| comments can be placed between models | provided, nothing is written in the | first 10 columns. -------------------------------------------------------- | this is an ideal model for chlorite formulated | to be consistent with holland and powells | suggested site population, i.e., Mg and Fe mix | on 4 M1 sites, Mg, Fe, and Al mix on 2 M2 sites, | and Al and Si mix on T2. The formulation of | this model is described in the documentation | section 1.3.1. All there are three mixing sites | in this model, only two of the site populations | are independent, hence this is a two independent | identisite model (M1 and T2) and both sites | are binary. This model seems to work fairly well, | but there is crystallographic evidence (Bailey, | Rev. Min. 13) that there is complete tetrahedral | disorder, and that the interlayer becomes saturated | with Al (50%), before Al enters the 2:1 layer. | Such a model is easily formulated, but the endmember | data would have to be derived to be consistent with | it. Chl | solution name (a10 format). 2 | 2 independent mixing site. 2 1 2 1 | 2 species mix on each site, site multiplicity undefined, see below. clin daph ames | endmember names (3 per line, 3(a8,1x) format), this order implies: fame | x(11)=x(mg); x(12) = x(fe); x(21) = x(SiAl,t2); x(22) = x(Al2,t2) 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. .0 1.0 .05 0 | transform subdivision for site 1 (gives range of x(mg)) .0 1. .1 0 | transform subdivision for site 2 (gives range of tschermaks). 0 0 | iterm, iord. 3 | msite, 3 sites, M1, M2, T2. 2 4. | 2 species on M1, 4 sites per formula unit. 1 0. | z(11) = x(mg,m1) = x(11) so 1 term and a0(11) = 0. 1 | 1-x term 1. 1 1 | 2 2. | 2 species on T2, 2 sites per formula unit. 1 0.5 | z(21) = z(al,t2) = x(22)/2 + 1/2, so 1 term and a0(21) = 0.5 1 | 1-x term 0.5 2 2 | 3 2. | 3 species on M2, 2 site per formula unit. 1 0.5 | z(31) = z(al,m2) = x(22)/2 + 1/2, so 1 term and a0(31) = 0.5 1 | 1-x term 0.5 2 2 | 2 0. | z(32) = x(mg,m2)/2 - x(mg,m2)*x(al2,t2)/2 so 2 terms and a0(32) = 0. 1 | 1-x term 0.5 1 1 | 2 | 2-x term -.5 1 1 2 2 | 0 | jfix -------------------------------------------------------- | Ottonello (1992) CMP 111:53-60 C2/c cpx Wohl model. | Because Ottonello chose to use 4 endmembers it | is necessary to formulate this model as a solution | with 2 independent mixing sites. I forget | which site Ca occupies, so I assume the following | site occupancies M1: Ca, Mg, Fe & M2: Mg, Fe | with no preferential partitioning of Fe and Mg. JADC Cpx | solution name (a10 format). 2 | 2 independent mixing site. 2 1 2 1 | 2 species mix on each site, site multiplicity undefined, see below. cen cfs di | endmembers, this implies: x(11) = x(mg,m2) hed | x(12) = x(fe,m2); x(21) = x(ca,m1); x(22) = x(mg+fe,m1) 0 0 0 0 | endmember flags 1.04 1.0 11. 1 | subdivision for site 1 (range of x(mg)) 1.04 1.0 11. 1 | subdivision for site 2 (range of x(ca)) 15 4 | 15 terms, maximum order 4. 1 1 2 1 2 1 0 0 | x1*x2*x2*w12 -1558.6 -24.389 0.0282 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 2 1 0 0 | x1*x1*x2*w21 2518.6 -24.651 0.0226 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 1 2 0 0 | x1*x3*x3*w13 23633.1 -.016 .0208 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 1 2 0 0 | x1*x1*x3*w31 32467.3 .007 .0066 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 2 2 0 0 | x1*x4*x4*w14 50774.2 -38.907 0.0771 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 2 2 0 0 | x1*x1*x4*w41 27841.2 -24.609 0.0510 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 1 2 2 2 2 0 0 | x2*x4*x4*w24 16109.3 -0.033 0.0453 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 1 2 1 2 2 0 0 | x2*x2*x4*w42 20099.8 0.034 0.053 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 2 2 2 0 0 | x3*x4*x4*w34 13984.2 0.001 0.0068 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 2 2 2 0 0 | x3*x3*x4*w43 17958. -0.004 -0.0084 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 1 2 0 0 | x1*x2*x3*((w12+w21+w13+w31+w23+w32)/2 - w123) 62567.65 -30.72 .12845 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 2 2 0 0 | x1*x2*x4*((w12+w21+w14+w41+w24+w42)/2 - w124) 145758.65 -35.6655 .1198 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 2 0 0 | x1*x3*x4*((w13+w31+w14+w41+w34+w43)/2 - w134) 122346.2 2.711 .17045 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 1 1 2 2 2 0 0 | x2*x3*x4*((w23+w32+w24+w42+w34+w43)/2 - w234) 12009.6 5.3095 .2165 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 1 2 2 2 | x1*x2*x3*x4*((w12+w21+w13+w31+w14+w41+w23+w32+w24+w42+w34+w43)/2-w1234) 60427.7 227.426 -.28785 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 | 2 mixing sites, M2, M1 2 4. | 2 species on M2, 2 sites per formula unit. 1 0. | z(11) = x(Mg,M2) = x(11) so 1 term and a0(11) = 0. 1 | 1-x term 1. 1 1 3 2. | 3 species on M2, 2 sites per formula unit. 1 0.0 | z(21) = z(Ca,M1) = x(21) so 1 term and a0(21) = 0. 1 | 1-x term 1 2 1 2 0. | z(22) = z(Mg,M1) = (1-x(21))*x(11) = x(11) - x(11)*x(21) 1 | 1-x term 1. 1 1 | 2 | 2-x term -1. 1 1 2 1 | 0 | jfix | Ottonello cENDI | solution name (a10 format). 1 | 2 independent mixing site. 2 1 CEN di | endmembers, this implies: x(11) = x(mg,m2) 0 0 | endmember flags 0 1. 0.01 0 2 3 | 15 terms, maximum order 4. 1 1 1 2 1 2 | x1*x3*x3*w13 23633.1 -.016 .0208 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 1 2 | x1*x1*x3*w31 32467.3 .007 .0066 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 0 mixing sites, M2, M1 0 | jfix | Lindsley lcENDI | solution name (a10 format). 1 | 2 independent mixing site. 2 1 CEN di | endmembers, this implies: x(11) = x(mg,m2) 0 0 | endmember flags 0 1. 0.01 0 2 3 | 15 terms, maximum order 4. 1 1 1 2 1 2 | x1*x3*x3*w13 25484. 0. .0812 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 1 2 | x1*x1*x3*w31 31216. 0. -.0066 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 0 mixing sites, M2, M1 0 | jfix -------------------------------------------------------- | Ottonello cFSHD | solution name (a10 format). 1 | 2 independent mixing site. 2 1 | 2 CFS hed | endmembers, this implies: x(11) = x(mg,m2) 0 0 | endmember flags 0. 1. 0.01 0 | subdivision for site 1 (range of x(mg)) 2 3 | 15 terms, maximum order 4. 1 1 1 2 1 2 0 0 | x2*x4*x4*w24 16109.3 -0.033 0.0453 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 1 2 0 0 | x2*x2*x4*w42 20099.8 0.034 0.053 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0 | jfix | Lindsley lcFSHD | solution name (a10 format). 1 | 2 independent mixing site. 2 1 | 2 CFS hed | endmembers, this implies: x(11) = x(mg,m2) 0 0 | endmember flags 0. 1. 0.01 0 | subdivision for site 1 (range of x(mg)) 2 3 | 15 terms, maximum order 4. 1 1 1 2 1 2 0 0 | x2*x4*x4*w24 16941. .0 0.0059 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 1 2 0 0 | x2*x2*x4*w42 20697. .0 -.00235 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0 | jfix ========================================= | Cpx-Opx test models. JADC oFSHD | solution name (a10 format). 1 | 2 independent mixing site. 2 1 | 2 species mix on 1 site fs OHD | endmembers, this implies: x(11) = x(fe,m2) 0 0 | endmember flags 0.0 1. 0.01 0 | subdivision for site 1 (range of x(mg)) 1 2 | 1 terms, maximum order 2. 1 1 1 2 | x1*x2*w12 15000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | no endmember sconf 0 | jmix oENDI | solution name (a10 format). 1 | 2 independent mixing site. 2 1 | 2 species mix on 1 site e ODI | endmembers, this implies: x(11) = x(fe,m2) 0 0 | endmember flags 0.0 1. 