----------------------------------------------------------------- ! this file is an annotated print file generated in sample.1. ! Comment lines begin with an exclamation point. ! The calculation is of an isobaric T-xco2 ! schreinemakers projection for the SiO2 and fluid saturated system ! CaO-MgO-Al2O3-SiO2-H2O-CO2 using the thermodynamic data of Holland ! and Powell 1990 (file hp90ver.dat) ! The first portion of the output is basically an echo of the users ! input. ----------------------------------------------------------------- summary for the 1st calculation follows: ----------------------------------------------------------------- problem title: test problem thermodynamic data base from: HOLLAND AND POWELL 1989 fluid equation of state from: holland and powell, 1990 independently constrained potentials: X(CO2) T(K) P(bars) saturated phase components: H2O CO2 saturated or buffered components: SIO2 components with unconstrained potentials: ! These are the thermodynamic components, as far as Vertex is concerned. MGO AL2O3 CAO phases and (projected) composition with respect to AL2O3 and CAO : ! These are the compositions of the posssible phases in the system in ! terms of the thermodynamic components, XAL2O3 is given first, XCAO second, ! and XMGO can be determined by difference. ma 0.67 0.33 clin 0.17 0.00 an 0.50 0.50 en 0.00 0.00 di 0.00 0.50 py 0.25 0.00 gr 0.25 0.75 tr 0.00 0.29 ap 0.00 0.00 zo 0.43 0.57 fo 0.00 0.00 ta 0.00 0.00 br 0.00 0.00 geh 0.33 0.67 cc 0.00 1.00 m(t&c) 0.00 0.00 dol 0.00 0.50 and 1.00 0.00 ky 1.00 0.00 sill 1.00 0.00 lime 0.00 1.00 per 0.00 0.00 cor 1.00 0.00 phases on saturation and buffering surfaces: ! These are the phases whose stability is determined by component saturation ! constraints. q bq excluded phases: sio2 al2o3 mgo cao ames o-di mgts c-en cats wo pswo hb cumm cz1 cz law mont crd mctd mst tats chr dia pyhl pre pump ak merw ty rnk spu me arag sp vsv mcar coe m(h&p) ----------------------------------------------------------------- ! This is the beginning of calculated results ---------------------------------------------------------------- ! For all calculations Vertex always outputs the stable composition ! phase relations at minimum P-T-XCO2-etc condition specified for ! the calculation: the stable assemblages at: X(CO2) = 0. T(K) = 773.000 P(bars) = 3000.00 are: ! In the present case, no mineral solutions are being considered, so ! all the assemblages which coexist with quartz consist of three phases ! and are divariant. In the list which follows coexisting phases are ! separated by dashes, the number in parentheses after each assemblage ! indicates the type and variance of each assemblage (documentation ! section 5.1). ta -clin -tr (1) clin -and -ma (1) tr -di -an (1) di -lime -gr (1) ma -an -clin (1) an -zo -di (1) zo -gr -di (1) clin -tr -an (1) these assemblages are compatible with the following phases or species determined by component saturation or buffering constraints: ! In the present problem the component saturation constraint is ! simple as quartz is the only possible phase, more generally the ! phases which coexist with the above phases varies depending on ! P-T-XCO2-etc, in such cases pay attention to the phases listed ! here. q ** no immiscibility occurs in the stable solution phases ** ---------------------------------------------------------------------- ! The next section is a list of the univariant equilibria