| comments can be placed between models | provided, nothing is written in the | first 10 columns. -------------------------------------------------------- HP '96 Am Min, Non-ideal quasi ordered omphacite, i.e., compound formation only occurs for omph. This model should only be used in conjunction with Cpx(HP). The value of wdh appears discrepant with the value in HP '98. The interaction parameters here are from the Omphacite model distributed with the '00 Thermocalc program. Omph(HP) 1 4 1 number of species, not used number jd di omph hed 1 1 0 1 endmember flags 0. 1. 0.05 0. 1. 0.05 0. 1. 0.05 0 subdivision ranges and model 6 2 6 2nd order terms 1 1 1 2 wdj 26000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 3 woj 16000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 3 wod 16000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 4 woh 17000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 4 whj 24000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 2 wdh 4000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 4 sites (m1a, m1b, m2b, m2a (no longer dependent)) 2 0.5 2 species on m2a, mutiplicity = 1/2 2 0. 2 terms, z(m2a,na) = x(11) + x(13) 1 type 1 term 1. 1 3 1 1. 1 1 2 0.5 2 species on m2b, mult. = 1/2 1 0. 1 1.0 1 1 3 0.5 3 species on m1a, mult = 1/2 2 0. 1 1. 1 1 1 1. 1 3 1 0. 1 1. 1 2 3 0.5 3 species on m1b, mult = 1/2 2 0. 1 1. 1 2 1 1. 1 3 1 0. 1 1. 1 1 0 jfix -------------------------------------------------------- HP '96 Am Min, Non-ideal disordered cpx Note HP '98 give Wdh = 2500 j/mol Cpx(HP) 1 3 2 number of species, number of sites jd di hed 0 0 0 endmember flags 0. 1. 0.02 0 1 0.02 0 subdivision ranges and model 3 2 3 2nd order terms 1 1 1 2 wdj 26000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 3 whj 24000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 2 wdh 4000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 simple config entropy model 0 jfix -------------------------------------------------------- Scapolite Mizzonite-Meionite model for Rainer Abart's ETH Dissertation, see thesis for sources. Scp 1 2 1 isp(1), ist(1) miz me 0 0 endmember flags 0.0 1.0 0.07 0 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 0.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 0.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 2 sites (A, T) 2 4. 2 species on A site, multiplicity = 4 1 0. z(A,Na) = x(11) / 4 1 1st order term 0.25 1 1 2 12. 2 species on T, mutiplicity = 12 1 0.5 z(T,Al) = 1/2 - x(11)/12 1 1st order term -0.08333333333 1 1 0 jfix -------------------------------------------------------- Fluid, this model is for P-T projections, ala Connolly and Trommsdorff CMP 1991. F 1 2 0 isp(1), ist(1) CO2 H2O 0 0 endmember flags 1.02 1.0 24. 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Fluid, this model is for P-T projections, ala Connolly and Trommsdorff CMP 1991. F1 1 2 0 isp(1), ist(1) CO2 H2O 0 0 endmember flags 0.0 0.5 0.005 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix Fluid, this model is for P-T projections, ala Connolly and Trommsdorff CMP 1991. F2 1 2 0 isp(1), ist(1) H2O CO2 0 0 endmember flags 0.0 0.5 0.005 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- holland et al. 1998, EJM. | this is a non-ideal model for aluminous | chlorite (i.e., chlorite more aluminous than | the clin-daph join) formulated | to be consistent with holland and powells | suggested site population, i.e., Mg and Fe mix | on 4 M2+M3 sites, Mg, Fe, and Al mix on the M1 site, | and Al and Si mix on 2 T2, and M4 is occupied by | Al in aluminous chlorites. For perplex it is not | necessary to consider the afchl endmember for these | compositions becuase the endmember has negligible | contribution to the total energy of the solution | (see fig 4 of holland et al). aChl | solution name (a10 format). 2 | 2 independent mixing site. 2 1 2 1 | 2 species mix on each site, site multiplicity undefined, see below. clin daph ames | endmember names (3 per line, 3(a8,1x) format), this order implies: fame | x(11)=x(mg); x(12) = x(fe); x(21) = x(SiAl,t2); x(22) = x(Al2,t2) 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. .0 1.0 .045 0 | transform subdivision for site 1 (gives range of x(mg)) .0 1. .07 0 | transform subdivision for site 2 (gives range of tschermaks). 3 4 | iterm, iord. 1 1 2 1 1 2 2 1 w(cl-da) 2500. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 2 2 2 1 w(am-cl) 18000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 2 2 1 w(am-da) 20500. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 | msite, 3 sites, M2+M3, M1, T2. 2 4. | 2 species on m2+m3, 4 sites per formula unit. 1 0. | z(11) = x(mg,m2) = x(11) so 1 term and a0(11) = 0. 1 | 1-x term 1. 1 1 | 2 2. | 2 species on T2, 2 sites per formula unit. 1 0.5 | z(21) = z(al,t2) = x(22)/2 + 1/2, so 1 term and a0(21) = 0.5 1 | 1-x term 0.5 2 2 | 3 1. | 3 species on M4, 1 site per formula unit. 1 0. | z(31) = z(al,m4) = x(22), so 1 term and a0(31) = 0.0 1 | 1-x term 1.0 2 2 | 2 0. | z(32) = x(mg,m2) - x(mg,m2)*x(al2,t2) so 2 terms and a0(32) = 0. 1 | 1-x term 1.0 1 1 | 2 | 2-x term -1.0 1 1 2 2 | 0 | jfix ----------------------------------------------------------- | holland et al. 1998, EJM. | this is the complete non-ideal model for | chlorite, in contrast to the aChl and sChl models. | i would recommend using sChl and aChl models in | place of this model to save time and space. Chl 2 3 0 2 0 clin ames afchl daph fame fafchl 0 0 0 0 0 0 |endmember flags 0. 1. 0.05 0. 1. 0.05 0 |transform subdivision for site 1 0. 1. 0.05 0 |transform subdivision for site 2 6 4 |iterm, iord 1 1 2 1 1 2 2 1 |w(cl-am) 18000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 1 3 2 1 |w(cl-af) 18000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 1 1 3 2 1 |w(am-af) 18000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 1 1 2 2 |w(cl-da) 2500. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 1 1 1 2 2 |w(da-am) 20500. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 2 1 1 1 2 2 |w(da-af) 20500. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 |msite 3 1 |M1 site 1 0. |z(al,M1) 1 terms (X's), no constant 1 1. 1 2 2 0. |z(mg,M1) 2 terms (X's), no constant 1 1. 2 1 2 -1. 1 2 2 1 2 4 |M2+M3 1 0. |z(mg,m2+m3)= x(mg)=x21 1 term no cst 1 1. 2 1 3 1 |M4 2 0 |z(al,m4) = x11 + x12 2 terms no cst 1 1. 1 1 1 1. 1 2 3 0 |z(mg,m4)= x21- x21 x12 - x21 x11 3 terms no cst 1 1. 2 1 2 -1 2 1 1 2 2 -1 2 1 1 1 2 2 |T2 site 2 0 |z(al,T2)= x12 + 1/2 x11 2 terms no cst 1 1 1 2 1 0.5 1 1 0 |jfix ------------------------------------------------------ | holland et al. 1998, EJM. | this is the non-ideal model for siliceous chlorite. | using this model together with aChl provides | a good approximation for the complete Chl model. sChl 2 2 0 2 0 clin afchl daph fafchl 0 0 0 0 |endmember flags 0. 1. 0.07 0 |transform subdivision for site 1 0. 1. 0.07 0 |transform subdivision for site 2 3 4 |iterm, iord 1 1 2 1 1 3 2 1 |w(cl-af) 18000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 1 1 2 2 |w(cl-da) 2500. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 2 1 1 1 2 2 |w(da-af) 20500. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 |msite 2 5 |M1+M2+M3 1 0. |z(mg,m2+m3)= x(mg)=x21 1 term no cst 1 1. 2 1 3 1 |M4 1 0. |z(al,m4) = x11 1 terms no cst 1 1. 1 1 2 0. |z(mg,m4)= x21 - x11 x21 2 terms no cst 1 1. 2 1 2 -1. 2 1 1 1 2 2 |T2 site 1 0. |z(al,T2)= 1/2 x11 1 terms no cst 1 0.5 1 1 0 |jfix -------------------------------------------------------- Talc as an ideal H&P solution. T | solution name (a10 format). 2 | 2 independent mixing site. 2 1 2 1 | 2 species mix on each site, site multiplicity undefined, see below. ta fta tats | endmember names (3 per line, 3(a8,1x) format), this order implies: ftat | x(11)=x(mg); x(12) = x(fe); x(21) = x(SiAl,t2); x(22) = x(Al2,t2) 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 45.0 0.990 6.00 1 | pseudocompound model for site 1 (gives range of x(mg)) 0.015 1. 0.12 0 | pseudocompound model for site 2 (gives range of tschermaks). 0 0 | iterm, iord. 3 | msite, 3 sites, M1, M2, T2. 2 2. | 2 species on M1, 2 sites per formula unit. 1 0. | z(11) = x(mg,m1) = x(11) so 1 term and a0(11) = 0. 1 | 1-x term 1. 1 1 | 2 2. | 2 species on T2, 2 sites per formula unit. 1 0. | z(21) = z(si,t2) = x(21)/2, so 1 term and a0(21) = 0 1 | 1-x term 0.5 2 1 | 3 1. | 3 species on M2, 1 site per formula unit. 1 0. | z(31) = z(al,m2) = x(22), so 1 term and a0(31) = 0. 1 | 1-x term 0. 2 2 | 2 0. | z(32) = z(mg,m2) = x(11)(1-z(31)) = x(11) - x(11)x(22) 1 | 1-x term 1. 1 1 | 2 | 2-x term -1. 1 1 2 2 | 0 | jfix -------------------------------------------------------- Biotite mg-fe-ts, non-ideal mg-fe consistent with HP '98. further assume ts-M is the same for ann-sdph as for east-phl. Bio | solution name (a10 format). 2 | 2 independent mixing site. 2 1 2 1 | 2 species mix on each site, site multiplicity undefined, see below. phl ann east | endmember names (3 per line, 3(a8,1x) format), this order implies: sdph | x(11)=x(mg); x(12) = x(fe); x(21) = x(SiAl,t2); x(22) = x(Al2,t2) 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0.0 1.0 0.038 0 | pseudocompound model for site 1 (gives range of x(mg)) 0.0 1. 0.07 0 | pseudocompound model for site 2 (gives range of tschermaks). 4 4 | iterm, iord. 1 1 1 2 0 0 0 0 3W(Mg-Fe)X(Mg)X(Fe) 9000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 2 0 0 -2W(Mg-Fe)X(Mg)X(Fe)X(Ts) -6000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 1 2 2 0 0 0 0 W(Phl-Ts)X(Ts)(1-X(Ts)) 10000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 2 2 2 W(Mg-Fe)X(Mg)X(Fe)X(Ts)^2 3000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 | msite, 3 sites, M1, M3, T2. 2 2. | 2 species on M1, 2 sites per formula unit. 1 0. | z(11) = x(mg,m1) = x(11) so 1 term and a0(11) = 0. 1 | 1-x term 1. 1 1 2 2. | 2 species on T2, 2 sites per formula unit. 1 0.5 | z(21) = z(al,t2) = x(22)/2 + 1/2, so 1 term and a0(21) = 0.5 1 | 1-x term 0.5 2 2 3 1. | 3 species on M3, 1 site per formula unit. 1 0. | z(31) = z(al,m3) = x(22), so 1 term and a0(31) = 0. 1 | 1-x term 1.0 2 2 2 0. | z(32) = x(mg,m3) - x(mg,m2)*x(al2,t2) so 2 terms and a0(32) = 0. 1 | 1-x term 1. 1 1 2 | 2-x term -1.0 1 1 2 2 0 | jfix -------------------------------------------------------- St 1 2 4 isp(1), ist(1) mst fst 1 0 endmember flags 0.0 0.5 0.024 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Ctd Non-ideal Holland et al. 1998 1 2 1 isp(1), ist(1) mctd fctd 0 0 endmember flags 60.0 1.00 26.00 1 subdivision ranges and model 1 2 iterm, iord 1 1 1 2 1000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 msite 0 jfix -------------------------------------------------------- Carp 1 2 1 isp(1), ist(1) mcar fcar 0 0 endmember flags 50.0 0.990 24.