0.01 0 | subdivision for site 1 (range of x(mg)) 1 2 | 1 terms, maximum order 2. 1 1 1 2 | x1*x2*w12 25000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | no endmember sconf 0 | jmix -------------------------------------------------------- Talc as an ideal H&P solution. T | solution name (a10 format). 2 | 2 independent mixing site. 2 1 2 1 | 2 species mix on each site, site multiplicity undefined, see below. ta fta tats | endmember names (3 per line, 3(a8,1x) format), this order implies: ftat | x(11)=x(mg); x(12) = x(fe); x(21) = x(SiAl,t2); x(22) = x(Al2,t2) 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 45.0 0.990 6.00 1 | pseudocompound model for site 1 (gives range of x(mg)) 0.015 1. 0.12 0 | pseudocompound model for site 2 (gives range of tschermaks). 0 0 | iterm, iord. 3 | msite, 3 sites, M1, M2, T2. 2 2. | 2 species on M1, 2 sites per formula unit. 1 0. | z(11) = x(mg,m1) = x(11) so 1 term and a0(11) = 0. 1 | 1-x term 1. 1 1 | 2 2. | 2 species on T2, 2 sites per formula unit. 1 0. | z(21) = z(si,t2) = x(21)/2, so 1 term and a0(21) = 0 1 | 1-x term 0.5 2 1 | 3 1. | 3 species on M2, 1 site per formula unit. 1 0. | z(31) = z(al,m2) = x(22), so 1 term and a0(31) = 0. 1 | 1-x term 0. 2 2 | 2 0. | z(32) = z(mg,m2) = x(11)(1-z(31)) = x(11) - x(11)x(22) 1 | 1-x term 1. 1 1 | 2 | 2-x term -1. 1 1 2 2 | 0 | jfix -------------------------------------------------------- humite | solution name. jadc. 2 | 2 independent mixing site. 2 1 2 2 | 2 species mix on each site, site multiplicity undefined, see below. mgoh mtoh mgf2 | endmembers, order implies: x(11)=x(mg); mtf2 | x(12) = x(mgti); x(21) = x(oh); x(22) = x(f2) 0 0 0 0 | endmember flags 0. 1. 0.2 0 | cartesian subdivision for site 1 (gives range of x(mg)) 0. 1. 0.2 0 | cartesian subdivision for site 2 (gives range of oh). 2 3 | iterm, iord. 2 1 2 2 2 2 xoh xf xf -59099.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 2 2 1 2 1 -21564.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 | msite, 3 sites, M, A. 2 1. | 2 species on M, 1 site per formula unit. 1 0.5 | z(11) = .5 + .5 x(mg,m) = z(mg) 1 | 1-x term 0.5 1 1 | 3 2. | 3 species on A, 2 sites per formula unit. 1 0.0 | z(21) = z(O) = x(12) 1 | 1-x term 0.5 1 2 | 2 0.0 | z(22) = z(OH) = x21 - 0.5 x21 x12 1 1.0 2 1 2 -0.5 2 1 1 2 0 | jfix -------------------------------------------------------- Bio | solution name (a10 format). 2 | 2 independent mixing site. 2 1 2 1 | 2 species mix on each site, site multiplicity undefined, see below. phl ann east | endmember names (3 per line, 3(a8,1x) format), this order implies: sdph | x(11)=x(mg); x(12) = x(fe); x(21) = x(SiAl,t2); x(22) = x(Al2,t2) 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0.0 1.0 0.04 0 | pseudocompound model for site 1 (gives range of x(mg)) 0.0 1. 0.1 0 | pseudocompound model for site 2 (gives range of tschermaks). 0 0 | iterm, iord. 3 | msite, 3 sites, M1, M2, T2. 2 1. | 2 species on M1, 1 sites per formula unit. 1 0. | z(11) = x(mg,m1) = x(11) so 1 term and a0(11) = 0. 1 | 1-x term 1. 1 1 2 2. | 2 species on T2, 2 sites per formula unit. 1 0.5 | z(21) = z(al,t2) = x(22)/2 + 1/2, so 1 term and a0(21) = 0.5 1 | 1-x term 0.5 2 2 3 2. | 3 species on M2, 2 site per formula unit. 1 0. | z(31) = z(al,m2) = x(22)/2, so 1 term and a0(31) = 0. 1 | 1-x term 0.5 2 2 2 0. | z(32) = x(mg,m2) - x(mg,m2)*x(al2,t2)/2 so 2 terms and a0(32) = 0. 1 | 1-x term 1. 1 1 2 | 2-x term -.5 1 1 2 2 0 | jfix -------------------------------------------------------- ideal ps-cz-ep solution, assuming fe is on M3 in ep and on M1 and M3 in ps PsCzEp 1 3 1 ps ep cz | endmember names 0 0 0 | endmember flags 0. 1. 0.1 0. 1. 0.1 0 | pseudocompound model cartesian, isopleths of mu 0 0 | iterm, iord. 2 | msite, 2 sites, M1, M3. 2 1. | 2 species on M1, 1 sites per formula unit. 1 0. | z(11) = z(fe,m1) = x(ps) = x(11) 1 1. 1 1 2 1. | 2 species on M3, 1 sites per formula unit. 1 0. | z(21) = z(al,m3) = x(cz) = x(13) 1 1. 1 3 0 -------------------------------------------------------- | ideal model for potassium phengitic mica K-Phen | solution name (a10 format). 1 | 1 independent mixing site. 3 1 | 3 species mix on the site, site multiplicity undefined, see below. cel fcel mu | endmember names 0 0 0 | endmember flags 0. 1. 0.2 0. 1. 0.2 0 | pseudocompound model cartesian, isopleths of mu 0 0 | iterm, iord. 2 | msite, 2 sites, M1, T2. 3 2. | 3 species on M1, 2 sites per formula unit. 3 0. | z(11) = z(al,m1) = x(13) + x(11)/2 + x(12)/2 1 1. 1 3 1 0.5 1 1 1 0.5 1 2 1 0. | z(12) = z(mg,m1) = x(11) / 2 1 0.5 1 1 2 2. | 2 species on T2, 2 sites per formula unit. 1 0. | z(21) = z(al,t2) = x(13)/2. 1 0.5 1 3 0 -------------------------------------------------------- | ideal model for pumpellyite (considering only | the endmembers mg-pmp, fe-pmp, julg. | Claudio.Mazzoli@bristol.ac.uk /JADC Pmp-3 | solution name (a10 format). 1 | 1 independent mixing site. 3 1 | x(11)=x(mg,al5) x(12)=x(fe,al5) x(13)=x(fe,fe5). mpmp fpmp julg | endmember names 0 0 0 | endmember flags 0. 1. 0.2 0. 1. 0.2 0 | pseudocompound model cartesian, isopleths of mu 0 0 | iterm, iord. 2 | msite, 2 sites, X, X1+Y. 2 1. | 2 species on X, 1 site per formula unit. 1 0. | z(11) = z(mg,X) = x(11) 1 1. 1 1 2 5. | 2 species on X1+Y, 5 sites per formula unit. 1 0. | z(21) = z(fe,X1+Y) = x(13). 1 1. 1 3 0 -------------------------------------------------------- | ideal model for mg-fe sudoite assuming | mg fe and al are distributed over | 4 m1 sites. in this case the site | fractions of the divalent cations are | 1/2 the mole fractions of the corresponding | endmember. x(11) = x(fsu), x(12) = x(msu). | Ken Livi (EPS_ZJKL@JHUVMS.HCF.JHU.EDU) /JADC SUD 1 2 2 | isp(1), ist(1) fsu msu 0 0 | endmember flags 0. 1. 0.045 0 | cartesian subdivision 0 0 | iterm, iord. 1 | 1 independent mixing site, M1. 3 4. | 3 species on M1, 4 sites per formula unit. 1 0. | z(11) = z(fe,m1) = x(11) / 2 1 0.5 1 1 1 0. | z(12) = z(mg,m1) = x(12) / 2 1 0.5 1 2 0 | jfix -------------------------------------------------------- | a model for tschermaks and glaucophane | substitution into Mg-tremolite. jadc TrHbGl | solution name (a10 format). 1 | 1 independent mixing site. 3 1 | 3 species mix on the site, site multiplicity undefined. tr hb gl | endmember names 0 0 0 | endmember flags 0. 1. 0.2 0. 1. 0.2 0 | pseudocompound model cartesian, isopleths of mu 0 0 | iterm, iord. 3 | msite, 3 sites, 1(Ca,Na), 2(Mg,Al), 3(Si,Al) 2 2. | 2 species on 1, 2 sites per formula unit. 1 0. | z(11) = z(na,1) = x(13) = x(gl) 1 1. 1 3 2 2. | 2 species on 2, 2 sites per formula unit. 2 0. | z(21) = z(mg,2) = x(tr) + x(hb)/2 = x(11) + x(12)/2 1 1. 1 1 1 0.5 1 2 2 4. | 2 species on 3, 4 sites per formula unit. 1 0. | z(31) = z(al,3) = x(hb)/4 = x(12)/4 1 0.25 1 2 0 -------------------------------------------------------- | a model for tschermaks and glaucophane | substitution into Fe/Mg-tremolite. jadc Amphibole | solution name 2 | 2 independent mixing sites. 2 1 3 1 | 2 species on site 1(Mg/Fe) 3 on site 2 (tr,hb,gl). tr ftr hb | this order implies: x(11) = x(mg), x(12) = x(fe), fhb gl fgl | x(21) = x(tr), x(22) = x(hb) and x(23) = x(gl). 0 0 0 0 0 0 | endmember flags 0. 1. 0.125 0 | site 1 pseudocompound model mg/fe cartesian 0. 1. 0.2 0 1. 0.2 0 | site 2 pseudocompound model x1=tr, x2=hb cartesian 0 0 | iterm, iord. 4 | msite, 4 sites, 1(Ca,Na), 2(Si,Al), 3(Mg,Fe), 4(Mg,Fe,Al) 2 2. | 2 species on 1, 2 sites per formula unit. 1 0. | z(11) = z(na,1) = x(23) = x(gl) 1 1. 