! here the user runs CTRANSF to create a thermodynamic data base (in the file ! ctransf.dat) with the desired components (H2, O2, and C created from ! O2, H2O, and CO2). alternatively the component transformation could be ! done in BUILD. the advantage of using ctransf is that the user does not have to ! repeat the transformation in BUILD for subsequent calculations with the ! transformed components. D:\jamie\Berple_X>ctransf NO is the default answer to all Y/N prompts Enter thermodynamic data file name (e.g. hp94ver.dat), left justified: hp98ver.dat Output will be written to file: ctransf.dat The current data base components are: NA2O MGO AL2O3 SIO2 K2O CAO TIO2 MNO FEO O2 H2O CO2 Transform them (Y/N)? y Enter new component name, < 6 characters, left justified: C Enter old component to be replaced with C : O2 Enter other components (< 12) in C 1 per line, to finish: CO2 Enter stoichiometric coefficients of: O2 CO2 in C (in above order): -1 1 C = -1.00 O2 1.00 CO2 Is this correct (Y/N)? y The current data base components are: NA2O MGO AL2O3 SIO2 K2O CAO TIO2 MNO FEO C H2O CO2 Transform them (Y/N)? y Enter new component name, < 6 characters, left justified: O2 Enter old component to be replaced with O2 : CO2 Enter other components (< 12) in O2 1 per line, to finish: C Enter stoichiometric coefficients of: CO2 C in O2 (in above order): 1 -1 O2 = 1.00 CO2 -1.00 C Is this correct (Y/N)? y The current data base components are: NA2O MGO AL2O3 SIO2 K2O CAO TIO2 MNO FEO C H2O O2 Transform them (Y/N)? y Enter new component name, < 6 characters, left justified: H2 Enter old component to be replaced with H2 : H2O Enter other components (< 12) in H2 1 per line, to finish: O2 Enter stoichiometric coefficients of: H2O O2 in H2 (in above order): 1 -0.5 H2 = 1.00 H2O -0.50 O2 Is this correct (Y/N)? y The current data base components are: NA2O MGO AL2O3 SIO2 K2O CAO TIO2 MNO FEO C H2 O2 Transform them (Y/N)? D:\jamie\Berple_X>build NO is the default () answer to all Y/N prompts Enter name of computational option file to be created, < 100 characters, left justified [default = in]: in16.dat Enter thermodynamic data file name, left justified, [default = hp98ver.dat]: ctransf.dat The current data base components are: NA2O MGO AL2O3 SIO2 K2O CAO TIO2 MNO FEO C H2 O2 Transform them (Y/N)? Calculations with a saturated phase (Y/N)? The phase is: FLUID Its compositional variable is: Y(CO2), X(O), etc. n Calculations with saturated components (Y/N)? n Use chemical potentials, activities or fugacities as independent variables (Y/N)? n Select thermodynamic components from the set: NA2O MGO AL2O3 SIO2 K2O CAO TIO2 MNO FEO C H2 O2 Enter names, left justified, 1 per line, to finish: H2 O2 **warning ver016** you are going to treat a saturated (fluid) phase component as a thermodynamic component, this may not be what you want to do. **warning ver016** you are going to treat a saturated (fluid) phase component as a thermodynamic component, this may not be what you want to do. Select fluid equation of state: 0 - X(CO2) Modified Redlich-Kwong (MRK/DeSantis/Holloway) 1 - X(CO2) Kerrick & Jacobs 1981 (HSMRK) 2 - X(CO2) Hybrid MRK/HSMRK 3 - X(CO2) Saxena & Fei 1987 pseudo-virial expansion 4 - Bottinga & Richet 1981 (CO2 RK) 5 - X(CO2) Holland & Powell 1991, 1998 (CORK) 6 - X(CO2) Hybrid Haar et al 1979/CORK (TRKMRK) 7 - f(O2/CO2)-f(S2) Graphite buffered COHS MRK fluid 8 - f(O2/CO2)-f(S2) Graphite buffered COHS hybrid-EoS fluid 9 - Max X(H2O) GCOH fluid Cesare & Connolly 1993 10 - X(O) GCOH-fluid hybrid-EoS Connolly & Cesare 1993 11 - X(O) GCOH-fluid MRK Connolly & Cesare 1993 12 - X(O)-f(S2) GCOHS-fluid hybrid-EoS