found by vertex. ! Note that vertex identifies equilibria by reactions, this is not ! really correct (but is standard practice), as different equilibria ! may have the same reaction. As a result the same reaction may occur ! several times in different parts of the file and for different P-T-XCO2 ! regions, i.e., vertex will trace an individual reaction to an invariant ! point and then may begin looking for other univariant equilibria, even ! though the original reaction equilibrium could have been traced on the ! other side of the invariant point. ! This is the only message you'll get as to what coorinates Vertex ! is outputing, i.e., a list of XCO2-T pairs. The X(CO2) -T(K) loci of (pseudo-) univariant fields follow: the fields are subject to the constraint(s): P(bars) = 3000.00 These fields are consistent with saturation or buffering constraints on the component(s): SIO2 NOTE: For each field the values of the dependent extensities are output for the first equilibrium condition, in general these properties vary with the independent potentials. Reaction equations are written such that the high T(K) assemblage is on the right of the = sign ! This message means that all the "deltas" given for a reaction are ! only valid for the first P-T-XCO2-etc condition output, and in general ! they will vary with P-T-XCO2 (and therefore with the saturated component ! phases) ---------------------------------------------------------------------- ! Here is the first equilibrium identified by Vertex, for the ! reaction clin + tr = ta + an, you can figure out which phases are ! stable on which side of the equilibrium from the reaction ! coefficients and either the deltas or the initially stable ! assemblages listed above. ( 1-1) clin tr = ta an Alpha(-1.00, -.500, 2.50, 1.00) Delta( SIO2 ) = 5.00 (saturated composant=q ) Delta( H2O ) =-2.00 (saturated phase component) Delta( CO2 ) = 0. (saturated phase component) Delta(-V(j/b)) = 3.07 (dependent conjugate of P(bars) ) Delta(S(j/k) ) =-146. (dependent conjugate of T(K) ) ! the XCO2-T pairs are listed from left to right. 0.590804 773.000 0.572867 775.500 0.553897 778.000 0.533819 780.500 0.512556 783.000 0.490037 785.500 0.466203 788.000 0.441017 790.500 0.414476 793.000 0.386627 795.500 0.357581 798.000 0.327527 800.500 0.296725 803.000 0.265498 805.500 0.234201 808.000 0.203181 810.500 0.172746 813.000 0.143139 815.500 0.114530 818.000 0.870176E-01 820.500 0.606454E-01 823.000 0.354123E-01 825.500 0.112877E-01 828.000 0. 829.210 ! if vertex traces a univariant reaction to an invariant point it tells ! you so, otherwise you get either no message, or the "network traced" ! message below. Network traced, resuming boundary search. ( 2-1) ma = and an Alpha(-1.00, 1.00, 1.00) Delta( SIO2 ) = 1.00 (saturated composant=q ) Delta( H2O ) =-1.00 (saturated phase component) Delta( CO2 ) = 0. (saturated phase component) Delta(-V(j/b)) = 2.32 (dependent conjugate of P(bars) ) Delta(S(j/k) ) =-72.5 (dependent conjugate of T(K) ) 0.425768E-02 773.000 0. 