| comments are indicated by the | character. | check for warnings at the end of the header section. Stix '05, Fab '99, Ogan '05, etc |<= data base title begin_standard_variables |<= name (<9 characters), reference value, tolerance P(bar) 1.00 1. T(K) 300.00 1. Y(CO2) 0.00 0.1E-6 mu(C1) 0.00 0.1E-2 mu(C2) 0.00 0.1E-2 end_standard_variables tolerance -1. |<= DTOL for unconstrained minimization, energy units begin_components |<= name (<5 characters), molar weight (g) MGO 40.3200 AL2O3 101.9400 SIO2 60.0900 CAO 56.0800 FEO 71.8500 end_components This data base is a hybrid of: Stixrude & Lithgow-Bertelloni '05 JGR data base is for high pressure phase relations and seismic velocities. The data base is for a specialized EoS, the non-zero parameters stored here are (in order): f0 n -v0 k0 k0' td gam0 q etaS0 Sconf g0 g0' Fabrichnaya '99 Calphad data base for: fpv, wus, apv, coe, cor, faki, spf, hercf, spd, hercd, q (DUBIOUS!) refit to stixrude & bukowinski's equation of state, taking the q values assumed by Stixrude & Lithgow-Bertelloni. k0, k0' gamma0 were computed from Fabrichnaya, td was computed to give a match to Fabrichnaya's entropy at 20d4 bar 1600 K. Reference state integration constants were computed as: DG(SiO2) = stv(stx) - stv(fab) = DG(FeO) = fs(stv) - stv(stv) - fs(fab) + stv(fab) DG(Al2O3) = py(stx) - en(stx) - py(fab) + en(fab) DG(MgO) = en(stv) - stv(stv) - en(fab) + stv(fab) sio2 := 876.40640d3;mgo := 607.12137d3;al2o3 := 1697.7127d3;feo := 300.25346d3; for wuestite (wus) the free energy was adjusted to reproduce the experimental results of Irfune '94 at 28.5 GPa 1873 K. Ono, Oganov & Ohishi '05 EPSL data for ppv, appv and fppv refit to stixrude & bukowinski's equation of state. td ppv adjusted to 873 K to match clapeyron slope (~80 bar/K). The reference state energy was chosen to give the pv->ppv transition at 2500 K and 130 GPa. Ca-Pv -> Elastic constants from Karki & Crain GRL 1998 Gamma0, etaS0 are those of Mg_perov F0/theta0 adjusted to place the di = wad + stv + ca-pv phase boundary at 18.15 GPa and 1873 K with a Clapeyron slope of 20.8 bar/K after experimental phase relations of Akaogi et al PEPI 2004. JADC March 5, 2005. NOTE that some of the endmembers have peculiar site