Connolly & Cesare 1993 13 - X(H2) H2-H2O hybrid-EoS 14 - EoS Birch & Feeblebop (1993) 15 - X(H2) low T H2-H2O hybrid-EoS 16 - X(O) H-O HSMRK/MRK hybrid-EoS 17 - X(O) H-O-S HSMRK/MRK hybrid-EoS 18 - X(CO2) Delany/HSMRK/MRK hybrid-EoS, for P > 10 kb 19 - X(O)-X(S) COHS hybrid-EoS Connolly & Cesare 1993 20 - X(O)-X(C) COHS hybrid-EoS Connolly & Cesare 1993 21 - X(CO2) Halbach & Chatterjee 1982, P > 10 kb, hybrid-Eos 22 - X(CO2) DHCORK, hybrid-Eos 23 - Toop-Samis Silicate Melt 11 Compute f(H2) & f(O2) as the dependent fugacities (do not unless you project through carbon) (Y/N)? y Reduce graphite activity (Y/N)? n The data base has P(bars) and T(K) as default independent potentials. Make one dependent on the other, e.g., as along a geothermal gradient (y/n)? n Specify computational mode: 1 - Unconstrained minimization [default] 2 - Constrained minimization on a grid 3 - Output pseudocompound data Unconstrained optimization should be used for the calculation of composition, mixed variable, and Schreinemakers diagrams, it may also be used for the calculation of phase diagram sections for a fixed bulk composition. Gridded minimization can be used to construct phase diagram sections for both fixed and variable bulk composition. Gridded minimization is preferable for the recovery of phase and bulk properties. 1 Specify number of independent potential variables: 0 - Composition diagram [default] 1 - Mixed-variable diagram 2 - Sections and Schreinemakers-type diagrams 1 Select vertical axis variable: 1 - P(bars) 2 - T(K) 2 Enter minimum and maximum values, respectively, for: T(K) 523 653 Specify sectioning value for: P(bars) 2000 Constrain bulk composition (as in pseudosections, y/n)? n Do you want a print file (Y/N)? y Enter the print file name, < 100 characters, left justified [default = pr]: print16 Write full reaction equations (Y/N)? n Suppress console status messages (Y/N)? n Print dependent potentials for chemographies (Y/N)? Answer no if you do not know what this means. n Do you want a plot file (Y/N)? y Enter the plot file name, < 100 characters, left justified [default = pl]: plot16 Exclude phases (Y/N)? y Do you want to be prompted for phases (Y/N)? y Exclude H2O (Y/N)? y Exclude O2 (Y/N)? n Exclude H2 (Y/N)? n Do you want to treat solution phases (Y/N)? y Enter solution model file name [default = solut.dat] left justified, < 100 characters: solut.dat **warning ver025** 1 endmembers for F The solution will not be considered. ... blah blah ... **warning ver025** 0 endmembers for MnCtd The solution will not be considered. Select phases from the following list, enter 1 per line, left justified, to finish GCOHF GCOHF1 GCOHF2 H2OM GCOHF Enter calculation title: Test Problem 16 D:\jamie\Berple_X>vertex Enter computational option file name (i.e. the file created with BUILD), left justified: in16.dat Reading thermodynamic data from file: ctransf.dat Writing print output to file: pr Writing plot output to file: pl Reading solution models from file: solut.dat cycle 1 1 1 cycle 2 2 2 cycle 3 3 3 ...blah blah... Testing divariant assemblage 20, 183 assemblages remaining to be tested. Testing divariant assemblage 21, 182 assemblages remaining to be tested. Testing divariant assemblage 22, 181 assemblages remaining to be tested. D:\jamie\Berple_X>psvdraw Enter the VERTEX plot file name: plot16 PostScript will be written to file: plot16.ps Modify the default plot (y/n)? n WARNING: Psvdraw may not draw t-x diagrams correctly if immiscibility occurs in a projected ternary or higher order solution, to avoid problems turn the miscibility test off (modify default options). D:\jamie\Berple_X>