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ABSTRACT-An algorithm has been developed to determine the minimum Gibbs energy surfaces and composition phase dia- 
grams of chemical systems. In order to apply the algorithm, phases are represented by points in the parametric 
space of a system. This requires that the compositional variation of solutions be described by a series of "pseu- 
do-compounds" of differing compositions. All phase regions of an approximated c component system are thus 
linear as they are defined by the coordinates of c point phases (i.e., phases of fixed composition), which may cor- 
respond in part or entirely to a single solution phase. These regions form c-1 dimensional sirnplicial facets on the 
Gibbs energy-composition surface of the system and are identified by an abbreviated combinatorial method. This 
method is feasible because the chemical potentials of the components are constant in any region and can be rap- 
idly determined from linear algebraic techniques. The true phase rule variance of phase regions is found by 
counting the number homogeneous phases, which may be represented by one or more point phases, in each 
region as identified by the algorithm. The algorithm can be generalized to other thermodynamic state functions 
for systems with additional extensive independent variables, such as volume and entropy. The procedure has 
been coded as a FORTRAN computer program, Bounds, which is capable of treating five component systems 
with up to eight hundred point phases. Because the calculation of stable phase equilibria is assured by the algor- 
ithm, Bounds can be used to calculate composition phase diagrams for systems with complex phase relations, 
e.g., multinodal solvi. Bounds also provides the basis for a simple method of calculating phase diagrams as a 
function of both composition and variables like pressure, temperature, and chemical potentials. 

Introduction 

This communication describes an efficient algorithm and computer program, Bounds, for deriving the minimum Gibbs 
energy-composition (G-X) surface of a chemical system. This surface represents the equilibrium states of a system for which 
compositional parameters are independent variables, and projection of the surface onto composition space defines a composi- 
tion phase diagram. The algorithm was originally developed for subsolidus silicate systems which characteristically contain a 
large number of potentially stable condensed phases. Typically, only a few of these phases exhibit even limited solution behav- 
iour. The goal of this work was to accommodate such systems by an easily automated means which could take advantage of 
the limited extent of silicate solution. Composition phase diagrams are of considerable value in themselves, but perhaps more 
importantly, efficient description of them is virtually essential for the automated computation of Schreinemakers-type phase 
diagrams for complex systems. 

In the past two decades, refinements of thermodynamic equations of state have made it possible to accurately locate 
many silicate phases in G-X space. With these constraints the stable phase assemblages for a given composition can be pre- 
dicted from thermodynamic principles. The necessary computations, though simple in concept, are generally so tedious that 
they cannot be carried out by hand. This complication has been overcome by the development of computer algorithms which 
identify the stable phase configuration at a point in the parametric space characterizing the state of the system (e.g., 1-8). 
These algorithms possess a mathematical sophistication which make computations in complex multicomponent systems possi- 
ble. However, their use in incremental mapping of phase regions when the independent parameters of a system are uncon- 
strained generally involves redundant calculations (e.g., 4, 5, 9, 10) or utilizes some special, and often assumed, characteris- 
tic of a system (e.g., 11, 12). In addition, these methods are not very robust in that often: (i) some a priori knowledge of the 
system is necessary; (ii) computer programs are often limited to a specific model of solution behavior (e.g., Margules formula- 
tions); and (iii) the output cannot readily be expressed analytically. The fundamental difficulty, though, is that a system has an 
infinite number of possible compositions and mapping is done by finding the assemblage far a given composition. The alterna- 
tive is to identify the finite number of phase regions which represent all compositions of a system. The G-X surfaces of most 
systems are nonlinear, so such an approach would be difficult to apply directly, but the approach can be used for linear 
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number of inert components in a system 
Gibbs energy 
G per molar unit of the ith phase 
number of moles of the jth component 
nj in the ith phase 
number of equilibrium phases 

stoichiometric coefficient of the j" phase 
chemical potential of the jth component 
total number of potentially stable phases 
number of inert components in a solution phase 

TABLE 1 

List of Symbols 

P pressure 
S entropy 
T temperature 
U internal energy 
V volume 

Xi mole fraction of the jth component. 

pij in the ith phase 

vii stoichiometric coefficient of the jth component 
per molar unit of the ith phase 

approximations of such surfaces. These approximations can be justified for the multicomponent systems and solutions of 
interest here. 

~utational Method 

The following three sections provide an overview of the thermodynamic fundamentals, and geometric constraints of the 
minimum Gibbs energy surface of chemical systems. More detailed discussions of these subjects may be found in many 
texts; the works of Palatnik and Landau (13) and Korzhinskii (14) are particularly appropriate. 

Geometry of Gibbs Eneruv Surfaces 

The equilibrium state and extent of an isobaric-isothermal system is described by either the chemical potential (p) or the 
mass (n) of each of its components, with the proviso that the mass of at least one component must be specified. A compo- 
nent is designated as perfectly mobile or inert depending on whether its chemical potential or mass, respectively, is an inde- 
pendent variable of the system (14 p. 61). The problem of concern here is to determine the equilibrium states of a system at 
arbitrarily fixed P-T-p conditions as a function of the remaining independent variables, i.e. the inert components. For the sake 
of brevity, such systems will be described as c component systems, where c denotes the number of inert components. 

The state of a c component system can be represented in a c + 1 dimensional parametric space defined by the indepen- 
dent parameters n., ..., n,, and the Gibbs energy'. The extent of a system is unimportant in the description of phase relations 
so the dimension of the parametric space can be reduced by one with no loss in relevant information. This will be accom- 
plished here by taking a section through the space such that the total number of moles of the components of the system is 
always unity. The n, in this section are thus numerically equivalent to the proportion of each component and will be denoted 
by 5 to distinguish them from unconstrained nj. The advantage of this definition is that the X, are extensive properties which 
obviates the necessity of creating molar variables for the system (cf. 15). However, to avoid confusion, intensive variables of 
state will be called potential variables (16, 13 p. 139) to distinguish them from molar variables, which are also intensive. For 
practical applications the composition space of any system considered must be finite, thus it is necessary to impose the addi- 
tional restriction that Xi > 0 (j = 1, ..., c). The allowed composition space, as defined by the Xi, is a c-1 dimensional sim- 
plex. The vertices of this simplex represent compositions equivalent to those of the components, and any permutation of less 
than c vertices defines a compositional join. 

In the parametric space of a heterogeneous system there is a unique G-X surface corresponding to each phase. Two 
assumptions are sufficient to determine the relation of the G-X surface of a system to the surfaces of its constituent phases. 
These are the assumption of the validity of the Gibbs equilibrium criterion, and the assumption that any extensive property of a 
system is the weighted sum of that property in each coexistent phase of the system. This surface can be conceived of as the 
successive tangents, between surfaces of coexistent phases, formed by the motion of a c-1 dimensional plane as it is rolled 
across the phase surfaces. The different phase configurations on this surface divide it into phase regions, and the projection 
of these regions onto composition space is a composition phase diagram. The variance in such diagrams is sometimes given 
as the degrees of freedom in the independent parameters (Xj) within a phase region (16). This usage has little descriptive 
power as it is evident that, in general, all phase regions will be of the same dimension regardless of the nature of the equilib- 
rium within them. Instead, variance will be used here to indicate the number of degrees of freedom in the intensive parame- 
ters of the system, which are equivalent to the number of possible "variations of phase" as described by Gibbs (15 p. 96). A 
region of c phases is thus invariant, whereas a one phase region has a variance of c-1. 

The partial derivatives (S2G / 9Xf) (j = 1, ..., c) are positive for any compositionally nondegenerate phase region of less 
than c phases. The G-X surfaces of heterogeneous systems thus have complex nonlinear geometries which are difficult to 
describe analytically. However, if a system contains only phases with fixed stoichiometries, i.e. point phases, then the only 

 h he Gibbs energy is the correct state function only when all components of a system are inert. If one or more components are perfectly mobile, i.e. the chemi- 
cal potentials of these components are independent variables of the system, then it is necessary to derive a state function with the corresponding potentials as 
independent variables by means of Legendre transformations. To avoid an unnecessarily elaborate discussion, the Gibbs energy will be used here with the 
understanding tha: m alternative state function should be substituted when appropriate. 
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Figure 1. G-X diagram for a binary system with three stable phases, A, B, and C. "True" G-X surfaces of the phases are 
shown as light, solid lines; pseudo-compound coordinates are indicated by dots; and the minimum G-X surface of 
the system, consistent with the pseudo-compounds, is shown as a heavy solid tine. 

phase regions2 are invariant and linear functions of composition. The G-X surface of such a system is therefore a piecewise 
linear simplicial complex. The vertices of each c-1 dimensional simplex represent the phases of an invariant region. The 
geometry of this complex is easily and completely described by listing the phase configurations of each region and specifying 
the coordinates of the stable phases. 

The algorithm was originally developed to determine the geometry of bounding simplicial complexes because the only 
stable phases of many silicate systems are essentially point phases. Due to the efficiency of the algorithm, it can be applied 
to systems which contain solutions that are approximated by closely spaced point phases. To emphasize the distinction bet- 
ween a true point phase and one which corresponds to a part of a series devised to describe the compositional variation of a 
solution phase, the latter will be termed "pseudo-compounds". It is important to recognize that the compositional coordinates 
of pseudo-compounds are arbitrarily specified within the compositional limits of the solution which they represent. By 
decreasing the spacing of pseudo-compounds it is possible to obtain greater detail of the phase relations for the corresponding 
solution phase. The application of pseudo-compounds is illustrated by Figure 1 which shows a G-X diagram for a hypothetical 
binary system. The system contains three true phases; two (B and C) have virtually invariant stoichiometry and are ade- 
quately represented by point phases. The other phase (A) is a solution which is subdivided into a series of pseudo-com- 
pounds (A,, ..., Ag). The surface of the system consists of two true invariant regions (B-Ag and C-A,) and four pseudo-invari- 
ant regions (A,-&, ..,, &-A,) which approximate the univariant region of the solution A. In the remainder of this paper the 
prefix "pseudo" will be used to describe the variance of regions in which two or more of the constituent pseudo-compounds 
represent the same true phase. For example, an assemblage of three compositionally adjacent pseudo-compounds corres- 
ponding to a solution phase in a ternary system is pseudo-invariant; since the assemblage represents part of a homogeneous 
region it is actually divariant. 

Input to the algorithm consists only of point phase coordinates; thus, solutions must be subdivided into pseudo-com- 
pounds prior to its application. Because only point phases are considered, the algorithm is independent of the compositional 
equations of state used to establish the G-n coordinates of pseudo-compounds. Computations can thus be done on phases 
modeled by any kind of equation of state, e.g., non-ideal molecular fluids and ionic solutions. 

Thenmodvnamic Principles and Criteria for Stability 

The Gibbs criterion for equilibrium implies that the stable phase configurations of a system are those which minimize its 
Gibbs energy. If it is assumed that the differential of the Gibbs energy of a system is a first order homogeneous differential 
with respect to the masses of the constituent phases, then it follows from Euler's theorem on homogeneous functions that: 

*------------------- 

~ h e  compositional variation of any configuration of less than c point phases can be described by fewer than c components; therefore, such configurations do not 
constitute a region in a c component system. Degeneration of high variance regions into boundaries leads to an exception of the "contact rule" (14, p. 236). 
Some workers attempt to explain such exceptions by arguing that complete invariance of phase stoichiometry is impossible on the basis of the "phase rule" (17). 

That this argument is inconsistent with the work of Gibbs (15 p. 97), has been recognized by many authors (14, 18). The relation between neighboring phase 
regions involving degenerate phases can, however, be correctly deduced according to the method outlined by Zhao (1 9). 
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where the chemical potentials (u,,) of each component in each phase are defined as: 

pij 5 (82, / an,,). 

The G-n surface of any phase is therefore described by the relation: 

The ratios between the nij are fixed in a point phase; for such phases equation (3) defines a ray which emanates from the ori- 
gin of G-n space. This ray can be located if the coordinates of the phase are known at any point other than the origin, e.g., 
the representative point defined by the molar stoichiometry of the phase (G = GT, n, = v,,, ..., nc = Wit). Because equation 
(3) is an equation in c unknowns and one independent variable, the yij are not defined for a single point phase. However, 
from the conditions formulated by Gibbs, the chemical potential of each component, in every phase in which it occurs, must 
be equal in a heterogeneous equilibrium. Thus, for equilibrium equation (1) may be repaced by: 

Any compositionally nondegenerate assemblage of p = c point phases can be used to set up a system of linear equations 
which define equilibrium chemical potentials: 

These equations locate a plane in G-n space tangent to the G-n surfaces of the coexistent phases. If the phase assemblage 
is stable, then the plane must lie at lower values of Gibbs energy than the surface of any phase not in the assemblage. This 
conditional may be expressed as: 

which must be true for all, H, possible phases of a system. Phases must have non-negative masses, therefore, only the por- 
tion of a given G-X plane, located by equation (5) ,  for which the condition (6) is true defines the compositional limits of a 
phase region. Valid spanned compositions (XI, ..., XJ are such that the stoichiometric coefficient of each phase in a configu- 
ration (a,, ..., a )  determined by solving: 

satisfy the condition: 

Chemical multisystems consisting only of point phases can be visualized as a bundle of rays in G-n space, or as a set 
of points in G-X space, where the geometric elements represent possible phases. The problem of interest here is the identifi- 
cation of the bounding conic polyhedral surface that is strictly concave with respect to the G ordinate. The facets of this sur- 
face determine phase assemblages and regions for which the conditions (6) and (81, based on equations (5) and (7), are true, 
for all phases and compositions, respectively. 

These conditions may suggest brute force is not an untenable means of determining the configurations of the surface. 
This method would involve enumeration of all possible c phase configurations. Any configuration with a concentration matrix, 
3, of full rank, could be solved for j3. If the condition (6) were then found true for all additional phases the configuration would 
be accepted as a stable assemblage. Unfortunately, the number of possible configurations, given by 

increases combinatorially as a function of both the number of components and II, the total number of potentially stable 
phases. Thus, while the simplicity of such an approach is attractive, some attempt must be made to limit the number of trial 
configurations considered in order to deal with complex systems. 
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Define c compone 
system 

I 

Classify each phase into 
simplest subcomposition of 
c' components possible 

(SORT) 

Figure 2. Flow chart illustrating the overall structure of Bounds. Subprogram references are indicated parenthetically (see 
Appendix B for additional description). 

t -a 

metric Constrain& 

The strategy adopted in the Bounds algorithm is to utilize the constraints imposed by the simplicia1 geometry of the G-X 
surface to eliminate as many trial phase configurations as possible. This is accomplished by evaluating the G-X surfaces of 
progressively more complex subsystems of the components as shown by the flow chart in Figure 2. The surfaces so defined 
must be stable in the full system; therefore, phases which are metastable in a subsystem may be disregarded in subsequent 
calculations. Furthermore, each invariant configuration in a c-1 component subsystem forms a phase region boundary in the c 
component system. Thus, only one phase3 in the interior of the adjacent composition space need be found, in addition to the 
assemblage on this boundary, in order to define a phase region. Similarly, each configuration found in the interior of a c com- 
ponent composition space generates up to c-1 new boundaries. 

By keeping account of phase region boundaries, the combinatorial problem of determining stable configurations is 
reduced to that of finding a single phase that is compatible with a boundary assemblage. This process is outlined for a three 
component system in Figure 3 and is illustrated in the composition phase diagram of figure 4a. Once the stable binary joins 
have been established, a binary assemblage, e.g., A-B , can be used to identify a ternary configuration (steps 4-16, Fig. 3). If 
the system contains no ternary phases there are six trial configurations compatible with A-B as shown by the dashed lines in 
figure 4a. On average half the possible configurations will be tested before the stable one is identified; for this example 
roughly 35 trials would be necessary to define the ternary diagram as opposed to 165 by brute force. The example shows 
brute force in its best light; in more complex systems the difference in the number of trials has ranged up to four orders of 
magnitude in computer experiments on ternary systems. 

Determine variance of 
stable regions and test 

for immiscibility 
(MISGIB) 

Additional efficiency can be achieved by noting several consequences of the geometry of the Gibbs energy surface, 
which follow from the fact that phase region boundaries are geometric elements of one dimension less than phase regions: (i) 
Any boundary that does not lie on a degenerate join, and the phase assemblage which defines it, can be common to two and 
only two regions. The c-1 dimensional element which spans such a boundary divides the composition space of a system into 
two parts and only one region adjoining the boundary may occur in each part. (ii) From (i) it follows that only phases on the 
opposite side of a boundary from a phase known to coexist with the boundary assemblage may form a second stable configu- 
ration with the boundary assemblage. (iii) A trial configuration, consisting of a boundary assemblage and a trial phase, which 
spans the composition of a stable phase must be metastable with respect to the configuration of the spanned phase plus the 

- c' -t- 1 
c' <- c' + 1 

---*---------------- 

i t  will sometimes be convenient to use language that attributes to geometric elements properties which belong to the associated state of a system or a'cconstit- 
uent phase, and vice versa. Thus it can give rise to no ambiguity, to state that a phase which lies within a region, instead of stating that a region spans the 
coordinates associated with the phase. 
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c' $12 

(BOSSOP) 
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j + 1 j 5 # of binary 
- assemblages on . - 

j + j  + 1 i'h join 

1 Use jth assemblage 1 
1 as a ternary boundary 1 

I 

Sake for 

not on 

Test phase = kth phase E t  
1 

I solve for II I 

Assemblage 
previously identified? 

Save assembla e -F- 
New boundaries? Save boundary 

IT = IT + 1 

Flag identical 

j + 1  J T < I & K T  
, # of boundaries found - -1 j + j + i 1 in previous cycle 1 

Flagged boundary? ? 
Determine boundary 

a unary phase 

spanned by the trial configuration 

k +  1 
k + k + 1 tercary phases 

F 4 kth phase bounded? 
I 

Test phase = kth phase a 
Solve for fi 

k + k + 1 ternary phases s 

Figure 3. Flow chart of the ternary system algorithm. A "test phase'' is the phase which, in combination with the two p h a s e s  
on a phase region boundary, forms a potentially stable ternary "trial configuration". 
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Figure 4. Chernographic relations for two hypothetical ternary systemsI compositions of phases are indicated by open 
squares. (a) Possible boundaries (dashed lines) compatible with the binary assembiage A-6- (b) Stable boundar- 
ies consistent [solid lines) with the binary assemblages and some incompatible ternary bounda~es (dashed lines) 
as discussed in the text. 

boundary assemblage. A corollary to (iii) is that if a trial configuration is metastable with respect to a phase which is within the 
compositional limits of the configuration, then the configuration of the spanned phase and the boundary assemblage will be 
relatively more stable. 

Application of these constraints is demons&ated by the example shown in Figure 4b. This figure illustrates a computa- 
tional stage at which the seven stable binary assemblages have been paired with ternary phases so as to define six ternafy 
phase regions delimited by solid lines in figure 4b (A-B-I, B-C-J, C-D-J, etc., steps 2-1s1 Fig. 3). These regions, in turn* gen- 
erate nine two-phase boundaries within the ternary system (A-ll 8-1, B-Jl et~.). From the first constraint (i, above) the boun- 
daries D-J and C-J need not be considered since both are shared by two regions. Identification of each ternary assemblage 
will eliminate at least one other boundary, e.g,, if A-I is stable with F then trials with A-F would be redundant (step 13, Fig. 3). 
Of the remaining trial configurationsl roughly half could be eliminated by the second constraint (iil above, steps 19, 24, 301 Fig. 
3). For example, consider the boundary assemblage B-I which coexists with 4 on!y D, Jl and C, which fie on the opposite 
side of 13-1 from A, may form stab!% configurations. Of the three possibilities both f3-1-0 and 8-I-C bound J and thus must be 
metastable relative to B-I-J (steps 23, 24-27, Fig. 3) which must be stable by default. Given that B-I-J and A-I-F are stable 
assemblagesl then the only possible boundary, consistent with boundaries F-H, E-H, and E-J, is, by the corollary to the third 
constraint, H-1. I f  t i - I  is a stable boundary, every boundary, within the ternaryl is shared by two regions and the topology of 
the diagram is completely defined (step 17, Fig. 3). 

