D:\jamie\Berple_X>species Select fluid equation of state: 0 - X(CO2) Modified Redlich-Kwong (MRK/DeSantis/Holloway) 1 - X(CO2) Kerrick & Jacobs 1981 (HSMRK) 2 - X(CO2) Hybrid MRK/HSMRK 3 - X(CO2) Saxena & Fei 1987 pseudo-virial expansion 4 - Bottinga & Richet 1981 (CO2 RK) 5 - X(CO2) Holland & Powell 1991, 1998 (CORK) 6 - X(CO2) Hybrid Haar et al 1979/CORK (TRKMRK) 7 - f(O2/CO2)-f(S2) Graphite buffered COHS MRK fluid 8 - f(O2/CO2)-f(S2) Graphite buffered COHS hybrid-EoS fluid 9 - Max X(H2O) GCOH fluid Cesare & Connolly 1993 10 - X(O) GCOH-fluid hybrid-EoS Connolly & Cesare 1993 11 - X(O) GCOH-fluid MRK Connolly & Cesare 1993 12 - X(O)-f(S2) GCOHS-fluid hybrid-EoS Connolly & Cesare 1993 13 - X(H2) H2-H2O hybrid-EoS 14 - EoS Birch & Feeblebop (1993) 15 - X(H2) low T H2-H2O hybrid-EoS 16 - X(O) H-O HSMRK/MRK hybrid-EoS 17 - X(O) H-O-S HSMRK/MRK hybrid-EoS 18 - X(CO2) Delany/HSMRK/MRK hybrid-EoS, for P > 10 kb 19 - X(O)-X(S) COHS hybrid-EoS Connolly & Cesare 1993 20 - X(O)-X(C) COHS hybrid-EoS Connolly & Cesare 1993 21 - X(CO2) Halbach & Chatterjee 1982, P > 10 kb, hybrid-Eos 22 - X(CO2) DHCORK, hybrid-Eos 23 - Toop-Samis Silicate Melt 11 Compute f(H2) & f(O2) as the dependent fugacities (do not unless you project through carbon) (Y/N)? n Reduce graphite activity (Y/N)? n Plot (log) species fractions (y/n)? (if you answer no fugacities are plotted). y Enter pressure (bar), temperature (K): 1000 1000 Enter min, max, and increments for the independent variable ( X(O) ): 0 1 0.01 Enter min and max limits for the dependent variables, in the plot file, values that exceed these limits will be set to the limits established here: -4 0 values which follow are X(O) and the mole fractions of: H2O CO2 CO CH4 H2 and log(fO2). the plot file includes the log of the C-O-H-S atomic proportions and the log of the species fractions. 0.100000E-07 0.376647E-07 0.303740E-15 0.640028E-09 0.915235 0.847652E-01 -33.1054 0.100000E-01 0.367276E-01 0.298753E-03 0.630436E-03 0.879725 0.826182E-01 -21.1171 0.200000E-01 0.716322E-01 0.117536E-02 0.124203E-02 0.845428 0.805220E-01 -20.5264 0.300000E-01 0.104789 0.260104E-02 0.183530E-02 0.812300 0.784747E-01 -20.1854 0.400000E-01 0.136271 0.454820E-02 0.241084E-02 0.780294 0.764757E-01 -19.9464 0.500000E-01 0.166146 0.699038E-02 0.296922E-02 0.749371 0.745233E-01 -19.7632 0.600000E-01 0.194481 0.990241E-02 0.351104E-02 0.719489 0.726160E-01 -19.6152 0.700000E-01 0.221339 0.132604E-01 0.403691E-02 0.690611 0.707527E-01 -19.4913 0.800000E-01 0.246779 0.170419E-01 0.454745E-02 0.662700 0.689319E-01 -19.3851 0.900000E-01 0.270858 0.212258E-01 0.504328E-02 0.635720 0.671525E-01 -19.2922 0.100000 0.293629 0.257922E-01 0.552503E-02 0.609640 0.654135E-01 -19.2098 ... blah blah ... 