2 3 2 4. | 2 species on 2, 4 sites per formula unit. 1 0. | z(21) = z(al,2) = x(hb)/4 + = x(22)/4 1 0.25 2 2 2 3. | 2 species on 3, 3 sites per formula unit. 1 0. | z(31) = z(mg,3) = x(mg) = x(11) 1 1. 1 1 3 2. | 3 species on 4, 2 sites. 2 0. | z(41) = z(al,4) = x(gl) + x(hb)/2 1 1. 2 3 1 0.5 2 2 3 0. | z(42) = z(mg,4) = z(mg,3) (1 - z(al,4)) = x(11) - x(11)x(23) - .5 x(11)x(22) 1 1. 1 1 2 -1. 1 1 2 3 2 -0.5 1 1 2 2 0 -------------------------------------------------------- Entered by V. Lopez, not checked. | a model for tschermaks and edenite for | holland and powell. | substitution into Mg-tremolite TrHbEd | solution name (a10 format). 1 | 1 independent mixing site. 3 1 | 3 species mix on the site, site multiplicity undefined. tr hb ed | endmember names 0 0 0 | endmember flags 0. 1. 0.2 0. 1. 0.2 0 | pseudocompound model cartesian 0 0 | iterm, iord. 3 | msite, 3 sites, 1(Na,Vac), 2(Mg,Al), 3(Al,Si) 2 1. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(13) = x(ed) 1 1. 1 3 2 2. | 2 species on 2, 2 sites per formula unit. 2 0. | z(21) = z(mg,2) = x(tr) + x(hb)/2 = x(11) + x(12)/2 1 1. 1 1 1 0.5 1 2 2 4. | 2 species on 3, 4 sites per formula unit. 1 0. | z(31) = z(al,3) = x(hb)/4 = x(12)/4 1 0.25 1 2 0 -------------------------------------------------------- Entered by V. Lopez, not checked. | a model for edenite and glaucophane | substitution into Mg-tremolite, for holland & powell TrEdGl | solution name (a10 format). 1 | 1 independent mixing site. 3 1 | 3 species mix on the site, site multiplicity undefined. tr ed gl | endmember names: xtr=(x11), xed=x(12), xgl=x(13) 0 0 0 | endmember flags 0. 1. 0.2 0. 1. 0.2 0 | pseudocompound model cartesian 0 0 | iterm, iord. 4 | msite, 4 sites, 1=A(Na,Vac), 2=M4(Na,Ca), 3=M2(Al,Mg), 4=T(Al,Si) 2 1. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(12) = x(ed) 1 1. 1 2 2 2. | 2 species on 2, 2 sites per formula unit. 1 0. | z(21) = z(na,2) = x(13) = x(gl) 1 1. 1 3 2 2. | 2 species on 3, 2 sites per formula unit. 1 0. | z(31) = z(al,3) = x(gl) = x(13) 1 1. 1 3 2 4. | 2 species on 4, 4 sites per formula unit. 1 0. | z(41) = z(al,4) = x(ed)/4 = x(12)/4 1 0.25 1 2 0 -------------------------------------------------------- Entered by V. Lopez, not checked. | a model for edenite and glaucophane | substitution into Mg-hornblende, for H&P data. HbEdGl | solution name (a10 format). 1 | 1 independent mixing site. 3 1 | 3 species mix on the site, site multiplicity undefined. hb ed gl | endmember names: xhb=(x11), xed=x(12), xgl=x(13) 0 0 0 | endmember flags 0. 1. 0.2 0. 1. 0.2 0 | pseudocompound model cartesian 0 0 | iterm, iord. 4 | msite, 4 sites, 1=A(Na,Vac), 2=M4(Na,Ca), 3=M2(Mg,Al), 4=T(Si,Al) 2 1. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(12) = x(ed) 1 1. 1 2 2 2. | 2 species on 2, 2 sites per formula unit. 1 0. | z(21) = z(na,2) = x(13) = x(gl) 1 1. 1 3 2 2. | 2 species on 3, 2 sites per formula unit. 2 0. | z(31) = z(mg,3) = x(ed) + x(hb)/2 = x(12) + x(11)/2 1 1. 1 2 1 0.5 1 1 2 4. | 2 species on 4, 4 sites per formula unit. 1 0. | z(41) = z(si,4) = x(gl) = x(13) 1 0. 1 3 0 -------------------------------------------------------- Entered by V. Lopez, not checked. for Mader & Berman 1992. trparg 1 | 1 independent mixing sites. 2 1 | 2 species mix on site tr parg | this order implies: x(12) = x(parg). 0 0 | endmember flags 0. 1. 0.1 0 | site 1 pseudocompound model mg/fe cartesian 3 2 | iterm, iord. 1 1 1 2 W na v 5236. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 W mg al 10881. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 2 W mg al 5440.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 | msite, 3 sites, 1-A(v,Na), 2-M2(Mg,Al), 3-T1(Si,Al) 2 1. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(12) = x(parg) 1 1. 1 2 2 2. | 2 species on 2, 2 sites per formula unit. 1 0. | z(21) = z(al,2) = x(12)/2 = x(parg)/2 1 0.5 1 2 2 4. | 2 species on 3, 4 sites per formula unit. 1 0. | z(31) = z(al,3) = x(parg)/2=x(12)/2 1 0.5 1 2 0 -------------------------------------------------------- Entered by V. Lopez, not checked. for Mader & Berman 1992. ftr-fparg 2 | 2 independent mixing sites. 2 1 2 1 | 2 species mix on site A, 3 on site M2 tr ftr parg | this order implies: x(11) = x(mg), x(12) = x(fe), fparg | x(21) = x(tr), x(22) = x(parg). 0 0 0 0 | endmember flags 0. 1. 0.2 0 | site 1 pseudocompound model mg/fe cartesian 0. 1. 0.2 0 | site 2 pseudocompound model cartesian 9 4 | iterm, iord. 2 2 2 1 0 0 0 0 W na v 5236. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 0 0 0 0 W al mg 21762. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 2 2 0 0 W al mg -10881. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 2 0 0 0 0 W al fe -5904.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 2 2 2 0 0 W al fe 2952.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 2 0 0 W mg fe -3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 2 2 2 W mg fe 775.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 | msite, 4 sites, 1-A(Na,v), 2-M2(Al,Mg,Fe), 3-M13(Mg,Fe), 4-T1(Al,Si) 2 1. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(22) = x(parg) 1 1. 2 2 3 2. | 3 species on 2, 2 sites per formula unit. 1 0. | z(21) = z(al,2) = x(22)/2 = x(parg)/2 1 0.5 2 2 2 0. | z(22) = z(mg,2) = z(mg,3) (1 - z(al,2)) = x(11) - x(11)x(22)/2 1 1. 1 1 2 -0.5 1 1 2 2 2 3. | 2 species on 3, 3 sites per formula unit. 1 0. | z(31) = z(mg,3) = x(mg)= x(11) 1 1. 1 1 2 4. | 2 species on 4, 4 sites per formula unit. 1 0. | z(41) = z(al,4) = x(parg)/2=x(22)/2 1 0.5 2 2 0 -------------------------------------------------------- Entered by V. Lopez, not checked. for Mader & Berman 1992. trpargglc 2 | 2 independent mixing sites. 2 1 3 1 | 2 species mix on site one, 3 on site two tr ftr parg | this order implies: x(11) = x(mg), x(12) = x(fe), fparg glc fgl | x(21) = x(tr), x(22) = x(parg), x(23) = x(glc) 0 0 0 0 0 0 | endmember flags 0. 0.6 0.1 0 | site 1 pseudocompound model mg/fe cartesian 0. 0.75 0.25 0. 0.75 0.25 0 | site 2 pseudocompound model cartesian 10 4 | iterm, iord. 2 2 2 1 0 0 0 0 W na v 5236. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 0 0 0 0 W mg al 21762. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 2 2 0 0 W mg al -10881. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 2 1 2 0 0 0 0 W al fe -5904.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 2 2 0 0 W al fe 2952.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 2 2 0 0 W mg fe -1551. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 1 2 0 0 W mg fe -1551. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 2 2 2 2 W mg fe 775.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5 | msite, 5 sites, 1-A(Na,v), 2-M4(Na,Ca), 3-M2(Al,Mg,Fe), 4-M13(Mg,Fe), 5-T1(Al,Si) 2 1. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(22) = x(parg) 1 1. 2 2 2 2. | 2 species on 2, 2 site per formula unit. 1 0. | z(21) = z(na,2) = x(23) = x(glauc) 1 1. 2 3 3 2. | 3 species on 3, 2 sites per formula unit. 2 0. | z(31) = z(al,3) = x(23) + x(22)/2 + = x(glauc) + x(parg)/2 1 1. 2 3 1 0.5 2 2 3 0. | z(32) = z(mg,3) = z(mg,4) (1 - z(al,3)) = x(11) -x(11)x(23) - x(11)x(22)/2 1 1. 1 1 2 -1. 1 1 2 3 2 -0.5 1 1 2 2 2 3. | 2 species on 4, 3 sites per formula unit. 1 0. | z(41) = z(mg,4) = x(mg)= x(11) 1 1. 