Although it is possible to make more frequent tests for the feasibility of configurations, and to perform tests other than 
are outlined in Figure 3, none were found which resulted in a significant increase of efficiency. An occasional exception to this 
statement arises when the proportion of metastable phases is relatively high, i.e- greater than ninety-five percent of the total 
number. In this case it is useful to flag metastable phases as they are identified so that these phases may be omitted from 
subsequent tests. 

Variance a d  lmrniscibilii in Pseuda-Compund Assmbla~es 

Assemblages in which two or more pseudo-compounds represent the same solution are in general only pseudo-invariant 
and therefore define only a fraction of a true phase region. The exception to this generality occurs when a solution is imrnis- 
cibiel since it is then possible for pseudo-compounds to represent the multiple phases of a solution separated in composition 
by a solvus. If no possibility of immiscibiliQ exists variance is obtained by simply subtracting the number of distinct phases 
represented in a configuration from the total number of components, as previously described, In a true a component solution 
a solvus is a compositional region over which at least two and at most a phases of the solution coexist, and within which there 
are no stable intermediate compositions. In terms of pseudo-compoundsl solvi can be recognized by the existence of pseudo- 
invariant regions which span the compositions of metastable pseudo-compounds representing the same solution as the com- 
pounds defining the nodes4 of the regions. Algebraically, this implies that if the composition of a metastable pseudo-com- 
pound can be described by a positive hear combination of the stable pseudo-comp~unds, representing the same solution, 
then the solution is immiscible. Thus, if a solution is heterogeneous within a region then there must be at least one metasta- 
ble pseudo-compound such that the staichiometric coefficients of the stable pseudo-compounds representhg the solution (a,, 
..., ao) are greater than or equal to zero. These coefficients are determined by solving: 

vt a = fi, (1 0) 
---*---------------- 

' ~he  term node  is used here %<indicate the point of tangeticy between the thermo&namic surface of a phase and that of the System (13 p.131). 
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Figure 5. Thermodynamically equivalent V-X (a) and P-X (b} phase diagrams for a hypothetical binary three phase system. 
The phases Al 0 and Cl have invariant compositions and molar volumes. 

where fl is a concentration vector for the metastable pseudo-compound and Vt is the transpose of the concentration matrix for 
the phase configuration defining the region (cf.! eq. (7)). In regions where u<c it is also necessary to stipulate that the stoi- 
chiometric coefficients of any pseudo-compounds or phases which do not correspond to the solution in question must be zero. 
This alqebraic method provides a simple technique for determining if immiscibility occurs in a system, within the compositiona~ 
resolution of the pseudo-compounds, once the stable phase configurations have been determined. Howeverl it must be notad 
that if a configuration of pseudo-compounds describes a region of immiscibility the true variance cannot be found directly, as it 
is not possible to distinguish between two phase (binodal) and more compIex (multi-ndal) solvi. 

Limitations 

bmitations to the use of the Bounds algorithm fall into theoretical and practicai categories. Theoretical limitations follow 
from the assumption that if the composition of a system lies within a join defined by the selected componentsl then the corn- 
positions of its constituent phases are also in the join. This requires that each boundary of a composition phase diagram is 
itself a phase diagram for a subsysiem of the components. The assumption implies that no phase region boundary crosses a 
join defined by a subcomposition of a system. Componentsp therefore, must be chosen so as to validate the assumption, 
thus, some a priori knowledge of the phase relations of a system is necessary to apply Bounds, This knowledge, and know- 
ledge of the potential phases of a system, is essential for most phase equilibrium calculations and is not a specific drawback 
of Bounds. A second consequence of the assumption is the impossibility of constructing a phase diagram section at a cons- 
tant level of an extensive parameter (S-V-n). This is because there is no thermodynamic relation between the extensive par- 
ameters of a system and those of its constituent phases. Thus, the parametric coordinates of phases are not constrained tu 
lie in the reduced parametric space of such a section. In contrast, phase coordinates are constrained to lie in the parametric 
space of an iso-potential (P-T-p) section because of the equality of potentials at equilibrium. This distinction may be clarified 
by comparison of the thermodynamically equivalent V-X and P-X phase diagrams shown in Figure 5. The diagrams are for a 
hypothetica! binary system with three phases of invariant molar volume and composition. It is evident from Figure 5a that 
there are no nondegenarate isochoric sections in which the V-X coordinates of the phases can be defined in the section. 
However, because the pressures of the system and its constituent phases are equal, the P-X coordinates of phases can be 
defined in any isobaric section. Thus, although it is possible to use Bounds to compute the thermodynamic surface over any 
iso-potential section of a parametric space; it is not, in generall possible to construct isoplethal, isochoric, or isentropic sec- 
tions. 

Bounds can easily be generalized to any number of components; however, because Bounds is fundamentally a combi- 
naiorial algorithm, practical considerations of computation time and memory requirement limit its use. The nature of these 
restrictions is largely dependent on the computatio~al facilities available to the user. These complications are an outcome of 
the large number of pseudo-compounds necessary to represent a solution phase, and the number of subsystems that can be 
generated from the components of a system. The latter number can be deduced from the Newton binomial formula. Thusl for 
a six component system it would be necessary to allocate sufficient memory for 15 binary, 20 ternaryl 15 quaternary, and 6 
quinary joins {step 4, Fig. 2). The number of phases is a more important factor. 'This is demonstrated by iterative baycentric 
subdivision (20) of a solution into pseudo-compounds. In such a scheme the number of pseudo-compound assemblages after 
the kIh subdivision of a u component solution is given by: 
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system 

Figure 6. Schematic V-X diagram for the system water-SiH.4. The system has three stable phasesl water, and two silica 
polyrnorph~~ A and B. Tieiines are shown as dashed lines, and phase region boundaries are depicted with solid 
lines. 

For u = 5 and k = 2 (for k = 2 the solution is represented by five pseudo-compounds along each binary join} 14,400 pseu- 
do-compound assemblages would be generated. In comparison, the fourth subdivision of a ternary solution generates only 
1296 assemblages from 673 pseudo-campoundsl a fairly manageable quantity. For the kinds of computers currently available 
at most large computational facilities? the limitations will not be a significant factor for systems with soluti~ns of fewer than four 
components. The limitations can be reduced if assumptiorts are made about the behaviour of the solutions to be modeled 
(e.g., ideal, regular, or subregular models). Such assumptions detract from the generality of the algorithm and so are not 
considered here. 

The algorithm has been discussed with specific reference to the Gibbs energy and implicitly with regard to state func- 
tions derived from the Gibbs function for systems with perfectly mobile components. This approach was taken because the 
independent variables of the Gibbs function (P, T? n,, ..., nc) are the most widely used in the physical sciences. In some 
cases, though, it is desireable to consider systems with additional independent extensive parameters such as volume (V) and 
entropy (S). This can be accomplished with Bounds by creating an augmented parametric space with the desired independent 
parameters? and substituting a suitable state function. In this regard it may useful to consider "physical4' components associ- 
ated with the conjugate pairs V-P and S-TI just as n-p pairs can be associated with "chemical" components. In the most 
general case, where all the independent parameters of a system are extensive, internal energy (U) replaces the Gibbs energy, 
so that equation (5) becomes: 

v,, ... VjC ST vy 
. . .  
. . .  
. a .  

. . .  
vp, * . a  vpc s; v; 

where V and fl are replaced by generalized "c~ncentrationl' and a'potential'' matrices (cf., 16). In a similar manner, the geo- 
metric relations and restrictions in this augmented parametric space can be generalized to be exactly analogous to those in 
G-X space. 

Many condensed phases can be represented by point phases in V-X space because of their low expansivity and com- 
pressibility. In comparison, heat capacities are energetically more significant than volumetric properties, so the entropy of the 



10 J.A.D. CONNOLLY and D.M. KERRICK 

Point Phase Notation 

Symbol Phase 

AC3 
Ad 
An 
And 
CA 
cA2 
CA6 
Go 
Gr 
Ge 
Gr 
Hm 
La 

tricalcium aluminate 
andradite 
anorthite 
andalusite 
calcium aluminate 
calcium dialurninate 
calcium hexaluminate 
corundum 
cristobaiiite 
gehlenite 
grossularite 
hematite 
larnite 

Composition 

C%A1206 
Ca3Fe2Si3OI2 
CaA12Si208 
A12Si05 
CaAI2O4 
CaAI4O7 
call 2 0 1  g 

4203 

Si02 
Ca2AlzSi07 
Ca3AlzSi3012 
Fe203 
Ca2Si04 

Symbol Phase 

lime 
magnetite 
muscovite 
paragonite 
epidote 
pseudowollastonite 
quartz 
rankinite 
tricalcium siiicate 
tridymite 
wollastonite 
zoisite 

Composition 

CaO 
Fe304 
w'3si301Q(0H12 
NaA13Si3010{OH)2 
Ca2FeAl2Si3OI2(OH) 
CaSi03 
Si02 
Ca3Si207 
Ca3Si05 
sio2 

Solution Phase Notation 

Solution phases, of 0 components, are designated by the symbols for a-1 endmember components with per- 
cent moIar proportions indicated by subscripts. 

Symbol Phase Composition 

G rx grandite garnet @Ad1 -x 
Mix supercritical mica 
M~~ subcritical Mu rich mica M U ~ P ~ , , ~  
pax subcritical Pa rich mica p%Mu~.~ 
s x  CS melt (ca01,.x(Si02)x 
S$., CAS melt (CaO),-x-y(A~203)y(Si02)x 
2 ~ x  zoisite ~ o ~ E P ~ - ~  

constituent phases of a system cannot be regarded as being independent of the temperature of the system. Point phases in 
composition space are therefore at least line phases in S-X and S-V-X spaces. Representation of internal energy and enthal- 
pic surfaces thus may require many more pseudo-compounds than necessary to describe the Gibbs and Helmholtz surfaces 
by the Bounds algorithm. 

The assumption, necessary to apply Bounds, that the boundaries of a phase diagram are in the configuration of the  
joins of a simplex poses a minor difficulty, because "physical" components do not provide for the same natural divisions into 
subspaces as do chemical components such as the oxides. This difficulty can be circumvented by introducing fictive point 
phases. For example, consider the isothermal binary system H20-Si02, under conditions for which the only phases are two 
pure silica polymorphs and pure water as illustrated schematically in Figure 6. The geometry of this diagram can be **trans- 
formed" into a simplex by introducing a fictive phase and component SiH-4 (which is assigned appropriate thermodynamic 
parameters}. The transformed diagram, for purposes of the algorithm, can be interpreted as a three component system, maxi- 
mum density water-minimum density ~a ter -S iH-~ with the caveat that configurations involving SiHm4 do not represent true 
states. 

Details of the Proarm 

The aigorithm has been coded as a FORTRAN computer program, BOUNDS, which is listed in Appendix C. The pro- 
gram was written for use on an tBM System model 3081 computer and requires a region of memory of about 75K bytes for  
the object code and 200K bytes for array area. Optimum performance has been obtained using the IBM VS FORTRAN compi- 
ler, but the code should be compatible with most other compilers. The version in Appendix C is dimensioned for 800 phases 
and coded for systems with up to 5 compositional degrees of freedom. Many of the subprograms were written for chemicai 
systems of specific dimensionalib. These programs were not condensed into more general programs because condensation 
would result in increased execution time. Execution times are strongly dependent on the problem of interest; for five compo- 
nent systems with more than 200 phases? execution times are typically on the order of one to ten seconds. No provision is  
made to evaluate equations of state or to subdivide solutions into point phases since these functions are not readily general- 
ized (several subprograms for specific functions are available from the authors). Most envisioned applications of the program 
entail its use as a subprogram. The main program in Appendix C serves primarily as an example of how the remainder of the  
program may be used. 

Experience with the program has led to the following suggestions which the reader may wish to take note of: (i) It is  
most efficient to carry out initial calculations with coarse subdivision of solutions. Resolution may be increased later for com- 
positional regions where the solution is stable. (ii} Iterative barycentric or cartesian subdivision are the most useful schemes 
for ideal ionic soiutions. Non-ideal solutions are better represented by a scheme in which the spacing of point phases varies 
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THERMODYNAMIC DATA BASE FROM: HELGESON E T  AL., 1 9 7 8  
FLUID EQUATION O F  STATE: MRK, PARAMETERS FROM CONNOLLY AND BODNAR, 1983 

COMPONENTS WITH CONSTRAINED CHEMICAL POTENTIALS: 

CONSTRAINTS FOR THE CALCULATION! 

( 1) TEMPERATURE (C) :  600.00 
( 2 )  PRESSURE (KBAR): 2.000 
( 3) H20-C0.2 FLUID SATURATED, X C 0 2 ;  0.00 
( 4 )  OXYGEN FUGACITY BUFFER: MT-HM 
( 5 )  S I L I C A  BUFFER: A-Q 

EXCLUDED PHASES : 

CA-AL-PX L I M  B-CR CZO BOE A-QFM MI-WU 

COMPONENTS WITH UNCONSTRAINED CHEMICAL POTENTIALS: 

CAO A 1 2 0 3  FEO 

POTENTIAL PHASES AND (PROJECTED) MOLE FRACTION A 1 2 0 3  AND FEO : 

LIME 
GR 
CO 
GE 
G I B  
A-PR 
S I D  
A-HM 
GRID 
GR5 0 
GR9 0 
Z 0 4 0  
Z 0 8 0  

AR 
wo 
AND 
MA 
DIA 
B-PR 
A-MT 
EP 
GR20 
GR60 
Z 0 1 0  
205 0 
2090 

THE STABLE TERNARY ASSEMBLAGES ARE : 

WAIR 
cc 
KY 
20 
PYR 
FA 
FS 
B-EP 
G R 3  0 
G R 7 0  
2020 
Z060 

LAUM 
AH 
S I L  
KAO 
LAWS 
HED 
AD 
FEO 
GR40 
GR80 
Z 0 3 0  
207 0 

** NO I M M I S C I B I L I T Y  WAS DETECTED I N  THE STABLE SOLUTIONS * 

Figure 7. Output for the sample problem defined in Table 3, Appendix B. 

logarithmically away from the compositional barycenter of the solution. (iii) Baryentric subdivision is topologically the most 
natural scheme and is more likely to faithfully depict the irregular nature of phase boundaries. However, a Cartesian scheme 
allows the user greater freedom in choosing the spacing of pseudo-compounds and is less costly to implement. 

Incut and Initialization 

Input to the program consists of data defining the chemical system of interest and its possible phases, i.e. the compo- 
nents and the molar Gibbs energy and stoichiometry of each point phase. Appendix A contains a glossary of variables and 
arrays initialized by the input. Input data, as read sequentially by the main program, has four parts: (i) alphanumeric title 
cards (TNAME); (ii) the number of components (ICP) and an alphanumeric label for each (CNAME); (iii) a flag indicating 
whether a graphics file for graphics applications is to be output (IGRF); and (iv) an alphanumeric label (NAMES), molar Gibbs 
energy (GI, the molar stoichiometric coefficients of the components for each phase (CP), and a flag indicating if the phase is a 
true phase or a pseudo-compound (IKP). 

An example of input and input formatting is given in Table 3 of Appendix B. The data are for minerals in the water and 
silica saturated system CaO-A120s-FeO-HgO-0, at 2.0 kbar and 600'G with oxygen fugacity fixed at magnetite-hematite buffer 



12 J.A.D. CONNOLLY and D.H. KERRICK 

/ \ SATURATED PHASES: 

figure 8. Computer generated graphical representation of output shown in Figure 7. Pseudo-invariant region boundaries, 
which approximate tielines, are shown as light dashed lines (because each tieline is drawn twice by the plotting 
device, dashed lines are occasionally superimposed in such a way as to appear continuous); true phase region 
boundaries are shown as heavy solid lines; invariant phase compositions are indicated by open squares (for phase 
notation see Table 2). 

conditions. The constraints on the chemical potentials of silica, water, and oxygen restrict three degrees of freedom so the 
system is represented, by projection, in the ternary section CaO-A120n-Feu, The system contains two essentially binary solu- 
tions at these relatively oxidizing conditions, with endmember compositions (Table 2): grossularite-andradite and zoisite-epi- 
dote, which are subdivided, respectively, into pseudo-compounds symbolized by Gr, Grg0, ..., GrIg, Ad, and Zo, Zogo, ..., ZO,,,~ 
EP. 

Once input has been read, control is passed to the subroutine SORT which classifies phases into subcompositions 
(step 2, Fig. 2). SORT also computes the mole fractions of the components in each phase. Control is then returned to the 
main program. 

Evaluation of the Minimum Gibbs Enmv Surface 

The main program calls subroutine BOSSOP (step 3,  Fig 2.) which evaluates Gibbs energy surfaces of progressively 
more complex subcompositions of c' components at a time by calls to SIMPLcl routines. The SIMPLc (step 4, Fig. 2) routines 
reference utility programs described in appendix A; those which are distinguished only by the suffix "c" serve identical func- 
tions but in systems of c components; e.g., SIMPL1 determines stable unary phases, SIMPL2 determines stable binary 
phases, etc.. The structure of SIMPL3 is shown by a flow chart in Figure 3, and is nearly identical to that of SIMPL4 a n d  
SIMPL5. The steps in this chart where each subprogram is called are indicated in appendix A. Unary and binary system 
phase relations are found by slightly different algorithms. Once the stable configurations of a system have been defined the 
routine MISCIB is called to establish if the configurations are invariant or pseudo-invariant. Pseudo-invariant regions are 
further classified according to whether they are part of a completely homogeneous phase region, or a heterogeneous phase 
region with or without immiscibility in one or more phases. This information is particularly useful for the generation of compu- 
ter graphics. MISCIB can be manipulated to output the true variance of phase regions which do not include an immiscible 
solution. Control is then returned to the main program after which the phase configurations may be used for additional phase 
equilibrium calculations or, as in the present case, are directly output. 

mm!! 
Output consists of: (i) title information; (ii) a descriptive summary of the system; (iii) a listing of stable phase configura- 

-tions; and, optionally, (iv) a file for computer graphics output. A glossary of variables used during output is presented in 
Appendix A. For binary systems stable phases are listed in order of their occurrence along the binary join. For more complex 
systems each (pseudo-)invariant assemblage is listed separately. Each assemblage is associated with an integer c o d e  
(IASMBL) with the following significance: (1) the assemblage is invariant, (2) the assemblage is pseudo-invariant and hetero- 
geneous, (3) the assemblage is homogeneous, and (4) the assemblage defines a portion of a solvus. Title information is 
printed by the routine OUTTIT and the phase assemblages are printed by OUTCHM. 
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Figure 9. (a) Chemographic location of pseudo-compounds used to represent the GAS melt phase. (b-f) Computer calcu- 
lated and drafted isothermal sections through the CAS system (for phase notation see Table 2). True phase region 
boundaries are shown as heavy solid lines; pseudo-invariant region boundaries, which approximate kielines. are 
shown by light dashed lines (because each tieline is drawn twice by the plotting device, dashed lines are occa- 
sionally superimposed in such a way as to appear continuous); and invariant phase compositions are indicated by 
open squares. The trivariant melt regions are lightly shaded, within melt regions pseudo-invariant region boundar- 
ies are drawn as heavy lines. 