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Crd 1 2 2 isp(1), ist(1) crd fcrd 0 0 endmember flags 0.0 1.0 .080 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- ideal anhydrous/hydrous mg/fe cordierite model. hCrd 2 2 1 2 1 isp(1), ist(1) crd fcrd hcrd hfcrd 0 0 0 0 endmember flags 0.0 1.0 .060 0 subdivision ranges and model 0.0 1.0 .10 0 0 0 iterm, iord 2 msite, perhaps this is unnecessary here. 2 2. 2 species on M, 2 sites per formula unit. 1 0. z(11) = x(mg,m) = x(11) so 1 term and a0(11) = 0. 1 1-x term 1. 1 1 2 1. 2 species on H, 1 sites per formula unit. 1 0. z(11) = x(mg,m) = x(11) so 1 term and a0(11) = 0. 1 1-x term 1. 2 1 0 jfix -------------------------------------------------------- | ideal model for pumpellyite (considering only | the endmembers mg-pmp, fe-pmp, julg. | Claudio.Mazzoli@bristol.ac.uk /JADC Pmp | solution name (a10 format). 1 | 1 independent mixing site. 3 1 | x(11)=x(mg,al5) x(12)=x(fe,al5) x(13)=x(fe,fe5). mpmp fpmp julg | endmember names 0 0 0 | endmember flags 0. 1. 0.2 0. 1. 0.2 0 | pseudocompound model cartesian, isopleths of mu 0 0 | iterm, iord. 2 | msite, 2 sites, X, X1+Y. 2 1. | 2 species on X, 1 site per formula unit. 1 0. | z(11) = z(mg,X) = x(11) 1 1. 1 1 2 5. | 2 species on X1+Y, 5 sites per formula unit. 1 0. | z(21) = z(fe,X1+Y) = x(13). 1 1. 1 3 0 -------------------------------------------------------- | ideal model for mg-al tshermaks in clintonite assuming | endmembers: | ct1 = Ca(Mg,m2)(AlMg,M1)2 (Al,T2)2 (AlSi,T1)2 | ct2 = Ca(Mg,m2)(MgMg,M1)2 (Al,T2)2 (SiSi,T1)2 Clint 1 2 2 | isp(1), ist(1) ct1 ct2 0 0 | endmember flags 0. 1. 0.045 0 | cartesian subdivision 0 0 | iterm, iord. 2 | 2 independent mixing sites M1 and T1 2 2. | 2 species on M1, 2 sites per formula unit. 1 0.5 | z(11) = z(al,m1) = 1/2 - x(12)/2 1 -0.5 1 2 2 2. | 2 species on T1, 2 sites per formula unit. 1 0.5 | z(11) = z(al,t1) = 1/2 - x(12)/2 1 -0.5 1 2 0 | jfix -------------------------------------------------------- | ideal model for mg-fe sudoite assuming | mg fe and al are distributed over | 4 m1 sites. in this case the site | fractions of the divalent cations are | 1/2 the mole fractions of the corresponding | endmember. x(11) = x(fsu), x(12) = x(msu). | Ken Livi (EPS_ZJKL@JHUVMS.HCF.JHU.EDU) /JADC Sud(Livi) 1 2 2 | isp(1), ist(1) fsud sud 0 0 | endmember flags 0. 1. 0.045 0 | cartesian subdivision 0 0 | iterm, iord. 1 | 1 independent mixing site, M1. 3 4. | 3 species on M1, 4 sites per formula unit. 1 0. | z(11) = z(fe,m1) = x(11) / 2 1 0.5 1 1 1 0. | z(12) = z(mg,m1) = x(12) / 2 1 0.5 1 2 0 | jfix -------------------------------------------------------- | ideal model for mg-fe sudoite assuming | mg and fe are distributed over | 2 sites. Sud 1 2 2 | isp(1), ist(1) fsud sud 0 0 | endmember flags 0. 1. 0.045 0 | cartesian subdivision 0 0 | iterm, iord. 0 0 | jfix -------------------------------------------------------- HP '98 Non-ideal amphibole Cumm 1 2 7 isp(1), ist(1) cumm grun 0 0 endmember flags 18.0 0.990 20.00 1 subdivision ranges and model 1 2 iterm, iord 1 1 1 2 17500. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 msite 0 jfix -------------------------------------------------------- anthophyllite Anth 1 2 7 isp(1), ist(1) fanth anth 0 0 endmember flags 14.0 0.990 21.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- "anthophyllite" a compromise model using the clinoamphibole Fe-endmember, cumm and fap should be excluded. A 1 2 7 isp(1), ist(1) grun ap 0 0 endmember flags 14.0 0.990 7.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Gl 1 2 3 isp(1), ist(1) gl fgl 0 0 endmember flags 20.0 0.990 7.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Tr 1 2 5 isp(1), ist(1) ftr tr 0 0 endmember flags 20.0 0.990 7.00 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- tr-ftr-ts-fts non-ideal model for holland and powell. assumes 2 M2 sites are coupled to 4 T1 sites. site multiplicity of the T1 site is reduced to 2, this is suggested by HP98 to account for charge balance constraints. JADC Nov, 98. TrTs | solution name (a10 format). 2 | 2 independent mixing site. 2 1 2 1 | 2 species mix on each site, site multiplicity undefined, see below. tr ftr ts | endmember names (3 per line, 3(a8,1x) format), this order implies: fts | x(11)=x(mg); x(12) = x(fe); x(21) = x(Si2,t1); x(22) = x(SiAl,t1) 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 25. 1.0 8. 1 | transform subdivision for site 1 (gives range of x(mg)) .0 1. .1 0 | transform subdivision for site 2 (gives range of tschermaks). 1 2 | iterm, iord. 2 1 2 2 20000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 | msite, 2 sites, M2, T1. 2 2. | 2 species on T1, 4 sites per formula unit. 1 0.0 | z(11) = z(al,t1) = x(22)/2, so 1 term and a0(11) = 0 1 | 1-x term 0.5 2 2 | 3 2. | 3 species on M1, 2 sites per formula unit. 1 0.0 | z(21) = z(al,m1) = x(22), so 1 term and a0(21) = 0 1 | 1-x term 1.0 2 2 | 2 0. | z(22) = x(fe)*(1-z(al,m1)) = x(21) - x(21)*x(22) 1 | 1-x term 1.0 2 1 | 2 | 2-x term -1.0 2 1 2 2 | 0 | jfix -------------------------------------------------------- tr-ts-parg non-ideal model for holland and powell. assumes 2 M2 sites are coupled to 4 T1 sites. site multiplicity of the T1 site is reduced to 2, this is suggested by HP98 to account for charge balance constraints. but doesn't make a lot of sense for the tr-parg mixing. JADC Nov, 98. O. Jagoutz, revised April 02. trtspg | solution name (a10 format). 1 | 1 independent mixing site. 3 1 | 3 species mix on each site, site multiplicity undefined, see below. tr ts parg | x(11)=x(tr); x(12) = x(ts); x(13) = x(parg) 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0. 1.0 0.1 0. 1.0 0.1 3 | barycentric subdivision 3 2 | iterm, iord 1 1 1 2 20000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 3 | this term should be between 30->44 kJ. 38000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 3 -25000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 | msite, 3 sites, A, M2, T1. 2 1. | 2 species on A (V, Na), 1 site per formula unit. 1 0. | z(Na,A) 1 1 1 3 2 2. | 2 species on T1, 4 sites per formula unit. 2 0.0 | z(11) = z(al,t1) = (x(12)+x(13))/2, so 2 terms and a0(11) = 0 1 | 1-x term 0.5 1 2 | 1 | 1-x term 0.5 1 3 | 2 2. | 2 species on M1, 2 sites per formula unit. 2 0.0 | z(21) = z(al,m1) = x(12) + x(13)/2, so 2 terms and a0(21) = 0 1 | 1-x term 1.0 1 2 | 1 | 1-x term 0.5 1 3 | 0 | jfix -------------------------------------------------------- tr-ts-parg non-ideal model for holland and powell. assumes 2 M2 sites are coupled to 4 T1 sites. site multiplicity of the T1 site is reduced to 2, this is suggested by HP98 to account for charge balance constraints. but doesn't make a lot of sense for the tr-parg mixing. assume Na on the A-site is coupled to Al on M2. JADC Nov, 98. Oli Jagoutz revised april 9, 2002 HP Am Min 99, 84:1-14 in contrast to the earlier version of TrTsPg this version assumes the A site is decoupled from M2 TrTsPg | solution name (a10 format). 2 | 1 independent mixing site. 2 1 3 1 tr ftr parg | x(11)=x(mg); x(12) = x(fe) fparg ts fts | x(21)=x(tr); x(22) = x(parg); x(23) = x(ts) 0 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 0 0. 1.0 0.061 0. 1.0 0.061 0 3 2 | iterm, iord. 2 2 2 3 -25000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 1 2 3 20000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 2 2 1 | this term should be between 30->44 kJ 38000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 | msite, 4 sites, A, M1, M2, T1. 2 1. | 2 species on A (V, Na), 1 site per formula unit. 1 0. | z(Na,A) 1 1 2 2 2 4. | 2 species on T1, 4 sites per formula unit, but fake multiplicity of 2. 2 0.0 | z(11) = z(al,t1) = (x(22)+x(23))/2, so 2 terms and a0(11) = 0 1 | 1-x term 0.5 2 2 | 1 | 1-x term 0.5 2 3 | 2 3. | 2 species on M1, 3 sites per formula unit 1 0.0 | z(21) = z(mg,m1) = x(11) 1 1.0 1 1 3 2. | 3 species on M2, 2 sites. 2 0.0 | z(31) = z(al,m2) = x(ts) + 1/2 x(parg) 1 1.0 2 3 1 0.5 2 2 3 0.0 | z(32) = z(mg,m2) = (1-z(al,m2))*x(mg) 1 1.0 1 1 2 -1. 1 1 2 3 2 -.5 1 1 2 2 0 | jfix -------------------------------------------------------- tr-ts-gl non-ideal model for holland and powell. assumes 2 M2 sites are coupled to 4 T1 sites. site multiplicity of the T1 site is reduced to 2, this is suggested by HP98 to account for charge balance constraints. what about A? JADC 6/00. GlTrTs | solution name (a10 format). 2 | 1 independent mixing site. 2 1 3 1 | tr ftr gl | x(11)=x(mg); x(12) = x(fe) fgl ts fts | x(21)=x(tr); x(22) = x(gl); x(23) = x(ts) 0 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 0 0.01 1.0 0.063 0.01 1.0 0.063 0 1 2 | iterm, iord. 2 1 2 3 20000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 | msite, 4 sites, M4, M1, M2, T1. 2 2. | 2 species on T1, 4 sites per formula unit, but fake multiplicity of 2. 1 0.0 | z(11) = z(al,t1) = x(23)/2, so 1 terms and a0(11) = 0 1 | 1-x term 0.5 2 3 | 2 3. | 2 species on M1, 3 sites per formula unit 1 0.0 | z(21) = z(mg,m1) = x(11) 1 1.0 1 1 2 2. | 2 species on m4, 2 sites pfu 1 0.0 | z(31) = z(na,m4) = x(22) 1 1.0 2 2 3 2. | 3 species on M2, 2 sites. 1 0.0 | z(31) = z(mg,m2) = x(tr)*x(mg) = x(21)*x(11) 2 1.0 1 1 2 1 1 0.0 | z(32) = z(fe,m2) = x(tr)*x(fe) = x(21)*x(12) 2 1.0 1 2 2 1 0 | jfix -------------------------------------------------------- tr-ed 1 2 1 isp(1), ist(1) tr ed 0 0 endmember flags 0.100 0.900 0.100 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- | a model for tschermaks and glaucophane | substitution into Mg-tremolite. jadc trhbgl | solution name (a10 format). 1 | 1 independent mixing site. 3 1 | 3 species mix on the site, site multiplicity undefined. tr hb gl | endmember names 0 0 0 | endmember flags 0. 1. 0.2 0. 1. 0.2 0 | pseudocompound model cartesian, isopleths of mu 0 0 | iterm, iord. 3 | msite, 3 sites, 1(Ca,Na), 2(Mg,Al), 3(Si,Al) 2 2. | 2 species on 1, 2 sites per formula unit. 1 0. | z(11) = z(na,1) = x(13) = x(gl) 1 1. 1 3 2 2. | 2 species on 2, 2 sites per formula unit. 2 0. | z(21) = z(mg,2) = x(tr) + x(hb)/2 = x(11) + x(12)/2 1 1. 1 1 1 0.5 1 2 2 4. | 2 species on 3, 4 sites per formula unit. 1 0. | z(31) = z(al,3) = x(hb)/4 = x(12)/4 1 0.25 1 2 0 -------------------------------------------------------- | a model for tschermaks and glaucophane | substitution into Fe/Mg-tremolite. jadc TrHbGl | solution name 2 | 2 independent mixing sites. 2 1 3 1 | 2 species on site 1(Mg/Fe) 3 on site 2 (tr,hb,gl). tr ftr hb | this order implies: x(11) = x(mg), x(12) = x(fe), fhb gl fgl | x(21) = x(tr), x(22) = x(hb) and x(23) = x(gl). 0 0 0 0 0 0 | endmember flags 0. 1. 0.125 0 | site 1 pseudocompound model mg/fe cartesian 0. 1. 0.2 0 1. 