populations and stoichiometries, this means that solution models should be checked for consistency with these choices. the solution models XXX(stx)/XXX(fab)/XXX(og) in solut_07.dat are consistent with this data base. end an EoS = 5 | Anorthite CaAl2Si2O8 AL2O3(1)SIO2(2)CAO(1) G0 = -235000 S0 = 13 V0 = -10.079 c1 = 840000 c2 = 4 c3 = 753 c4 = .46 c5 = 1 c6 = 2.2 m0 = 400000 m1 = .5 end sp EoS = 5 | Spinel (Mg3Al1)(Al7Mg1)O16 MGO(4)AL2O3(4) G0 = -148000 S0 = 28 V0 = -15.884 c1 = 1970000 c2 = 4 c3 = 869 c4 = 1.27 c5 = 1 c6 = 2.5 c7 = 43.76 m0 = 1080000 m1 = .4 end herc EoS = 5 | Hercynite (Fe3Al1)(Al7Fe1)O16 AL2O3(4)FEO(4) G0 = -35000 S0 = 28 V0 = -16.337 c1 = 1970000 c2 = 4 c3 = 721 c4 = 1.27 c5 = 1 c6 = 2.5 c7 = 97.28 m0 = 850000 m1 = .4 end fo EoS = 5 | Forsterite Mg2SiO4 MGO(2)SIO2(1) G0 = -114100 S0 = 7 V0 = -4.367 c1 = 1290000 c2 = 4.2 c3 = 814 c4 = 1.14 c5 = 1.9 c6 = 2 m0 = 820000 m1 = 1.4 end fa EoS = 5 | Fayalite Fe2SiO4 SIO2(1)FEO(2) G0 = -81100 S0 = 7 V0 = -4.627 c1 = 1270000 c2 = 5.2 c3 = 619 c4 = 1.08 c5 = 1.9 c6 = 1.1 m0 = 510000 m1 = 1.4 end wad EoS = 5 | Mg-Wadsleyite Mg2SiO4 MGO(2)SIO2(1) G0 = -86500 S0 = 7 V0 = -4.052 c1 = 1740000 c2 = 4 c3 = 858 c4 = 1.32 c5 = 1.6 c6 = 2.4 m0 = 1120000 m1 = 1.5 end fwad EoS = 5 | Fe-Wadsleyite Fe2SiO4 SIO2(1)FEO(2) G0 = -71800 S0 = 7 V0 = -4.322 c1 = 1740000 c2 = 4 c3 = 671 c4 = 1.32 c5 = 1.6 c6 = 2.4 m0 = 720000 m1 = 1.5 end ring EoS = 5 | Mg-Ringwoodite Mg2SiO4 MGO(2)SIO2(1) G0 = -76900 S0 = 7 V0 = -3.965 c1 = 1830000 c2 = 4.1 c3 = 891 c4 = 1.21 c5 = 2 c6 = 2.3 m0 = 1190000 m1 = 1.3 end fring EoS = 5 | Fe-Ringwoodite Fe2SiO4 SIO2(1)FEO(2) G0 = -72700 S0 = 7 V0 = -4.202 c1 = 1920000 c2 = 4.1 c3 = 671 c4 = 1.21 c5 = 2 c6 = 2.3 m0 = 1050000 m1 = 1.3 end en EoS = 5 | Enstatite Mg4Si4O12 MGO(4)SIO2(4) G0 = -316000 S0 = 20 V0 = -12.532 c1 = 1060000 c2 = 9 c3 = 818 c4 = .92 c5 = 2 c6 = 2.1 m0 = 770000 m1 = 1.5 end fs EoS = 5 | Ferrosilite Fe4Si4O12 SIO2(4)FEO(4) G0 = -257300 S0 = 20 V0 = -13.184 c1 = 1010000 c2 = 9 c3 = 689 c4 = .98 c5 = 2 c6 = 2.1 m0 = 520000 m1 = 1.5 end ts EoS = 5 | Mg-Tschermaks (Mg2Al2)Si2Al2O12 MGO(2)AL2O3(2)SIO2(2) G0 = -121600 S0 = 20 V0 = -12.05 c1 = 1060000 c2 = 9 c3 = 818 c4 = .92 c5 = 2 c6 = 2.1 m0 = 1060000 m1 = 