1 1 2 4. | 2 species on 5, 4 sites per formula unit. 1 0. | z(51) = z(al,5) = x(parg)/2 = x(22)/2 1 0.5 2 2 0 -------------------------------------------------------- Entered by V. Lopez, not checked. for Mader & Berman 1992. trgltsch 2 | 2 independent mixing sites. 2 1 3 1 | 2 species mix on site one, 3 on site two tr ftr glc | this order implies: x(11) = x(mg), x(12) = x(fe), fgl ts fts | x(21) = x(tr), x(22) = x(glc), x(23) = x(ts) 0 0 0 0 0 0 | endmember flags 0. 1. 0.2 0 | site 1 pseudocompound model mg/fe cartesian 0. 1. 0.2 0. 1. 0.2 0 | site 2 pseudocompound model cartesian 8 2 | iterm, iord. 2 2 2 1 W na ca 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 2 2 3 W na ca 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 W mg al 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 3 W mg al 43524. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 2 W fe al 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 3 W fe al -11809. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 | msite, 4 sites, 1-M4(Na,Ca), 2-M2(Al,Mg,Fe), 3-M13(Mg,Fe), 4-T1(Al,Si) 2 2. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(22) = x(glauc) 1 1. 2 2 3 2. | 3 species on 2, 2 sites per formula unit. 2 0. | z(21) = z(al,2) = x(22) + x(23) = x(gl) + x(ts) 1 1. 2 2 1 1. 2 3 1 0. | z(22) = z(mg,2) = z(mg,3) = x(11)) 1 1. 1 1 2 3. | 2 species on 3, 3 sites per formula unit. 1 0. | z(31) = z(mg,3) = x(mg)= x(11) 1 1. 1 1 2 4. | 2 species on 4, 4 sites per formula unit. 1 0. | z(41) = z(al,4) = x(ts)/2 = x(23)/2 1 0.5 2 3 0 -------------------------------------------------------- Entered by V. Lopez, not checked. for Mader & Berman 1992. parglcts 2 | 2 independent mixing sites. 2 1 3 1 | 2 species mix on site one, 3 on site two parg fparg glc | this order implies: x(11) = x(mg), x(12) = x(fe), fgl ts fts | x(21) = x(parg), x(22) = x(glc), x(23) = x(ts) 0 0 0 0 0 0 | endmember flags 0. 1. 0.2 0 | site 1 pseudocompound model mg/fe cartesian 0. 1. 0.2 0. 1. 0.2 0 | site 2 pseudocompound model cartesian 21 4 | iterm, iord. 2 1 2 3 0 0 0 0 W na v 5236. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 3 0 0 0 0 W mg al 43524. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 3 2 3 0 0 W mg al -43524. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 3 1 1 2 1 0 0 W mg al -43524. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 0 0 0 0 W mg al 21762. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 2 1 0 0 W mg al -10881. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 3 1 2 0 0 0 0 W al fe -11809. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 3 2 3 0 0 W al fe 11809. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 3 1 2 2 1 0 0 W al fe 5904.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 1 0 0 0 0 W al fe -5904.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 1 1 2 2 3 0 0 W al fe 5904.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 1 2 1 0 0 W al fe 2952.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 3 0 0 W mg fe -3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 1 0 0 W mg fe -3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 3 1 2 0 0 W mg fe -3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 3 2 3 1 2 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 3 1 2 2 1 W mg fe 1551. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 1 2 2 3 W mg fe 1551. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 2 1 1 2 W mg fe 775.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5 | msite, 5 sites, 1-A(Na,v), 2-M4(Na,Ca), 3-M2(Al,Mg,Fe), 4-M13(Mg,Fe), 5-T1(Al,Si) 2 1. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(21) = x(parg) 1 1. 2 1 2 2. | 2 species on 2, 2 site per formula unit. 1 0. | z(21) = z(na,2) = x(22) = x(glauc) 1 1. 2 2 3 2. | 3 species on 3, 2 sites per formula unit. 3 0. | z(31) = z(al,3) = x(22) + x(23) + x(21)/2 = x(glauc) + x(tscher) + x(parg)/2 1 1. 2 2 1 1. 2 3 1 0.5 2 1 4 0. | z(32) = z(mg,3) = z(mg,4) (1 - z(al,3)) = x(11) -x(11)x(22) - x(11)x(23) - x(11)x(21)/2 1 1. 1 1 2 -1. 1 1 2 2 2 -1. 1 1 2 3 2 -0.5 1 1 2 1 2 3. | 2 species on 4, 3 sites per formula unit. 1 0. | z(41) = z(mg,4) = x(mg)= x(11) 1 1. 1 1 2 4. | 2 species on 5, 4 sites per formula unit. 2 0. | z(51) = z(al,5) = x(21)/2 + x(23)/2 = x(parg)/2 + x(tscher)/2 1 0.5 2 1 1 0.5 2 3 0 -------------------------------------------------------- | ternary feldsar (furman & lindsley 1988) | for binary plagioclse this model is identical | to that of Newton et al. 1980, and for binary | alkali feldspar it is identical to Haselton et al. (1983). feldspar 1 | 1 independent mixing site. 3 1 | 3 species mix on this site, site multiplicity = 1 abh an san | endmember names (3 per line, 3(a8,1x) format) 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0. 1. 0.1 0. 1. 0.1 4 | compositional limits, increments, and model for pseudocompounds. 7 3 | iterm, iord. 1 1 1 1 1 3 W or ab 27320. -10.3 .394 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 3 1 3 W ab or 18810. -10.3 .394 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 2 1 3 W or an 47396. .0 .0 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 3 1 3 W an or 52468. .0 -.12 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 2 1 1 W ab an 28226. .0 .0 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 1 1 1 W an ab 8471. .0 .0 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 1 1 3 W an ab or 100045.5 -10.3 -0.76 0. 0. 0. 0. 0. 0. 0. 0. 2 | msite, 2 site (O-site and T-site) model for plag. 3 1. | 3 species on O-site, 1. site per formula unit. 1 0. | z(Na) = z(11) = x(11) so 1 term and a0(11) = 0. 1 | type 1 term 1. 1 1 | 1 0. | z(Ca) = z(12) = x(12) so 1 term and a0(11) = 0. 1 | type 1 term 1. 1 2 | 2 2. | 2 species on T-site, 2. sites per formula (al-avoidance model) 1 0.5 | z(Al) = x(12)/2 + 1/2 so 1 term and a0(21) = 1/2 1 | type 1 term 0.5 1 2 | 0 | jfix. -------------------------------------------------------- Pl(h) Newton et al 1981 1 2 1 isp(1), ist(1) abh an 1 0 endmember flags 0.300E-01 0.990 0.400E-01 0 subdivision ranges and model 2 3 iterm, iord 1 1 1 1 1 2 subscripts for term 1 8477.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 2 1 2 subscripts for term 2 28246.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 2 sites (O, T) kerrick and darkens Al-avoidance model: 2 1. 2 species on O site, multiplicity = 1. 1 0. z(O,Na) = x(11) 1 type 1 term 1. 1 1 2 2. 2 species on T, mutiplicity = 2. 1 0. z(T,Si) = x(11)/2 1 type 1 term 0.5 1 1 0 jfix -------------------------------------------------------- Pl Ideal, for holland and powell 1 2 1 isp(1), ist(1) ab an 0 0 endmember flags 2.00 1. 12.0 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Apa ideal apatite? 1 2 1 isp(1), ist(1) apa fapa 0 0 endmember flags 0.0 1.0 0.1 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Fphl Ideal, for holland and powell 1 2 2 isp(1), ist(1) phl fphl 0 0 endmember flags 0.0 1.0 0.1 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- MaPa Ideal margarite-paragonite 1 2 1 isp(1), ist(1) pa ma 1 0 endmember flags 3.00 1. 12.0 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- DiCats 1 2 1 isp(1), ist(1) di cats 0 0 endmember flags 130. 1. 7.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- | This is a model for the anorthite rich side of the | plagioclase solvus, the critical composition for the | Newton model is ca 32 mole % Ab and the critical T | is 839.8+ K AnPl Newton et al 1981 1 2 1 isp(1), ist(1) abh an 1 0 endmember flags = ab isn't, an is. 2. 0.31 6.0 2 assymetric subdivision 2 3 iterm, iord 1 1 1 1 1 2 subscripts for term 1 8477.