0.2 0 | site 2 pseudocompound model x1=tr, x2=hb cartesian 0 0 | iterm, iord. 4 | msite, 4 sites, 1(Ca,Na), 2(Si,Al), 3(Mg,Fe), 4(Mg,Fe,Al) 2 2. | 2 species on 1, 2 sites per formula unit. 1 0. | z(11) = z(na,1) = x(23) = x(gl) 1 1. 2 3 2 4. | 2 species on 2, 4 sites per formula unit. 1 0. | z(21) = z(al,2) = x(hb)/4 + = x(22)/4 1 0.25 2 2 2 3. | 2 species on 3, 3 sites per formula unit. 1 0. | z(31) = z(mg,3) = x(mg) = x(11) 1 1. 1 1 3 2. | 3 species on 4, 2 sites. 2 0. | z(41) = z(al,4) = x(gl) + x(hb)/2 1 1. 2 3 1 0.5 2 2 3 0. | z(42) = z(mg,4) = z(mg,3) (1 - z(al,4)) = x(11) - x(11)x(23) - .5 x(11)x(22) 1 1. 1 1 2 -1. 1 1 2 3 2 -0.5 1 1 2 2 0 -------------------------------------------------------- | ternary feldsar (furman & lindsley 1988) | for binary plagioclse this model is identical | to that of Newton et al. 1980, and for binary | alkali feldspar it is identical to Haselton et al. (1983). feldspar 1 | 1 independent mixing site. 3 1 | 3 species mix on this site, site multiplicity = 1 abh an san | endmember names (3 per line, 3(a8,1x) format) 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0. 1. 0.1 0. 1. 0.1 4 | compositional limits, increments, and model for pseudocompounds. 7 3 | iterm, iord. 1 1 1 1 1 3 W or ab 27320. -10.3 .394 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 3 1 3 W ab or 18810. -10.3 .394 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 2 1 3 W or an 47396. .0 .0 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 3 1 3 W an or 52468. .0 -.12 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 2 1 1 W ab an 28226. .0 .0 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 1 1 1 W an ab 8471. .0 .0 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 1 1 3 W an ab or 100045.5 -10.3 -0.76 0. 0. 0. 0. 0. 0. 0. 0. 2 | msite, 2 site (O-site and T-site) model for plag. 3 1. | 3 species on O-site, 1. site per formula unit. 1 0. | z(Na) = z(11) = x(11) so 1 term and a0(11) = 0. 1 | type 1 term 1. 1 1 | 1 0. | z(Ca) = z(12) = x(12) so 1 term and a0(11) = 0. 1 | type 1 term 1. 1 2 | 2 2. | 2 species on T-site, 2. sites per formula (al-avoidance model) 1 0.5 | z(Al) = x(12)/2 + 1/2 so 1 term and a0(21) = 1/2 1 | type 1 term 0.5 1 2 | 0 | jfix. -------------------------------------------------------- Pl(h) Newton et al 1981 1 2 1 isp(1), ist(1) abh an 1 0 endmember flags 0.300E-01 0.990 0.400E-01 0 subdivision ranges and model 2 3 iterm, iord 1 1 1 1 1 2 subscripts for term 1 8477.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 2 1 2 subscripts for term 2 28246.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 2 sites (O, T) kerrick and darkens Al-avoidance model: 2 1. 2 species on O site, multiplicity = 1. 1 0. z(O,Na) = x(11) 1 type 1 term 1. 1 1 2 2. 2 species on T, mutiplicity = 2. 1 0. z(T,Si) = x(11)/2 1 type 1 term 0.5 1 1 0 jfix -------------------------------------------------------- Pl Ideal 1 2 1 isp(1), ist(1) ab an 0 0 endmember flags 2.00 1. 12.0 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- | This is a model for the anorthite rich side of the | plagioclase solvus, the critical composition for the | Newton model is ca 32 mole % Ab and the critical T | is 839.8+ K AnPl Newton et al 1981 1 2 1 isp(1), ist(1) abh an 1 0 endmember flags = ab isn't, an is. 2. 0.31 6.0 2 assymetric subdivision 2 3 iterm, iord 1 1 1 1 1 2 subscripts for term 1 8477.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 2 1 2 subscripts for term 2 28246.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 2 sites (O, T) kerrick and darkens Al-avoidance model: 2 1. 2 species on O site, multiplicity = 1. 1 0. z(O,Na) = x(11) 1 type 1 term 1. 1 1 2 2. 2 species on T, mutiplicity = 2. 1 0. z(T,Si) = x(11)/2 1 type 1 term 0.5 1 1 0 jfix -------------------------------------------------------- | This is a model for the albite rich side of the | plagioclase solvus, the critical composition for the | Newton model is ca 68 mole % An and the critical T | is 839.8+ K AbPl Newton et al 1981 1 2 1 isp(1), ist(1) an abh 1 1 endmember flags = an isn't, ab isn't. 2. 0.67 27.0 2 assymetric subdivision 2 3 iterm, iord 1 2 1 2 1 1 subscripts for term 1 8477.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 1 1 1 subscripts for term 2 28246.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 2 sites (O, T) kerrick and darkens Al-avoidance model: 2 1. 2 species on O site, multiplicity = 1. 1 0. z(O,Na) = x(12) 1 type 1 term 1. 1 2 2 2. 2 species on T, mutiplicity = 2. 1 0. z(T,Si) = x(12)/2 1 type 1 term 0.5 1 2 0 jfix -------------------------------------------------------- | This is a model for the albite rich side of the | K-spar solvus Ab(h) JB Thompson for holland and powell 1 2 1 isp(1), ist(1) san abh 1 0 endmember flags 1.02 0.495 10.00 2 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 32098.0 -16.1356 0.469020 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 26470.0 -19.3810 0.387020 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Ab thompson and hovis 1979 for holland and powell 1 2 1 isp(1), ist(1) mic ab 1 0 endmember flags 1.02 0.495 6.00 2 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 32098.0 -16.1356 0.469020 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 26470.0 -19.3810 0.387020 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Kf(H) haselton et al. alkali feldspar. 1 isite 2 1 isp, ist abh sa 0 0 1.02 1. 9.0 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 1 1 2 27320.0 -10.3 0.394 0. 0. 0. 0. 0. 0. 0. 0. wg 1 1 1 2 1 2 18810.0 -10.3 0.394 0. 0. 0. 0. 0. 0. 0. 0. wg 0 nsite 0 jfix -------------------------------------------------------- or-rich compositions Kf(h) thompson and hovis 1979 1 2 1 isp(1), ist(1) abh san 1 0 endmember flags 1.02 0.495 6.00 2 subdivision ranges and model 2 3 iterm, iord 1 2 1 1 1 1 subscripts for term 1 32098.0 -16.1356 0.469020 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 2 1 1 subscripts for term 2 26470.0 -19.3810 0.387020 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- or-rich compositions Kf thompson and hovis 1979 1 2 1 isp(1), ist(1) ab mic 1 0 endmember flags 1.02 0.495 6.00 2 subdivision ranges and model 2 3 iterm, iord 1 2 1 1 1 1 subscripts for term 1 32098.0 -16.1356 0.469020 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 2 1 1 subscripts for term 2 26470.0 -19.3810 0.387020 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- full compositional range San thompson and hovis 1979 1 2 1 isp(1), ist(1) san abh 0 0 endmember flags 1.12 0. 12.0 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 32098.0 -16.1356 0.469020 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 26470.0 -19.3810 0.387020 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- full compositional range Kspar thompson and hovis 1979 1 2 1 isp(1), ist(1) kf ab 0 0 endmember flags 1.02 1. 10.0 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 32098.0 -16.1356 0.469020 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 26470.0 -19.3810 0.387020 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Connolly and Cesare C-O-H Fluid this model is for X(O) = 0-1 with regular spacing GCOHF 1 2 0 isp(1), ist(1) O2 H2 0 0 endmember flags 0.0 1.0 0.002 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 -------------------------------------------------------- Connolly and Cesare C-O-H Fluid this model is for X(O) > 1/3 with assymetric spacing GCOHF1 1 2 0 isp(1), ist(1) O2 H2 0 0 endmember flags 1.06 -.666 20. 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 -------------------------------------------------------- Connolly and Cesare C-O-H Fluid this model is for X(O) < 1/3 with assymetric spacing GCOHF2 1 2 0 isp(1), ist(1) O2 H2 0 0 endmember flags 1.06 .333 20. 1 subdivision ranges and model 0 0 iterm, iord 0 msite 0 -------------------------------------------------------- -------------------------------------------------------- H2OM 1 2 0 isp(1), ist(1) O2 H2 2 2 endmember flags 0.33333 0.33333 0.05 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 -------------------------------------------------------- Non-ideal margarite-paragonite to fit field data of Bucher-Nurminen et al (1983) and Frank (1983), critical T = 972 K, X(Ma) = 33%. from Haefner Dipl. (1998). MaPa Ideal margarite-paragonite 1 2 1 isp(1), ist(1) pa ma 1 0 endmember flags 3.00 1. 12.0 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 1 1 2 27269.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 1 2 19544.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 msite 0 jfix -------------------------------------------------------- | ideal model for potassium phengitic mica K-Phen | solution name (a10 format). 1 | 1 independent mixing site. 3 1 | 3 species mix on the site, site multiplicity undefined, see below. cel fcel mu | endmember names 0 0 0 | endmember flags 0. 1. 0.1 0.5 1. 0.1 0 | pseudocompound model cartesian, isopleths of mu 0 0 | iterm, iord. 2 | msite, 2 sites, M1, T2. 3 2. | 3 species on M1, 2 sites per formula unit. 3 0. | z(11) = z(al,m1) = x(13) + x(11)/2 + x(12)/2 1 1. 1 3 1 0.5 1 1 1 0.5 1 2 1 0. | z(12) = z(mg,m1) = x(11) / 2 1 0.5 1 1 2 2. | 2 species on T2, 2 sites per formula unit. 1 0. | z(21) = z(al,t2) = x(13)/2. 1 0.5 1 3 0 | jfix -------------------------------------------------------- | non-ideal hybrid model for K-Na phengitic mica | mixes Chaterjee and Froese (1975) with ideal phengite model KN-Phen | solution name (a10 format). 2 | 1 independent mixing site. 3 1 2 1 | 3 species mix on M site, 2 species on A site cel fcel mu | endmember names ncel nfcel pa | endmember names 0 0 0 0 0 0 | endmember flags 0. 1. 0.1 0.0 1. 0.1 0 | cartesian, isopleths of mu or pa 1.09 0. 12.0 1 | stretching for k-na 2 3 iterm, iord 2 1 2 2 2 2 subscripts for term 1 19456.0 1.65440 -.456100 0. 0. 0. 0. 0. 0. 0. 0. term 1 2 1 2 1 2 2 subscripts for term 2 12230.0 0.710440 0.665300 0. 0. 0. 0. 0. 0. 0. 0. term 2 3 | msite, 3 sites, M1, T2, A. 3 2. | 3 species on M1, 2 sites per formula unit. 3 0. | z(11) = z(al,m1) = x(13) + x(11)/2 + x(12)/2 1 1. 1 3 1 0.5 1 1 1 0.5 1 2 1 0. | z(12) = z(mg,m1) = x(11) / 2 1 0.5 1 1 2 2. | 2 species on T2, 2 sites per formula unit. 1 0. | z(21) = z(al,t2) = x(13)/2. 1 0.5 1 3 2 1. | 2 species on A, 1 site per formula unit. 1 0. | z(31) = z(k,a) = x(21) 1 1.0 2 1 0 -------------------------------------------------------- MuPa chatterjee & froese '75 1 2 1 isp(1), ist(1) mu pa 0 0 endmember flags 1.09 0. 12.0 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 19456.0 1.65440 -.456100 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 12230.0 0.710440 0.665300 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- | non-ideal hybrid model for K-Na phengitic mica | mixes Chaterjee and Froese (1975) with ideal phengite model PaCel | solution name (a10 format). 