J.A.D. CONNOLLY and D.M. KERRICK 

Output produced for the example in Table 3, Appendix B, is shown in Figure 7, and is summarized graphically on the 
composition phase diagram shown in Figure 8. The phase diagram consists of five invariant regions, e.g., H~-ZO~~-G~, , ,~  and 
six univariant two phase regions represented by pseudo-invariant three phase assemblages such as Gr,o-Gr4a-203a. 

The chemographic relations in systems with four or fewer components are easily depicted graphically. The structure 
and an example of the file output for this purpose is given in Table 3 of Appendix B. 

Direct applications of knowledge of stable chemographic relationships in chemical systems are manifold and widely 
known; their discussion here would therefore serve little purpose. Instead, attention is drawn to examples of less obvious 
uses: i.e., the construction of solvi and liquid! sections, and the computation of phase diagrams when one or two intensive 
variables are added to the parametric space of a system. 

Many types of theoretical and empirical non-ideal solutions are currently in use (cf. 21). It is often difficult to judge 
whether the model assumptions and the models themselves are valid in a particular instance. A necessary, but not sufficient, 
test of validity is to determine if the predicted soivi, if any, are reasonable. This test is relatively simple to perform for binary 
solutions (e.g., 22, 23), but becomes exceedingly difficult for higher order solutions. Meijering (24, 25) approached the prob- 
tern of ternary exsolution by analyzing the spinodal equations of regular solutions. Extension of his analysis for sub-regular 
solutions, however, has not been attempted, presumably because of the convoluted mathematics entailed. As an alternative, 
some workers have used approximate computational methods to explore the geometry of exsolution in complex solutions (e.g., 
26, 27, 28, 29, 30). The Bounds algorithm provides a method of exploration which is both less costly and easier to apply. 

The use of Bounds to construct isobaric-isothermal solvi and liquidi will be demonstrated for the system CaO-AI,O,-SiO, 
(GAS) at one bar total pressure. The data of Barman and Brown (31) for the CAS system were used without modification. 
Berman and Brown did not include mullite in their compilation because of difficulties they encountered in fitting the mullite liqui- 
dus. The diagrams presented here, which portray phase relations that are, in part, metastable with respect to mullite, are 
therefore intended only as pedagogical examples. The excess Gibbs energy of mixing in the melt was fit by Berman and 
Brown to a truncated Margules expansion of the form: 

c-1 e c c 

In order to apply Bounds, melt compositions were represented by 673 pseudo-compounds as shown in Figure 9a. Effects of 
solution in GAS liquidus and sub-liquidus phases, excepting rnullite, can be neglected to a good approximation. 

The approximate ternary minimum of the CAS system calculated with Bounds is at 1 160Â°C in comparison, an exact 
numerical computation indicates Berman and Brown's equation of state is consistent with a minimum at 1124OC. The equa- 
tion of state is based on empirical data which includes an observation of the minimum at 11 48 C. Thus, the approximate cal- 
culations reproduce the observed phase relations with as much fidelity as is warranted by the quality of the fitting procedure 
used to obtain the equation of state. Figure 9b shows an isothermal CAS section at 1250 C; at this temperature the divariant 
melt region extends along the An-Pw, An-Tr, and Tr-Pw cotectics, and is represented by Bounds as four pseudo-invariant 
assemblages: S6,A,-S64&-SglA,, , Ss, AT-S5A-SglAl,, SseAlo-S5g&-Ss,A1,. and S& o-S&-S61A,, - At 1400 C (Figure 9c) 
this region extends to the AI,O,-SiOa join and a second region has formed above the La-CA-AC3 eutectic. The jagged phase 
region boundaries in the sections shown in Figure 9 are an artifact of the pseudo-compound representation. It should be 
remembered that the true boundaries may occur anywhere between the representative pseudo-compounds of the melt on 
either side of identified boundaries. Boundaries can be smoothed with the algorithm by increasing the density of the pseudo- 
compounds in the vicinity of the boundaries in subsequent calculations. In figures 9c-e pseudo-invariant regions spanning sev- 
eral solvi in the melt phase are apparent. The boundaries of these regions give a general sense of the orientation of the bino- 
dal tielines for each solvus. The CAS system has only one known stable solvus which is largely restricted to the CaO-SiOo 
binary between temperatures of 1690 and 191 0 C (Fig. 9d). Therefore, the complex geometry of exsolution in the isothermal 
sections at 2400 and 2950OC (Fig. 9e,f) most likely reflects erroneous instabilities in Berman and Brown's equation of state for 
CAS melts. Considering the large number of empirical parameters in the model and that the solvi, for the most part, occur at 
T-X conditions significantly different than those used to constrain the model, the instabilities are not surprising. It is interesting 
to note that the extraneous solvi were not reported by Berman and Brown for their computations over the same temperature 
ranges, nor were they noted by Barron (32) in his commentary on the model. The detection of the solvi here provides strong 
argument for, at least, exploratory use of computational schemes such as Bounds, which do not rely on assumed characteris- 
tics of chemical systems. In fact, the rather rough boundaries and conodes determined by Bounds may be all that is justified 
by the accuracy of the solution models in use for many applications. When this is not the case, the data from Bounds can be 
used to supply the initial estimates necessary for more refined computations such as those detailed by Pelton et al. (30). 
Bounds has the additional advantage that binoda! immiscibility is not assumed; thus, trinodal, and more complex, exsolution 
regions can be found directly. More precise algorithms typically consume 1-12 s CPU time per binodal tietine (26, 30); CPU 
time for the diagrams in Figures 9b-f was, on average, 0.20 s per diagram, and was only slightly dependent on the number of 
conodes determined. 

Mixed Variable and Schreinemakers-Tv? Phase Diaorams 

Mixed variable phase diagrams (16, 331, such as T-X diagrams, in which potential variables are plotted against extensive 
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Figure 10. T-X diagram for the CS system at 1 bar pressure. The diagram was constructed using an automated version of the 
algorithm discussed in the text. The calculation was made with the data of Berman and Brown (31) (for phase 
notation see Table 2). 

or molar variables can be thought of as a series of infinitely closely spaced iso-potential sections. Were such a series com- 
puted with Bounds, many of the sections would be redundant, as the piecewise linear approximation results in discontinuous 
changes in the geometry of thermodynamic surfaces as a function of potential variables. Therefore, it is only necessary to 
locate conditions where the geometric changes, which can be described by a chemical reaction, take place to establish the 
topology of phase diagrams consistent with the approximations of Bounds. In a system with one potential variable this can be 
done by a procedure consisting of four steps: (i) computation of the iso-potential surface; (ii) incrementing the potential varia- 
ble until the original configuration of the surface becomes metastable; (Eii) determination of the reaction relating the stable and 
metastable configurations; and (iv) solution for the equilibrium conditions of the reaction. Because all point phase configura- 
tions are invariant in iso-potential sections, the only reactions in a point phase system with one potential variable are invariant 
or pseudo-invariant. This is illustrated for the system CaO-SiOa as a function of temperature in Figure 10. With increasing 
temperature the first reaction occurs at the Pw-Tr eutectic: 

Pw + Tr = SF (Rq) 

At higher temperatures the univariant liquid! are defined by series of pseudo-invariant reactions of the form: 

PW + sx = Sx.&. (R2) 
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Figure 11. Flow chart of an algorithm for constructing Schreinemakers-type phase diagrams for two intensive variables desig- 
nated 6, and Qy 

An inherent difficulty of this procedure is that the fixed spacing of point phases may allow misrepresentation of an equilibrium. 
For example, the peritectic reaction: 

La = Lrn + Sx, (R3> 
appears incorrectly in Figure 10 as the singular point of an irregular section, i.e., a section taken through an invariant point (1 4 
p. 287). This occurs because the melt pseudo-compound closest, in composition, to the true peritectic coincides with larnite. 

The algorithm for one potential variable may be extended for phase equilibrium computations within a coordinate f r a m e  
defined by two potential variables, 9, and B2. The extended algorithm is outlined by the flow chart shown in Figure 11. The 
significant modifications of the simple algorithm discussed in the previous paragraph are: (i) configurations of c + 1 phases are 
univariant; (ii) the trajectory of univariant equilibria in the potential variable coordinate frame must be determined (step 8, Fig. 
11); and (iii) it is necessary to identify and define conditions of any topologically related invariant and univariant equi l ibr ia 



n 

Figure 12. 
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Schreinemakers P-T phase diagram of the muscovite-paragonite soivus (for phase notation see Table 2). Pseu- 
do-univariant are shown as light dashed curves. To simplify the diagram, some of the pseudo-univariant curves 
are unlabeled; the corresponding equiiibria can be determined from the labeled curves by the Schreinemakers 
technique (34). The critical curve of the solvus is shown as a heavy solid curve. The critical locus determined 
by a more detailed computation is shown by a heavy dashed curve labelled by the mica critical compositions. 

Figure 13. Isobaric sections at two and six kilobars of the phase diagram shown in Figure 12, critical compositions are indi- 
cated by open squares 
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(steps 1 0-1 4, Fig. 1 1 ) . 
The phase relations of a multidimensional parametric space can be shown by homeomorphic projection in a two dimen- 

sional diagram'with axes defined by any two independent variables. The topology of such a diagram is most easily interpreted 
when the axes correspond to potential variables, the nature of the variables on the projected axes (i.e., potential, molar, or 
extensive) is irrelevant to the topology of the final diagram (16). Schreinemakers (34) originally developed this method for 
p-X-n projections; more recently, Hillert (16) suggested generalizing the Schreinemakers scheme for P-V and T-S projections 
as well. The general algorithm set out in Figure 4, which determines the coordinates of equilibria in terms of two potential vari- 
ables, 0, and 8,, is, therefore, easily adapted for the construction of Schreinemakers-type phase diagrams. 

If a system contains only point phases, then only invariant, univariant and divariant equilibria are possible and these 
project, in Schreinemakers diagrams, as points, curves and regions, respectively. Consequently, the topology of the univariant 
curves, and knowledge of the corresponding equilibria, completely define all the remaining equilibria of the system. One draw- 
back of the Schreinemakers method is its unwieldiness when applied to systems which contain solutions and therefore phase 
regions of variance greater than two (13 p. 16; 16). In this case, regions are not distinguished because they are of greater 
dimension than the diagram. This difficulty may be overcome by contouring the low variance phase regions, which separate 
higher variance regions by isopleths. Isoplethai contours can be thought of as pseudo-univariant reactions between a homo- 
geneous phase of incrementally different composition. The subdivision of solutions into pseudo-compounds, necessary to 
apply Bounds, is thus ideally suited for locating such pseudo-univariant equilibria. 

The polythermal-polybaric phase diagram of the binary K&SiAn(OH)2-NaALSiAn(OH),, alkali mica (Table 2) solvus 
shown in Figure 12 illustrates a simple application of the algorithm outlined in Figure 11. A third degree truncated Margules 
expansion fit to the excess properties of the micas (35) was used in the calculations. The curves drawn as light lines corre- 
spond to the P-T loci of pseudo-univariant equilibria. In a binary system, pseudo-univariant equilibria define conditions under 
which the system is indifferent between two point phase configurations which represent the same divariant phase region. The 
pseudo-univariant equilibria of Figure 12 with positive Clapeyron slopes approximate isoplethal contours of the K-rich limb of 
the mica solvus and may be expressed as reactions of the form: 

and those with negative slopes define the Na-rich limb and may be written: 

These relations may be clarified further by comparison of Figure 12 with the isobaric sections shown in Figure 13, The neg- 
ative Clapeyron slope of equifibrium (R5), which implies increasing stability of Na-mica relative to K-mica with increasing pres- 
sure, is crystallochemically plausible considering the relative ionic radii of Na and K. 

The critical curve of the solvus (shown as a heavy line on Fig. 12) is represented by a univariant equilibrium between 
the subcritical micas and supercritical mica: 

Variation in the critical composition occurs discontinuously when the critical curve is intersected by pseudo-univariant curves 
where the critical composition shifts to -Mi3* to -Mien with increasing pressure. For the sake of simplicity, the calculation was 
done with relatively coarse subdivision of the solution into pseudo-compounds. Any desired resolution can be obtained by 
decreasing the compositional increment between pseudo-compounds. For comparison, the critical curve from a computation 
with better compositional resolution (one mole percent increments) is shown as a heavy dashed curve on Figure 12. The CPU 
time for the detailed calculation was 1 s as opposed to less than 0.25 s for the coarse calculation. It should be noted that the 
mica phase relations are metastable with respect to phases which do not lie in the ~SiaO,~(OH}a-Na.AlgSigO,o~OH)a b inary  
over much of the P-T region shown in Figure 12. 

Although not explicitly demonstrated here, it should be apparent that the trajectories of cotectic equilibria in P-T-p dia- 
grams can be established in the same way as the critical curves of Figure 12. It is hoped that the foregoing examples have* 
demonstrated the utility of piecewise linear representations of thermodynamic surfaces. Phase diagrams constructed using 
such representations effectively and efficiently show the salient features of multicomponent phase equilibria. Algorithms and 
computer programs for such constructions have been developed (36) and will be discussed in greater detail in a forthcoming 
communication. - Remarks 

The Bounds algorithm makes it possible to compute stable phase assemblages as a function of the composition of a 
system, and can be extended to incorporate additional independent extensive variables such as S and V. The algorithm is 
extremely efficient when applied to systems which contain phases with fixed stoichiometry. Solution phases can be accomrno- 
dated by representing their compositional variation by incrementally spaced point phases, or "pseudo-compounds". The 
approximate representation of solutions by pseudo-compounds, while admittedly crude, has several desirable qualities; these 
include: (i) The thermodynamic surface of an approximated system is a piecewise linear simplicia1 complex. The geometry of 
this complex is specified by the location of the vertices of each simplex, which correspond to the phases of each s t a b l e  
assemblage of the system. (ii) Because the surface is linear, changes in its geometry define singularities which project as 
curves on Schreinernakers-type phase diagrams. (iii) Compositions of coexisting solutions in high variance phase regions can 
be estimated from the pseudo-compound assemblages approximating the solutions. (iv) Any desired precision on the l oca t i on  
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of phase boundaries can be obtained by increasing the number of pseudo-compounds in the vicinity of the boundaries. 

The strengths of the Bounds algorithm are: efficiency; independence from the equations of state used for the phases of 
a system; and that only minimal assumptions are required as to the equilibrium configuration of a system. Because Bounds 
determines continuous iso-potential thermodynamic surfaces, it can be used to submit equations of state to tests of greater 
rigor than can be easily achieved with other algorithms. It is expected that Bounds may be used profitably for exploratory anal- 
ysis of the phase relations of complex systems. Once these relations have been approximated, they may be subsequently 
refined with mathematically more sophisticated procedures. The primary limitation of Bounds is the ability of a user to assimi- 
late the volume of information generated. This limitation can, in part, be overcome by the use of graphical representation of 
the output. Alternatively, the algorithm can be used in tandem with additional automated algorithms, as in the construction of 
Schreinemakers-type phase diagrams, to present the information in a more easily interpreted form. - 
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APPENDIX A: Glossary of Suboroarams and lnoul/Outout NO) Variables 

FORTRAN variable types are given where appropriate. Steps where subprograms are referenced in the flow charts included 
in the text are indicated parenthetically. .., 
ABLOAD - Subroutine to initialize the matrices G and U of equation (5) and solve for the vector p. External references: 

FACTOR and SUBST. (Steps 6, 10, 27, 30, Fig. 3). 

ASSDc - Subroutine to determine if a stable assemblage of c phases has been identified earlier in the execution of the 
program. If the assemblage is new, the c-1 boundaries of the corresponding phase region are also tested for 
uniqueness; previously found boundaries are flagged. (Steps 11-15, 31, Fig. 3). 

BOSSOP - Subroutine to call SIMPLc routines to define the minimum Gibbs energy surface. After this surface has been 
defined BOSSOP calls the routine MISCIB to determine the variance of phase regions, and to locate solvi. 
External references: SIMPLc and MISCIB. (Step 3, Fig. 2). 

BOUNDc - Subroutine to obtain the upper and lower triangular decompositions of the matrix 9' from equation (7). The 
decompositions of V are used to solve equation (7) by routine ITESTc. External references: FACTOR. (Steps 
21, 26, Fig. 3). 

CNAME(I) - Alphanumeric label of the ifh component (I/O, C*5). 

CP(JJ) - yi (input, R-8). 

DGPHc - Function to test the conditional (6). DGPHc takes on a negative value if the conditional is false, and is positive 
or zero otherwise. (Steps 8, 30, Fig. 3). - - - - 

FACTOR - Subroutine to find the upper, U, and lower, L, triangular decompositions of a matrix A, if A is nonsingular. The 
algorithm is modified from Conte and de Boor (37). 

G(J) - Gf (input, R*8). 

IASMBL(M) - Flag characterizing the rnth stable phase assemblage, determined by the routine MISCIB. IASMBL may take on 
four values with the following significance: (1) The assemblage defines an invariant phase region. (2) The 
assemblage defines a heterogeneous pseudo-invariant region in which none of the stable solutions are immisci- 
ble. (3) The assemblage defines a completely homogeneous region. (4) Immiscibility occurs in one or more of 
the stable solutions in the phase region. (Output 1*2). 

IBVCT(K) - Number of phases on the k" binary join (output, 1'2). 

ICFCT - Number of quinary phase configurations (output, IT). 

IDBF(K,L) - Index, j, of the lth stable phase on the kIh binary join (output, 1*2). 

IDC(1) - Index, j, of the stable phase in the Ith unary subsystem (output, 1*2). 

IDCF(M,L) - Index, j, of the lth stable phase in the mh stable quinary assemblage (output, 1*2). 

IDQF(K,M,L) - Index, j, of the Ith stable phase in the mth assemblage on the k"' quaternary join (output, 12). 

IDTF(K,M,L) - Index, 1, of the lth stable phase in the mth assemblage on the k"l ternary join (output, 1*2). 

IGRF - Flag indicating whether a file for graphics applications is to be written, if this flag is assigned a value of 1 the file 
is not written, otherwise the file is output (input, 1*2). 

IKP(J) - Flag assigned a value of 0 if the j^ phase is not a pseudo-compound. If the phase is a pseudo-compound IKP  
is given an integer value identifying the solution phase; e.g., if a system contains three solution phases, IKP for 



IPHCT 

IPOINT 

(QFCT(K) 

ITESTc 

ITFCT(K) 

ITITLE 

MISCIB 

NAME(J) 

OUTCHM 

OUTTIT 

SIDc 

SIMPLc 

SLOPc 

SORT 

SUBST 

TNAME 

the pseudo-compounds corresponding to each of the solutions might be assigned values of 1, 2, and 3 (input, 
1'2). 

- Number of possible phases defined in a chemical system (I/O, 12). 

- Number of true point phases defined in a chemical system (110, 12). IPHCT - IPOINT = the number of pseudo- 
compounds in the system. 

- Number of stable assemblages on the kth quaternary join (output, 1'2). 