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 2 1 2 subscripts for term 2 28246.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 2 sites (O, T) kerrick and darkens Al-avoidance model: 2 1. 2 species on O site, multiplicity = 1. 1 0. z(O,Na) = x(11) 1 type 1 term 1. 1 1 2 2. 2 species on T, mutiplicity = 2. 1 0. z(T,Si) = x(11)/2 1 type 1 term 0.5 1 1 0 jfix -------------------------------------------------------- | This is a model for the albite rich side of the | plagioclase solvus, the critical composition for the | Newton model is ca 68 mole % An and the critical T | is 839.8+ K AbPl Newton et al 1981 1 2 1 isp(1), ist(1) an abh 1 1 endmember flags = an isn't, ab isn't. 2. 0.67 18.0 2 assymetric subdivision 2 3 iterm, iord 1 2 1 2 1 1 subscripts for term 1 8477.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 1 1 1 subscripts for term 2 28246.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 2 sites (O, T) kerrick and darkens Al-avoidance model: 2 1. 2 species on O site, multiplicity = 1. 1 0. z(O,Na) = x(12) 1 type 1 term 1. 1 2 2 2. 2 species on T, mutiplicity = 2. 1 0. z(T,Si) = x(12)/2 1 type 1 term 0.5 1 2 0 jfix -------------------------------------------------------- | This is a model for the albite rich side of the | K-spar solvus Ab(h) JB Thompson for holland and powell 1 2 1 isp(1), ist(1) san abh 1 0 endmember flags 1.02 0.495 10.00 2 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 32098.0 -16.1356 0.469020 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 26470.0 -19.3810 0.387020 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Ab thompson and hovis 1979 for holland and powell 1 2 1 isp(1), ist(1) kf ab 1 0 endmember flags 1.02 0.495 6.00 2 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 32098.0 -16.1356 0.469020 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 26470.0 -19.3810 0.387020 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Kf(H) haselton et al. alkali feldspar. 1 isite 2 1 isp, ist abh sa 0 0 1.02 1. 9.0 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 1 1 2 27320.0 -10.3 0.394 0. 0. 0. 0. 0. 0. 0. 0. wg 1 1 1 2 1 2 18810.0 -10.3 0.394 0. 0. 0. 0. 0. 0. 0. 0. wg 0 nsite 0 jfix -------------------------------------------------------- or-rich compositions Kf(h) thompson and hovis 1979 1 2 1 isp(1), ist(1) abh san 1 0 endmember flags 1.02 0.495 6.00 2 subdivision ranges and model 2 3 iterm, iord 1 2 1 1 1 1 subscripts for term 1 32098.0 -16.1356 0.469020 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 2 1 1 subscripts for term 2 26470.0 -19.3810 0.387020 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- or-rich compositions Kf thompson and hovis 1979 1 2 1 isp(1), ist(1) ab kf 1 0 endmember flags 1.02 0.495 6.00 2 subdivision ranges and model 2 3 iterm, iord 1 2 1 1 1 1 subscripts for term 1 32098.0 -16.1356 0.469020 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 2 1 1 subscripts for term 2 26470.0 -19.3810 0.387020 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- full compositional range San thompson and hovis 1979 1 2 1 isp(1), ist(1) san abh 0 0 endmember flags 1.12 0. 35.0 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 32098.0 -16.1356 0.469020 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 26470.0 -19.3810 0.387020 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- full compositional range Kspar thompson and hovis 1979 1 2 1 isp(1), ist(1) kf ab 0 0 endmember flags 1.02 1. 10.0 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 32098.0 -16.1356 0.469020 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 26470.0 -19.3810 0.387020 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Omph 1 2 1 isp(1), ist(1) jd di 0 0 endmember flags .0 1. 0.2 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- St 1 2 4 isp(1), ist(1) mst fst 1 0 endmember flags 0.0 0.5 0.06 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Carp 1 2 1 isp(1), ist(1) mcar fcar 0 0 endmember flags 50.0 0.990 11.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Crd 1 2 2 isp(1), ist(1) crd fcrd 0 0 endmember flags 0.0 1.0 .080 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- This model is for P-T projections, ala Connolly and Trommsdorff CMP 1991. F 1 2 0 isp(1), ist(1) CO2 H2O 0 0 endmember flags 0.0 1.0 0.04 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Connolly and Cesare C-O-H Fluid GCOHF 1 2 0 isp(1), ist(1) O2 H2 0 0 endmember flags 1.06 -.67 10. 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 -------------------------------------------------------- H2OM 1 2 0 isp(1), ist(1) O2 H2 2 2 endmember flags 0.33333 0.33333 0.05 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 -------------------------------------------------------- Cumm 1 2 7 isp(1), ist(1) grun cumm 0 0 endmember flags 18.0 0.990 11.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- anthophyllite Anth 1 2 7 isp(1), ist(1) fap ap 0 0 endmember flags 14.0 0.990 18.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- "anthophyllite" a compromise model using the clinoamphibole Fe-endmember, cumm and fap should be excluded. A 1 2 7 isp(1), ist(1) grun ap 0 0 endmember flags 14.0 0.990 7.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Tr 1 2 5 isp(1), ist(1) ftr tr 0 0 endmember flags 20.0 0.990 7.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- tr-ftr-ts-fts ideal model for holland and powell. assumes 2 M2 sites are coupled to 4 T1 sites. site multiplicity of the T1 site is reduced to 2, this is suggested by HP98 to account for charge balance constraints. JADC Nov, 98. TrTs | solution name (a10 format). 2 | 2 independent mixing site. 2 1 2 1 | 2 species mix on each site, site multiplicity undefined, see below. tr ftr ts | endmember names (3 per line, 3(a8,1x) format), this order implies: fts | x(11)=x(mg); x(12) = x(fe); x(21) = x(Si2,t1); x(22) = x(SiAl,t1) 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 25. 1.0 8. 1 | transform subdivision for site 1 (gives range of x(mg)) .0 1. .1 0 | transform subdivision for site 2 (gives range of tschermaks). 0 0 | iterm, iord. 2 | msite, 2 sites, M2, T1. 2 4. | 2 species on T1, 4 sites per formula unit. 1 0.0 | z(11) = z(al,t1) = x(22)/2, so 1 term and a0(11) = 0 1 | 1-x term 0.5 2 2 | 3 2. | 3 species on M1, 2 sites per formula unit. 1 0.0 | z(21) = z(al,m1) = x(22), so 1 term and a0(21) = 0 1 | 1-x term 1.0 2 2 | 2 0. | z(22) = x(fe)*(1-z(al,m1)) = x(21) - x(21)*x(22) 1 | 1-x term 1.0 2 1 | 2 | 2-x term -1.0 2 1 2 2 | 0 | jfix -------------------------------------------------------- tr-ts-parg ideal model for holland and powell. assumes 2 M2 sites are coupled to 4 T1 sites. site multiplicity of the T1 site is reduced to 2, this is suggested by HP98 to account for charge balance constraints. but doesn't make a lot of sense for the tr-parg mixing. JADC Nov, 98. TrTsPg | solution name (a10 format). 1 | 1 independent mixing site. 3 1 | 3 species mix on each site, site multiplicity undefined, see below. tr ts parg | x(11)=x(tr); x(12) = x(ts); x(13) = x(parg) 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0. 1.0 0.1 0. 1.0 0.1 3 | barycentric subdivision 0 0 | iterm, iord. 2 | msite, 2 sites, M2, T1. 