2 | 1 independent mixing site. 3 1 2 1 | 3 species mix on M site, 2 species on A site cel fcel mu | endmember names ncel nfcel pa | endmember names 0 0 0 0 0 0 | endmember flags 0. 1. 0.07 0. 1. 0.07 0 | cartesian, isopleths of mu or pa 1.02 0.495 10.00 2 | subdivision ranges and model 2 3 iterm, iord 2 1 2 2 2 2 subscripts for term 1 19456.0 1.65440 -.456100 0. 0. 0. 0. 0. 0. 0. 0. term 1 2 1 2 1 2 2 subscripts for term 2 12230.0 0.710440 0.665300 0. 0. 0. 0. 0. 0. 0. 0. term 2 3 | msite, 3 sites, M1, T2, A. 3 2. | 3 species on M1, 2 sites per formula unit. 3 0. | z(11) = z(al,m1) = x(13) + x(11)/2 + x(12)/2 1 1. 1 3 1 0.5 1 1 1 0.5 1 2 1 0. | z(12) = z(mg,m1) = x(11) / 2 1 0.5 1 1 2 2. | 2 species on T2, 2 sites per formula unit. 1 0. | z(21) = z(al,t2) = x(13)/2. 1 0.5 1 3 2 1. | 2 species on A, 1 site per formula unit. 1 0. | z(31) = z(k,a) = x(21) 1 1.0 2 1 0 -------------------------------------------------------- | non-ideal hybrid model for K-Na phengitic mica | mixes Chaterjee and Froese (1975) with ideal phengite model MuCel | solution name (a10 format). 2 | 1 independent mixing site. 3 1 2 1 | 3 species mix on M site, 2 species on A site ncel nfcel pa | endmember names cel fcel mu | endmember names 0 0 0 0 0 0 | endmember flags 0. 1. 0.07 0.0 1. 0.07 0 | cartesian, isopleths of mu or pa 1.02 0.495 10.00 2 | subdivision ranges and model 2 3 iterm, iord 2 2 2 1 2 1 subscripts for term 1 19456.0 1.65440 -.456100 0. 0. 0. 0. 0. 0. 0. 0. term 1 2 2 2 2 2 1 subscripts for term 2 12230.0 0.710440 0.665300 0. 0. 0. 0. 0. 0. 0. 0. term 2 3 | msite, 3 sites, M1, T2, A. 3 2. | 3 species on M1, 2 sites per formula unit. 3 0. | z(11) = z(al,m1) = x(13) + x(11)/2 + x(12)/2 1 1. 1 3 1 0.5 1 1 1 0.5 1 2 1 0. | z(12) = z(mg,m1) = x(11) / 2 1 0.5 1 1 2 2. | 2 species on T2, 2 sites per formula unit. 1 0. | z(21) = z(al,t2) = x(13)/2. 1 0.5 1 3 2 1. | 2 species on A, 1 site per formula unit. 1 0. | z(31) = z(k,a) = x(21) 1 1.0 2 1 0 -------------------------------------------------------- Pa chatterjee & froese '75 1 2 1 isp(1), ist(1) mu pa 1 0 endmember flags 1.02 0.495 8.00 2 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 19456.0 1.65440 -.456100 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 12230.0 0.710440 0.665300 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Mu chatterjee & froese '75 1 2 1 isp(1), ist(1) pa mu 1 0 endmember flags 1.02 0.495 8.00 2 subdivision ranges and model 2 3 iterm, iord 1 2 1 1 1 1 subscripts for term 1 19456.0 1.65440 -.456100 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 2 1 1 subscripts for term 2 12230.0 0.710440 0.665300 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- holland and powell '98 non-ideal ps-cz-fep solution, assuming fe is on M3 in ep and on M1 and M3 in ps CzEpPs 1 3 1 cz ep fep | endmember names 0 0 0 | endmember flags 0. 1. 0.1 0. 1. 0.1 0 | pseudocompound model cartesian, isopleths of mu 2 2 | iterm, iord. 1 3 1 1 15400.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 2 3000.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 | msite, 2 sites, M1, M3. 2 1. | 2 species on M1, 1 sites per formula unit. 1 0. | z(11) = z(fe,m1) = x(ps) = x(11) 1 1. 1 1 2 1. | 2 species on M3, 1 sites per formula unit. 1 0. | z(21) = z(al,m3) = x(cz) = x(13) 1 1. 1 3 0 -------------------------------------------------------- EpCz ordered (one site) mixing model 1 2 1 isp(1), ist(1) cz ep 0 0 endmember flags 0. 1.0 0.025 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Opx as non-ideal H&P solution. assumes Al only on M1 and independent of Al location on 2 T sites. NOTE restricted Ts substitution on 2nd Site. Opx(HP) | solution name (a10 format). 2 | 2 independent mixing site. 2 1 2 1 | 2 species mix on each site, site multiplicity undefined, see below. en fs mgts | endmember names (3 per line, 3(a8,1x) format), this order implies: fets | x(11)=x(mg); x(12) = x(fe); x(21) = x(Si2,t); x(22) = x(AlSi,t) 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 50.0 0. 12.00 1 | pseudocompound model for site 1 (gives range of x(mg)) 0.8 1.0 0.04 0 | pseudocompound model for site 2 (gives range of tschermaks). 2 3 | iterm, iord, non-ideal Fe-Mg mixing 1 1 1 2 0 0 1000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 2 -500. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 | msite, 3 sites, M1, M2, T. 2 1. | 2 species on M2, 1 site per formula unit. 1 0. | z(11) = x(mg,m2) = x(11) so 1 term and a0(11) = 0. 1 | 1-x term 1. 1 1 | 2 2. | 2 species on T, 2 sites per formula unit. 1 0. | z(21) = z(al,t) = x(22)/2, so 1 term and a0(21) = 0 1 | 1-x term 0.5 2 2 | 3 1. | 3 species on M1, 1 site per formula unit. 1 0. | z(31) = z(al,t) = x(22)/2, so 1 term and a0(31) = 0. 1 | 1-x term 0.5 2 2 | 2 0. | z(32) = z(mg,m2) = x(11)(1-z(31)) = x(11) - x(11)x(22)/2 1 | 1-x term 1. 1 1 | 2 | 2-x term -.5 1 1 2 2 | 0 | jfix HP'98 Binary E(HP) 1 2 2 isp(1), ist(1) en fs 0 0 endmember flags 50.0 0. 22.00 1 subdivision ranges and model 1 2 iterm, iord 1 1 1 2 1000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 msite 0 jfix -------------------------------------------------------- "Ordered" Jadeite-Diopside-Hedenbergite-CaTs, as: 1) Gasparik '85 (GCA) in the jd/di limit. 2) HP'98 in the di/hed limit 3) Assuming nonideality in the jd/hed limit is the same as for jd/di. 4) No ternary interactions. 5) Gasparik '85 (CMP) in the jd/cats limit. This should be Gaspariks preferred model. JADC Apr. 99. the configurational entropy model has been constructed to take into account that Gasparik uses an X^2 molecular model for CaTs-Di and an X molecular model for Jd-Di. This implies that there is no disorder associated with placing Na on M2 (i.e., it is associated with Al on M1), whereas Al on M1 is not assocated with Al on T. To get Gasparik's molecular formulation it is necessary to specify that Al mixes on only one of the two T-sites. NOTE restricted subdivision range on x(Cats)!!!!!!!!!!!!!! Cpx(l) 1 4 1 isp(1), ist(1) di hed cats endmember names (3(a8,1x)) jd 0 0 0 0 endmember flags 0. 1. 0.07 0. 1. 0.07 0. 0.2 0.05 0 subdivision ranges and model 19 4 iterm, iord 1 3 1 4 0 0 0 0 xcats*xjd 14810. -7.15 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 4 1 3 0 0 xcats*xcats*xjd -5070. 0.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 4 1 4 0 0 xcats*xjd*xjd 5070. 0.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 3 1 3 1 4 xcats**3*xjd -3350. 0.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 4 1 3 1 4 xcats*xjd*xcats*xjd 6700. 0.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 4 1 4 1 4 xcats*xjd**3 -3350. 0.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 4 1 1 0 0 xdi*xjd**2 12600. -7.6 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 4 1 1 0 0 xdi**2*xjd -12600. 7.6 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 4 1 4 1 1 xjd**3*xdi -21400. 16.2 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 4 1 1 1 1 xjd**2*xdi**2 42800. -32.4 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 1 1 1 1 1 xjd*xdi**3 -21400. 16.2 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 1 0 0 0 0 xjd*xdi 12600. -9.45 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 xhe*xdi 2500. 0.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 2 1 2 0 0 xjd*xhe**2 -12600. 7.6 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 4 1 4 1 2 xjd**3*xhe -21400. 16.2 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 2 0 0 0 0 xjd*xhe 12600. -9.45 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 4 1 2 0 0 xjd**2*xhe 12600. -7.6 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 4 1 2 1 2 xjd**2*xhe**2 42800. -32.4 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 2 1 2 1 2 xjd*xhe**3 -21400. 16.2 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 msite 3 1. M1, Al-Mg-Fe, 1 site 1 0. z(fe,m1) = x(he) = x(12) 1 1.0 1 2 1 0. z(mg,m1) = x(di) = x(11) 1 1.0 1 1 2 1. T, Al-Si, this is fake to get gasparik's model. 1 0. z(al,t) = x(cats) 1 1.0 1 3 0 jfix -------------------------------------------------------- "disordered" Jadeite-Diopside-Hedenbergite-CaTs, as: 1) Gasparik '85 (GCA) in the jd/di limit. 2) HP'98 in the di/hed limit 3) Assuming nonideality in the jd/hed limit is the same as for jd/di. 4) No ternary interactions. 5) Gasparik '85 (CMP) in the jd/cats limit. JADC Apr. 99. the configurational entropy model has been constructed to take into account that Gasparik uses an X^2 molecular model for CaTs-Di and Jd-Di. See comments for Cpx(l) above. NOTE restricted subdivision range on x(Cats)!!!!!!!!!!! Cpx(h) 1 4 1 isp(1), ist(1) di hed cats endmember names (3(a8,1x)) jd 0 0 0 0 endmember flags 0. 1. 0.07 0. 1. 0.07 0. .2 0.05 0 subdivision ranges and model 19 4 iterm, iord 1 3 1 4 0 0 0 0 xcats*xjd 14810. -7.15 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 4 1 3 0 0 xcats*xcats*xjd -5070. 0.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 4 1 4 0 0 xcats*xjd*xjd 5070. 0.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 3 1 3 1 4 xcats**3*xjd -3350. 0.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 4 1 3 1 4 xcats*xjd*xcats*xjd 6700. 0.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 4 1 4 1 4 xcats*xjd**3 -3350. 0.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 4 1 1 0 0 xdi*xjd**2 12430. -6.21 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 4 1 1 0 0 xdi**2*xjd -12430. 6.21 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 4 1 4 1 1 xjd**3*xdi -22290. 23.19 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 4 1 1 1 1 xjd**2*xdi**2 44580. -46.38 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 1 1 1 1 1 xjd*xdi**3 -22290. 23.19 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 1 0 0 0 0 xjd*xdi 12540. 12.63 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 xhe*xdi 2500. 0.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 2 1 2 0 0 xjd*xhe**2 -12430. 6.21 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 4 1 4 1 2 xjd**3*xhe -22290. 23.19 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 2 0 0 0 0 xjd*xhe 12540. 12.63 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 4 1 2 0 0 xjd**2*xhe 12430. -6.21 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 4 1 2 1 2 xjd**2*xhe**2 44580. -46.38 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 4 1 2 1 2 1 2 xjd*xhe**3 -22290. 23.19 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 msite 3 1. M1, Al-Mg-Fe, 1 site 1 0. z(fe,m1) = x(he) = x(12) 1 1.0 1 2 1 0. z(mg,m1) = x(di) = x(11) 1 1.0 1 1 2 1. M2, Ca-Na, 1 site 1 0. z(na,m2) = x(jd) = x(14) 1 1.0 1 4 2 1. T, Al-Si, this is fake to get gasparik's model. 