1.5 end c2/c EoS = 5 | Mg-C2/c Mg4Si4O12 MGO(4)SIO2(4) G0 = -297600 S0 = 20 V0 = -12.172 c1 = 1160000 c2 = 4.5 c3 = 836 c4 = .92 c5 = 1.6 c6 = 2.1 m0 = 860000 m1 = 1.5 end fc2/c EoS = 5 | Fe-C2/c Fe4Si4O12 SIO2(4)FEO(4) G0 = -251100 S0 = 20 V0 = -12.788 c1 = 1100000 c2 = 5 c3 = 712 c4 = .98 c5 = 1.6 c6 = 2.1 m0 = 680000 m1 = 1.5 end di EoS = 5 | Diopside Ca2Mg2Si4O12 MGO(2)SIO2(4)CAO(2) G0 = -516400 S0 = 20 V0 = -13.222 c1 = 1140000 c2 = 4.5 c3 = 785 c4 = 1.06 c5 = 1.6 c6 = 2.1 m0 = 670000 m1 = 1.2 end hed EoS = 5 | Hedenbergite Ca2Fe2Si4O12 SIO2(4)CAO(2)FEO(2) G0 = -454900 S0 = 20 V0 = -13.568 c1 = 1200000 c2 = 4.5 c3 = 702 c4 = .95 c5 = 1.6 c6 = 2.1 m0 = 610000 m1 = 1.2 end mdi EoS = 5 | Mg-Diopside Mg2Mg2Si4O12 MGO(4)SIO2(4) G0 = -305700 S0 = 20 V0 = -12.532 c1 = 1140000 c2 = 4.5 c3 = 814 c4 = 1.06 c5 = 1.6 c6 = 2.1 m0 = 780000 m1 = 1.2 end py EoS = 5 | Pyrop-e Mg3Al1Al1Si3O12 MGO(3)AL2O3(1)SIO2(3) G0 = -234100 S0 = 20 V0 = -11.319 c1 = 1700000 c2 = 4 c3 = 828 c4 = 1.24 c5 = .3 c6 = .8 m0 = 930000 m1 = 1.4 end alm EoS = 5 | Almandine Fe3Al1Al1Si3O12 AL2O3(1)SIO2(3)FEO(3) G0 = -195000 S0 = 20 V0 = -11.523 c1 = 1770000 c2 = 4 c3 = 740 c4 = 1.04 c5 = .3 c6 = .8 m0 = 970000 m1 = 1.4 end gr EoS = 5 | Grossular Ca3Al1Al1Si3O12 AL2O3(1)SIO2(3)CAO(3) G0 = -461000 S0 = 20 V0 = -12.53 c1 = 1680000 c2 = 4.5 c3 = 817 c4 = 1.05 c5 = .3 c6 = 2.5 m0 = 1090000 m1 = 1.1 end maj EoS = 5 | Majorite Mg3Mg1Si1Si3O12 MGO(4)SIO2(4) G0 = -204100 S0 = 20 V0 = -11.457 c1 = 1600000 c2 = 4.5 c3 = 828 c4 = 1.24 c5 = .3 c6 = .8 m0 = 870000 m1 = 1.4 end aki EoS = 5 | Mg-Akimotoite MgSiO3 (ilmenite structure) MGO(1)SIO2(1) G0 = -28200 S0 = 5 V0 = -2.635 c1 = 2120000 c2 = 4.3 c3 = 901 c4 = 1.48 c5 = 1.7 c6 = 2.9 m0 = 1320000 m1 = 1.6 end faki EoS = 5 | Fe-Akimotoite FeSiO3 fabrichnaya SIO2(1)FEO(1) G0 = 5350 S0 = 5 V0 = -2.7601 c1 = 1999383 c2 = 4 c3 = 659 c4 = 1.5964 c5 = 1.7 c6 = 2.9 m0 = 1320000 m1 = 1.6 end | f0 n -v0 k0 k0' td gam0 q etaS0 g0 g0' ppv EoS = 5 | Mg-post-Perovskite MgSiO3, shear mod cst by 0.17 GPa MGO(1)SIO2(1) G0 = 66600 S0 = 5 V0 = -2.40269 c1 = 2500850 c2 = 4.04 c3 = 890.75 c4 = 1.5607 c5 = .9213 c6 = 4 m0 = 1940000 m1 = 1.7 end appv EoS = 5 | Al-post-Perovskite this is ppv with DH AL2O3(1) G0 = 