2 4. | 2 species on T1, 4 sites per formula unit. 2 0.0 | z(11) = z(al,t1) = (x(12)+x(13))/2, so 2 terms and a0(11) = 0 1 | 1-x term 0.5 1 2 | 1 | 1-x term 0.5 1 3 | 2 2. | 2 species on M1, 2 sites per formula unit. 2 0.0 | z(21) = z(al,m1) = x(12) + x(13)/2, so 2 terms and a0(21) = 0 1 | 1-x term 1.0 1 2 | 1 | 1-x term 0.5 1 3 | 0 | jfix -------------------------------------------------------- Mica chatterjee & froese '75 1 2 1 isp(1), ist(1) mu pa 0 0 endmember flags 1.09 0. 35.0 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 19456.0 1.65440 -.456100 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 12230.0 0.710440 0.665300 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Pa chatterjee & froese '75 1 2 1 isp(1), ist(1) mu pa 1 0 endmember flags 1.02 0.495 8.00 2 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 19456.0 1.65440 -.456100 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 12230.0 0.710440 0.665300 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- A solution model for Dolomite from Anovitz & Essene 1987 J Pet 28:389-414; this model requires fictive do-structure endmembers that have a standard state G 20920 j > than the cc-structure endmembers. Do(A) 1 2 1 isp(1), ist(1) cc-d m-d 0 0 endmember flags 0.0 1. 0.06 0 subdivision ranges and model 2 3 iterm, iord 1 2 1 2 1 1 subscripts for term 1 -96850. -36.23 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 1 1 1 subscripts for term 2 -55480. -22.85 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- A solution model for Magnesite from Anovitz & Essene 1987 J Pet 28:389-414. M(A) 1 2 1 m cc 0 0 endmember flags 0.0 1. 0.06 0 subdivision ranges and model 2 3 iterm, iord 1 2 1 2 1 1 subscripts for term 1 24300. -7.743 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 1 1 1 subscripts for term 2 23240. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Mu chatterjee & froese '75 1 2 1 isp(1), ist(1) pa mu 1 0 endmember flags 1.02 0.495 8.00 2 subdivision ranges and model 2 3 iterm, iord 1 2 1 1 1 1 subscripts for term 1 19456.0 1.65440 -.456100 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 2 1 1 subscripts for term 2 12230.0 0.710440 0.665300 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- GrAd(E&W) grandite, Engi & Wersin 1987, ionic? 1 2 2 isp(1), ist(1) gr andr 0 0 endmember flags 32.0 0.990 7.00 1 subdivision ranges and model 2 3 iterm, iord 1 2 1 1 1 1 subscripts for term 1 25812.0 0. -.520000 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 2 1 1 subscripts for term 2 -93820.0 0. -.110000 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- GrAd grandite, ideal 1 2 2 isp(1), ist(1) gr andr 0 0 endmember flags .0 1. .1 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- EpCz ordered (one site) mixing model 1 2 1 isp(1), ist(1) cz ep 0 0 endmember flags 0. 1.0 0.05 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- PsCz dsiordered (two site) mixing model 1 2 2 isp(1), ist(1) cz ps 0 0 endmember flags 0.5 1. 0.05 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- disordered (three site) mixing model to be valid this model should use a disordered epidote endmember, but i suspect most epidote data is derived with no configurational h-EpCz entropy. 1 2 1 isp(1), ist(1) cz ep 0 0 endmember flags 28.0 0.990 7.00 1 subdivision ranges and model 0 0 iterm, iord 1 msite 2 3 2 species (Fe3, Al), 3 sites 1 0. 1 term 1 one X 0.3333333333 1 2 X(Fe) = X(Ep)/3 0 jfix -------------------------------------------------------- ideal orthoenstatite E 1 2 2 isp(1), ist(1) fs en 0 0 endmember flags 50.0 0. 12.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- HeDi 1 2 1 isp(1), ist(1) hed di 0 0 endmember flags 60.0 0. 11.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- ideal olivine O 1 2 2 isp(1), ist(1) fo fa 0 0 endmember flags 0.02 1.0 0.04 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Dol 1 2 1 isp(1), ist(1) fdol dol 0 0 endmember flags 0.800E-01 0.880 0.100 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- ideal Magnesite/siderite using the Trommsdorff & Connolly magnestite G MTC 1 2 1 isp(1), ist(1) sid m(t&c) 0 0 endmember flags 10. 1. 17. 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- ideal Magnesite/siderite M 1 2 1 isp(1), ist(1) sid mag 0 0 endmember flags 10. 1. 7. 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Magnesioferrite/magnetite MF 1 2 1 isp(1), ist(1) mt mfer 0 0 endmember flags 0.90 1.00 0.01 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Sp(J&R) Jamieson and Roeder '85 (iron + ol,1300 C) 1 2 1 isp(1), ist(1) herc sp 0 0 endmember flags 10.0 0.990 7.00 1 subdivision ranges and model 1 2 iterm, iord 1 1 1 2 subscripts for term 1 -3102.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 0 msite 0 jfix -------------------------------------------------------- Sp(G&S) Ganguly and Saxena '87 (ol, 1200-1300 C, 1-5 kb) 1 2 1 isp(1), ist(1) herc sp 0 0 endmember flags 10.0 0.990 8.00 1 subdivision ranges and model 1 2 iterm, iord 1 1 1 2 subscripts for term 1 7703.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 0 msite 0 jfix -------------------------------------------------------- Sp(G) Ghiorso 1991, set up for normal spinel: 1 2 1 isp(1), ist(1) herc sp 0 0 endmember flags 10.0 0.990 8.00 1 subdivision ranges and model 1 2 iterm, iord 1 1 1 2 subscripts for term 1 8368.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 0 msite 0 jfix -------------------------------------------------------- This is a model for the R3 ilmenite on the ilmenite-rich side of the ilm-hem solvus, from Wood et al 1991 Rev Min 25, chp 7 Ilm(W) Wood et al 1991 1 2 2 isp(1), ist(1) ilm hem 0 0 endmember flags 1.05 0.990 8.00 1 subdivision ranges and model 1 2 iterm, iord 1 1 1 2 subscripts for term 1 30000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 0 msite 0 jfix -------------------------------------------------------- this model is only valid for T>800C<1300C Mt(W) Wood et al 1991 1 2 1 isp(1), ist(1) usp mt 0 0 endmember flags 1.02 0.495 9.00 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 42110. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 10580. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 two sites, O and T. 3 2. 3 species on O, 2 sites per formula unit. 1 0. z(Ti,O) = x(usp)/2 1 0.5 1 1 1 0. z(Fe3+,O) = x(mt)/2 1 0.5 1 2 2 1. 2 species on T, 1 site per formula unit. 1 0. z(Fe3+,T) = x(mt) 1 1. 1 2 0 jfix -------------------------------------------------------- The Anderson and Lindsley models (Am Min v 73, p 714, 1988) are for ilmenite coexisiting with magnetite, its performance at high T (ca 1200) has been criticized by Ghiorso, but this is probably the best model for T<800 C IlHm(A) Anderson and Lindsley 1988 1 2 2 isp(1), ist(1) ilm hem 0 0 endmember flags 5.0 0.495 9.00 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 126342.5 -100.6 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 44204.8 -12.274 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Assymetric model for Ilm-rich side of the solvus (Tc ca 700 C, 50 % ilm) Il(A) Anderson and Lindsley 1988 1 2 2 isp(1), ist(1) hem ilm 1 0 endmember flags 1.1 0.49 20.00 2 subdivision ranges and model 2 3 iterm, iord 1 2 1 1 1 1 subscripts for term 1 126342.5 -100.6 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 2 1 1 subscripts for term 2 44204.8 -12.274 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Assymetric model for Hm-rich side of the solvus (Tc ca 700 C, 50 % ilm), this is for the imaginary R3 hm phase. Hm(A) Anderson and Lindsley 1988 1 2 2 isp(1), ist(1) ilm hem 1 0 endmember flags 1.04 0.49 7.00 2 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 126342.5 -100.6 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 44204.8 -12.274 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- MtUl(A) Anderson and Lindsley 1988, Akimoto model 1 2 1 isp(1), ist(1) usp mt 0 0 endmember flags 1.09 0.495 20.00 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 46175. -23.077 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 15748. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 two sites, O and T. 3 2. 3 species on O, 2 sites per formula unit. 1 0. z(Ti,O) = x(usp)/2 1 0.5 1 1 1 0. z(Fe3+,O) = x(mt)/2 1 0.5 1 2 2 1. 2 species on T, 1 site per formula unit. 1 0. z(Fe3+,T) = x(mt) 1 1. 1 2 0 jfix -------------------------------------------------------- Assymetric model for Mt-rich side of the solvus (Tc ca 490 C, 32 % usp) Mt(A) Anderson and Lindsley 1988, Akimoto model 1 2 1 isp(1), ist(1) usp mt 1 0 endmember flags 1.05 0.32 7.00 2 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 46175. -23.077 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 15748. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 two sites, O and T. 3 2. 3 species on O, 2 sites per formula unit. 1 0. z(Ti,O) = x(usp)/2 1 0.5 1 1 1 0. z(Fe3+,O) = x(mt)/2 1 0.5 1 2 2 1. 2 species on T, 1 site per formula unit. 1 0. z(Fe3+,T) = x(mt) 1 1. 1 2 0 jfix -------------------------------------------------------- Assymetric model for Usp-rich side of the solvus (Tc ca 490 C, 32 % usp) Usp(A) Anderson and Lindsley 1988, Akimoto model 1 2 1 isp(1), ist(1) mt usp 1 0 endmember flags 1.06 0.675 13.00 2 subdivision ranges and model 2 3 iterm, iord 1 2 1 1 1 1 subscripts for term 1 46175. -23.077 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 2 1 1 subscripts for term 2 15748. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 two sites, O and T. 3 2. 3 species on O, 2 sites per formula unit. 1 0. z(Ti,O) = x(usp)/2 1 0.5 1 2 1 0. z(Fe3+,O) = x(mt)/2 1 0.5 1 1 2 1. 2 species on T, 1 site per formula unit. 1 0. z(Fe3+,T) = x(mt) 1 1. 1 1 0 jfix -------------------------------------------------------- Neph(F&B) Ferry and Blencoe '78 1 2 1 isp(1), ist(1) ne kals 0 0 endmember flags 10.0 0.990 8.00 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 85057.0 -20.0500 -.550000 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 1 1 1 subscripts for term 2 35945.0 23.7800 0.690000 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Sp 1 2 1 isp(1), ist(1) herc sp 0 0 endmember flags 10.0 0.990 7.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Gt(i-b) ideal py-al-gr garnet, cartesian subdivision 1 3 3 isp(1), ist(1) py gr alm endmember names (3(a8,1x)) 0 0 0 endmember flags 0. 1. 0.05 0. 1.00 0.05 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Gt(i-c) ideal py-al-gr garnet, 3rd order barycentric subdivision 1 3 3 isp(1), ist(1) alm gr py endmember names (3(a8,1x)) 0 0 0 endmember flags 0. 1.00 0.05 0. .08 0.02 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- tr-ed 1 2 1 isp(1), ist(1) tr ed 0 0 endmember flags 0.100 0.900 0.100 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Ctd 1 2 1 isp(1), ist(1) mctd fctd 0 0 endmember flags 60.0 1.00 10.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- mg-fe-hb 1 2 4 isp(1), ist(1) fhb hb 0 0 endmember flags 60.0 1.00 7.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- GrPyAlSp(B) Grossular-pyrope-almandine-spessartine, Berman '90, 1 4 3 isp(1), ist(1) gr py alm endmember names (3(a8,1x)) spess 0 0 0 0 endmember flags 0.0 1. 0.09 0.0 1. 0.0 0. 1. 0.09 3 subdivision ranges and model 10 3 iterm, iord 1 1 1 1 1 2 subscripts for term 1 21560.0 -18.79 0.100000 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 2 1 2 subscripts for term 2 69200.0 -18.79 0.10 0. 0. 0. 0. 0. 0. 0. 0. term 2 1 1 1 1 1 3 subscripts for term 3 20320 -5.08 0.17 0. 0. 0. 0. 0. 0. 0. 0. term 3 1 1 1 3 1 3 subscripts for term 4 2620.0 -5.08 0.09 0. 0. 0. 0. 0. 0. 0. 0. term 4 1 2 1 2 1 3 subscripts for term 5 230.0 0. 0.01 0. 0. 0. 0. 0. 0. 0. 0. term 5 1 2 1 3 1 3 subscripts for term 6 3720.0 0. 0.06 0. 0. 0. 0. 0. 0. 0. 0. term 6 1 1 1 2 1 3 subscripts for term 7 58825. -23.87 0.265 0. 0. 0. 0. 0. 0. 0. 0. term 7 1 1 1 2 1 4 subscripts for term 8 45424. -18.7900 0.100000 0. 0. 0. 0. 0. 0. 0. 0. term 8 1 1 1 3 1 4 subscripts for term 9 11470.0 -18.7900 0.130000 0. 0. 0. 0. 0. 0. 0. 0. term 9 1 2 1 3 1 4 subscripts for term 10 1975.00 0. 0.035000 0. 0. 0. 0. 0. 0. 0. 0. term * 0 msite 1 jfix 4 1.5000000000000D-02 -------------------------------------------------------- Ganguly preliminary wohl model fit GrPyAlSp(G) Grossular-pyrope-almandine-spessartine 1 4 3 isp(1), ist(1) gr py alm endmember names (3(a8,1x)) spess 0 0 0 0 endmember flags 0.0 1. 0.09 0.0 1. 0.0 0. 1. 0.09 3 subdivision ranges and model 17 4 iterm, iord 1 2 1 2 1 1 0 0 subscripts for term 1 59304. -10.5 .036 0. 0. 0. 0. 0. 0. 0. 0. term 1 w12 1 1 1 1 1 2 0 0 subscripts for term 2 25860. -10.5 .174 0. 0. 0. 0. 0. 0. 0. 0. term 2 w21 1 3 1 3 1 1 0 0 subscripts for term 3 2619. -5.07 .09 0. 0. 0. 0. 0. 0. 0. 0. term 3 w13 1 1 1 1 1 3 0 0 subscripts for term 4 20319. -5.07 .09 0. 0. 0. 0. 0. 0. 0. 0. term 4 w31 1 4 1 4 1 1 0 0 subscripts for term 5 1425.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 5 w14 1 1 1 1 1 4 0 0 subscripts for term 6 1425.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 6 w41 1 2 1 2 1 3 0 0 subscripts for term 7 6351. 0. .06 0. 0. 0. 0. 0. 0. 0. 0. term 7 w23 1 2 1 3 1 3 0 0 subscripts for term 8 2085. 0. .009 0. 0. 0. 0. 0. 0. 0. 0. term 8 w32 1 2 1 4 1 4 0 0 subscripts for term 9 30345. -15.6 0. 0. 0. 0. 0. 0. 0. 0. 0. term 9 w24 1 2 1 2 1 4 0 0 subscripts for term 10 30345. -15.6 0. 0. 0. 0. 0. 0. 0. 0. 0. term 10 w42 1 3 1 3 1 4 0 0 subscripts for term 11 1860.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 11 w34 1 3 1 4 1 4 0 0 subscripts for term 12 1860.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 12 w43 1 1 1 2 1 3 0 0 subscripts for term 13 58269. -15.57 .2295 0. 0. 0. 0. 0. 0. 0. 0. term 13 (w12+w21+w13+w31+w23+w32)/2 1 1 1 2 1 4 0 0 subscripts for term 14 74352. -26.1 .105 0. 0. 0. 0. 0. 0. 0. 0. term 14 (w12+w21+w14+w41+w24+w42)/2 1 1 1 3 1 4 0 0 subscripts for term 15 14754. -5.07 .09 0. 0. 0. 0. 0. 0. 0. 0. term 15 (w13+w31+w14+w41+w34+w43)/2 1 2 1 3 1 4 0 0 subscripts for term 16 36423. -15.6 .0345 0. 0. 0. 0. 0. 0. 0. 0. term 16 (w23+w32+w24+w42+w34+w43)/2 1 1 1 2 1 3 1 4 subscripts for term 17 91899. -31.17 .2295 0. 0. 0. 0. 0. 0. 0. 0. term 17 (w12+w21+w13+w31+w14+w41+w23+w32+w24+w42+w34+w43)/2 0 msite 1 jfix 4 1.5000000000000D-02 -------------------------------------------------------- Ganguly preliminary wohl model fit GrPyAl(G) Grossular-pyrope-almandine 1 3 3 isp(1), ist(1) gr py alm endmember names (3(a8,1x)) 0 0 0 endmember flags 0.0 1. 0.1 0.0 1. 0.1 3 subdivision ranges and model 7 3 iterm, iord 1 2 1 2 1 1 0 0 subscripts for term 1 59304. -10.5 .036 0. 0. 0. 0. 0. 0. 0. 0. term 1 w12 1 1 1 1 1 2 0 0 subscripts for term 2 25860. -10.5 .174 0. 0. 0. 0. 0. 0. 0. 0. term 2 w21 1 3 1 3 1 1 0 0 subscripts for term 3 2619. -5.07 .09 0. 0. 0. 0. 0. 0. 0. 0. term 3 w13 1 1 1 1 1 3 0 0 subscripts for term 4 20319. -5.07 .09 0. 0. 0. 0. 0. 0. 0. 0. term 4 w31 1 2 1 2 1 3 0 0 subscripts for term 7 6351. 0. .06 0. 0. 0. 0. 0. 0. 0. 0. term 7 w23 1 2 1 3 1 3 0 0 subscripts for term 8 2085. 0. .009 0. 0. 0. 0. 0. 0. 0. 0. term 8 w32 1 1 1 2 1 3 0 0 subscripts for term 13 58269. -15.57 .2295 0. 0. 0. 0. 0. 0. 0. 