1 0. z(al,t) = x(cats) 1 1.0 1 3 0 jfix -------------------------------------------------------- HP '98 olivine solution O(HP) 1 3 2 isp(1), ist(1) fo fa teph 0 0 0 endmember flags 0.0 1.0 0.024 0.0 1.0 0.1 0 subdivision ranges and model 1 2 iterm, iord 4200J 1 2 1 1 4200.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 msite 0 jfix -------------------------------------------------------- HP '98 monticellite Mont 1 2 1 isp(1), ist(1) fo mont 0 0 endmember flags 0.02 1.0 0.04 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- HP '98 dolomite-ankerite solution Do(HP) 1 2 1 isp(1), ist(1) dol ank 0 0 endmember flags 10. 1. 12. 1 subdivision ranges and model 1 2 iterm, iord 1 2 1 1 3000.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 msite 0 jfix -------------------------------------------------------- HP '98 Magnesite/siderite M(HP) 1 2 1 isp(1), ist(1) mag sid 0 0 endmember flags 10. 1. 12. 1 subdivision ranges and model 1 2 iterm, iord 1 1 1 2 4000.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 msite 0 jfix -------------------------------------------------------- A solution model for Dolomite from Anovitz & Essene 1987 J Pet 28:389-414; this model requires fictive do-structure endmembers that have a standard state G 20920 j > than the cc-structure endmembers. Alessandra corrected sign, feb 2002. Do(AE) 1 2 1 isp(1), ist(1) cc-d m-d 0 0 endmember flags 0.0 1. 0.06 0 subdivision ranges and model 2 3 iterm, iord 1 2 1 2 1 1 subscripts for term 1 -96850. 36.23 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 1 1 1 subscripts for term 2 -55480. -22.85 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- A regular solution model for Dolomite alessandra Do(b) 1 2 1 isp(1), ist(1) dol mag 0 0 endmember flags 0.0 1. 0.01 0 subdivision ranges and model 1 2 iterm, iord 1 1 1 2 subscripts for term 1 30000. -10. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 0 msite 0 jfix -------------------------------------------------------- A solution model for Magnesite from Anovitz & Essene 1987 J Pet 28:389-414. Cc(AE) 1 2 1 mag cc 0 0 endmember flags 0.0 1. 0.06 0 subdivision ranges and model 2 3 iterm, iord 1 2 1 2 1 1 subscripts for term 1 24300. -7.743 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 1 1 1 subscripts for term 2 23240. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Magnesioferrite/magnetite MF 1 2 1 isp(1), ist(1) mt mfer 0 0 endmember flags 0.90 1.00 0.01 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Sp(JR) Jamieson and Roeder '85 (iron + ol,1300 C) 1 2 1 isp(1), ist(1) herc sp 0 0 endmember flags 10.0 0.990 7.00 1 subdivision ranges and model 1 2 iterm, iord 1 1 1 2 subscripts for term 1 -3102.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 0 msite 0 jfix -------------------------------------------------------- Ghiorso 1991, gives similar W=8638 Sp(GS) Ganguly and Saxena '87 (ol, 1200-1300 C, 1-5 kb) 1 2 1 isp(1), ist(1) herc sp 0 0 endmember flags 10.0 0.990 8.00 1 subdivision ranges and model 1 2 iterm, iord 1 1 1 2 subscripts for term 1 7703.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 0 msite 0 jfix -------------------------------------------------------- Sp(HP) HP '98: 1 2 1 isp(1), ist(1) sp herc 0 0 endmember flags 10.0 0.990 40.00 1 subdivision ranges and model 1 2 iterm, iord 1 1 1 2 subscripts for term 1 700. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 0 msite 0 jfix -------------------------------------------------------- This is a model for the R3 ilmenite on the ilmenite-rich side of the ilm-hem solvus, from Wood et al 1991 Rev Min 25, chp 7 Ilm(W) Wood et al 1991 1 2 2 isp(1), ist(1) ilm hem 0 0 endmember flags 1.05 0.990 8.00 1 subdivision ranges and model 1 2 iterm, iord 1 1 1 2 subscripts for term 1 30000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 0 msite 0 jfix -------------------------------------------------------- this model is only valid for T>800C<1300C Mt(W) Wood et al 1991 1 2 1 isp(1), ist(1) usp mt 0 0 endmember flags 1.02 0.495 9.00 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 42110. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 10580. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 two sites, O and T. 3 2. 3 species on O, 2 sites per formula unit. 1 0. z(Ti,O) = x(usp)/2 1 0.5 1 1 1 0. z(Fe3+,O) = x(mt)/2 1 0.5 1 2 2 1. 2 species on T, 1 site per formula unit. 1 0. z(Fe3+,T) = x(mt) 1 1. 1 2 0 jfix -------------------------------------------------------- The Anderson and Lindsley models (Am Min v 73, p 714, 1988) are for ilmenite coexisiting with magnetite, its performance at high T (ca 1200) has been criticized by Ghiorso, but this is probably the best model for T<800 C IlHm(A) Anderson and Lindsley 1988 1 2 2 isp(1), ist(1) ilm hem 0 0 endmember flags 5.0 0.495 9.00 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 126342.5 -100.6 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 44204.8 -12.274 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Assymetric model for Ilm-rich side of the solvus (Tc ca 700 C, 50 % ilm) Il(A) Anderson and Lindsley 1988 1 2 2 isp(1), ist(1) hem ilm 1 0 endmember flags 1.1 0.49 20.00 2 subdivision ranges and model 2 3 iterm, iord 1 2 1 1 1 1 subscripts for term 1 126342.5 -100.6 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 2 1 1 subscripts for term 2 44204.8 -12.274 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- Ideal ilmenite-pyrophanite solution IlPy 1 2 1 isp(1), ist(1) ilm pnt 1 0 endmember flags 0.0 1.0 .05 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Ideal ilmenite-geikielite solution IlGk 1 2 1 isp(1), ist(1) ilm geik 1 0 endmember flags 0.0 1.0 .02 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Assymetric model for Hm-rich side of the solvus (Tc ca 700 C, 50 % ilm), this is for the imaginary R3 hm phase. Hm(A) Anderson and Lindsley 1988 1 2 2 isp(1), ist(1) ilm hem 1 0 endmember flags 1.04 0.49 7.00 2 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 126342.5 -100.6 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 44204.8 -12.274 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- MtUl(A) Anderson and Lindsley 1988, Akimoto model 1 2 1 isp(1), ist(1) usp mt 0 0 endmember flags 1.09 0.495 20.00 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 46175. -23.077 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 15748. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 two sites, O and T. 3 2. 3 species on O, 2 sites per formula unit. 1 0. z(Ti,O) = x(usp)/2 1 0.5 1 1 1 0. z(Fe3+,O) = x(mt)/2 1 0.5 1 2 2 1. 2 species on T, 1 site per formula unit. 1 0. z(Fe3+,T) = x(mt) 1 1. 1 2 0 jfix -------------------------------------------------------- Assymetric model for Mt-rich side of the solvus (Tc ca 490 C, 32 % usp) Mt(A) Anderson and Lindsley 1988, Akimoto model 1 2 1 isp(1), ist(1) usp mt 1 0 endmember flags 1.05 0.32 7.00 2 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 46175. -23.077 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 subscripts for term 2 15748. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 two sites, O and T. 3 2. 3 species on O, 2 sites per formula unit. 1 0. z(Ti,O) = x(usp)/2 1 0.5 1 1 1 0. z(Fe3+,O) = x(mt)/2 1 0.5 1 2 2 1. 2 species on T, 1 site per formula unit. 1 0. z(Fe3+,T) = x(mt) 1 1. 1 2 0 jfix -------------------------------------------------------- Assymetric model for Usp-rich side of the solvus (Tc ca 490 C, 32 % usp) Usp(A) Anderson and Lindsley 1988, Akimoto model 1 2 1 isp(1), ist(1) mt usp 1 0 endmember flags 1.06 0.675 13.00 2 subdivision ranges and model 2 3 iterm, iord 1 2 1 1 1 1 subscripts for term 1 46175. -23.077 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 2 1 1 subscripts for term 2 15748. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 2 two sites, O and T. 3 2. 3 species on O, 2 sites per formula unit. 1 0. z(Ti,O) = x(usp)/2 1 0.5 1 2 1 0. z(Fe3+,O) = x(mt)/2 1 0.5 1 1 2 1. 2 species on T, 1 site per formula unit. 1 0. z(Fe3+,T) = x(mt) 1 1. 1 1 0 jfix -------------------------------------------------------- Neph(FB) Ferry and Blencoe '78 1 2 1 isp(1), ist(1) ne kals 0 0 endmember flags 10.0 0.990 8.00 1 subdivision ranges and model 2 3 iterm, iord 1 1 1 2 1 2 subscripts for term 1 85057.0 -20.0500 -.550000 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 1 1 1 subscripts for term 2 35945.0 23.7800 0.690000 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- GrAd(EW) grandite, Engi & Wersin 1987, ionic? 1 2 2 isp(1), ist(1) gr andr 0 0 endmember flags 32.0 0.990 7.00 1 subdivision ranges and model 2 3 iterm, iord 1 2 1 1 1 1 subscripts for term 1 25812.0 0. -.520000 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 2 1 2 1 1 subscripts for term 2 -93820.0 0. -.110000 0. 0. 0. 0. 0. 0. 0. 0. term 2 0 msite 0 jfix -------------------------------------------------------- GrAd grandite, ideal 1 2 2 isp(1), ist(1) gr andr 0 0 endmember flags .0 1. .1 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- GrPyAlSp(B) Grossular-pyrope-almandine-spessartine, Berman '90, 1 4 3 isp(1), ist(1) gr py alm endmember names (3(a8,1x)) spss 0 0 0 0 endmember flags 0.0 1. 0.05 0.0 1. 0.0 0.05 1. 0.05 0 subdivision ranges and model 10 3 iterm, iord 1 1 1 1 1 2 subscripts for term 1 21560.0 -18.79 0.100000 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 2 1 2 subscripts for term 2 69200.0 -18.79 0.10 0. 0. 0. 0. 0. 0. 0. 0. term 2 1 1 1 1 1 3 subscripts for term 3 20320 -5.08 0.17 0. 0. 0. 0. 0. 0. 0. 0. term 3 1 1 1 3 1 3 subscripts for term 4 2620.0 -5.08 0.09 0. 0. 0. 0. 0. 0. 0. 0. term 4 1 2 1 2 1 3 subscripts for term 5 230.0 0. 0.01 0. 0. 0. 0. 0. 0. 0. 0. term 5 1 2 1 3 1 3 subscripts for term 6 3720.0 0. 0.06 0. 0. 0. 0. 0. 0. 0. 0. term 6 1 1 1 2 1 3 subscripts for term 7 58825. -23.87 0.265 0. 0. 0. 0. 0. 0. 0. 0. term 7 1 1 1 2 1 4 subscripts for term 8 45424. -18.7900 0.100000 0. 0. 0. 0. 0. 0. 0. 0. term 8 1 1 1 3 1 4 subscripts for term 9 11470.0 -18.7900 0.130000 0. 0. 0. 0. 0. 0. 0. 0. term 9 1 2 1 3 1 4 subscripts for term 10 1975.00 0. 0.035000 0. 0. 0. 0. 0. 0. 0. 0. term * 0 msite 0 -------------------------------------------------------- Ganguly preliminary wohl model fit GrPyAlSp(G) Grossular-pyrope-almandine-spessartine 1 4 3 isp(1), ist(1) gr py alm endmember names (3(a8,1x)) spess 0 0 0 0 endmember flags 0.0 1. 0.09 0.0 1. 0.0 0. 1. 0.09 3 subdivision ranges and model 17 4 iterm, iord 1 2 1 2 1 1 0 0 subscripts for term 1 59304. -10.5 .036 0. 0. 0. 0. 0. 0. 0. 0. term 1 w12 1 1 1 1 1 2 0 0 subscripts for term 2 25860. -10.5 .174 0. 0. 0. 0. 0. 0. 0. 0. term 2 w21 1 3 1 3 1 1 0 0 subscripts for term 3 2619. -5.07 .09 0. 0. 0. 0. 0. 