- Function to determine if a given phase lies within the compositional simplex defined by a phase region; this is 
done by solving for the vector a of equation (7), and testing the conditional (8). ITESTc may take on three 
values: (0) if the phase is within the region; (1) if the phase is outside the region; and (2) if the phase is on a 
boundary of the region. Parameters are initialized for each region by the routine BOUND. (Step 24, Fig. 3). 

- Number of stable assemblages on the kth ternary join (output, 12). 

- Number of title cards (I/O, 12). 

- Subroutine to determine variance of phase regions, and to test for immiscibility of solutions. MISCIB outputs the 
array IASMBL and references the routines FACTOR and SUBST to solve equation (10). (Step 6, Fig. 2). 

- Alphanumeric label of the jfi phase (I/O, C8). 

- Subroutine to output the stable phase assemblages far the defined chemical system. (Step 7, Rg. 2). 

- Subroutine to output title information for each calculation. (Step 7, Fig. 2). 

- Function to determine if a phase q lies on the same side of a phase region boundary as another phase p, where 
p is a phase known to coexist with the boundary assemblage. SIDc takes on the value of the parameter: 

where i indexes the phases of the boundary assemblage. If Cq is positive both p and q are on the same side of 
the boundary. If y is negative q is on the opposite side of the boundary from p. Parameters for SIDc are initial- 
ized by SLOPc. (Steps 23, 29, Fig. 3). 

- Subroutine to define the minimum Qibbs energy surfaces of the ($) subcompositions of c' components of a c 
components system. External references: BOUNDc, ITESTc, ABLOAD, ASSDc, OUTCHM, and DGPHc. (Steps 
4, 5, Fig. 2). 

- Subroutine to determine the equation describing the loci of a linear phase boundary in composition space: 

where i indexes the c-1 phases defining the boundary. SLOPc also computes the parameter: 

c- 1 

yp = a,, + 2 a, 
= 1  

where p indexes a phase, which, in combination with the boundary assemblage, defines a stable phase region. 
The parameters agl ..., â  and \ are used by SIDc. External references: SUBST and FACTOR. (Step 19, Fig. 

- Subroutine to classify each phase into the simplest subcomposition that can be formed from the c components 
of a chemical system. (Step 2, Fig. 2). 

e 

- Subroutine to solve L ? = 6 for ? and then 2 = Y for 2, given the matrices U and L from FACTOR and a 
vector B. The algorithm is modified from Conte and de Boor (37). 

- Title information (I/O, C*72). 
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APPENDIX B: Exarn~les of Incut and Cutout Files 

TABLE 3 

Example of Input for Bounds 

Copy of the input file used to generate the output shown in Figure 7. Variable names and the FORTRAN read formats are 
' 

indicated parenthetically. 

([TITLE, unformatted) 
18 

((TNAME(I),1= 1 ,ITITLE), A72) 
THERMODYNAMIC DATA BASE FROM: HELGESON ET AL., 1978 
FLUID EQUATION OF STATE: MRK, PARAMETERS FROM CONNOLLY AND BODNAR, 1983 

COMPONENTS WITH CONSTRAINED CHEMICAL POTENTIALS: 

CONSTRAINTS FOR THE CALCULATION: 

( 1) TEMPERATURE (C) :  600.00 
( 2) PRESSURE (KBAR): 2.000 
( 3) H20-C02 FLUID SATURATED, XC02: 0.00 
( 4 )  OXYGEN FUGACITY BUFFER! MT-HM 
( 5 )  SILICA BUFFER: A-Q 

EXCLUDED PHASES: 

CA-AL-PX LIM B-CR CZO B OE A-QFM 
(ICP, unformatted) 

3 
((CNAME(l),! = 1 ,ICP), 5(A5,1X)) 

CAO A1203 FEO 
(IGRF, unformatted) 

0 
(IPHCT, unformatted) 

5 0 
((NAMES(I),I = 1 .IPHCT), 8(A8,1X)) 

LIME AR WAIRAKIT L A W  GR 
CO AND KY SIL GE 
GIB DIA PYR LAWS A-PR 
S ID A-MT FS AD A-HM 
GR100 GR200 GR300 GR400 GR500 
GR900 20100 20200 20300 20400 
20800 Z0900 

((IKP(I),I = 1 ,IPHCT), unformatted) 
0 0 0 0 1 0 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 2 0 1 1 1 1 1 1  
2 2 

((G(l),l = 1 ,IPHCT), unfonnalted) 
-640635. 0. -2384139. 
-2391881. -1628731. -1632595. 
-3943936. -1606533. -784505. 
-3107527. -617890. -1042731. 
-2246657. -4251365. -4253476. 
-4222365. -4161995. -4100748. 
-4198834. -4169484. -4139432. 
-3979610. 

(CP(J, J),J = 1 ,ICP),I = 1 ,IPHCT), unformatted) 
1.0000 0.0 0.0 1.0000 
1.0000 1.0000 0.0 3.0000 
1.0000 0.0 0 .o 1 .0000 
0.0 1.0000 0.0 0.0 
2.0000 1.0000 0.0 1.0000 
0.0 1.0000 0.0 0 .o 
0.0 1.0000 0.0 1.0000 
2.0000 1.0000 0.0 0 .o 
0.0 0.0 1.0000 0.0 

wo c c 
MA 20 
B-PR FA 
EP B-EP 
GR600 GR700 
Z0500 Z0600 

MT-WU 

AN 
KAO 
BED 
FED 
GR800 
Z0700 
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TABLE 4 

Example of an Output file Generated by Bounds for Graphics Applications 

Copy of the data file used to generate the diagram shown in Figure 8. Variable names and FORTRAN format are indicated 
parenthetically. The data is for a chemical system with three inert components, in systems with differing numbers of compo- 
nents the variables ITFCT and IDTV are replaced by the appropriate counters and arrays (e.g., IBVCT, IDBV; IQFCT, IDQF; 
and ICFCT, IDCF for binary, quaternary, and quinary systems, respectively). 

(ICP,I?HCT.ITFCT, 20(I3,1X)) 
3 49 29 

((NAMES(l),I = 1 ,IPHCT), 1 O(A8)) 
LIME AR WAIRAKITLAUM GR WO CC AN CO AND 
KY SIL GE MA 20 KAO GIB DIA PYR LAWS 
A-PR B-PR FA HED SID A-MT FS AD A-HM EP 
B-EP FEO GR100 GR200 GR300 GR400 GR500 GR600 GR700 GR800 
GR900 20100 20200 Z0300 20400 Z0500 20600 20700 20800 

(((X(I,J),J=1,CP-l),I=1,IPHCT), ll(F6.4,IX)) 
1.0000 0.0000 1.0000 0.0000 0.5000 0.5000 0.5000 0.5000 0.7500 0.2500 1.0000 
0.0000 1.0000 0.0000 0.5000 0.5000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 
0.0000 1.0000 0.6667 0.3333 0.3333 0.6667 0.5714 0.4286 0.0000 1.0000 0.0000 
1.0000 0.0000 1,0000 0.0000 1.0000 0.5000 0.5000 0.6667 0.3333 0.6667 0.3333 
0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6000 
0.0000 0.0000 0.0000 0.5000 0.2500 0.5000 0.2500 0.0000 0.0000 0.6122 0.0204 
0.6250 0.0417 0.6383 0.0638 0.6522 0.0870 0.6667 0.1111 0.6818 0.1364 0.6977 
0.1628 0.7143 0.1905 0.7317 0.2195 0.5063 0.2658 0.5128 0.2821 0.5195 0.2987 
0.5263 0.3158 0.5333 0.3333 0.5405 0.3514 0.5479 0.3699 0.5556 0.3889 

(((IDTV(1 ,I,J),J = l.3),l= 1,1TFCT), 20(I3,1X)) 
6 8 41 8 10 29 6 28 33 28 29 33 6 41 40 8 41 40 8 29 

44 6 33 34 29 33 34 6 40 39 8 40 39 8 44 45 29 44 43 6 
34 35 29 34 35 6 39 38 8 39 46 8 45 46 44 45 36 29 43 35 
44 43 35 6 35 36 6 38 37 39 38 46 45 46 38 44 36 35 45 36 
37 6 36 37 38 37 45 

APPENDIX C: P r ~ r a m  Listing 

BOUNDS IS A PROGRAM FOR EVALUATING A PIECEWISE LINEAR APPROXIMATION 
OF THE MINIMUM GIBES FREE ENERGY SURFACE OF CHEMICAL SYSTEMS WITH 
UP TO FIVE COMPOSITIONAL DEGREES OF FREEDOM. THE ROUTINE BOSSOP 
AND ALL ROUTINES REFERENCED BY BOSSOP ARE COMPATIBLE WITH VERSION 
4.84 OF VERTEX, WHICH IS A PROGRAM FOR CALCULATING SCHREINEMAKERS 
TYPE PHASE DIAGRAMS. 

THE BOUNDS ALGORITHM AND DETAILS OF THE PROGRAM ARE DESCRIBED IN 
A MAWSCRIPT SUBMITTED TO THE JOURNAL CALPHAD IN APRIL, 1985. 

THE ALGORITHMS FOR THE ROUTINES FACTOR AND SUBST ARE MODIFIED 
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FROM CUNTE AND DE BOOR, ELEMENTARY NUMERICAL ANALYSIS? MCGRAW- 
KILL GO.? NEW YORK, 1980. 

THE REMAINING ALGORITHMS WEm DEVELOPED AND CODED IN FORTUN BY 
J. A. D. COHNOLLY AT THE DEPT. OF GEOSCIENCES OF THE PENBSYLVANIA 
STATE UNIVERSITY, UNIVERSITY PARK, PA 16802. 

THE PROGRAM REFERENCES 110 DEVICES ASSIGNED LOGICAL UNIT NUMBERS 
Nl, Nz7 AND N3. THE DEVICES AND THEIR ASSOCIATED FILES ARE 
DEFINED IN THE W/SP SYSTEM SPECIFIC SUBPROGRAM FOPEN. FOR BATCH 
MODE MVS OPERATING SYSTEMS THE REFERENCE TO FOPEN SHOULD BE 
DELETED* LOGICAL UNIT NUMBERS WILL THEN BE DEFINED IN THE BLOCK DATA 
SUBPROGRAM AND PHYSICAL DEVICES MUST BE ATTACHED BY JCL. 

INPUT IS READ FROM DEVICE Nl. 
PRIX!."TR OUTPUT IS WRITTEN TO DEVICE N2. 
GRAPHICS APPLICATIONS OUTPUT IS WRITTEN TO DEVICE N3. 

c----------------------------------------------------------------------- 
IMPLICIT REAL*8 (A-G ?O-Y) , IHTEGER*2 (H-M) , INTEGER (2) 

c 
CHARACTER*8 FNME ,BLANK ,NAMES, IPNAME, IPNMS , IRNMS EXNAME ? SNAME * RECORD*BO, CNAME*5 TNAME*7 2 

c 
DIMENSION ISUB( 4 ? 5 

c 
COMMON/ CST37 /JKL,(4) ,cNAME( 12)/ CST59 /TNAME(~O) ,ITITLE * / CST23 /A~~,~)~B(~),IPVT(~),IDV~~~~IOPHI,~DPHI,I~PH~,IFLG~ 

* / CST60 /IKP(~OO),IASMBL(~~~~),IPOINT,I~/ CSTl2 /~~(800?5) * / CST6 /ICOMP,ISTCT,IPHCT,ICP/ CST2 /~(800)/ CST7 /IFLAG * / CSTl3 / I D U ~ ~ , ~ ~ ) ~ I D B ~ ~ ~ , ~ O ) , ~ B C ( ~ ~ , ~ ~ , I U C T ~ ~ ~ , ~ B C T ~ ~ O ~  
* / CST22 /IDT( 10,800) ,ITCT(~O)/ CSTl4 /IBS,ITS?I~S~I~S * / CST27 /1Q~~(5,41 , I Q A C T ~ ~ ) , I Q I C T , I D Q ~ ~ , ~ O ~ , ~ ~ I ~ ~ ~  
* / CST24 / 1 ~ 1  IV2, IV3/ CST8 /N~ES(~OO) * / CST41 /~1,~2,~3,~4,~5~N6,~7,~8,103,104,105 
* / CST19 /HI, IQTH(4) ,IVCHK(800) 71TC(10 ?3)/ CSTl8 /ICCT(800) 

c 
DATA 1~~~/4*0~~,3*0~3~1~2*~,6,4,~,0~2*10,5~1/ 

c----------------------------------------------------------------------- 
ON VMf SP DEFINE FILES 

CALL FOPEN 
INITIALIZATION 

DO 1 1=1?800 
IVCHK(1 )=O 
ICCT(I)=O 
DO 3 I=l91O 
ITCT(I )=o 
IBCT(I)=O 
DO 7 1=195 
IQACT(I )=o 
IUCT(I )=o 
IQI CT=O 

READ INPUT 

READ # OF TITLE CARDS : 
READ (HI,*) ITITLE 

READ TITLE CARDS: 
READ (N171U} (TNmE(Z),Z=171TI~LE) 

READ # OF COMPOHENTS: 
READ (~l,*) ICP 

SET COLINTERS FOR THE $1 OF SUBSYSTEMS: 
IBS=ISUB(I ,ICP) 
ITS=ISUB(~,ICP) 
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I~s=IsUB( 3, ICP) 
15s=IsU3(4,IcP) 

READ COMPONENT NAMES: 
READ (~1,201 (CNAME(Z~,Z=~,ICP) 

READ FTAG FOR GRAPHICS FILE OUTPUT 
TO UNIT N2, yEs=O/NO=l: 

READ (Nly*) IGRF 
READ # OF PHASES 

READ (Bl,*) IPHCT 
READ PHASE NAMES: 

READ (N1,40) (NAMES(Z) pZ=l,IPHCT) 
READ PHASE )?TAGS, IKP IS ZERO I F  THE 
PHASE I S  A TRUE POINT PHASE, AND > 0 
IF W E  PHASE IS A PSEW-COMPOWD, 
PSEUDO-COMPOmDS OF SPECIFIC SOLUTION 
IKP IS ASSIGNED A UNIQUE VALUE 

READ (Nl,*) (IKP[Z),Z=~,IPHCT) 
READ MOLAR GIBBS ENERGIES: 

READ (N~?*I (G(Z)?Z=I.~IPHCT) 
READ MOLAR STOICHIOMETRY: 

READ (Nl ,*I ((CP(Z~ZJ) ,Zif=l, ICP) ?z=l ?IPHCT) 
CALL SORT TO DETERMINE TBE SIMPLEST 
SUBSYSTEM THAT EACH PHASE M Y  BE 
CLASSIFIED INTO. SORT ALSO CALCULATES 
THE MOLE FRACTIONS OF THE COMPONENTS 
IN EACH PHASE. 

CALL SORT 
CALL BOSSOP TO IDENTIFY TKE PHASE 

. CONFIGURATIONS OF MINIMUM FREE 
ENERGY. (THE STABLE PHASE ASSEMBLAGES). 

CALL EOSSOP 
OUTPUT SYSTEM SUMMARY Z 
TITLE INFORMATION: 

CALL OUTTIT (N2) 
STABLE PHASE ASSEMBLAGES AND 
GRAPHICS FILES: 

CALL OUTCHM (IGRF) 

STOP 

FORMAT (A721 
FORMAT (5(~5,1X)) 
FORMAT (8(~8,1X)) 

END 
SUBROUTINE BOSSOP 
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C OUTPUT COMPONENTS : 
360 WRITE (~~1080) (cNAME(Z) ,Z=l,ICP) 
C OUTPUT PHASE ASSEMBLAGES : 

GOT0 (390,380,370), ICP 
WRITE (N, 1150) (CHAME(Z) ,Z=1 ,ICP) 
WRITE (N, 1020) 
DO 400 I=ISTCT,IPHCT 
WRITE (N,1160) NAMES(I), ( X ( I  ,zJ),~J=~,IcP) 

400 CONTINUE 
RETURN 

370 WRITE (N, 1090) (CNAME(2) ,~=2,3) 
WRITE (N,1100) (NAMES(ZI) ,x(zI,~) ,X(ZI,~),ZI=ISTCT,IPHCT) 
RETURN 

380 WRITE (N,1040) cNAME(1) 
WRITE (N, 1030) (NAMEs(ZI) ,X(ZI, 2) ,ZI=ISTCT,IPHCT) 
RETURN 

390 WRITE (N,1130) 
WRITE (N71110) (NAMES(Z),Z=ISTCT,IPHCT) 

999 RETURN 
1010 FORMAT (1X,A72) 
1020 FORMAT ( 1 )  
1030 FORMAT (4(2~,~8,1~,F5.3)) 
1040 FORMAT (1 ,  IX, ' PHASES AND (PROJECTED) MOL FRACTION ' ,AS, ' : ' , / 
1080 FORMAT (/,lX,tCO~~ONEN~~ WITH UNCONSTRAINED CHEMICAL POTENT' 

* ,'IALS:',//,~X,~~(AS,~X)) 
1090 FORMAT (1,  IX, 'PHASES AND (PROJECTED) MOLE FRACTION ' ,AS, 

* ' AND ' , A S , '  : I , / )  

1100 FORMAT (4(1~,~4,2~,~4.2,2~,~4.2,7~)) 
1110 FORMAT (7(1~,A8,1X)) 
1130 FORMAT (/,lx,'PHASES:',/) 
1150 FORMAT (1, IX, ' PHASES AND (PROJECTED) MOL FRACTION : ' , 

* //,15~,5(1~,~5,2~)) 
1160 FORMAT (3~,~8,4X,5(F5.3,3X)) 

END 
SUBROUTINE OUTCHM ( IGRF 

c---------------------------------------------------- 
CÃ‘ OUTCHM -------------- 
c 
C OUTCHM WRITES NEU CHEMOGRAPHIES TO UNIT M3 AS THEY ARE GENERATED 
C BY SIMPL1, SIMPL2, SIMPL3, OR CHECK. THE FLAG ICHEM(=~) 
C DETERMINES IF OUTCHM IS CALLED, NO OUTPUT WILL BE GENERATED IF THE 
C FLAG 103=1 (SEE INTRODUCTORY COMMENTS). 
c--Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘- 

IMPLICIT REAL*8 (A-G ,O-Y) ,INTEGER*2 (H-M) ,INTEGER (z) 
CHARACTER*8 NAMES 
COMMON/ CST3 /~(800,5)/ CST19 /HI,IQTH(~) ,IVCHK(~OO) ,ITC(~O ,3) * / CST58 /1~~~(200, 5) ,ICFCT/ CST6 /ICOMP,ISTCT,IPHCT,ICP 

* / CST47 /IDQF(~,~~~,~),IQFCT(~),IQFCTH,IGO 
* / CST40 /IDS(~, 9) ,ISCT(~) ,ICP1 ,ISAT/ CST8 /MAMES(~OO) 
* / CST15 /IDC(S) .IDBV(~O,~O) ,IBVCT( 10) 
* / CST60 /IKP~SOO),IASMBL(~~~~),IPOINT,IMTO 
* / CST13 /IDU(~, 10) ,1~~(10,60) ,1~~(10,2) ,IUGT(~)~IBCT(~O) 
* / CST16 /IDTV(~O,~~~~,~),IDTT(~~,~~~),ITPCT(~O),ITTCT(~~) 
* / CST41 / N ~ , N ~ , N ~ , N ~ , N S , N ~ , N ~ , N ~ , ~ O ~ , I O ~ , ~ O ~  

c 
GOTO (1000,2000,3000,4000,5000),ICP 

C OUTPUT UNARY CHEMOGRAPHIES. 
1000 WRITE (~2,1060) NAMES(IDC(~)) 