773.376 Network traced, resuming boundary search. ( 3-1) tr cc = di Alpha(-.333, -1.00, 1.67) Delta( SIO2 ) =0.667 (saturated composant=q ) Delta( H2O ) =-.333 (saturated phase component) Delta( CO2 ) =-1.00 (saturated phase component) Delta(-V(j/b)) =-2.99 (dependent conjugate of P(bars) ) Delta(S(j/k) ) = 122. (dependent conjugate of T(K) ) 0.893200E-01 773.000 0.952174E-01 775.500 0.101559 778.000 0.108387 780.500 0.115750 783.000 0.123705 785.500 0.132312 788.000 0.141642 790.500 0.151777 793.000 0.162806 795.500 0.174834 798.000 0.187979 800.500 0.202372 803.000 0.218164 805.500 0.235521 808.000 0.254624 810.500 0.275671 813.000 0.298872 815.500 0.324447 818.000 0.352627 820.500 0.383658 823.000 0.417831 825.500 0.455547 828.000 0.497473 830.500 0.544938 833.000 0.601249 835.500 0.680391 838.000 0.705391 838.479 0.730391 838.769 0.755391 838.838 0.780391 838.641 0.805391 838.120 0.830391 837.194 0.855391 835.745 0.880391 833.590 0.905391 830.423 0.930391 825.665 0.933516 824.908 0.933711 824.859 0.933760 824.846 0.933766 824.845 0.933769 824.844 ! This is the first equilibrium traced to an invariant point. the equilibrium extends to invariant point ( 1) ! Vertex identifies the invariant point aand proceeds to trace any new ! (not previously traced) equilibria which emanate from the invariant point. ------ equilibria about invariant point ( 1): tr di an cc dol are listed below: ( 4-1) dol = di Alpha(-1.00, 1.00) Delta( SIO2 ) = 2.00 (saturated composant=q ) Delta( H2O ) = 0. (saturated phase component) Delta( CO2 ) =-2.00 (saturated phase component) Delta(-V(j/b)) =-5.97 (dependent conjugate of P(bars) ) Delta(S(j/k) ) = 171. (dependent conjugate of T(K) ) 0.933769 824.844 0.963671 827.344 0.978777 828.594 0.982572 828.907 0.983047 828.946 0.983106 828.951 0.983136 828.953 0.983143 828.954 0.983147 828.954 0.983148 828.954 the equilibrium extends to invariant point ( 2) ( 5-1) dol = tr cc Alpha(-1.00, 0.200, 0.600) Delta( SIO2 ) = 1.60 (saturated composant=q ) Delta( H2O ) =0.200 (saturated phase component) Delta( CO2 ) =-1.40 (saturated phase component) Delta(-V(j/b)) =-4.25 (dependent conjugate of P(bars) ) Delta(S(j/k) ) = 107. (dependent conjugate of T(K) ) 0.933769 824.844 0.924485 822.344 0.914333 819.844 0.903305 817.344 0.891405 814.844 0.878644 812.344 0.865037 809.844 0.850605 807.344 0.835367 804.844 0.819347 802.344 0.802568 799.844 0.785050 797.344 0.766813 794.844 0.747876 792.344 0.728254 789.844 0.707963 787.344 0.687018 784.844 0.665433 782.344 0.643225 779.844 0.620415 777.344 0.597031 774.844 0.579436 773.000 . . output abridged . . ( 13-1) ap = en Alpha(-1.00, 3.50) Delta( SIO2 ) =-1.00 (saturated composant=q ) Delta( H2O ) =-1.00 (saturated phase component) Delta( CO2 ) = 0. (saturated phase component) Delta(-V(j/b)) =-.574 (dependent conjugate of P(bars) ) Delta(S(j/k) ) = 79.0 (dependent conjugate of T(K) ) 0.885496 865.569 0.882162 868.069 0.878743 870.569 0.875335 873.000 ( 14-1) ta = ap Alpha(-2.33, 1.00) Delta( SIO2 ) =-1.33 (saturated composant=q ) Delta( H2O ) =-1.33 (saturated phase component) Delta( CO2 ) = 0. (saturated phase component) Delta(-V(j/b)) = 1.71 (dependent conjugate of P(bars) ) Delta(S(j/k) ) =-142. (dependent conjugate of T(K) ) 0.885496 865.569 0.880978 868.069 0.876295 870.569 0.871575 873.000 ------ Network traced, resuming boundary search. ! Generally you get a lot of warning messages during execution, most of them ! are not serious because vertex has a lot of redundant tests. In this case, ! Cc=Lime occurs at such extreme values of XCO2 that it isn't worth worrying ! about (you could avoid this problem by not running the calculation from ! pure H2O to pure CO2, or perhaps by adjusting the convergence criteria ! (documentation section 3, card 6). **warning ver079** univeq failed on an edge for the following