0. 0. 0. term 3 w13 1 1 1 1 1 3 0 0 subscripts for term 4 20319. -5.07 .09 0. 0. 0. 0. 0. 0. 0. 0. term 4 w31 1 4 1 4 1 1 0 0 subscripts for term 5 1425.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 5 w14 1 1 1 1 1 4 0 0 subscripts for term 6 1425.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 6 w41 1 2 1 2 1 3 0 0 subscripts for term 7 6351. 0. .06 0. 0. 0. 0. 0. 0. 0. 0. term 7 w23 1 2 1 3 1 3 0 0 subscripts for term 8 2085. 0. .009 0. 0. 0. 0. 0. 0. 0. 0. term 8 w32 1 2 1 4 1 4 0 0 subscripts for term 9 30345. -15.6 0. 0. 0. 0. 0. 0. 0. 0. 0. term 9 w24 1 2 1 2 1 4 0 0 subscripts for term 10 30345. -15.6 0. 0. 0. 0. 0. 0. 0. 0. 0. term 10 w42 1 3 1 3 1 4 0 0 subscripts for term 11 1860.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 11 w34 1 3 1 4 1 4 0 0 subscripts for term 12 1860.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. term 12 w43 1 1 1 2 1 3 0 0 subscripts for term 13 58269. -15.57 .2295 0. 0. 0. 0. 0. 0. 0. 0. term 13 (w12+w21+w13+w31+w23+w32)/2 1 1 1 2 1 4 0 0 subscripts for term 14 74352. -26.1 .105 0. 0. 0. 0. 0. 0. 0. 0. term 14 (w12+w21+w14+w41+w24+w42)/2 1 1 1 3 1 4 0 0 subscripts for term 15 14754. -5.07 .09 0. 0. 0. 0. 0. 0. 0. 0. term 15 (w13+w31+w14+w41+w34+w43)/2 1 2 1 3 1 4 0 0 subscripts for term 16 36423. -15.6 .0345 0. 0. 0. 0. 0. 0. 0. 0. term 16 (w23+w32+w24+w42+w34+w43)/2 1 1 1 2 1 3 1 4 subscripts for term 17 91899. -31.17 .2295 0. 0. 0. 0. 0. 0. 0. 0. term 17 (w12+w21+w13+w31+w14+w41+w23+w32+w24+w42+w34+w43)/2 0 msite 0 -------------------------------------------------------- Ganguly preliminary wohl model fit GrPyAl(G) Grossular-pyrope-almandine 1 3 3 isp(1), ist(1) gr py alm endmember names (3(a8,1x)) 0 0 0 endmember flags 0.0 1. 0.1 0.0 1. 0.1 3 subdivision ranges and model 7 3 iterm, iord 1 2 1 2 1 1 0 0 subscripts for term 1 59304. -10.5 .036 0. 0. 0. 0. 0. 0. 0. 0. term 1 w12 1 1 1 1 1 2 0 0 subscripts for term 2 25860. -10.5 .174 0. 0. 0. 0. 0. 0. 0. 0. term 2 w21 1 3 1 3 1 1 0 0 subscripts for term 3 2619. -5.07 .09 0. 0. 0. 0. 0. 0. 0. 0. term 3 w13 1 1 1 1 1 3 0 0 subscripts for term 4 20319. -5.07 .09 0. 0. 0. 0. 0. 0. 0. 0. term 4 w31 1 2 1 2 1 3 0 0 subscripts for term 7 6351. 0. .06 0. 0. 0. 0. 0. 0. 0. 0. term 7 w23 1 2 1 3 1 3 0 0 subscripts for term 8 2085. 0. .009 0. 0. 0. 0. 0. 0. 0. 0. term 8 w32 1 1 1 2 1 3 0 0 subscripts for term 13 58269. -15.57 .2295 0. 0. 0. 0. 0. 0. 0. 0. term 13 (w12+w21+w13+w31+w23+w32)/2 0 msite 0 jfix -------------------------------------------------------- This is an unpublished garnet model parameterization by Edgar Dachs, Salzburg. GtD 1 3 3 isp(1), ist(1) gr py alm endmember names (3(a8,1x)) 0 0 0 endmember flags 0.00 .20 0.025 0.0 0.35 0.025 0 subdivision ranges and model 7 3 iterm, iord 1 1 1 1 1 2 subscripts for term 1 20628.0 -18.7500 0.5016 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 2 1 2 subscripts for term 2 65949.0 -18.7500 -.0399 0. 0. 0. 0. 0. 0. 0. 0. term 2 1 1 1 1 1 3 subscripts for term 3 31557.0 -8.04 0.1989 0. 0. 0. 0. 0. 0. 0. 0. term 3 1 1 1 3 1 3 subscripts for term 4 -8508.0 -1.353 .123 0. 0. 0. 0. 0. 0. 0. 0. term 4 1 2 1 2 1 3 subscripts for term 5 678.0 0. -.0003 0. 0. 0. 0. 0. 0. 0. 0. term 5 1 2 1 3 1 3 subscripts for term 6 3414.0 0. 0.0663 0. 0. 0. 0. 0. 0. 0. 0. term 6 1 1 1 2 1 3 subscripts for term 7 86271.5 -34.705 .5573 0. 0. 0. 0. 0. 0. 0. 0. term 7 0 msite 0 jfix -------------------------------------------------------- hp '98 quaternary garnet model Gt(HP) 1 4 3 isp(1), ist(1) alm py gr spss endmember names (3(a8,1x)) 0 0 0 0 endmember flags 0.00 1. 0.035 0.0 1.0 0.035 0. 1. 0.05 0 subdivision ranges and model 2 2 iterm, iord 1 2 1 3 term 1 33000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3*w(ca-mg) 1 2 1 1 2400. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3*w(fe-mg) 0 msite 0 jfix -------------------------------------------------------- GrPyAl(B) Grossular-pyrope-almandine, Berman '90 1 3 3 isp(1), ist(1) gr py alm endmember names (3(a8,1x)) 2 0 0 endmember flags 0. 1.00 0.050 0. 1.00 0.050 3 subdivision ranges and model 7 3 iterm, iord 1 1 1 1 1 2 subscripts for term 1 21560.0 -18.7900 0.100000 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 2 1 2 subscripts for term 2 69200.0 -18.7900 0.100000 0. 0. 0. 0. 0. 0. 0. 0. term 2 1 1 1 1 1 3 subscripts for term 3 20320 -5.08 0.17 0. 0. 0. 0. 0. 0. 0. 0. term 3 1 1 1 3 1 3 subscripts for term 4 2620.0 -5.08 0.09 0. 0. 0. 0. 0. 0. 0. 0. term 4 1 2 1 2 1 3 subscripts for term 5 230.0 0. 0.01 0. 0. 0. 0. 0. 0. 0. 0. term 5 1 2 1 3 1 3 subscripts for term 6 3720.0 0. 0.06 0. 0. 0. 0. 0. 0. 0. 0. term 6 1 1 1 2 1 3 subscripts for term 7 58825. -23.87 0.265 0. 0. 0. 0. 0. 0. 0. 0. term 7 0 msite 0 jfix -------------------------------------------------------- ODDBALL MODELS: -------------------------------------------------------- berman and brown 1984, cao-al2o3-sio2 melt model. casmelt 1 3 1 isp(1), ist(1) SIO2 AL2O3 CAO endmember names (3(a8,1x)) 0 0 0 endmember flags 0. 1. 0.01 0. 1. 0.01 4 subdivision ranges and model 12 4 iterm, iord 1 1 1 2 1 2 1 2 subscripts for term 1 63617.2 -23.7400 0. 0. 0. 0. 0. 0. 0. 0. 0. term 1 1 1 1 1 1 2 1 2 subscripts for term 2 0.164266E+07 -763.870 0. 0. 0. 0. 0. 0. 0. 0. 0. term 2 1 1 1 1 1 1 1 2 subscripts for term 3 -106635. 28.1300 0. 0. 0. 0. 0. 0. 0. 0. 0. term 3 1 1 1 3 1 3 1 3 subscripts for term 4 -898693. 240.770 0. 0. 0. 0. 0. 0. 0. 0. 0. term 4 1 1 1 1 1 3 1 3 subscripts for term 5 -350208. -48.6200 0. 0. 0. 0. 0. 0. 0. 0. 0. term 5 1 1 1 1 1 1 1 3 subscripts for term 6 -14081.8 -35.4900 0. 0. 0. 0. 0. 0. 0. 0. 0. term 6 1 2 1 3 1 3 1 3 subscripts for term 7 -455634. 2.47000 0. 0. 0. 0. 0. 0. 0. 0. 0. term 7 1 2 1 2 1 3 1 3 subscripts for term 8 -725166. 255.390 0. 0. 0. 0. 0. 0. 0. 0. 0. term 8 1 2 1 2 1 2 1 3 subscripts for term 9 -240215. 26.7000 0. 0. 0. 0. 0. 0. 0. 0. 0. term 9 1 1 1 1 1 2 1 3 subscripts for term 10 -.284791E+07 1046.35 0. 0. 0. 0. 0. 0. 0. 0. 0. term 10 1 1 1 2 1 2 1 3 subscripts for term 11 -.214904E+07 641.840 0. 0. 0. 0. 0. 0. 0. 0. 0. term 11 1 1 1 2 1 3 1 3 subscripts for term 12 209109. -313.360 0. 0. 0. 0. 0. 0. 0. 0. 0. term 12 0 msite 0 jfix -------------------------------------------------------- At ideal antigorite 1 2 48 isp(1), ist(1) at fat 0 0 endmember flags 0.6 0.98 0.03 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- B ideal brucite 1 2 1 isp(1), ist(1) br fbr 0 0 endmember flags 0.90 1. 0.02 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- P ideal periclase 1 2 1 isp(1), ist(1) per fper 0 0 endmember flags 0.90 1. 0.02 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Apa ideal apatite? 1 2 1 isp(1), ist(1) apa fapa 0 0 endmember flags 0.0 1.0 0.1 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Fphl Ideal, for holland and powell 1 2 2 isp(1), ist(1) phl fphl 0 0 endmember flags 0.0 1.0 0.1 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- | Ottonello (1992) CMP 111:53-60 C2/c cpx Wohl model. | Because Ottonello chose to use 4 endmembers it | is necessary to formulate this model as a solution | with 2 independent mixing sites. I forget | which site Ca occupies, so I assume the following | site occupancies M1: Ca, Mg, Fe & M2: Mg, Fe | with no preferential partitioning of Fe and Mg. JADC Qpx | solution name (a10 format). 2 | 2 independent mixing site. 2 1 2 1 | 2 species mix on each site, site multiplicity undefined, see below. cen cfs di | endmembers, this implies: x(11) = x(mg,m2) hed | x(12) = x(fe,m2); x(21) = x(ca,m1); x(22) = x(mg+fe,m1) 0 0 0 0 | endmember flags 1.04 1.0 11. 1 | subdivision for site 1 (range of x(mg)) 1.04 1.0 11. 1 | subdivision for site 2 (range of x(ca)) 15 4 | 15 terms, maximum order 4. 1 1 2 1 2 1 0 0 | x1*x2*x2*w12 -1558.6 -24.389 0.0282 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 2 1 0 0 | x1*x1*x2*w21 2518.6 -24.651 0.0226 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 1 2 0 0 | x1*x3*x3*w13 23633.1 -.016 .0208 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 1 2 0 0 | x1*x1*x3*w31 32467.3 .007 .0066 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 2 2 0 0 | x1*x4*x4*w14 50774.2 -38.907 0.0771 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 2 2 0 0 | x1*x1*x4*w41 27841.2 -24.609 0.0510 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 1 2 2 2 2 0 0 | x2*x4*x4*w24 16109.3 -0.033 0.0453 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 1 2 1 2 2 0 0 | x2*x2*x4*w42 20099.8 0.034 0.053 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 2 2 2 0 0 | x3*x4*x4*w34 13984.2 0.001 0.0068 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 2 2 2 0 0 | x3*x3*x4*w43 17958. -0.004 -0.0084 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 1 2 0 0 | x1*x2*x3*((w12+w21+w13+w31+w23+w32)/2 - w123) 62567.65 -30.72 .12845 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 2 2 0 0 | x1*x2*x4*((w12+w21+w14+w41+w24+w42)/2 - w124) 145758.65 -35.6655 .1198 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 2 0 0 | x1*x3*x4*((w13+w31+w14+w41+w34+w43)/2 - w134) 122346.2 2.711 .17045 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 1 1 2 2 2 0 0 | x2*x3*x4*((w23+w32+w24+w42+w34+w43)/2 - w234) 12009.6 5.3095 .2165 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 1 2 2 2 | x1*x2*x3*x4*((w12+w21+w13+w31+w14+w41+w23+w32+w24+w42+w34+w43)/2-w1234) 60427.7 227.426 -.28785 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 | 2 mixing sites, M2, M1 2 4. | 2 species on M2, 2 sites per formula unit. 1 0. | z(11) = x(Mg,M2) = x(11) so 1 term and a0(11) = 0. 1 | 1-x term 1. 1 1 3 2. | 3 species on M2, 2 sites per formula unit. 1 0.0 | z(21) = z(Ca,M1) = x(21) so 1 term and a0(21) = 0. 1 | 1-x term 1 2 1 2 0. | z(22) = z(Mg,M1) = (1-x(21))*x(11) = x(11) - x(11)*x(21) 1 | 1-x term 1. 1 1 | 2 | 2-x term -1. 1 1 2 1 | 0 | jfix | Ottonello cENDI | solution name (a10 format). 1 | 2 independent mixing site. 2 1 CEN di | endmembers, this implies: x(11) = x(mg,m2) 0 0 | endmember flags 0 1. 0.01 0 2 3 | 15 terms, maximum order 4. 1 1 1 2 1 2 | x1*x3*x3*w13 23633.1 -.016 .0208 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 1 2 | x1*x1*x3*w31 32467.3 .007 .0066 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 0 mixing sites, M2, M1 0 | jfix | Lindsley lcENDI | solution name (a10 format). 1 | 2 independent mixing site. 2 1 CEN di | endmembers, this implies: x(11) = x(mg,m2) 0 0 | endmember flags 0 1. 0.01 0 2 3 | 15 terms, maximum order 4. 1 1 1 2 1 2 | x1*x3*x3*w13 25484. 0. .0812 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 1 2 | x1*x1*x3*w31 31216. 0. -.0066 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 | 0 mixing sites, M2, M1 0 | jfix -------------------------------------------------------- | Ottonello cFSHD | solution name (a10 format). 