157200 S0 = 5 V0 = -2.40269 c1 = 2500850 c2 = 4.04 c3 = 890.75 c4 = 1.5607 c5 = .9213 c6 = 4 m0 = 1940000 m1 = 1.7 end fppv EoS = 5 | Fe-post-Perovskite this is ppv with DH was 152.4d3 SIO2(1)FEO(1) G0 = 148400 S0 = 5 V0 = -2.40269 c1 = 2500850 c2 = 4.04 c3 = 890.75 c4 = 1.5607 c5 = .9213 c6 = 4 m0 = 1940000 m1 = 1.7 end perov EoS = 5 | Mg-Perovskite MgSiO3 13.9d3 MGO(1)SIO2(1) G0 = 13900 S0 = 5 V0 = -2.446 c1 = 2630000 c2 = 3.9 c3 = 890 c4 = 1.5 c5 = 1 c6 = 4 m0 = 1770000 m1 = 1.7 end aperov EoS = 5 | Al-Perovskite Al2O3 AL2O3(1) G0 = 110600 S0 = 5 V0 = -2.4 c1 = 2625265 c2 = 4.1 c3 = 766 c4 = 1.8 c5 = 1 c6 = 4 m0 = 1770000 m1 = 1.7 end cor EoS = 5 | corundum Al2O3 fabrichnaya AL2O3(1) G0 = 6600 S0 = 5 V0 = -2.5576 c1 = 2519048 c2 = 4.2 c3 = 949 c4 = 1.2702 c5 = 1.7 c6 = 4 m0 = 1770000 m1 = 1.7 end fperov EoS = 5 | Fe-Perovskite FeSiO3 was 42 SIO2(1)FEO(1) G0 = 38000 S0 = 5 V0 = -2.559 c1 = 2724800 c2 = 4 c3 = 682 c4 = 2.37 c5 = 1 c6 = 4 m0 = 1770000 m1 = 1.7 end ca-pv EoS = 5 | Ca-Perovskite CaSiO3 SIO2(1)CAO(1) G0 = -68100 S0 = 5 V0 = -2.7304 c1 = 2410000 c2 = 4.14 c3 = 842 c4 = 1.5 c5 = 1 c6 = 4 m0 = 1640000 m1 = 1.9 end per EoS = 5 | Periclase MgO MGO(1) S0 = 2 V0 = -1.125 c1 = 1600000 c2 = 4.1 c3 = 771 c4 = 1.45 c5 = 1.7 c6 = 2.3 m0 = 1310000 m1 = 2.2 end wus EoS = 5 | Wuestite FeO fabrichnaya 20d3 FEO(1) G0 = 26000 S0 = 2 V0 = -1.225 c1 = 1782535 c2 = 4 c3 = 328 c4 = 1.57 c5 = 1.7 c6 = 2.3 m0 = 1310000 m1 = 2.2 end stv EoS = 5 | Stishovite SiO2 SIO2(1) S0 = 3 V0 = -1.401 c1 = 3130000 c2 = 4.2 c3 = 997 c4 = 1.35 c5 = 1 c6 = 2.2 m0 = 2200000 m1 = 1.8 end coe EoS = 2 | H= -905490. holland & powell, G modified to give coe/stv at 11GPa SIO2(1) G0 = -38729 S0 = 40.8 V0 = 2.064 c1 = 96.5 c2 = -.577E-3 c3 = -444800 c5 = -798.2 b1 = .18E-4 b5 = -.18E-3 b6 = 1044722 b7 = -150 b8 = 4 m0 = 620000 m1 = 1.5 m2 = -150 end | 0.59d6 1.40097 -24. 0. 0. 0. 0. 0. 0. 0. helffrich www1.gly.bris.ac.uk/~ge q EoS = 2 | H= -910840. holland & powell, G modified to give coe/stv at 11GPa SIO2(1) G0 = -44287.6 S0 = 41.5 V0 = 2.2688 c1 = 110.7 c2 = -.5189E-2 c5 = -1128.3 b1 = .65E-5 b5 = -.65E-4 b6 = 783542. b7 = -112.5 b8 = 4 m0 = 431250 m1 = .46 m2 = -14 transition = 1 type = 4 t1 = 847 t2 = 4.95 t3 = .1188 end