0.930000 0.679467E-01 0.895439 0.339206E-01 0.592403E-03 0.210084E-02 -17.6366 0.940000 0.580958E-01 0.905468 0.342182E-01 0.427964E-03 0.179027E-02 -17.6316 0.950000 0.482912E-01 0.915419 0.345138E-01 0.292277E-03 0.148331E-02 -17.6268 0.960000 0.385340E-01 0.925295 0.348074E-01 0.183987E-03 0.117988E-02 -17.6220 0.970000 0.288254E-01 0.935094 0.350991E-01 0.101809E-03 0.879901E-03 -17.6174 0.980000 0.191663E-01 0.944817 0.353887E-01 0.445187E-04 0.583309E-03 -17.6128 0.990000 0.955757E-02 0.954465 0.356763E-01 0.109517E-04 0.290031E-03 -17.6084 1.00000 0.953176E-07 0.964038 0.359619E-01 0.107781E-14 0.288431E-08 -17.6040 Change EoS, buffer, or graphite activity (y/n)? n D:\jamie\Berple_X>psvdraw Enter the Perple_X plot file name: species.dat PostScript will be written to file: species.dat.ps Modify the default plot (y/n)? n End-of-file! if this is a VERTEX plot file then VERTEX terminated incorrectly D:\jamie\Berple_X>psvdraw Enter the Perple_X plot file name: GCOH_surf.dat PostScript will be written to file: GCOH_surf.dat.ps Modify the default plot (y/n)? End-of-file! if this is a VERTEX plot file then VERTEX terminated incorrectly D:\jamie\Berple_X>cohsrk Select fluid equation of state: 0 - X(CO2) Modified Redlich-Kwong (MRK/DeSantis/Holloway) 1 - X(CO2) Kerrick & Jacobs 1981 (HSMRK) 2 - X(CO2) Hybrid MRK/HSMRK 3 - X(CO2) Saxena & Fei 1987 pseudo-virial expansion 4 - Bottinga & Richet 1981 (CO2 RK) 5 - X(CO2) Holland & Powell 1991, 1998 (CORK) 6 - X(CO2) Hybrid Haar et al 1979/CORK (TRKMRK) 7 - f(O2/CO2)-f(S2) Graphite buffered COHS MRK fluid 8 - f(O2/CO2)-f(S2) Graphite buffered COHS hybrid-EoS fluid 9 - Max X(H2O) GCOH fluid Cesare & Connolly 1993 10 - X(O) GCOH-fluid hybrid-EoS Connolly & Cesare 1993 11 - X(O) GCOH-fluid MRK Connolly & Cesare 1993 12 - X(O)-f(S2) GCOHS-fluid hybrid-EoS Connolly & Cesare 1993 13 - X(H2) H2-H2O hybrid-EoS 14 - EoS Birch & Feeblebop (1993) 15 - X(H2) low T H2-H2O hybrid-EoS 16 - X(O) H-O HSMRK/MRK hybrid-EoS 17 - X(O) H-O-S HSMRK/MRK hybrid-EoS 18 - X(CO2) Delany/HSMRK/MRK hybrid-EoS, for P > 10 kb 19 - X(O)-X(S) COHS hybrid-EoS Connolly & Cesare 1993 20 - X(O)-X(C) COHS hybrid-EoS Connolly & Cesare 1993 21 - X(CO2) Halbach & Chatterjee 1982, P > 10 kb, hybrid-Eos 22 - X(CO2) DHCORK, hybrid-Eos 23 - Toop-Samis Silicate Melt 11 Compute f(H2) & f(O2) as the dependent fugacities (do not unless you project through carbon) (Y/N)? n Reduce graphite activity (Y/N)? n Enter a zero for pressure to quit. Enter p(bar), T(K), X(O) : 1000 1000 0.5 Fluid equation of state: X(O) GCOH-fluid MRK Connolly & Cesare 1993 p(bar) = 1000.0 T(K) = 1000.0 log[f(O2)] = -18.006 log[f(S2)] = -9999.0 a(gph) = 1.0000 Speciation/Fugacities H2O CO2 CO CH4 x 0.48375 0.40138 0.19711E-01 0.74208E-01 f 368.69 495.27 30.039 107.20 H2 x 0.20945E-01 f 32.619 Sum of species fractions: 1.000000000 Atomic Proportions/Volume C H O S V(cm3/mol species) 0.15938 0.42031 0.42031 0.0000 88.969 Back-calculated X(O) = 0.500000000 Back-calculated X(C) = 0.159375882 Enter p(bar), T(K), X(O) : 0 0 0 Change EoS, buffer, or graphite activity (y/n)? n D:\jamie\Berple_X>