the process creates a domain of elevated
fluid-filled porosity from which flow is obstructed
by the super- and subjacent unreacted sediment.
This situation is essentially identical to that respon-
sible for initiating porosity waves in response to
perturbations in the sedimentation rate. Unlike the
nucleation of waves due entirely to burial and
compaction, initiation of large amplitude waves
by devolatilization does not require rapid sedi-
mentation of low-permeability materials and
appears plausible in view of sedimentary volatile
budgets.

Porosity waves are an episodic flow mechanism
that may give rise to fluid fluxes that deviate
significantly from those anticipated by consider-
ation of uniform Darcyian flow. In sediment with
thermally activated viscosity, the waves are an
efficient fluid transport mechanism at depth, but
become a trapping mechanism at shallower depths
as viscosity increases. Although our parameteriza-
tion assumes that porosity is uniformly distributed
on a grain scale, this is not a requisite for the wave
mechanism. Given that fracture permeability is a
non-linearly increasing function of fracture width,
the instability responsible for wave formation must
also exist within domains of interconnected frac-
tures. In distinction to fracture propagation, the
direction of compaction driven fluid flow is deter-
mined by the mean stress gradient. By assuming
that this gradient is positive, we have restricted
the direction of fluid flow and wave propagation
to be upward. Far-field tectonic conditions may
result in local inversions of the normal gradient
(Petrini and Podladchikov, 2000). An inversion
such that Va<pgg has particularly interesting

implications for fluid migration in sedimentary
basins because it would cause buoyant fluids to be
driven downward by compaction processes, but
would not otherwise affect flow mechanisms. The
understanding of the interactions between compac-
tion and tectonic processes is therefore a goal
worthy of pursuit.
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