GOT0 9000 
C OUTPUT BINARY CHEMOGRAPHIES* 
2000 WRITE (~2,2060 ) 

IB=IBVCT( 1 ) 
WRITE (~2,2010) (NAMES(IDBV(~,ZJ)) ,zJ=~ ,IB) 
WRITE (N2,*) 
GOT0 9000 
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c OUTPUT TERNARY CHEMOGRAPHIES. 
3000 WRITE (N2,3060) 

IB=ITPCT( 1) 
WRITE (~2,3070) {(NAMES(IDTV(~,ZI ,zJ)) ,2~=1,3) ,IASMBL(ZI), * z1=1, IB) 
WRITE (HZ,*) 
GOTO 9000 

C OUTPUT QUATERNARY CHEMOGRAPHY: 
4000 WRITE (~2,4010) 

IB=IQFCT( 1) 
DO 400 LF=l,IB 

400 WRITE (N2,4020) (NAMES(IDQF(~ ,LF, ZJF) ) ,ZJF=~ , 4 ) ,  IASMBL(LF) 
GOT0 9000 

c 
5000 WRITE (~2,5010) 

DO 510 I=l,ICFCT 
510 WRITE (~2,5020) (NAMES(IDCF(I ,zJ)) ,~J=1,5) ,IASMBL(I) 
c 
9000 WRITE (N2,*) ' ' 
C WRITE MISCIBILITY FLAG: 

IF (IMYN.EQ.~) WRITE (N2,*) '** NO IMMISCIBILITY WAS', * DETECTED IN STABLE SOLUTIONS' 
IF (1~m.EQ.0) WRITE (N2,*) '** IMMISCIBILITY OCCURS IN ONE OR', 

*Â ' MORE STABLE SOLUTIONS' 
GOTO (9991,IGRF 

C OUTPUT GRAPHICS FILE IF REQUESTED! 
C NUMBER OF COMPONENTS, PHASE COUNTERS, 
C ASSEMBLAGE COUNTER, FLUID SATURATION FLAG, 
C COMPONENT SATURATION FLAG, P, T, AND XC02s 

WRITE (~3,1010) ICP,ISTCT,IPHCT,IPOINT,IB,IFYN,ISYN~P,T,XC~~ 
C WRITE PHASE NAMES 

WRITE (~3,1015 ) (NAMES{ZI ) , ZI=ISTCT, IPHCT) 
C WRITE PHASE COORDINATES 

ICPl=ICP-1 
WRITE (N3,1025) ( (X(ZI ,ZJ) ,zJ=~,IcP~) ,ZI=ISTCT,IPHCT) 

C STABLE CONFIGURATIONS, PHASES ARE 
C LABELLED BY THE INDEX '21' IN THE 
C LIST OF PHASES* 

GOTO (999,950,960,970,999),ICP 
C BINARY 
950 WRITE (N3,1020) (IDBV(1 ,ZJ) ,zJ=~,IB) 

GOT0 980 
C TERNARY 
960 WRITE (~3,1020) ((IDTv(~,ZI,ZJ),ZJ=~,~),ZI=~,IB) 

GOT0 980 
C QUATERNARY 
970 WRITE (~3,1020) ((IDQF(~,ZI ,zJ),zJ=~,~),zI=~,IB) 
C WRITE ASSEMBLAGE FLAGS 
980 WRITE (~3,1020) (IASMBL(ZJ) ,ZJ=l, IB) 
c 
999 RETURN 
c 
1010 FORMAT (7(13,lX),F9.2,1~,F7.2,1~,~6.4) 
1015 FORMAT (lO(A8)) 
1060 FORMAT (/, lX,A8, ' IS THE STABLE UNARY PHASE. ' , /)  
1020 FORMAT (20{13, IX)) 
1025 FORMAT (11(F6.4,1X)) 
2010 FoRMAT(6(2X,A8)) 
2060 FORMAT {/,Ix,'THE STABLE BINARY JOIN IS DEFINED BY !',/) 
3060 FORMAT (/,Ix,'THE STABLE TERNARY ASSEMBLAGES ARE : ') 
3070 FORMAT (4(1~,2(A4,'-'),~4,'(' ,11, '1' , 6 ~ ) )  
4010 FORMAT (/,1XpfTHE STABLE QUATERNARY ASSEMBLAGES ARE : ' , / I  
4020 FORMAT (3(1~,3(~4, '-'),~4,'(' ,11,')',5~)) 
5010 FORMAT (/?Ix,'THE STABLE QUINARY ASSEMBLAGES ARE :',/I 
5020 FORMAT (2(1~,4(~4,~-'),~8,'(',11,')',5~)) 
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IQTB(I,J,K} IS AN ARRAY IDENTIFYING 
THE K BINARY JOINS NOT INCLUDED IN THE 
JTH TERNARY SUBSYSTEM OF THE ITH 
QUATERNARY SYSTEM. 

DATA 1 ~ ~ 3 1  4, 7Â 7, 7? 8? 2, Z 5  4, 4, 5? * 1, 1, 1, 2, 3, 1, 1, 19 2, 3, * 5,8,8,999?3,3,5,6,6, 
* 3,395,6,6,2,2?4,4,5, 
* 6? 9,10,10710, 6? 9,10,10,10, 
* 5, 8,  8, 99 99 4, 7, 7, 7, 61, 

IQB(I,J} IS AN ARRAY IDENTIFYING THE 
J BINARY JOINS INCLUDED IN THE ITH 
QUATERNARY JOIN. * 1 ~ ~ / 1 , 1 ~ 1 , 2 , 3 , 2 , 2 , 4 , 4 , ~ , 3 ~ 3 ~ ~ ~ 6 , ~ ,  

* 4, 7, 7, 7, 5, 8, 8, 9, 9, 6 Â  9,10,lOy10/, 
IQT(I,J) IS AN ARRAY IDENTIFYING THE 
THE J TERNARY JOINS IN THE ITK QUAT. 

* 1 ~ ~ / 1 , 1 , 2 , 3 , 4 , 2 , 5 , 5 , 6 , 7 ,  
* 3,6, 8, 8, 9, 4, 7* 9,10,10/ 

IcB(I,J) IS AN ARRAY IDENTIFYING THE 
J BINARY JOINS NOT INCLUDED IN THE 
ITH QUATERNARY JOIN. 

DATA 1 ~ ~ / 7 , 4 , 2 ~ 1 , 1 , 8 , 5 , 3 , 3 ~ 2 , 9 ~ 6 , 6 , 5 , 4 , 1 0 ~ 1 0 , 9 , 8 , 7 / ,  
ICE(I,J) IS AN ARRAY IDENTIFYING THE 
J TERNARY JOINS NOT INCLUDED IN THE 
ITH QUATERNARY JOIN 

* 1~~/5,2,1,1,1,6~3,3,2~2,7,4,4,4,3, 
* 8 ,8 ,6 ,5 ,5 ,9 ,9 ,7p796 ,10 ,10 ,10 ,9 ,8 /  
DATA 1 ~ ~ / 1 , 1 , 2 , 1 , 2 ~ 3 ~ 1 ~ 2 ~ 3 , 4 ~ 2 , 3 , 3 ~ 4 ~ 4 ~ 4 , ~ , ~ , ~ , ~ /  
DATA 1~~/1,1~1,2,1,1~2~1~2,3,2,2~3~3~2,3,3,4,4~4~3,4,4,4, * 5,5,5?5,5,5/,I~~~/l~l,l~l~2~2~2~~,3~3,3,3,4,4,4, 

* 4,5,5,5,5/ 
DATA 1~~/1,1~2,3,1,2~3,4,s,6,2~4,4,5~?,?,8,7,8,9, * 3y5,6,6,899,9,10210910/ 

THE FOLLOWING DATA STATEMENT ASSIGHS 
LOGICAL UNIT NUMBERS FOR 1/0* 

DATA ~1 ,NZ,N~,N~,N~ ,~6/5 ,696922,24,23/ 
END 
SUBROUTINE SORT 

c----------------------------------------------------------------------- 
C SORT DETERMINES IF A PHASE IN THE SYSTEM DEFINED IN INPUT MAY 
C BE CLASSIFIED INTO A SUBSYSTEM. I INDEXES THE PHASE IN THE ARRAYS. 
c 
C REFERENCED BY: MAIN 
C REFERENCES TO: NONE 
C IBPUT ARRAYS: CP,IBCyITC,IQAC 
C OUTPUT ARRAYS: X,ICCT,IUCT,IBCT,ITCT,KQACT,IQICT71DU,IDB 
C IDT?IDQ,IDQI 
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c----------------------------------------------------------------------- 
IMPLICIT RFAL*8 (A-G,Q-Y),INTEGER*~ (H-M),INTEGER (Z) 

c 
COMMON/ CST3 /~(800,5 ) /  CSTl8 /ICCT(~OO)/ CSTl2 /CP(~OO ,5) * / CST6 /ICOMP ? ISTCT, IPHCT, ICP * / CSTl3 / 1 ~ ~ ~ 5 ~ 1 0 ~ , 1 ~ ~ ~ 1 0 , 6 0 ~ , 1 ~ ~ ~ 1 0 , 2 ~  ,IUCT(S),IBCT(~O> 

* / CSTl4 /IBs,ITs,I~s,~~s/ CST22 /IDT(~O ,800) ,ITCT(~O) * / CSTl9 / H ~ , I Q T H ~ ~ ~ , ~ V C H K ~ ~ O O ~ , I T C ~ ~ ~ ~ ~ ~  
* / CST27 / ~ Q A c ~ ~ , ~ ~ ~ ~ Q A c T ~ ~ ) ~ ~ Q I c T ~ I ~ ~ ~ , ~ O ~ , I D Q ~ ~ ~ ~  
* / CST41 / ~ 1 , ~ 2 ~ ~ 3 ~ ~ 4 , ~ 5 ~ ~ 6 ~ ~ 7 ~ ~ 8 , 1 0 3 ~ 1 0 4 ~ 1 0 5  

DO 10 J=l,ICP 
IF (CP(I,J).EQ.O.DO) GOT0 10 
ICCT(I )=IccT(I)+~ 
TOTMOL=TO~OL+CPCI,J) 
CONTINUE 

COMPUTE MOLE FRACTIONS: 
DO 15 J=l,ICP 
X(I,J)=CPCI,J>/TOTMOL 

IF ICCT<ICP PHASE IS DEGENEMTE 
IGO=ICCT(I) 
IF (ICP.EQ.ICCT(1)) GOT0 5 
GOT0 (70,80,90T100), IGO 
GOT0 (20,30,40yS0,60), IGO 

UNARY 
IUCT(~)=IUCT(I)+~ 
IDU( 1, IUCT( 1) )=I 
GOT0 160 

BINARY 
IBCT(~)=IBCT(~)+~ 
IDB( 1, IBCT( 1) )=I 
GOTO 160 

TERNARY 
ITCT(~~=ITCT(~)+~ 
IDT(~,ITCT{~))=I 
GOT0 160 

QUATERNARY 
IQACT(5>=1QACT( S)+l 
IDQ( I,IQACT(5))=1 
GOT0 160 

QUINARY 
IQI CT=IQI CT+l 
IDQI (IQICT)=I 
GOT0 160 

DEGENERATE PHASES: 

UNARY SUBSYSTEM 
DO 110 J=l,ICP 

(~~(I,J)-EQ*o.Do) GOT0 110 
IUCT{J)=IUCT(J)+~ 
IDU(J,IUCT{J)I=I 
GOT0 160 
CONTINUE 

BINARY SUBSYSTEM 
N 120 J=l,IBS 
IF ((cP(I?IBc(J,~)) .EQ.LDO] .OR. 

* {cP(I,IBc{J,~~).EQ.o.Do)) GOT0 120 
IBCT(J)=IBCT{J)+~ 
IDB(J~IBCT{J))=I 
GOT0 160 
CONTINUE 
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IFLG2=0 
HCP=2 

TEST FOR PHASES BELOW THE COMPOSANT G-X 
P W E .  SAVE METASTABLE PHASE ID'S IN IIDB 

DO 30 I=l,IBS 
IBC~=IBC{I~I) 
IBC2=IBC(I,2) 
ICT=l 
IF (IBCT(I).EQ.O) GOTO 90 

TRUE IF ONLY PÂ£IASE ARE COMPOSANTS 
IB=IBCT{I) 
DO 40 J=191B 
IF (G(IDB(I ,J))-CP[IDB(I ?J) ,IBC~)*U(IBC~) 

* -CP(IDB(19J)91~C2)*U(IB~2) 
* .GT.O.DO) GOT0 40 
ICT=ICT+l 
IIDB(ICT)=IDB(I, J) 
COMTI%UE 

NOW FIND THE STABLE VERTICES FOR THE SAME BINARY 
IDBV(I~~}=IDC(IBC~) 

ICT=19 COMPOSANTS ARE THE ONLY STABLE PHASES. 
IP (ICT.NE.~) GOTO 10 
IDBV(1,2)=IDc(IBC2) 
I BV=Z 
GOT0 30 

SOME BINARY PHASES ARE STABLE: 
ICT=ICT+l 
IIDB( ~)=IDC(IBC~) 
IIDB(ICT)=IDC(IBC~) 

DETERMIBE STABLE BINARY PHASES: 
I BV=l 
HD=IDC{IBC~) 
ID=IDC(IBC2 
CALL ABLOAD (*9000) 

BEGIN TESTING PHASES: 
DO SO J=Z,ICT 
J-D=IIDB(J) 
IF (x{HD,IBG~).GE.X(JD,IBC~)] GOT0 50 
IF (G(JD)-cP~JD~IBc~)*B(~)-cP(JD,~Bc~)*B(Z) .~T.l.D-05) GOT0 50 
ID=JD 
CALL ABLOAD (*9000) 
CONTINUE 

AT END OF JOIN? 
I BV=I BV+ 1 
IDBV(I~IBV)=ID 
IF (X(ID,IBC2).EQ.l.D0) GOT0 30 
HD=ID 
GOT0 60 

DONE 
IBVCT(I)=IBV 
RETURN 

9000 WRITE (N3**} '**ERROR BOU019** SINGULAR MATRIX IN SIMPL~' 
STOP 
END 
SUBROUTINE SIMPL3 (IFLG4) 

c----------------------------------------------------------------- 
C SIHPL3 IS A SUBPROGRAM WHICH COMPUTES THE STABLE PHASE CONFIGU 
c ATIONS OF TERNARY (SUB)SYSTEMS. THE ALGORITHM IS DESCRIBED IN 
C DETAIL IN PROGRAM DOCUMENTATION ELSEWHERE. SEVERAL VERSIONS OF 
C SIMPL3 ARE AVAILABLE, THIS VERSION IS DESIGNED FOR EFFICIENT 
C COMPUTATION IN SYSTEMS WITH BINARY SOLUTIONS. 



b 

CALCULATING COMPOSITION PHASE DIAGRAMS 

FOR EACH TERNARY SUBSYSTEM 
INITIALIZE SIMPLE VARIABLES 

DETEEtMINE NUMBER OF BINARY PHASES 
IN THE APPROPRIATE TERNARY: 

C REFERENCED BY: BOSSOP 
C REFERENCES TO: ABLOAD,ASSD~,ASPSB,BQWD~,DGPH~,ITEST~,SID~ 
C SLOPES 
C INPUT ARWYS: GyCPyU,IDCyIDBVpIEVCT~ITC,ITB 
c OUTPUT ARRAYS: IDW,ITPCT,ITTCT71DTT 
C TEMPORARY ARRAYS: ITBH,IVCKK,IDTPST71DPSF,IBIN 
c,-------,---------------------------------------------------------------- 

IMPLICIT REAL*8 ( A-G 0-Y) INTEGER*2 (H-M) , INTEGER ( 2  
c 

DIMENSION 13IN(lOO) 
c 

COMMON/ CST23 /A(~,~),B(~),IPVT(~)~IDV(~I~IOPHI~~DP~I,I~P~I,IF~G~ 
* / CST48 /U(5)/ CST46 /IPSF~IDPSF(~OOO,~) 
* / CST2 /~(800) / CST3 /~(800,5 ) /  CSTl2 /CP(~OO ,5) 
* / CSTl5 /IDC(~) ,IDBV(~O ,501 ,IBVCT( 10) 
* / CSTl3 /IDu(~, 10) ,IDB( 10,60) ,1~~(10,2) ,IUCT(~) ,IBCT(~O) 
* / CST22 /1~~(10,8QO) ,ITCT(~O)/ CST6 /ICOMP,ISTCT~IPHCT,ICP 
* 1 CSTl4 /IBs,ITS,I~S ,I~s/ CSTl8 /ICCT(~OO) 
* / CSTl6 /1~TV(10, 1296 73) ,IDTT(~O,~OO) ,ITPCT(~O) ,ITTCT( 10) 
* / CSTl9 /HI ,IQTH(~) ,IVCHK(~OO) ,1~~(10,3}/ CST28 /1TB(lO93) 
* / CST41 /Nl , ~ 2  , ~ 3  ,El4 ,N5 ?El6 Â¶N ,Na 103 9104,105 
* / CST45 /ITBH(~),ITT,ITW,ITTP 
* / CST52 /HCP ,H, HD, ID, JD ,KD7LD,MD, ITCl ,ITC~, 1 ~ ~ 3 ,  I T C ~  $ 1 ~ ~ 5  

c -.-----,----------------------------------------------------- 

DO 1 1=3,1PHCT 
1 IVCHK(I)=O 
c 

HCP=3 
c 

DO 500 H=l,ITS 
c 
c 

ITCI=ITC(H, 1) 
ITC~=ITC(H~~) 
ITC~=ITC(H~~) 
ITTP=O 
ITT=ITCT(H) 
ITTV=O 
IPSF=O 
ITPSF=l 
IFLG4=0 
HGO=Q 

c 
c 

IFLG2=0 
IBT=O 
DO 2 1=1,3 
ITBH(I)=ITB(H,I) 
ITBD=ITBH( I 1 
IB=IBVCT(ITBD)-1 
GOT0 (3),1B 
IFLG2=1FLG2+1 
DO 4 K=2,1B 
IBT=IBT+ 1 

4 IBIN(IBT)=IDBV(ITBD~K) 
3 IBT=IBT+l 
2 IBIN(IBT)=~DC(ITC(H,I) 1 
c IFLG2 = NUMBER OF BINARIES WITH 
C BINARY VERTICES 

IF (IFLG~~NE.~) GOT0 250 
IF (ITT.EQ.O) GOT0 270 
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CALL ASSD3 (ITPSF ,HGO) 
GOTO 271 

IDENTIFY TERNARY FACETS WITH 2 
VERTICES ON A BINARY: 

DO 10 1=1,3 
IDBT=ITBH(I) 
11=4-1 
IB=IBVCT(IDBT)-1 
DO 20 J=l,IB 

SET THE BINARY VERTICES: 
HD=IDBV( IDBT, J) 
ID=IDBV(IDBT,J+~) 

1ST TEST THE OPPOSITE COMPOSANT: 
JD=IDC(ITC(H,II)) 

TEST IF A VERTEX IS CONTAINED: 
IF (ITTV.EQ.O) GOT0 25 
CALL BOUND3 
DO 35 K=l,ITTV 
IF (ITEST~(IDTT(H,K)) .NE.O) GOTO 35 
JD=IDTT(H, K) 
CALL BOUND3 
CONTINUE 

DETERMINE U'S: 
CALL ABLOAD (*go00 ) 

BEGIN TESTING AGAINST BINARIES: 
DO 30 K=1,3 
IF (K.EQ.1) GOT0 30 
ITBD=ITBH(K) 
JB=IBVCT(ITBD)-1 
GOT0 (~O),JB 
DO 40 L=2, JB 
KD=IDBV(ITBD,L) 
IF (DGPH~(KD).GT.O.ODO) GOT0 40 

JD METASTABLE CHANGE WITH KD; 
JD=KD 
CALL ABLOAD (*9000) 
CONTINUE 
CONTINUE 

IF (ITT.EQ.O) 
DO 60 K=1, ITT 
KD=IDT( H . K I 

BEGIN TESTING TERNARY PHASES: 
GOT0 50 

IF (DGPH~(KD).GT.O.ODO) GOT0 60 
JD METASTABLE CHANGE WITH KD: 

JD=KD 
CALL ABLOAD (*9000) 
CONTINUE 

ASSIGN NEW FACET: 
CALL ASSD3 (ITPSF ,HGO) 
CONTINUE 
CONTINUE 

BEGIN SECOND SEARCH SEGMENT. 
HGO=1 
IF (ITPSF.EQ.IPSF) GOT0 271 
I START=ITPSF 
IEND=IPSF 
ITPSF=IPSF 

GENERATE NEW FACETS FROM UNMATCHED 
TIELINES : 

DO 90 I=ISTART,IEND 
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IF (IDPSF(I,~).EQ.O) GOT0 90 
C SET VERTICES! 