equilibrium. Probable cause is either extreme independent variable limits (e.g., xco2=0) or poor convergence criteria in the thermodynamic data file. In routine:COFACE ( 15-1) cc = lime Alpha(-1.00, 1.00) ( 2-1) ma = an and Alpha(-1.00, 1.00, 1.00) Delta( SIO2 ) = 1.00 (saturated composant=q ) Delta( H2O ) =-1.00 (saturated phase component) Delta( CO2 ) = 0. (saturated phase component) Delta(-V(j/b)) = 2.32 (dependent conjugate of P(bars) ) Delta(S(j/k) ) =-72.5 (dependent conjugate of T(K) ) 0.425768E-02 773.000 0. 773.376 Network traced, resuming boundary search. ( 14-1) ta = ap Alpha(-1.00, 0.429) Delta( SIO2 ) =-.571 (saturated composant=q ) Delta( H2O ) =-.571 (saturated phase component) Delta( CO2 ) = 0. (saturated phase component) Delta(-V(j/b)) =-.740 (dependent conjugate of P(bars) ) Delta(S(j/k) ) = 60.4 (dependent conjugate of T(K) ) 0.871575 873.000 0.876426 870.500 0.881105 868.000 0.883382 866.750 0.884505 866.125 0.885063 865.812 0.885341 865.656 0.885480 865.578 0.885497 865.568 Network traced, resuming boundary search. ----------------------------------------------------------------------- ! The calculation is complete, Vertex summarizes invariant and univariant ! equilibria/reactions, for each, two numbers are given in parentheses, ! the first is the equilibrium number, and the second is a pseudovariance ! indicator (documentation section 5.2) which is not relevant for ! calculations without solution phases. (pseudo-) invariant points are summarized below: ( 1-1) tr di an cc dol occurs at: X(CO2) =0.933769 T(K) = 824.844 P(bars) = 3000.00 ( 2-1) tr di an dol en occurs at: X(CO2) =0.983148 T(K) = 828.954 P(bars) = 3000.00 ( 3-1) tr an dol en m(t&c) occurs at: X(CO2) =0.969667 T(K) = 810.578 P(bars) = 3000.00 ( 4-1) tr an dol m(t&c) ta occurs at: X(CO2) =0.933566 T(K) = 797.328 P(bars) = 3000.00 ( 5-1) tr an en m(t&c) ta occurs at: X(CO2) =0.949269 T(K) = 809.045 P(bars) = 3000.00 ( 6-1) tr an en ta ap occurs at: X(CO2) =0.885496 T(K) = 865.569 P(bars) = 3000.00 ( 7-1) an zo di cc gr occurs at: X(CO2) =0.355059E-01 T(K) = 791.793 P(bars) = 3000.00 ( 8-1) ta an and m(t&c) en occurs at: X(CO2) =0.949269 T(K) = 809.046 P(bars) = 3000.00 ( 9-1) an and en ap ta occurs at: X(CO2) =0.885497 T(K) = 865.568 P(bars) = 3000.00 ---------------------------------------------------------------- (pseudo-) invariant points are summarized below: ( 1-1) tr di an cc dol ( 2-1) tr di an dol en ( 3-1) tr an dol en m(t&c) ( 4-1) tr an dol m(t&c) ta ( 5-1) tr an en m(t&c) ta ( 6-1) tr an en ta ap ( 7-1) an zo di cc gr ( 8-1) ta an and m(t&c) en ( 9-1) an and en ap ta ---------------------------------------------------------------- (pseudo-) univariant equilibria are summarized below: ( 1-1) clin tr = ta an ( 2-1) ma = and an ( 3-1) tr cc = di ( 4-1) dol = di ( 5-1) dol = tr cc ( 6-1) tr = di en ( 7-1) dol en = tr ( 8-1) dol m(t&c) = tr ( 9-1) m(t&c) = en ( 10-1) dol ta = tr ( 11-1) m(t&c) = ta ( 12-1) ta = en ( 13-1) ap = en ( 14-1) ta = ap ( 15-1) cc = lime ( 16-1) zo = an cc ( 17-1) zo = an gr ( 18-1) an cc = gr ( 19-1) zo cc = gr ( 20-1) clin = ta and ---------------------------------------------------------------- ---------------------------------------------------------------- WARNING!! The stability fields of the following equilibria may have been entirely or partially skipped in the calculation: ( 15-1) cc = lime ----------------------------------------------------------------