1 | 2 independent mixing site. 2 1 | 2 CFS hed | endmembers, this implies: x(11) = x(mg,m2) 0 0 | endmember flags 0. 1. 0.01 0 | subdivision for site 1 (range of x(mg)) 2 3 | 15 terms, maximum order 4. 1 1 1 2 1 2 0 0 | x2*x4*x4*w24 16109.3 -0.033 0.0453 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 1 2 0 0 | x2*x2*x4*w42 20099.8 0.034 0.053 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0 | jfix | Lindsley lcFSHD | solution name (a10 format). 1 | 2 independent mixing site. 2 1 | 2 CFS hed | endmembers, this implies: x(11) = x(mg,m2) 0 0 | endmember flags 0. 1. 0.01 0 | subdivision for site 1 (range of x(mg)) 2 3 | 15 terms, maximum order 4. 1 1 1 2 1 2 0 0 | x2*x4*x4*w24 16941. .0 0.0059 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 1 2 0 0 | x2*x2*x4*w42 20697. .0 -.00235 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0 | jfix -------------------------------------------------------- humite | solution name. jadc. 2 | 2 independent mixing site. 2 1 2 2 | 2 species mix on each site, site multiplicity undefined, see below. mgoh mtoh mgf2 | endmembers, order implies: x(11)=x(mg); mtf2 | x(12) = x(mgti); x(21) = x(oh); x(22) = x(f2) 0 0 0 0 | endmember flags 0. 1. 0.2 0 | cartesian subdivision for site 1 (gives range of x(mg)) 0. 1. 0.2 0 | cartesian subdivision for site 2 (gives range of oh). 2 3 | iterm, iord. 2 1 2 2 2 2 xoh xf xf -59099.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 2 2 1 2 1 -21564.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 | msite, 3 sites, M, A. 2 1. | 2 species on M, 1 site per formula unit. 1 0.5 | z(11) = .5 + .5 x(mg,m) = z(mg) 1 | 1-x term 0.5 1 1 | 3 2. | 3 species on A, 2 sites per formula unit. 1 0.0 | z(21) = z(O) = x(12) 1 | 1-x term 0.5 1 2 | 2 0.0 | z(22) = z(OH) = x21 - 0.5 x21 x12 1 1.0 2 1 2 -0.5 2 1 1 2 0 | jfix -------------------------------------------------------- Entered by V. Lopez, not checked. | a model for tschermaks and edenite for | holland and powell. | substitution into Mg-tremolite TrHbEd | solution name (a10 format). 1 | 1 independent mixing site. 3 1 | 3 species mix on the site, site multiplicity undefined. tr hb ed | endmember names 0 0 0 | endmember flags 0. 1. 0.2 0. 1. 0.2 0 | pseudocompound model cartesian 0 0 | iterm, iord. 3 | msite, 3 sites, 1(Na,Vac), 2(Mg,Al), 3(Al,Si) 2 1. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(13) = x(ed) 1 1. 1 3 2 2. | 2 species on 2, 2 sites per formula unit. 2 0. | z(21) = z(mg,2) = x(tr) + x(hb)/2 = x(11) + x(12)/2 1 1. 1 1 1 0.5 1 2 2 4. | 2 species on 3, 4 sites per formula unit. 1 0. | z(31) = z(al,3) = x(hb)/4 = x(12)/4 1 0.25 1 2 0 -------------------------------------------------------- Entered by V. Lopez, not checked. | a model for edenite and glaucophane | substitution into Mg-tremolite, for holland & powell TrEdGl | solution name (a10 format). 1 | 1 independent mixing site. 3 1 | 3 species mix on the site, site multiplicity undefined. tr ed gl | endmember names: xtr=(x11), xed=x(12), xgl=x(13) 0 0 0 | endmember flags 0. 1. 0.2 0. 1. 0.2 0 | pseudocompound model cartesian 0 0 | iterm, iord. 4 | msite, 4 sites, 1=A(Na,Vac), 2=M4(Na,Ca), 3=M2(Al,Mg), 4=T(Al,Si) 2 1. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(12) = x(ed) 1 1. 1 2 2 2. | 2 species on 2, 2 sites per formula unit. 1 0. | z(21) = z(na,2) = x(13) = x(gl) 1 1. 1 3 2 2. | 2 species on 3, 2 sites per formula unit. 1 0. | z(31) = z(al,3) = x(gl) = x(13) 1 1. 1 3 2 4. | 2 species on 4, 4 sites per formula unit. 1 0. | z(41) = z(al,4) = x(ed)/4 = x(12)/4 1 0.25 1 2 0 -------------------------------------------------------- Entered by V. Lopez, not checked. | a model for edenite and glaucophane | substitution into Mg-hornblende, for H&P data. HbEdGl | solution name (a10 format). 1 | 1 independent mixing site. 3 1 | 3 species mix on the site, site multiplicity undefined. hb ed gl | endmember names: xhb=(x11), xed=x(12), xgl=x(13) 0 0 0 | endmember flags 0. 1. 0.2 0. 1. 0.2 0 | pseudocompound model cartesian 0 0 | iterm, iord. 4 | msite, 4 sites, 1=A(Na,Vac), 2=M4(Na,Ca), 3=M2(Mg,Al), 4=T(Si,Al) 2 1. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(12) = x(ed) 1 1. 1 2 2 2. | 2 species on 2, 2 sites per formula unit. 1 0. | z(21) = z(na,2) = x(13) = x(gl) 1 1. 1 3 2 2. | 2 species on 3, 2 sites per formula unit. 2 0. | z(31) = z(mg,3) = x(ed) + x(hb)/2 = x(12) + x(11)/2 1 1. 1 2 1 0.5 1 1 2 4. | 2 species on 4, 4 sites per formula unit. 1 0. | z(41) = z(si,4) = x(gl) = x(13) 1 0. 1 3 0 -------------------------------------------------------- Entered by V. Lopez, not checked. for Mader & Berman 1992. trparg 1 | 1 independent mixing sites. 2 1 | 2 species mix on site tr parg | this order implies: x(12) = x(parg). 0 0 | endmember flags 0. 1. 0.1 0 | site 1 pseudocompound model mg/fe cartesian 3 2 | iterm, iord. 1 1 1 2 W na v 5236. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 W mg al 10881. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 1 2 W mg al 5440.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 | msite, 3 sites, 1-A(v,Na), 2-M2(Mg,Al), 3-T1(Si,Al) 2 1. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(12) = x(parg) 1 1. 1 2 2 2. | 2 species on 2, 2 sites per formula unit. 1 0. | z(21) = z(al,2) = x(12)/2 = x(parg)/2 1 0.5 1 2 2 4. | 2 species on 3, 4 sites per formula unit. 1 0. | z(31) = z(al,3) = x(parg)/2=x(12)/2 1 0.5 1 2 0 -------------------------------------------------------- Entered by V. Lopez, not checked. for Mader & Berman 1992. ftr-fparg 2 | 2 independent mixing sites. 2 1 2 1 | 2 species mix on site A, 3 on site M2 tr ftr parg | this order implies: x(11) = x(mg), x(12) = x(fe), fparg | x(21) = x(tr), x(22) = x(parg). 0 0 0 0 | endmember flags 0. 1. 0.2 0 | site 1 pseudocompound model mg/fe cartesian 0. 1. 0.2 0 | site 2 pseudocompound model cartesian 9 4 | iterm, iord. 2 2 2 1 0 0 0 0 W na v 5236. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 0 0 0 0 W al mg 21762. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 2 2 0 0 W al mg -10881. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 2 0 0 0 0 W al fe -5904.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 2 2 2 0 0 W al fe 2952.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 2 0 0 W mg fe -3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 2 2 2 W mg fe 775.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 | msite, 4 sites, 1-A(Na,v), 2-M2(Al,Mg,Fe), 3-M13(Mg,Fe), 4-T1(Al,Si) 2 1. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(22) = x(parg) 1 1. 2 2 3 2. | 3 species on 2, 2 sites per formula unit. 1 0. | z(21) = z(al,2) = x(22)/2 = x(parg)/2 1 0.5 2 2 2 0. | z(22) = z(mg,2) = z(mg,3) (1 - z(al,2)) = x(11) - x(11)x(22)/2 1 1. 1 1 2 -0.5 1 1 2 2 2 3. | 2 species on 3, 3 sites per formula unit. 1 0. | z(31) = z(mg,3) = x(mg)= x(11) 1 1. 1 1 2 4. | 2 species on 4, 4 sites per formula unit. 1 0. | z(41) = z(al,4) = x(parg)/2=x(22)/2 1 0.5 2 2 0 -------------------------------------------------------- Entered by V. Lopez, not checked. for Mader & Berman 1992. trpargglc 2 | 2 independent mixing sites. 2 1 3 1 | 2 species mix on site one, 3 on site two tr ftr parg | this order implies: x(11) = x(mg), x(12) = x(fe), fparg glc fgl | x(21) = x(tr), x(22) = x(parg), x(23) = x(glc) 0 0 0 0 0 0 | endmember flags 0. 0.6 0.1 0 | site 1 pseudocompound model mg/fe cartesian 0. 0.75 0.25 0. 0.75 0.25 0 | site 2 pseudocompound model cartesian 10 4 | iterm, iord. 2 2 2 1 0 0 0 0 W na v 5236. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 0 0 0 0 W mg al 21762. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 2 2 0 0 W mg al -10881. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 2 1 2 0 0 0 0 W al fe -5904.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 2 2 0 0 W al fe 2952.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 2 2 0 0 W mg fe -1551. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 1 2 0 0 W mg fe -1551. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 2 2 2 2 W mg fe 775.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5 | msite, 5 sites, 1-A(Na,v), 2-M4(Na,Ca), 3-M2(Al,Mg,Fe), 4-M13(Mg,Fe), 5-T1(Al,Si) 2 1. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(22) = x(parg) 1 1. 2 2 2 2. | 2 species on 2, 2 site per formula unit. 1 0. | z(21) = z(na,2) = x(23) = x(glauc) 1 1. 2 3 3 2. | 3 species on 3, 2 sites per formula unit. 2 0. | z(31) = z(al,3) = x(23) + x(22)/2 + = x(glauc) + x(parg)/2 1 1. 2 3 1 0.5 2 2 3 0. | z(32) = z(mg,3) = z(mg,4) (1 - z(al,3)) = x(11) -x(11)x(23) - x(11)x(22)/2 1 1. 1 1 2 -1. 1 1 2 3 2 -0.5 1 1 2 2 2 3. | 2 species on 4, 3 sites per formula unit. 1 0. | z(41) = z(mg,4) = x(mg)= x(11) 1 1. 1 1 2 4. | 2 species on 5, 4 sites per formula unit. 1 0. | z(51) = z(al,5) = x(parg)/2 = x(22)/2 1 0.5 2 2 0 -------------------------------------------------------- Entered by V. Lopez, not checked. for Mader & Berman 1992. trgltsch 2 | 2 independent mixing sites. 2 1 3 1 | 2 species mix on site one, 3 on site two tr ftr glc | this order implies: x(11) = x(mg), x(12) = x(fe), fgl ts fts | x(21) = x(tr), x(22) = x(glc), x(23) = x(ts) 0 0 0 0 0 0 | endmember flags 0. 1. 0.2 0 | site 1 pseudocompound model mg/fe cartesian 0. 1. 0.2 0. 1. 0.2 0 | site 2 pseudocompound model cartesian 8 2 | iterm, iord. 2 2 2 1 W na ca 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 2 2 3 W na ca 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 2 W mg al 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 3 W mg al 43524. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 2 W fe al 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 3 W fe al -11809. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 | msite, 4 sites, 1-M4(Na,Ca), 2-M2(Al,Mg,Fe), 3-M13(Mg,Fe), 4-T1(Al,Si) 2 2. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(22) = x(glauc) 1 1. 2 2 3 2. | 3 species on 2, 2 sites per formula unit. 2 0. | z(21) = z(al,2) = x(22) + x(23) = x(gl) + x(ts) 1 1. 2 2 1 1. 2 3 1 0. | z(22) = z(mg,2) = z(mg,3) = x(11)) 1 1. 1 1 2 3. | 2 species on 3, 3 sites per formula unit. 1 0. | z(31) = z(mg,3) = x(mg)= x(11) 1 1. 1 1 2 4. | 2 species on 4, 4 sites per formula unit. 1 0. | z(41) = z(al,4) = x(ts)/2 = x(23)/2 1 0.5 2 3 0 -------------------------------------------------------- Entered by V. Lopez, not checked. for Mader & Berman 1992. parglcts 2 | 2 independent mixing sites. 2 1 3 1 | 2 species mix on site one, 3 on site two parg fparg glc | this order implies: x(11) = x(mg), x(12) = x(fe), fgl ts fts | x(21) = x(parg), x(22) = x(glc), x(23) = x(ts) 0 0 0 0 0 0 | endmember flags 0. 1. 0.2 0 | site 1 pseudocompound model mg/fe cartesian 0. 1. 0.2 0. 1. 0.2 0 | site 2 pseudocompound model cartesian 21 4 | iterm, iord. 2 1 2 3 0 0 0 0 W na v 5236. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 3 0 0 0 0 W mg al 43524. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 3 2 3 0 0 W mg al -43524. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 3 1 1 2 1 0 0 W mg al -43524. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 0 0 0 0 W mg al 21762. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 2 1 0 0 W mg al -10881. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 3 1 2 0 0 0 0 W al fe -11809. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 3 2 3 0 0 W al fe 11809. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 3 1 2 2 1 0 0 W al fe 5904.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 1 0 0 0 0 W al fe -5904.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 1 1 2 2 3 0 0 W al fe 5904.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 2 2 1 2 1 0 0 W al fe 2952.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 3 0 0 W mg fe -3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 1 0 0 W mg fe -3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 3 1 2 0 0 W mg fe -3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 3 2 3 1 2 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 3 1 2 2 1 W mg fe 1551. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 1 2 2 3 W mg fe 1551. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 2 1 2 1 1 2 W mg fe 775.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 W mg fe 3102. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5 | msite, 5 sites, 1-A(Na,v), 2-M4(Na,Ca), 3-M2(Al,Mg,Fe), 4-M13(Mg,Fe), 5-T1(Al,Si) 2 1. | 2 species on 1, 1 site per formula unit. 1 0. | z(11) = z(na,1) = x(21) = x(parg) 1 1. 2 1 2 2. | 2 species on 2, 2 site per formula unit. 1 0. | z(21) = z(na,2) = x(22) = x(glauc) 1 1. 2 2 3 2. | 3 species on 3, 2 sites per formula unit. 3 0. | z(31) = z(al,3) = x(22) + x(23) + x(21)/2 = x(glauc) + x(tscher) + x(parg)/2 1 1. 2 2 1 1. 2 3 1 0.5 2 1 4 0. | z(32) = z(mg,3) = z(mg,4) (1 - z(al,3)) = x(11) -x(11)x(22) - x(11)x(23) - x(11)x(21)/2 1 1. 1 1 2 -1. 1 1 2 2 2 -1. 1 1 2 3 2 -0.5 1 1 2 1 2 3. | 2 species on 4, 3 sites per formula unit. 1 0. | z(41) = z(mg,4) = x(mg)= x(11) 1 1. 1 1 2 4. | 2 species on 5, 4 sites per formula unit. 2 0. | z(51) = z(al,5) = x(21)/2 + x(23)/2 = x(parg)/2 + x(tscher)/2 1 0.5 2 1 1 0.5 2 3 0 -------------------------------------------------------- "Ordered" Jadeite-Diopside-Hedenbergite-CaTs, as: 1) Gasparik '85 (GCA) in the jd/di limit. 2) HP'98 in the di/hed limit 3) Assuming nonideality in the jd/hed limit is the same as for jd/di. 4) No ternary interactions. This should be Gaspariks preferred model. JADC Apr. 99. NOTE restricted subdivision range on x(Cats) JdDiHe(l) 1 3 1 isp(1), ist(1) di hed jd endmember names (3(a8,1x)) 0 0 0 endmember flags 0. 1. 0.05 0. 1. 0.05 0 subdivision ranges and model 13 4 iterm, iord 1 3 1 3 1 1 0 0 xdi*xjd**2 12600. -7.6 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 3 1 1 0 0 xdi**2*xjd -12600. 7.6 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 3 1 3 1 1 xjd**3*xdi -21400. 16.2 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 3 1 1 1 1 xjd**2*xdi**2 42800. -32.4 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 1 1 1 1 1 xjd*xdi**3 -21400. 16.2 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 1 0 0 0 0 xjd*xdi 12600. -9.45 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 xhe*xdi 2500. 0.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 2 1 2 0 0 xjd*xhe**2 -12600. 7.6 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 3 1 3 1 2 xjd**3*xhe -21400. 16.2 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 2 0 0 0 0 xjd*xhe 12600. -9.45 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 3 1 2 0 0 xjd**2*xhe 12600. -7.6 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 3 1 2 1 2 xjd**2*xhe**2 42800. -32.4 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 2 1 2 1 2 xjd*xhe**3 -21400. 16.2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 msite 0 jfix -------------------------------------------------------- "disordered" Jadeite-Diopside-Hedenbergite, as: 1) Gasparik '85 (GCA) in the jd/di limit. 2) HP'98 in the di/hed limit 3) Assuming nonideality in the jd/hed limit is the same as for jd/di. 4) No ternary interactions. JADC Apr. 99. the configurational entropy model has been constructed to take into account that Gasparik uses an X^2 molecular model for Jd-Di. See comments for Cpx(l) above. NOTE restricted subdivision range on x(Cats) DiHeJd(h) 1 3 1 isp(1), ist(1) di hed jd endmember names (3(a8,1x)) 0 0 0 0 endmember flags 0. 1. 0.05 0. 1. 0.05 0 subdivision ranges and model 13 4 iterm, iord 1 3 1 3 1 1 0 0 xdi*xjd**2 12430. -6.21 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 3 1 1 0 0 xdi**2*xjd -12430. 6.21 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 3 1 3 1 1 xjd**3*xdi -22290. 23.19 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 3 1 1 1 1 xjd**2*xdi**2 44580. -46.38 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 1 1 1 1 1 xjd*xdi**3 -22290. 23.19 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 1 0 0 0 0 xjd*xdi 12540. 12.63 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 0 0 0 0 xhe*xdi 2500. 0.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 2 1 2 0 0 xjd*xhe**2 -12430. 6.21 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 3 1 3 1 2 xjd**3*xhe -22290. 23.19 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 2 0 0 0 0 xjd*xhe 12540. 12.63 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 3 1 2 0 0 xjd**2*xhe 12430. -6.21 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 3 1 2 1 2 xjd**2*xhe**2 44580. -46.38 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 3 1 2 1 2 1 2 xjd*xhe**3 -22290. 23.19 0. 0. 0. 0. 0. 0. 0. 0. 0. 2 msite 3 1. M1, Al-Mg-Fe, 1 site 1 0. z(fe,m1) = x(he) = x(12) 1 1.0 1 2 1 0. z(mg,m1) = x(di) = x(11) 1 1.0 1 1 2 1. M2, Ca-Na, 1 site 1 0. z(na,m2) = x(jd) = x(14) 1 1.0 1 3 0 jfix ------------------------------------------------------------------------ dummy model to produce pseudocompounds for the Toop-Samis model, the first endmember must be sio2, the remaining endmembers must be entered in order of increasing at wt of the cation, i.e. na, mg, al....., with the present format you are going to be limited to 4 component melts, dum1 and dum2 will be ignored by vertex (i.e., if it doesn't find the endmember in the thermodynamic data file it will eliminate the component from the model. Toop-Melt 1 4 3 isp(1), ist(1) SIO2 CAO DUM1 endmember names (3(a8,1x)) DUM2 0 0 0 0 endmember flags 0.0 1. 0.01 0.0 1. 0.01 0. 1. 0.01 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 Mn-Opx(HP) | solution name (a10 format). 2 | 2 independent mixing site. 3 1 2 1 en fs don mgts fets dts 0 0 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0.0 1.0 0.2 0.0 1.0 0.2 0 | pseudocompound model for site 1 0.8 1.0 0.05 0 | pseudocompound model for site 2 2 3 | iterm, iord, non-ideal Fe-Mg mixing 1 1 1 2 0 0 1000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 2 -500. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 | msite, 3 sites, M1, M2, T. 3 1. | 3 species on M2, 1 site per formula unit. 1 0. | z(11) = x(mg,m2) = x(11) so 1 term and a0(11) = 0. 1 | 1-x term 1. 1 1 | 1 0. | z(12) = x(fe,m2) = x(12) so 1 term and a0(12) = 0. 1 | 1-x term 1. 1 2 | 2 2. | 2 species on T, 2 sites per formula unit. 1 0. | z(21) = z(al,t) = x(22)/2, so 1 term and a0(21) = 0 1 | 1-x term 0.5 2 2 | 4 1. | 4 species on M1, 1 site per formula unit. 1 0. | z(31) = z(al,t) = x(22)/2, so 1 term and a0(31) = 0. 1 | 1-x term 0.5 2 2 | 2 0. | z(32) = z(mg,m2) = x(11)(1-z(31)) = x(11) - x(11)x(22)/2 1 | 1-x term 1. 1 1 | 2 | 2-x term -.5 1 1 2 2 | 2 0. | z(33) = z(fe,m2) = x(12)(1-z(31)) = x(12) - x(12)x(22)/2 1 | 1-x term 1. 1 2 | 2 | 2-x term -.5 1 2 2 2 | 0 | jfix -------------------------------------------------------- | Mn-solutions added by claudio mazzoli -------------------------------------------------------- holland et al. 1998, EJM. | this is a non-ideal model for aluminous | chlorite (i.e., chlorite more aluminous than | the clin-daph join) formulated | to be consistent with holland and powells | suggested site population, i.e., Mg and Fe mix | on 4 M2+M3 sites, Mg, Fe, and Al mix on the M1 site, | and Al and Si mix on 2 T2, and M4 is occupied by | Al in aluminous chlorites. For perplex it is not | necessary to consider the afchl endmember for these | compositions becuase the endmember has negligible | contribution to the total energy of the solution | (see fig 4 of holland et al). MnChl | solution name (a10 format). 2 | 2 independent mixing site. 3 1 2 1 | 2 species mix on each site, site multiplicity undefined, see below. clin daph mnchl | endmember names (3 per line, 3(a8,1x) format), this order implies: ames fame mame | x(11)=x(mg); x(12) = x(fe); x(21) = x(SiAl,t2); x(22) = x(Al2,t2) 0 0 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. .0 1.0 .05 .0 .6 .05 0 | transform subdivision for site 1 (gives range of x(mg)) .0 1. .1 0 | transform subdivision for site 2 (gives range of tschermaks). 3 4 | iterm, iord. 1 1 2 1 1 2 2 1 w(cl-da) 2500. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 1 2 2 2 1 w(am-cl) 18000. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 1 1 2 2 2 2 1 w(am-da) 20500. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 | msite, 3 sites, M2+M3, M1, T2. 3 4. | 2 species on m2+m3, 4 sites per formula unit. 1 0. | z(11) = x(mg,m2) = x(11) so 1 term and a0(11) = 0. 1 | 1-x term 1. 1 1 | 1 0. | z(12) = x(fe,m2) = x(12) so 1 term and a0(12) = 0. 1 | 1-x term 1. 1 2 | 2 2. | 2 species on T2, 2 sites per formula unit. 1 0.5 | z(21) = z(al,t2) = x(22)/2 + 1/2, so 1 term and a0(21) = 0.5 1 | 1-x term 0.5 2 2 | 4 1. | 3 species on M4, 1 site per formula unit. 1 0. | z(31) = z(al,m4) = x(22), so 1 term and a0(31) = 0.0 1 | 1-x term 1.0 2 2 | 2 0. | z(32) = x(mg,m2) - x(mg,m2)*x(al2,t2) so 2 terms and a0(32) = 0. 1 | 1-x term 1.0 1 1 | 2 | 2-x term -1.0 1 1 2 2 | 2 0. | z(33) = x(fe,m2) - x(fe,m2)*x(al2,t2) so 2 terms and a0(33) = 0. 1 | 1-x term 1.0 1 2 | 2 | 2-x term -1.0 1 2 2 2 | 0 | jfix -------------------------------------------------------- Mn St MnSt 1 3 4 isp(1), ist(1) mst fst mnst 0 0 0 endmember flags 0.02 1.0 0.04 0.0 1.0 0.1 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix -------------------------------------------------------- Mn Ctd MnCtd 1 3 1 isp(1), ist(1) mctd fctd mnctd 0 0 0 endmember flags 0.02 1.0 0.04 0.0 1.0 0.1 0 subdivision ranges and model 0 0 iterm, iord 0 msite 0 jfix