HD=IDPSF(I $1 ) 
ID=IDPSF ( I, 2 
CALL SLOP3 (I) 

C SET 1ST TEST VERTEX: 
DO 110 K=l,3 

C TRY UNARY VERTICES: 
JD=IDC(ITC(H,KÃ 

110 IF (sID~(JD).LT.-1.D-08) GOT0 150 
CALL OUTCHM (IGRF) 
GOT0 9000 

C TEST FOR BOUND VERTICES! 
150 IF (ITTV.EQ.0) GOT0 135 

CALL BOUND3 
DO 130 K=l,ITTV 
KD=IDTT(H,K) 
IF ((ID.EQ.KD).oR.(ITEsT~(KD).NE.O)) GOTO 130 
JD=IDTT(H,K) 
CALL BOUND3 

130 CONTINUE 
135 CALL ABLOAD (*9000) 
C TEST AGAINST BINARIES: 

DO 160 K=1 ,IBT 
KD=IBIN(K) 
IF ((SID~(KD) .GT.-1 .D-08) .OR. 

* (DGPH~(KD).GT.O.ODO)) GOT0 160 
JD=KD 
CALL ABLOAD (*9000) 

160 CONTINUE 
C TEST TERNARY PHASES: 

IF (1TT.EQ.O) GOT0 190 
DO 180 K=1 ,ITT 
KD=IDT(H,K) 
IF ((DGPH~(KD).GT.-~.D-O~).OR. 

* (sID~(KD).GT.-~.D-O~)) GOT0 180 
JD=KD 
CALL ABLOAD (*9000) 

180 CONTINUE 
C ASSIGN NEW FACETS AND TIELINES: 
190 CALL ASSD3 (I  , HGO ) 
90 CONTINUE 

GOT0 100 
C END OF SEARCH SEGMENT* 
27 1 ITPcT(H)=ITTP 

ITTCT(H)=ITTV 
IF (ITTV.GT.O) IFLG4=IFLG4+1 

500 CONTINUE 
H=l 

C OUTPUT CHEMOGRAPHY IF REQUESTED. 
999 RETURN 
9000 WRITE (N3,*) '**ERROR BOU002** SINGULAR MATRIX IN SIMPL~' 

STOP 
END 
SUBROUTINE SIMPL4 (IFLG4) 

p______-_Ã‘Ã‘_--Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘ 

C SIMPL4 LOCATES THE QUATERNARY FACETS OF A FREE ENERGY SURFACE. 
c 
C REFERENCED BY: BOSSOP 
C REFERENCES TO: AB4,ASPST,ASSD4,DGPH4 
r'Ã‘.-KMÃ‘Ã‘Ã‘Ã‘.Ã‘Ãˆ-.Ã‘.Ã‘.Ã‘Â¥Â¥Ã‘Ã‘Ã‘Ã‘~Ã‘Ã‘Ã‘Ã‘Â¥"Â¥Ã‘Ã‘Ã‘Ã‘_Ã‘~Ãˆ-Ãˆ,Ã‘Ã‘Ã‘*- 

IMPLICIT REAL*$ ( A-G , 0-Y ) , INTEGERS (H-M) , INTEGER ( Z ) 



J.A.D. CONNOLLY and D.M. KERRICK 

INITIALIZATION: 

VERTEX COUNTERS 

PUT COMPONENT ID'S INTO SIMPLE 
VARIABLES : 

IDENTITIES OF THE FOUR TERNARIES IN 
THE HTH QUATERNARY: 

COUNTER FOR THE NUMBER OF STABLE 
QUATERNARY 

COUNTER OF 
PHASES: 

COUNTER OF 

COUNTER OF 

COUNTER OF 

PHASES : 

TOTAL NUMBER OF QUATERNARY 

QUATERNARY FACETS : 

QUATERNARY VERTICES: 

PSEUDO-TERNARY PLANES: 

FLAG AND COUNTER FOR ASPST IN THE 1ST 
SEARCH SEGMENT. 

ELIMINATE QUATERNARY PHASES 
METASTABLE WITH RESPECT TO COMPOSANTS: 

DO 10 1=1,IQQ 
IF (G(~W(H,I))-CP(I~(H,I),IQC~)*U(IQC~) * -cP(IDQ(H,I), IQC~)*U(IQC~) 

* -CP(IDQ(H, I) ,IQc~)*u(IQc~) 
* -CP(IDQ(E,I) 7 ~ ~ ~ 4 ) * ~ ( ~ ~ ~ 4 ) . ~ ~ . ~ . ~ ~ ~ )  GOTO 20 
IQQS=IQQS+l 
GOT0 10 
G(IDQ(H,I))=O.ODO 
CONTINUE 
IF (IQQs.NE.o) GOT0 30 

NO QUATERNARY PHASES STABLE, IF NO 
TERNARY PHASES ARE STABLE (IFLG~=o) 
THEN THE ONLY FACET IS DEFINED BY 
THE COMPOSANTS. 

IF (IFLG~.NE.O) GOTO 30 
IQFCTH=l 
DO 25 1=1,4 
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IDENTIFY FACETS WITH 3 VERTICES IN A 
TERNARY SUBSYSTEM: 

SET TERNARY VERTICES ; 

CALL ABLOAD (*9000) 

SET 4TH VERTEX AS THE OPPOSITE CO 
COMPOSANT : 

DETERMINE U~S! 

BEGIN TRYING BINARY VERTICES 

IDENTIFY THE BINARY: 

START TESTING: 

IF (DGPH~(LD).GT.-1.~-08) GOT0 42 
KD IS METASTABLE, EXCHANGE WITH LD: 

KD=LD 
CALL ABLOAD (*9000) 
CONTINUE 
CONTINUE 

BEGIN TRYING TERNARY VERTICES: 

DO 60 L=l,LL 
LD=IDTT(ICTT, L) 
IF (DGPH~(LD).GT.-1.D-08) GOT0 60 

IF DGPH4 IS LT 0 THEN THE FACET HD- 
ID-JD-KD IS METASTABLE WITH RESPECT 
TO LD, INTERCHANGE KD AND LD AND 
CONTINUE : 

KD=LD 
CALL ABLOAD (*9000) 
CONTINUE 
CONTINUE 

IF '80 QUATERNARY PHASES THEN THE 
ESTABLISHED FACET IS STABLE, ELSE TEST 
QUATERNARY PHASES: 

IF (IQQS .EQ.O) GOT0 90 
DO 70 K=l,IQQ 
LD=IDQ(H,K) 
IF (DGPH~(LD).GT.-~.D-O~) GOT0 70 

FACET IS METASTABLE WITH 
TEST HERE IF KD IS BOUND 

KD=LD 
CALL ABLOAD (*9000) 

TEST HERE IF LD IS BOUND 
CONTINUE 

SAVE THE NEW FACET: 
CALL ASSD4 (IONE ,HGO) 

RESPECT TO LD: 
!!!!! 
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SAVE THE NEW PSEUDO-TERNARY PLANES: 
CONTINUE 
CONTINUE 

BEGIN 2ND SEARCH SEGMENT. 
HGO=l 
IF (1PSF.EQ.O) GOT0 490 

IF (IPSF.EQ.ITPSF) GOT0 490 
ISTART=ITPSF 
IEND=IPSF 
ITPSF=IEND 

IDENTIFY NEW FACETS GENERATED FROM 
THE PSTP' S: 

DO 150 1=1START,IEND 
IF (IDPSF<I,~).EQ.~) GOT0 150 

SET VERTICES ; 
HD=IDPSF(I ,1) 
ID=IDPSF ( I, 2 1 

DETERMINE THE EQUATION OF THE PSEUDO- 
TERNARY PLANE HD-ID-JD: 

CALL SLOP4 (I) 
SET FIRST TEST VERTEX! 

JJ=l 
KD=IDC(IQAC(H, JJ) I 

TEST IF KD IS GEOMETRICALLY FEASIBLE: 
IF (sID~(KD) .GT.-1 .D-08) GOT0 170 
CALL ABLOAD (*9000) 
GOT0 180 
JJ=JJ+l 
GOT0 190 

CALL BOUNDC HERE TO ESTABLISH 
COMPOSITIONAL LIMITS OF THE TRIAL 
CONFIGURATION. THEN USE ITESTC TO 
TEST FOR BOUNDED STABLE PHASES. THIS 
TEST LOOP IS ONLY USEFUL IF THE 
SYSTEM CONTAINS QUATERNARY COMPOUNDS. 
BEGIN TESTING; 
TRY BINARY VERTICES: 

DO 81 K=l,6 
IDB=IQB(H, K) 
IB=IBVCT( IDB) 
DO 82 L=2,IB 
LD=IDBV( IDB ,L) 
IF ((SID~(LD).GT.-~.D-O~).OR.(DGPH~(LD).GT.-~.D-O~)) GOT0 82 

KD IS METASTABLE, EXCHANGE WITH LD: 
KD=LD 
CALL ABLOAD (*9000) 
CONTINUE 
CONTINUE 

TRY TERNARY VERTICES : 
DO 200 J=l,4 
ICTT=IQT(H,J) 
LL=ITTCT(ICTT) 
IF (LL.EQ.O) GOTO 200 
DO 210 K=l,LL 
LD=IDTT(ICTT,K) 
IF ((SID4(LD) .GT.-1.D-08) .OR.(DGPH~(LD) .~~.-1.~-08)) GOT0 210 

FACET IS METASTABLE WITH RESPECT TO 
LD : 

KD=LD 
CALL ABLOAD (*9000) 
CONTINUE 
CONTINUE 

NOW TEST AGAINST QUATERNARY PHASES: 
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IF (1QQs.EQ.O) GOT0 230 
DO 220 J=l,IQQ 
LD=IDQ(H, J) 
IF ((sID~(LD).GT.-1.D-08) .OR. (DGPH4(LD) .GT.-1.D-08)) GOT0 220 
KD=LD 
CALL ABLOAD (*9000) 

220 CONTINUE 
C ASSIGN NEW FACET: 
230 CALL ASSD4 (1,HGO) 
C ASSIGN PSTP TO A TEMPORARY STORAGE 
C ARRAY. 
150 CONTINUE 
c 
G SAVE PERMANENT COUNTERS: 
C 

GOT0 160 
490 ITQCT(H)=IQVH 

IQFCT(H)=IQFCTH 
GOTO 500 

9000 WRITE (N3,*) '**ERROR BOU004** SINGULAR MATRIX IN SIMPL~' 
STOP 

500 CONTINUE 
99 RETURN 

END 
SUBROUTINE SIMPL5 

cÃ‘-Ã‘Ã‘Ã‘Â¥-Ã‘Ã‘Ã‘----Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘ 
C SIMPL5 LOCATES THE QUINARY FACETS OF A FREE ENERGY SURFACE. 
c 
C REFERENCED BY? BOSSOP 
C REFERENCES TO: ABLOAD,ASPSQ,ASSD5,DGPH5,SID5,SLOP5 
cÃ‘Ã‘-Ã‘Ã‘-Ã‘Ã‘Ã‘Ã‘Ã‘-Ã‘--Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘ 

IMPLICIT REAL*8 (A-G ,O-Y) , INTEGER*2 (H-M) , INTEGER (2 ) 
c 

COMMON/ CST23 /A(~,%),B(~),IPVT(~) ,IDv(~),IoPHI,IDPHI,IIPHI,IFLG~ * / CST2 /~(800)/ CST12 /~~(800,5)/ CST46 /IPSF,IDPSF(~OOO,~) 
* / CST19 /HI ,IQTH(~) ,IVCHK(~OO) ,1~~(10,3) 
* / CST15 /IDC(~) ,I~BV(10,50) ,IBVCT(~~) 
* / CST16 /1~~~(10,1296,3) ,IDTT(~~,~OO),ITPCT(~O),ITTCT(~O) 
* / CST52 /HCP,H,HD,ID,JD,KD,LD,MD,IC(~) 
* / CST47 /IDQF(~,~OO,~),IQFCT(~),IQFCTH,IGO 
* / CST56 /IDTQ(~,~~) ,ITQCT(~) ,IQVH/ CST58 /IDCF(~OO , 5 )  ,ICFCT 
* / CST27 /IQAC(~,~),IQACT(S) ,IQICT,IDQ(~,~O),IDQI(~) 
*Â / CST48 /~(5)/ CST57 /ICB(~,~),ICE(~,~) 

r;Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘---Ã‘Ã‘---Ã‘Ã‘Ã‘Ã‘Ã‘Ã 

C INITIALIZATION: 
c 
C NUMBER OF COMPONENTS: 

HCP=5 
C COMPONENTS: 

DO 1 1=1,5 
1 IC(1 )=I 
C PSEUDO-QUATERNARY PLANE COUNTERS: 

IPSF=O 
ITPSF=l 

C FACET COUNTER 
ICFCT=O 

C FLAGS 
HGO=0 

C BEGIN FIRST SEARCH SEGMENT. THIS 
C SEGMENT LOCATES FACETS WHICH HAVE 
C 4 VERTICES IN A COMMON QUATERNARY 
C SUBSYSTEM. 

DO 10 H=l,5 
JJ=6-H 
HH=IQFCT( H 



SET QUATERNARY VERTICES: 
HD=IDQF(H,I ,1) 
ID=IDQF(H,I,2) 
JD=IDQF(H,I,3) 
KD=IDQF(H,I ,4) 

SET FIFTH VERTEX AS THE OPPOSITE 
COMPOSANT: 

LD=IDG( JJ) 
DETERMINE CHEMICAL POTENTIALS: 

CALL ABLOAD (*9000) 
TEST STABILITY RELATIVE TO BINARY 
VERTICES : 

DO 30 J=l,4 
IDB=ICB(H, J) 
IB=IBVCT(IDB)-1 
GOT0 (30),IB 

START TEST LOOP: 
DO 40 K=2,IB 
IF (DGPH~(IDBV(IDB,K)).GT.-1.~-08) GOT0 40 
LD=IDBV( IDB ,K) 
CALL ABLOAD (*9000) 
CONTINUE 

END TEST LOOP. 
CONTINUE 

TEST STABILITY RELATIVE TO TERNARY 
VERTICES: 

DO 50 J=l,6 
IDB=ICE (H , J 
IB=ITTCT(IDB) 
IF (IB.EQ.0) GOT0 50 

START TEST LOOP: 
DO 60 K=l,IB 
IF (DGPH~(IDTT(IDB,K)).GT.-1.D-08) GOT0 60 
LD=IDTT(IDB,K) 
CALL ABLOAD (*9000) 
CONTINUE 

END TEST LOOP. 
CONTINUE 

TEST STABILITY RELATIVE TO QUATERNARY 
VERTICES : 

DO 70 J=l,5 
IF (J.EQ.H) GOTO 70 
IB=ITQCT(J) 
IF (IB.EQ.O) GOT0 70 

START TEST LOOP : 
DO 80 K=l,IB 
IF (DGPH~(IDTQ(J,K)).GT.-1.D-08) GOT0 80 
LD=IDTQ(J,K) 
CALL ABLOAD (*9000) 
CONTINUE 

END TEST LOOP. 
TEST STABILITY RELATIVE TO QUINARY 
PHASES: 

CONTINUE 
IF (IQICT.EQ.0) GOT0 100 

START TEST LOOP: 
DO 90 J=l,IQICT 
IF (DGPHS(IDQI(J)).GT.-~.D-O~) GOT0 90 
LD=IDQI ( J ) 
CALL ABLOAD (*9000) 
CONTINUE 

END TEST LOOP. 
CALL ASSD5 (ITPSF~HGO) 
CONTINUE 
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END FIRST SEGMENT 

BEGIN SECOND SEARCH SEGMENT*. 
HGO=1 
IF (IPSF.EQ.ITPSF) GOT0 250 
ISTART=ITPSF 
IEND=IPSF 
ITPSF=IPSF 

GENERATE NEW FACETS FROM THE PsQ'S: 
DO 120 I=ISTART,IEM) 
IF (IDPSF(I,~) ,EQ.O) GOT0 110 

SET VERTICES: 
HD=IDPSF(I,~) 
ID=IDPSF( I, 2 ) 
JD=IDPSF ( I. 3) 
KD=IDPSF(I ; 4 )  

DETERMINE THE PLANE IN SIMPLEX 
COMPOSITION SPACE INCLUDING HD- 
I D-JD-KD 

CALL SLOP5 ( 1 ) 

SET FIRST TEST VERTEX: 
JJ=1 
KD=IDC( JJ) 
JJ=JJ+l 
IF (SID~(KD).LT.-1.~-08) GOT0 140 

CALL BOUNDC HERE TO ESTABLISH 
COMPOSITIONAL LIMITS OF THE TRIAL 
CONFIGURATION. THEN USE ITESTC TO 
TEST FOR BOUNDED STABLE PHASES. THIS 
TEST LOOP IS ONLY USEFUL IF THE 
SYSTEM CONTAINS QUINARY COMPOUNDS. 

CALL ABLOAD (*9000) 
TEST AGAINST COMPOSANTS: 

DO 150 J=JJ,5 
LD=IDC ( J 
IF ((DGPH~(LD) .GI.-1.~-08) .OR.(SID~(LD).GT.-1.~-08)) GOTO 150 
KD=LD 
CALL ABLOAD (*9000) 
CONTINUE 

TEST AGAINST BINARIES: 
DO 160 J=l,10 
IB=IBVCT( J)-1 
GOT0 (1601,IB 
DO 170 K=2,IB 
LD=IDBV(J,K) 
IF ((S~D5(~~).~~.-l.~-~8) .OR. (DGPHS(LD) .GT.-~*D-O~)) GOTO 170 
KD=LD 
CALL ABLOAD (*9000) 
CONTINUE 
CONTINUE 

TEST AGAINST TERNARIES: 
DO 180 J=l,10 
IB=ITTCT( J) 
IF (IB.EQ.O) GOT0 180 
DO 190 K=1 ,IB 
LD=IDTT( J,K) 
IF ((SID5(L~).~~.-1.~-08) .OR. (DGPHS(LD) .GI.-1.~-08)) GOTO 190 
KD=LD 
CALL ABLOAD (*9000) 
CONTINUE 
CONTINUE 

TEST AGAINST QUATERNARIES: 
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DO 200 J=l,5 
IB=ITQCT(J) 
IF (1B.EQ.O) GOT0 200 
DO 210 K=l,IB 
LD=IDTQ( J,K) 
IF ( (sID~(LD) .GT.-l.D-08) .OR. (DGPH~(LD) .GT.-1 .D-08)) GOT0 210 
KD=LD 
CALL ABLOAD (*9000) 
CONTINUE 
CONTINUE 

TEST AGAINST QUINARIES: 
IF (IQICT.EQ.0) GOT0 120 
DO 230 J=1, IQICT 
LD=IDQI ( 3 )  
IF ((SID~(LD).GT.-~.D-O~).OR.(DGPH~(LD).GT.-~.D-O~)) GOT0 230 
KD=LD 
CALL ABLOAD (*9000) 
CONTINUE 
CALL ASSD5 (1,HGO) 

END SECOND SEARCH SEGMENT. 
RETURN 
WRITE (6,1000 ) 
FORMAT **ERROR BOUOO~** SINGULARITY') 
STOP 
END 
SUBROUTINE ASSD3 (ISTART,HGO) 

cÃ‘Ã‘Ã‘Ã‘--Ã‘Ã‘Ã‘Ã‘--Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘---Ã‘Ã‘Ã‘Ã‘---- 
C ASSD3 COUNTS (ITTP) AND ASSIGNS (IDTV) TERNARY FACETS. THE 
C VERTICES ARE IDENTIFIED BY THE ARRAY ID(3). 
c 
C REFERENCED BY: SIMPL4 
C REFERENCES TO: NONE 
cÃ‘_-Ã‘_Ã‘--___Ã‘._-_-___Ã‘Ã‘_Ã‘_-_--Ã‘_Ã‘Ã‘Ã 

IMPLICIT REAL*8 (A-G,O-Y),IKTEGER*~ (H-M),INTEGER (z) 
c 

DIMENSION ILK(2) 
c 

COMMON/ CST16 /IDTV(~~,~~~~,~),IDTT(~~,~~~),ITPCT(~~),ITTCT(~~) * / CST45 /ITBH(~),ITT,ITTV,ITTP 
* / CST13 /IDU(~,~~),IDB(~~,~~),IBC(~~,~),IUCT~~),IBCT(~~) 
* / CST52 /HCP , H ,ID( 6 ) , ITC1, ITC2, ITC3, ITC4, ITC5 * / CST19 /HI ,IQTH(4) ,IVcHK(800) ,IT~(10,3) * / CST18 /ICCT(~OO)/ CST46 /IPSF,IDPSF(~~~~ , 5 )  * / CST15 /IDc(S ),IDBV(~O,~O),IBVCT(~O) 

c 
DATA  ILK/^, 1/ 

~Ã‘Ã‘Ã‘Â¥HW----Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘---Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘W--Ã‘Ã‘--___.Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘-Ã‘Ã‘IkÃ‘Ã‘Ã‘Ã‘Ã‘Ã‘̂ Ã‘Ã‘Ã‘Ã‘Ã 

c 
IF (ITTP.EQ.0) GOTO 40 

C TEST FOR EQUIVALENCE WITH PREVIOUSLY 
C IDENTIFIED FACETS : 

11=ID( 1) 
12=1~(2) 
I3=ID(3) 
DO 10 I=l,ITTP 
IF ( 

* ((IDTV(H,I,~).NE.I~).AND.(IDTV(H,I,~).NE.I~).AND. 
* (IDTV(H,1,3).NE.I1)).0R. 
* ((IDTV(H,I,l).NE.I2).AND.(IDTV(H,I,2).NE.I2).AND. 
* (IDTV(H,I,3).NE.I2)).OR. 
* ((IDTV(H,I,~).NE.I~).AND.(IDTV(H,I,~).NE.I~).AND. 
* (IDTV(H,I,3).NE.I3))) GOTO 10 

c MATCH FOUND: 
RETURN 
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CONTINUE 
UNIQUE : 

ITTP=ITTP+l 
DO 50 1=1,3 
IF (IVCHK(ID(I)).EQ.~) GOT0 50 
IVCHK(ID(I) )=I 
IF (ICCT(ID(1)) 'LT.3) GOT0 50 
ITTV=ITTV+l 
IDTT(H,ITTV)=ID(I) 
IDTV(H,ITTP,I)=ID(I) 

TEST TIELINES FOR EQUIVALENCE: 
DO 80 1=1,2 
11=1D(1BC(I+l,l)) 
12=1D(IB~(1+1,2)) 
IF (1PsF.EQ.O) GOT0 25 
DO 20 J=ISTART, IPSP 
IF (IDPSF(J,3).EQ.O) GOT0 20 
IF (((IDPSF(J,I).NE.II) .AND. 

* (IDPSF(J,~).NE.I~)).OR. 
* ((IDPsF(J,~) .NE.I2) .AND. * (IDPSF(J,2) .NE.12))) GOT0 20 
IDPsF( J,3)=O 
GOT0 80 
CONTINUE 

TEST WITH BINARY JOINS 
GOT0 (601,HGO 
DO 30 J=l,3 
L=ITBH( J) 
IB=IBVCT(L)-1 
DO 70 K=l,IB 
IF (((IDBV(L,K) .EQ.I~) .OR. * (IDBV(L,K+~).EQ.I~)).AND. 

* ((IDBV(L,K) .EQ.I~) .OR. 
* (IDBV(L,K+~) .EQ.I~))) GOT0 80 
CONTINUE 

ASSIGN NEW TIELINE: 
IPSF=IPSF+l 
IDPSF(IPSF, 1)=11 
IDPSF(IPSF,~)=I~ 
IDPSF(IPSF,~)=ID(ILK(~~ ) 
CONTINUE 
RETURN 
END 
SUBROUTINE ASSD4 (ISTART ,HGO) 
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IF (IQFCTH.LT.~) GOTO 40 
TEST FOR EQUIVALENCE WITH EARLIER 
FACETS : 

DO 10 I=1 ,IQFCTH 
DO 20 3~1.4 
IDI=IDQF(H,I, J) 
DO 30 K=l,4 
IF (IDI .EQ.ID(K)) GOTO 20 
GOT0 10 
CONTINUE 
IGO=1 
RETURN 
CONTINUE 

UNIQUE FACET: 
IGO=0 
IQFCTH=IQFCTH+l 
DO 50 1=1,4 
IDI=ID( I ) 

SET FLAG IVCHK FOR NEW VERTICES: 
IF ((ICCT(1DI) .LT.~) .OR.(IVCHK(IDI) .EQ. 1)) GOT0 50 
IQVH=IQVH+ 1 
IVCHK(IDI )=I 
IDTQ(H,IQVH)=IDI 
IDQF(H,IQFCTH,I)=IDI 

EACH NEW FACET MAY GENERATE 3 NEW PST'S 
DEFINED BY THE VERTICES (124),(134), 
AND (234). 

DO 60 1=2,4 
SET VERTICES IDENTITIES: 

I~=ID(ITC(I, 1)) 
12=ID(ITC(I,2)) 
13=ID(ITC(I,3)) 

BEGIN BY TESTING EACH POTENTIAL PST 
FOR A MATCH WITH ONE ALREADY DEFINED. 

IF (1PSF.EQ.O) GOT0 70 
DO 80 J=ISTART,IPSF 
IF ((IDPSF(J,~).EQ.O).OR. * ((IDPsF(J, 1) .NE.I~) .AND.(IDPsF(J,~).NE.I~) .AND. 

* (IDPSF(J93).NE.I1)).OR. 
* ((IDPSF(J,~).NE.I~).AND.(IDPSF(J,~).NE.I~).AND. 
* (IDPsF(J,~).NE.I~)).OR. 
* ~IDPSF(J,~).NE.I~).AND.(IDPSF(J,~).NE.I~).AND. 
* (IDPsF(J,~).NE.I~))) GOT0 80 

MATCHED PST. 
IDPSF(J,~)=O 
GOT0 60 
CONTINUE 

TEST WITH TERNARIES IF SIMPL4 IS 
EXECUTING THE FIRST SEARCH SEG- 
MENT ( HGO=O ) . 

GOTO (90) ,HGO 
DO 100 J=l,4 
IQTHJ=IQTH ( J ) 
IF (IQTHJ.EQ.HI) GOTO 100 
HH=ITPCT(IQTHJ) 
DO 110 K=17HH 
IF ( 

* ((IDTV(IQTHJ,K,~).NE.I~).AND.(IDTV(~QTHJ,K,~).NE.I~).AND. 
* (IDTV(IQTHJ,K,~).NE.I~)).OR. 
* ((IDTV(IQTHJ,K,~).NE.I~).AND.(IDTV(IQTHJ,K,~).NE.I~).AKD. 
* (IDTV(IQTHJ,K,~).NE.IZ)).OR. 
* ((IDTV(IQTHJ,K,~).NE.I~).AND.(IDTV(IQTHJ,K,~).NE.I~).AND. 
* (IDTV(IQTHJ,K,~).NE.I~))) GOT0 110 
GOT0 60 

110 CONTINUE 
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100 CONTINUE 
C UNIQUE PST: 
90 IPSF=IPSF+l 

IDPSF(IPSF, 1 )=11 
IDPSF(IPSF,2)=12 
IDPsF(IPSF,3)=13 
IDPSF(IPSF,~)=ID( ILK(D ) 

c 
60 CONTINUE 

RETURN 
END 
SUBROUTINE ASSDS ( ISTART, HGO) 

c-- Ã‘Ã‘Ã‘Ã‘-------Ã‘-Ã‘-Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘-Ã‘---Ã‘ 

C ASSDS COUNTS (IcFcT) AND ASSIGNS (IDCF) QUINARY FACETS. THE 
C VERTICES ARE IDENTIFIED BY THE ARRAY  ID(^) 
c 
C REFERENCED BY: SIMPL5 
C REFERENCES TO: NONE 
c.---Ã‘Ã‘Ã‘Ã‘,---Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘---Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘ 

IMPLICIT REAL*8 ( A-G ,0-Y) , INTEGERS (H-M) ,INTEGER ( z ) 
c 

DIMENSION ILK(5 ) 

IF (ICFCT.LT.1) GOT0 40 
TEST FOR EQUIVALENCE WITH EARLIER 
FACETS 

DO 10 I=l,ICFCT 
DO 20 J=l,5 
IDI=IDCF(I,J) 
DO 30 K=l,5 
IF (IDI.EQ.ID(K)) GOTO 20 
GOT0 10 
CONTINUE 

MATCHES EARLIER FACET, RETURN. 
RETURN 
CONTINUE 

UNIQUE FACET: 
ICFCT=ICFCT+l 
DO 50 1=1,5 
IDCF(ICFCT,I)=ID(I) 

EACH MEW FACET MAY GENERATE 3 NEW PST'S 
DEFINED BY THE VERTICES ( 124). ( 134). 
AND ( 2 3 4 ) .  

SET VERTICES IDENTITIES: 
BEGIN BY TESTING EACH POTENTIAL PST 
FOR A MATCH WITH ONE ALREADY DEFINED. 

CONTINUE 
MATCHED AN EARLIER PSQ: 
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GOT0 60 
CONTINUE 

TEST WITH TERNARIES IF SIMPL4 IS 
EXECUTING THE FIRST SEARCH SEG- 
MENT ( HGO=O . 

GOT0 (IlO),HGO 
DO 120 J=l,5 
IF (J.EQ.MI) GOTO 120 
IB=IQFCT(J) 
DO 130 K=l,IB 
DO 140 L=124 
DO 150 M=l,4 
IF (ID(IQAC(I,L)) .EQ.IDQF(J,K,M)) GOT0 140 
GOT0 130 
CONTINUE 

MATCH WITH A QUATERNARY FACET 
GOT0 60 
CONTINUE 
CONTINUE 

UNIQUE PST: 
IPSF=IPSF+l 
DO 160 J=l,4 
IDPSF(IPSF,J)=ID(IQAC(I,J)) 
IDPsF(IPsF,~)=ID(ILK(I)) 

CONTINUE 
RETURN 
END 
SUBROUTINE BOUMDG 

c-----~-~------_---------_---_-_----_---~-_---------------------------- 
C A SUBROUTINE WHICH CALCULATES THE PARAMETERS FOR TEST 
C I.E. THE SLOPES OF THE TIELINES CONNECTING TERNARY VERTICES 
C AND THE "SIGN" OF INCLUDED POINTS. 
c----------------------------------------------------------------------- 

IMPLICIT REAL*8 (A-G,0-Y),INTEGER*~ (H-M),INTEGER (Z)  
rÃ 
<J 

COMMON/ CST12 /~~(800,5)/ CST45 /ITBH(~),ITT,ITTV,ITTP 
ft / CST23 /A(~,~~,B(~),IPVT~~),IDV(~),IOPHI,IDPHI,IIPHI,IER 
* / CST52 /HCP,H,ID(~) ,ITCC(~) 

c----------------------------------------------------------------------- 
C LOAD THE MATRIX V-TRANSPOSE 

DO 10 1=1 ,HCP 
DO 20 J=1 ,HCP 

~~A(I,J)=CP(ID(J),ITCC{I)) 
10 CONTINUE 

CALL FACTOR (HcP) 
c 

GOTO (99),1E~ 
RETURN 

99 WRITE (6,*) ' **ERROR BOU002**' 
STOP 
END 
FUNCTION ITESTC (LD,A,IPVT) 

c - - - - - ~ - - ~ - - - - - - - - - - ~ - - - - - - ~ - - - - - ~ - - ~ ~ - ~ - - ~ - - - - ~ - - ~ - ~ - - ~ ~ ~ - ~ - - - ~ - - ~ - ~ - -  
C ITESTC DETERMINES WHETHER A POINT LIES WITHIN THE PORTION 
C OF A PLANE BOUNDED BY THE PLANES CONNECTING C POINTS. 
C THE G POINTS. THE IDENTITY OF THE 
C POINT TO BE TESTED IS GIVEN BY LD. 
C 
C ITEST RETURNS 0 IF THE POINT IS WITHIN THE PLANE, 1 IF IT IS 
C OUTSIDE, AND 2 IF IT LIES ON AN EDGE OF THE BOUNDED REGION. 
c 
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IMPLICIT REAL*8 (A-G ,O-Y) . INTECER*2 (H-11) , INTEGER (2) 

SOLVE LY=B FOR Y: 
IP=IPVT( 1) 
x(~)=cP(LD,ITcc(IP)) 
DO 10 1=2,N 
SUM=O .DO 
IMl=I-1 
DO 20 J=l,IMl 
SUM=A(I, J)*x( J)+sUM 
IP=IPVT( I 1 
X(I)=CP(LD,ITCC(~ )-SUM 

SOLVE UX=Y FOR X: 
x(N)=x(N)/A(N,N) 
IF (x(N).LT.-1.D-05) GOTO 50 
NMl=N-1 
DO 30 11=1,NMl 
I=N-I1 
IPl=I+l 
SUM=O .DO 
DO 40 J=IPl,N 
SUM=A(I, J)*x( J)+SUM 
x(I)=(x(I)-SUM)/A(I,I) 
IF (x(I).LT.-1.~-05) GOTO 50 
ITESTC=O 
RETURN 
ITESTC=l 

RETURN 
END 
SUBROUTINE BOUND3 

c----------------------------------------------------------------------- 
C A SUBROUTINE WHICH CALCULATES THE PARAMETERS FOR TEST 
C I.E. THE SLOPES OF THE TIELIHES CONNECTING TERNARY VERTICES 
C AND THE "SIGN" OF INCLUDED POINTS. 
c----------------------------------------------------------------------- 

IMPLICIT REAL*8 (A-GO-Y) ,INTEGER*2 (H-M) ,INTEGER (z) 
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GOT0 30 
25 s(~)=(x(I~ ,ITC~)-~(12, 1 ~ ~ 2 )  )/DXX 

B(~)=x(I~,ITc~)-s(~)*x(I~,ITC~) 
DY(~)=s(~)*X(I~,ITC~)+B(~)-X(I~,ITC~) 

30 RETURN 
END 
FUNCTION ITEST3 (LD) 

cÃ‘---Ã‘--Ã‘Ã‘Ã‘Ã‘Ã‘--Ã‘---Ã‘--Ã‘---Ã‘Ã‘-----Ã 
C ITEST3 DETERMINES WHETHER A POINT LIES WITHIN THE PORTION 
C OF A PLANE BOUNDED BY THE LINES CONNECTING 3 POINTS. 
C THE C POINTS. THE IDENTITY OF THE POINT TO BE TESTED IS GIVEN BY LD. 
c 
C ITEST3 RETURNS 0 IF THE POINT IS WITHIN THE PLANE, 1 IF IT IS 
C OUTSIDE, AND 2 IF IT LIES ON AN EDGE OF THE BOUNDED REGION. 
c 
C REFERENCED BY: SIMPL3 
C REFERENCES TO: SUBST,FACTOR 
c----------------------------------------------------------------------- 

IMPLICIT REAL*8 (A-G,0-Y) , INTEGER*2 (H-M) , INTEGER ( 2  ) 
c 

COMMON/ CST3 /~(800,5)/ CST17 /~(3) ,B(3),DY(3) ,xB(~),DX(~) * / CST45 /ITBH(~),ITT,ITTV,ITTP 
* / CST52 /HCP,H,HD,ID,JD,KD,LL,MD,ITC~,ITC~,ITC~,ITC~,ITC~ 

LT=1 
DO 10 1=1,3 
IF (s(I).NE.~.D~~) GOT0 30 
T=Dx(I)*(xB(I)-x<LD,ITc~)) 
GOT0 20 

30 T=DY(I)*((s(I)*x(LD,ITc~)+B(I))-X(LD,ITC~)) 
20 IF (DABS(T).LT.~.D-08) LT=2 

IF (T.GE.O.D~) GOT0 10 
ITEST3=1 
RETURN 

10 CONTINUE 
ITEST3=0 
GOT0 (99) ,LT 
ITEST3=2 

99 RETURN 
END 
SUBROUTINE ABLOAD (* ) 

~*Ã‘.*Ã‘,-unm---IT-i_L--Ã‘-Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Â¥w__in*M---miÃ‘.-.Ã‘Ã‘,-Ã‘Ã‘Ã‘Ã‘------Ã‘Ã‘-.rwfwÃ‘Ã‘------1. 

C ABLOAD ASSEMBLES THE MATRIX 'A' AND VECTOR 'B' FOR HCP COMPONENT 
C SYSTEMS AND THEN SOLVES THE EQUATION AX=B, THE VECTOR X IS 
C RETURNED IN 'B'. 
c 
C REFERENCED BY: SIMPLZ,SIMPL3,SIMPL4,SIMPL5 
C REFERENCES TO: SUBST,FACTOR 
C----------------------------------------------------------------------- 

IMPLICIT REAL*8 (A-G ,o-Y) , INTEGER*2 (H-M) , INTEGER (Z ) 
c 

COMMON/ CST23 / ~ ( 8 , 8 ) ,  ~ ( 9  ), IPVT(~), IDV(8), IoPHI, IDPHI, IIPHI, IFLG~ 
* / CST2 /~(800)/ CST12 /~~(800,5)/ CST52 /HCP,H,ID(~) ,IC(~) 

CÃ‘Ã‘-----Ã‘Ã‘--,_---Ã‘-.Ã‘-----Ã£-------------------Ã‘Ã‘.- 

DO 10 1=1,HCP 
DO 20 J=l,HCP 

20 A(I,J)=CP(ID(I),IC(J)) 
10 CONTINUE 

CALL FACTOR (A,HCP,IPVT,IER) 
GOT0 (99) , I E R  
DO 30 1=1,HCP 
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30 B(I)=G(ID(I)) 
CALL SUBST (A, IPVT, HCP , B ) 
RETURN 

99 RETURN 1 
END 
SUBROUTINE FACTOR (A,N?IPVT.IER) 

cÃ‘Ã‘Ã‘Ã‘--Ã‘Ã‘-----Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘-----------Ã‘Ã‘----------------- 
C FACTOR IS A SUBROUTINE WHICH CALCULATES THE TRIANGULAR 
C DECOMPOSITIONS OF THE MATRIX ' A * .  FACTOR IS MODIFIED FROM 
C THE SUBROUTINE OF THE SAME NAME GIVEN BY CONTE AND DE BOOR 
C IN ' ELEMENTARY NUMERI CAL ANALY SI S ' , MCGRAW-HILL , 19 80. 
C FACTOR USES SCALED PARTIAL PIVOTING. 

C N- THE DIMENSION OF THE MATRIX A. 
C OUTPUT A- AH N BY N ARRAY COMTAINING THE UPPER. U, AND LOWER? L, 
C TRIANGULAR DECOMPOSITIONS OF INPUT MATRIX A. 
c IPVT- A VECTOR INDICATING THAT ROW IPVT(K) WAS USED TO 

ELIMINATE THE A(N ,K) . 
IER- A FLAG, ZERO IF A IS OF RANK = N, AND 1 IF A IS OF 

INITIALIZE 1PVT.D 

DO 20 J=l,N 
RMAX=DMAX~(RMAX,DABS(A(~, J) ) ) 

AX=B IS SINGULAR IF RMAXZ0 

BEGIN DECOMPOSITION: 

CONTINUE 
IF (RMAX.EQ.O.DO) GOTO 9000 

IF I STR GT I . MAKE I THE PIVOT ROW 
BY INTERCHANGING IT WITH ROW ISTR. 

IF (ISTR.LE.I) GOT0 50 
J=IPVT ( I STR) 
IPVT(ISTR)=IPVT(I ) 
IPVT(I)=J 
TEMP=D ( I STR 
D(ISTR)=D(I) 
D( I )=TEMP 
DO 60 J=l,N 
TEMP=A( I STR , J ) 
A(ISTR,J)=A(I, J) 
A(I,J)=TEMP 

ELIMINATE X(K) FROM ROWS K + 1 7 * - * . H =  



A(J,I)=A(J,I)/A(I,~) 
RATIO=A ( J , I 1 
DO 80 K=IPl,N 

80 A(J,K)=A(J,K)-RATIO*A(I,K) 
70 CONTINUE 
30 CONTINUE 

IF (A(N,N) .EQ.O.DO) IER=~ 
RETURN 

C ALGORITHMIC SINGULARITY. 
9000 IER=1 

RETURN 
END 
SUBROUTINE SUBST (A,IPVT.N,B) 

~Ã‘_-_-__-__--__-_Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘--Ã‘Ã‘- 

C SUBST USES THE LU DECOMPOSITION OF THE MATRIX 'A' CONTAINED 
C IN THE ARRAY 'A' TO SOLVE AX=B FOR X. SUBST IS MODIFIED FROM THE 
C THE SUBROUTINE OF THE SAME NAME LISTED BY CONTE AND DE BOOR 
C IN 'ELEMENTARY NUMERICAL ANALYSIS', MCGRAW-HILL, 1980. 
c 
C INPUT A- AN N BY N ARRAY CONTAINING THE NON-ZERO ELEMENTS OF 
C THE U AND L DECOMPOSITIONS OF A, AS OUTPUT BY FACTOR. 
C N- THE DIMENSION OF THE MATRIX A. 
C IPVT- A VECTOR INDICATING THAT ROW IPVT(K) WAS USED TO 
c ELIMINATE THE COEFFICIENT A(N,K). 
C 0- THE VECTOR B -  
C OUTPUT 0- THE SOLUTION VECTOR X. 
cÃ‘Ã‘Ã‘--Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘Ã‘-Ã‘Ã‘---Ã‘Ã‘Ã‘Ã‘ 

IMPLICIT REAL*8 (A-G ,0-Y) , INTEGER*2 (H-N) , INTEGER ( Z ) 
c 

DIMENSION A(~,~),IPvT(~),B(~),X(~) 
cÃ‘Ã‘----------Ã‘---Ã‘---Ã‘Ã‘--Ã‘-Ã‘--Ã‘Ã‘--Ã‘Ã‘--- 

SOLVE LY=B FOR Y: 
IP=IPVT( 1 1 
x(1 )=B(IP) 
DO 10 1=2,N 
SUM=O .DO 
IMl=I-1 
DO 20 J=1 ,IM1 
SUM=A(I, J)*x( J)+SUM 
IP=IPVT(I) 
x(I)=B(IP)-SUM 

SOLVE UX=Y FOR X: 
x(N)=x(N)/A(N,N) 
NMl=N-1 
DO 30 11=1,NM1 
I=N-I1 
I P l = I + l  
SUM=O . DO 
DO 40 J=IP1,N 
SUM=A(I,J)*X(J)+SUM 
x(I)=(x<I)-SUM)/A(I,I> 
B(I)=x(I) 
B<N)=x(N) 

RETURN 
END 

c----------_------------------------------------------------------------ 
C THE DGPHC FUNCTIONS DETERMINE THE G DIFFERENCE BETWEEN A PHASE 
C IDENTIFIED BY 'LD', AND THE PLANE DEFINED BY 'U'. 
C REFERENCED BY: SIMPL3,SIMPL4,SIMPL5 
c----------------------------------------------------------------------- 

FUNCTION DGPH3 (LD) 
IMPLICIT REAL*8 (A-G,0-Y),INTEGER*Z (H-M),INTEGER (Z) 
COMMON/ CST23 /~(64),~(9),1<20)/ GST2 /~(800)/ CST12 /~P(800,5) * / CST52 /L(~),ITC~,ITC~,ITC~,ITC~,ITC~ 
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FUNCTION DGPH4 (LD) 
IMPLICIT REAL*8 (A-G,O-Y) , INTEGER*2 (H-M) , INTEGER ( 2  
COMMON/ CST23 /~(64) , D ( B )  ,I (20)/ CST2 /~(800)/ CST12 /~~(800,5) * / ' CST52 /L(8) ,ITC1 ,ITC2,ITC3 ,ITC4,ITC5 

FUNCTION DGPH5 (LD) 
IMPLICIT REAL*8 (A-G, 0-Y) ,INTEGERS (H-MI, INTEGER (2) 
COMMON/ CST23 /A(64),~(9),1(20)/ CST2 /~(800)/ cST12 j~~(800.5) 

----  - 

C GIVEN THE PARAMETERS OF A PLANE SPANNING THE JOIN OF A C-1 
C DIMENSIONAL SIMPLEX, E.G. ID1, ..., IDC-1, SIDC DETERMINES IF 
C A POINT 'KD' LIES ON THE SAME SIDE OF THE JOIN AS THE VERTEX 
C IDC. PARAMETERS FOR THE SIMPLEX IDl,...,IDC ARE INITIALIZED 
C BY SLOPC. 
C SIDC IS 0 IF KD LIES IN THE PLANE, LT 0 IF KD LIES ON THE OPPOSITE 
C SIDE OF THE JOIN FROM IDC, AND GT 0 IF KD IS ON THE SAME SIDE AS 

RETURN - u 
10 SID~=(B-X(KD,ITC~)) /SIGN 

RETURN 
END 

r* 
\t 

FUNCTION SID4 (KD) 
IMPLICIT REAL*8 (A-G, 0-Y 1, INTEGER*2 (H-M) , INTEGER (7 
COMMON/ CST55 / ~ 1 , ~ 2  ,S~,S~,SICN,LGO/ CST3 /x(~oo, 5) * / CST52 /HCP ,H ,ID(6 1, IQCl , IQC2, IQC3, IQC4, IQC5 

r^ LGO IS A FLAG WHICH INDICATES 
i, - 

C WHICH COMPONENTS WERE USED TO 
c DEFINE THE PLANE IN THE SIMPLEX. 

S ~ D 4 = ( S l ~ ( ~ , ~ ~ ~ l ) + ~ 2 * ~ ( ~ ~  ,LGO)*S~-~(n), IQC~) )/SIGN 
c 

RETURN 
END 



FUNCTION SIDS (KD) 
IMPLICIT REAL*8 (A-G ,O-Y) , INTEGER*2 (H-M) INTEGER (2  ) 
COMMON/ CST55 /Sl,S2, ~3 ,s4 ,SIGN,LGO/ CST3 /X(800, 5) 

C LGO IS A FLAG WHICH INDICATES 
C WHICH COMPONENTS WERE USED TO 
C DEFINE THE PLANE IN THE SIMPLEX. 

s~D~={s~*X(KD, ~)+S~*X(~~,~)+S~*X(KD,LGO)+S~-X(~, 5 )  )/SIGN 
RETURN 
Ern 

c-------~-----.----------------------------------------------------------- 
C GIVEN THE JOIN OF A SIMPLEX OF C-1 DIMENSIONS, E-G* IDl,...,IDC-l? 
C SLOPC FINDS THE EQUATION OF THE PLANE SPANNING THE JOIN. THE 
C DISPLACEMENT OF THE VERTEX NOT ON THE JOIN, IDC, IS DETERMINED 
C RELATIVE TO THIS PLANE (1.E. THE PARAMETER 'SIGN')- 
c--,--------------------------------------------------------------------- 

SUBROUTINE SLOP3 (J 
IMPLICIT REAL*8 ( A-G , 0-Y) , INTEGER*2 (H-HI, INTEGER { Z ) 
COMMOH/ CST3 /~(800,5)/ CST55 /SLOPE,SS(~)~B~SIGN,LGO 

7% / CST52 /HCP,~,HD,ID,JD,~,LD,~,ITC~,ITC~,ITC~,ITC~,ITC~ 
+,. / CST46 /IPSF,~DPSF(~OOO,~) 

c 
13=1DpSF( J,3) 
DX=X(HD,ITC~)- ID, ITC~) 
IF (DX.EQ.O.DO) GOTO 10 
LGO=O 
SLOPE=(X(HD? 1~~2)-X(ID, 1 ~ ~ 2 )  ) /Dx 
B=-SLOPE*X(HD,ITC~)+X(HD~ITC~~ 
SIGN=SLOPE*X(I~ ,ITC~)+B-~(13~ 1 ~ ~ 2 )  
RETURN 

c 
10 LGO=l 
C THE LINE IS PARALLEL TO THE ITCl 
C COMPOBENT: 

SIGN=X(HD, ITC1)-X(I3 ,ITc~) 
B=X(HD, ITC~ 
RETURN 
END 

c 
SUBROUTINE SLOP4 (J 
IMPLICIT REAL*8 (A-G,o-Y) , INTEGER*Z (H-M) , INTEGER (Z ) 
COMMON! CST3 /~(800,5 ) /  CST55 /Sl ,S2 ,S3 ,S4 SIGl4,LGO 

* f CST52 /HCP,H,ID(~) 1 ~ ~ 1 ,  IQCZ ,IQC~, I Q C ~  ,IQC~ * / CST23 /~(8,8) , ~ ( 9 )  y ~ ~ ~ ~ ( 8 )  ,IDV(~) ,~OPHI,IDPHI ,IIPHI ,IFLG~ 
-k / CST46 /IPSF,IDPSF(~OO~,~) 
DATA 1CT/3/ 

C LOAD MATRIX Am VECTORS 
14=1DPSF(J,4) 
LGO=IQC2 

40 DOlOI=l,3 
A(1,3)=1 
A(I, ~)=X{IDPSF(J,II ,IQC~) 
A(I,~)=x(IDPsF(J,I) ,LGO) 

10 3(1} =x(IDPSF(J,I),IQC~) 
C SOLVE FOR THE PLANE: 

CALL FACTOR (A, I CT, IPVT, IER) 
C IF PARALLEL TO A COMPONENT THEN 
C GO TO 30 ( SVI TCH COMPONENTS ) . 

GOT0 (30) ,IER 
c 

CALL SUBST {A,IPVT,ICT,B) 
C SAVE PLANE PAMMETERS: 

Sl=B(l) 
S2=B(2) 
S4=I3{3) 



CALCULATING COHPOS ITION PHASE DIAGRAMS 

COMPUTE SIGN: 
s I G N ~ s ~ * X ~ ~ ~ , I Q C ~ ~ + S ~ * X ~ I ~ , L ~ O ) + S ~ - X ~ I ~ , I ~ C ~ ~  
LGO=O 
RETUW 

SWITCH COMPONENTS: 
LGO=IQC4 
GOT0 40 
END 

SUBROUTINE SLOPS (J) 
IMPLICIT REAL*8 ( A-G , 0-Y) , INTEGER*2 (H-M) , INTEGER (2 1 
COMMON/ CST3 /X(800,5)/ CST55 /sip S2 ,S3, S4, SIGN?LGO * / CST52 /HcP, H, ID( 6 1, IQC 1 IQC2 ? IQC3, IQC4 9 IQCS 

* / CST23 / A ~ ~ ~ ~ ) ~ B ( ~ ~ , I P V T ~ ~ ~ , I D V ~ ~ ~ , I O P H I , I D P H ~ , I I P H ~ ~ ~ ~ ~ G ~  
* / CST46 /IPsE' ,1DPSF(20OO95 
DATA ICT/~/ 

LOAD HATRIX AND VECTORS 
LG0=3 
I~=IDPsF(J,~) 
DO 10 1=l94 
A(I~~)=x(IDPsF(J~I),~) 
A(I,Z)=X(IDPSF(J,I)~Z) 
A(I~~)=x(IDPsF(J,I),LGO) 
A(1,4)=1.D0 
B(I) =X(IDPSF(J,I),~~ 

SOLVE FOR THE PLANE: 
CALL FACTOR (A, ICT, IPVT, IER) 

IF A IS SINGULAR (IER=~) THEN 
SWITCH THE COMPONENTS AND RELOAD- 

GOT0 (30),1ER 
CALL SUBST (A,IPVT~ICT,~) 

SAVE PARAMETERS : 
Sl=B(l) 
S2=B(2) 
s3=3(3 1 
S4=B(4 

COMPUTE SIC3 2 

SIGN=S~*X(I~ ? l)+~Z*X(15,2)+~3*~(15 ,LGU)+S~-~(15 ,s )  
RETURN 
LG0=4 
GOT0 20 
END 
SUBROUTINE MISCIB (KT) 

TEST IF THE PHASE 
A PSEUDO-COMPOmD 
MATCHED 

IDV(II) IS A 
NOT PREVIOUSLY 
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IXT=IKP(ID(II) 1 
IF ((IKT.EQ~o) .OR* (~KT~EQ~IoK(~))~oR~(IKT~EQ~IoK(~))) GOT0 20 

LOOK FOR A MATCH 
JJ=II+l 
DO 30 J=JJ,HCP 
IF (IKP(ID(J)I.NEAKT) GOTO 30 

TEST FOR POSSIBILITY OF A HOMOGENEOUS 
PHASE 

IF (JJ.NE.2) GOT0 40 
IHOM=IHOM+l 
CONTINUE 
IF (IH0M.EQ.l) GOT0 20 

NO MATCH OR PREVIOUSLY FOWD 

GOT0 50 
MATCH FOUND, SET FLAGS. NOTE THAT THE 
MAXIMUM NUMBER OF MATCHES IN A FIVE 
COMPONENT SYSTEM IS TWO, INCREASE THE 
DIMENSION OF IOK FOR URGER SYSTEMS. 

IM=IM+ 1 
IOK(IM)=IKT 
IASMBL(ICT?=Z 

LOAD AND FACTOR THE TRANSPOSE OF THE 
CONCENTRATION MATRIX OF THE PSEUDO- 
INVARIANT ASSEMBLAGE. 

DO 70 I=lyHCP 
DO 80 J=l,BCP 
A(J,I)=CP(ID(I)~J) 
CONTINUE 
CALL FACTOR (A ,HCP IPVT, IER) 
GOT0 (9000)y~~~ 

TEST FOR BOUNDED METASTABLE PSEUDO-CPDS 
OF THE SOLUTION IKT 

DO 60 J=ISTCT,IPHCT 
IF ((IVCHX(J)~EQ~~).OR.(IKP(J).NE.IKT)) GOT0 60 
DO 90 I=l,HCP 

LOAD COMPOSITION VECTOR, THE ALP~A 
VECTOR IS RETURNED IN THE SAME ARRAY 

B(I)=CP( J,I) 
SOLVE FOR THE ALPHA VECTOR 

CALL SUBST (A,1PVTpHcP,B} 
A NEGATIVE COEFFICIENT INDICATES 
THE PHASE IS NOT BOUNDED 

DO 100 I=I,HCP 
IF (B(I).LT.-~.D-O~) GOT0 60 

THE PHASE IS BOUNDED, EXSOLUTION HAVE 
OCCURRED? TEST TO DETERMINE IF DEGEN- 
ERATE SOLVUS HAS BEEN FOUND 

IF (IHoM.EQ.HCP) GOT0 110 
DO 120 I=l,HCP 
IF ((IKP(ID(I))~NE.IKT).A~D~(B(I~.GT.~.D-O~)) GOT0 60 

CONTINLIE 
IF NO IMMISCIBILITY AND THE ASSEMBLAGE 
IS A HOMOGENEOUS PHASE SET ASMBL FLAG 

IF (IHOM.EQ.HCP) IAsMBL(IcT)=~ 

RETURN 
ON ERROR 
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I M P L I C I T  REAL*8 (A-G ,O-Y) ,IHTEGER*2 (H-M) ,INTEGER (z )  
CHAUCTER*B FNmE,RECORD*80 
COMMON/ CST41  /~1,~2,N3,~4,N5,N6,~7,N8~103,104,105 

ON W/SP DEFINE F I L E S  
GRPKIN USES THREE UNITS: 
N2-TERMINAL OUTPUT 

N2=20  
CALL CMSF ( 'FI 20 TERM (LRECL 132',2lI 

N 1-DI SK INPUT 
FNAME= 
NI=Z 1 
CALL WRTRDF ( 'ENTER NAME OF INPUT DATA F I L E f , F N M E ,  * 2 1 , 2 2 1  
WRITE  RECORD,^^^^ N l y F N M E  
WRITE (N2 ,*I RECORD 
CALL CMSF (RECORD, 2 1 
FNAME= ' 

N3-DISK OUTPUT 
N3=22  
CALL WRTRDF ( t~~~~~ NAME OF GRAPHICS OUTPUT DATA F I L E ~ , F ~ ~ E ,  * Z 1 , Z Z )  
WRITE (RECORD, 2 5 0 ) N3, FNAME 
WRITE (N2,*) RECORD 
CALL CMSF (RECORD, Z 1 
FORMAT ( 'F ILEDEF ',12,' DISK ',A8, * ' DATA (PERM RECFM FB LRECL 80 ELKSIZE 8 0 ' )  

RETURN 
END 