0. term 13 (w12+w21+w13+w31+w23+w32)/2 0 msite 0 jfix -------------------------------------------------------- Ganguly preliminary wohl model fit G Grossular-pyrope-almandine 1 3 3 isp(1), ist(1) gr py alm endmember names (3(a8,1x)) 0 0 0 endmember flags 0.04 0.34 0.02 0.04 0.18 0.02 0 subdivision ranges and model 7 3 iterm, iord 1 2 1 2 1 1 0 0 subscripts for term 1 59304. -10.5 .036 0. 0. 0. 0. 0. 0. 0. 0. term 1 w12 1 1 1 1 1 2 0 0 subscripts for term 2 25860. -10.5 .174 0. 0. 0. 0. 0. 0. 0. 0. term 2 w21 1 3 1 3 1 1 0 0 subscripts for term 3 2619. -5.07 .09 0. 0. 0. 0. 0. 0. 0. 0. term 3 w13 1 1 1 1 1 3 0 0 subscripts for term 4 20319. -5.07 .09 0. 0. 0. 0. 0. 0. 0. 0. term 4 w31 1 2 1 2 1 3 0 0 subscripts for term 7 6351. 0. .06 0. 0. 0. 0. 0. 0. 0. 0. term 7 w23 1 2 1 3 1 3 0 0 subscripts for term 8 2085. 0. .009 0. 0. 0. 0. 0. 0. 0. 0. term 8 w32 1 1 1 2 1 3 0 0 subscripts for term 13 58269. -15.57 .2295 0. 0. 0. 0. 0. 0. 0. 0. term 13 (w12+w21+w13+w31+w23+w32)/2 0 msite 0 jfix -------------------------------------------------------- This is an unpublished garnet model parameterization by Edgar Dachs, Salzburg. GtD 1 3 3 isp(1), ist(1) gr py alm endmember names (3(a8,1x)) 0 0 0 endmember flags 0.00 .20 0.025 0.0 0.35 0.025 0 subdivision ranges and model 7 3 iterm, iord 1 1 1 1 1 2 subscripts for term 1 20628.0 -18.7500 0.5016 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 2 1 2 subscripts for term 2 65949.0 -18.7500 -.0399 0. 0. 0. 0. 0. 0. 0. 0. term 2 1 1 1 1 1 3 subscripts for term 3 31557.0 -8.04 0.1989 0. 0. 0. 0. 0. 0. 0. 0. term 3 1 1 1 3 1 3 subscripts for term 4 -8508.0 -1.353 .123 0. 0. 0. 0. 0. 0. 0. 0. term 4 1 2 1 2 1 3 subscripts for term 5 678.0 0. -.0003 0. 0. 0. 0. 0. 0. 0. 0. term 5 1 2 1 3 1 3 subscripts for term 6 3414.0 0. 0.0663 0. 0. 0. 0. 0. 0. 0. 0. term 6 1 1 1 2 1 3 subscripts for term 7 86271.5 -34.705 .5573 0. 0. 0. 0. 0. 0. 0. 0. term 7 0 msite 0 jfix -------------------------------------------------------- Gt 1 3 3 isp(1), ist(1) gr py alm endmember names (3(a8,1x)) 0 0 0 endmember flags 0.00 1. 0.05 0.0 1.0 0.05 0 subdivision ranges and model 7 3 iterm, iord 1 1 1 1 1 2 subscripts for term 1 21560.0 -18.7900 0.100000 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 2 1 2 subscripts for term 2 69200.0 -18.7900 0.100000 0. 0. 0. 0. 0. 0. 0. 0. term 2 1 1 1 1 1 3 subscripts for term 3 20320 -5.08 0.17 0. 0. 0. 0. 0. 0. 0. 0. term 3 1 1 1 3 1 3 subscripts for term 4 2620.0 -5.08 0.09 0. 0. 0. 0. 0. 0. 0. 0. term 4 1 2 1 2 1 3 subscripts for term 5 230.0 0. 0.01 0. 0. 0. 0. 0. 0. 0. 0. term 5 1 2 1 3 1 3 subscripts for term 6 3720.0 0. 0.06 0. 0. 0. 0. 0. 0. 0. 0. term 6 1 1 1 2 1 3 subscripts for term 7 58825. -23.87 0.265 0. 0. 0. 0. 0. 0. 0. 0. term 7 0 msite 0 jfix -------------------------------------------------------- GrPyAl(B) Grossular-pyrope-almandine, Berman '90 1 3 3 isp(1), ist(1) gr py alm endmember names (3(a8,1x)) 2 0 0 endmember flags 0. 1.00 0.050 0. 1.00 0.050 3 subdivision ranges and model 7 3 iterm, iord 1 1 1 1 1 2 subscripts for term 1 21560.0 -18.7900 0.100000 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 2 1 2 subscripts for term 2 69200.0 -18.7900 0.100000 0. 0. 0. 0. 0. 0. 0. 0. term 2 1 1 1 1 1 3 subscripts for term 3 20320 -5.08 0.17 0. 0. 0. 0. 0. 0. 0. 0. term 3 1 1 1 3 1 3 subscripts for term 4 2620.0 -5.08 0.09 0. 0. 0. 0. 0. 0. 0. 0. term 4 1 2 1 2 1 3 subscripts for term 5 230.0 0. 0.01 0. 0. 0. 0. 0. 0. 0. 0. term 5 1 2 1 3 1 3 subscripts for term 6 3720.0 0. 0.06 0. 0. 0. 0. 0. 0. 0. 0. term 6 1 1 1 2 1 3 subscripts for term 7 58825. -23.87 0.265 0. 0. 0. 0. 0. 0. 0. 0. term 7 0 msite 0 jfix -------------------------------------------------------- JdDi(G1) Jadeite-Diopside, Gasparik '85, ordered 1 2 1 isp(1), ist(1) jd di 0 0 endmember flags 650. 1.00 9.00 1 subdivision ranges and model 6 4 iterm, iord 1 1 1 2 0 0 0 0 subscripts for term 1 12600.0 -9.45000 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 0 0 subscripts for term 2 12600.0 -7.60000 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 1 1 1 2 1 2 0 0 subscripts for term 3 -12600.0 7.60000 0. 0. 0. 0. 0. 0. 0. 0. 0. term 3 1 1 1 1 1 1 1 2 subscripts for term 4 -21400.0 16.2000 0. 0. 0. 0. 0. 0. 0. 0. 0. term 4 1 1 1 1 1 2 1 2 subscripts for term 5 42800.0 -32.4000 0. 0. 0. 0. 0. 0. 0. 0. 0. term 5 1 1 1 2 1 2 1 2 subscripts for term 6 -21400.0 16.2000 0. 0. 0. 0. 0. 0. 0. 0. 0. term 6 0 msite 0 jfix -------------------------------------------------------- JdDi(G2) Jadeite-Diopside, Gasparik '85, disordered 1 2 2 isp(1), ist(1) jd di 0 0 endmember flags 0.100E+04 0. 9.00 1 subdivision ranges and model 6 4 iterm, iord 1 1 1 2 0 0 0 0 subscripts for term 1 12450.0 12.6300 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 0 0 subscripts for term 2 12430.0 -6.21000 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 1 1 1 2 1 2 0 0 subscripts for term 3 -12430.0 6.21000 0. 0. 0. 0. 0. 0. 0. 0. 0. term 3 1 1 1 1 1 1 1 2 subscripts for term 4 -22290.0 23.1900 0. 0. 0. 0. 0. 0. 0. 0. 0. term 4 1 1 1 1 1 2 1 2 subscripts for term 5 44580.0 -46.3800 0. 0. 0. 0. 0. 0. 0. 0. 0. term 5 1 1 1 2 1 2 1 2 subscripts for term 6 -22290.0 23.1900 0. 0. 0. 0. 0. 0. 0. 0. 0. term 6 0 msite 0 jfix -------------------------------------------------------- JdDi(W?) Wood? whoever entered this probably did it wrong. 1 2 1 isp(1), ist(1) di jd 0 0 endmember flags 0.500 0.550 0.100 0 subdivision ranges and model 2 3 iterm, iord 1 1 1 1 1 2 subscripts for term 1 19200.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 2 1 2 subscripts for term 2 29300.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- berman and brown 1984, cao-al2o3-sio2 melt model. casmelt 1 3 1 isp(1), ist(1) SIO2 AL2O3 CAO endmember names (3(a8,1x)) 0 0 0 endmember flags 0. 1. 0.01 0. 1. 0.01 4 subdivision ranges and model 12 4 iterm, iord 1 1 1 2 1 2 1 2 subscripts for term 1 63617.2 -23.7400 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 1 2 subscripts for term 2 0.164266E+07 -763.870 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 1 1 1 1 1 1 1 2 subscripts for term 3 -106635. 28.1300 0. 0. 0. 0. 0. 0. 0. 0. 0. term 3 1 1 1 3 1 3 1 3 subscripts for term 4 -898693. 240.770 0. 0. 0. 0. 0. 0. 0. 0. 0. term 4 1 1 1 1 1 3 1 3 subscripts for term 5 -350208. -48.6200 0. 0. 0. 0. 0. 0. 0. 0. 0. term 5 1 1 1 1 1 1 1 3 subscripts for term 6 -14081.8 -35.4900 0. 0. 0. 0. 0. 0. 0. 0. 0. term 6 1 2 1 3 1 3 1 3 subscripts for term 7 -455634. 2.47000 0. 0. 0. 0. 0. 0. 0. 0. 0. term 7 1 2 1 2 1 3 1 3 subscripts for term 8 -725166. 255.390 0. 0. 0. 0. 0. 0. 0. 0. 0. term 8 1 2 1 2 1 2 1 3 subscripts for term 9 -240215. 26.7000 0. 0. 0. 0. 0. 0. 0. 0. 0. term 9 1 1 1 1 1 2 1 3 subscripts for term 10 -.284791E+07 1046.35 0. 0. 0. 0. 0. 0. 0. 0. 0. term 10 1 1 1 2 1 2 1 3 subscripts for term 11 -.214904E+07 641.840 0. 0. 0. 0. 0. 0. 0. 0. 0. term 11 1 1 1 2 1 3 1 3 subscripts for term 12 209109. -313.360 0. 0. 0. 0. 0. 0. 0. 0. 0. term 12 0 msite 0 jfix -------------------------------------------------------- At ideal antigorite 1 2 48 isp(1), ist(1) at fat 0 0 endmember flags 0.6 0.98 0.03 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- B ideal brucite 1 2 1 isp(1), ist(1) br fbr 0 0 endmember flags 0.90 1. 0.02 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- P ideal periclase 1 2 1 isp(1), ist(1) per fper 0 0 endmember flags 0.90 1. 0.02 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix