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“ Phase diagrams are the beginning of wisdom...” — Sr William Hume-Rothery (1899-1969).

Chemical thermodynamics owesiits origin to Gibbs' treatment of thermodynamic surfaces, but
thisway of thinking about thermodynamics is often neglected in teaching. This method is
particularly useful for understanding phase equilibriainvolving phases of variable

composition (solutions, melts, etc.). The first section of these notes reviews several familiar

thermodynamic concepts in the context of Gibbs energy surfaces (i.e, G- X diagrams). The
following section discusses the basic types of phase diagrams and the notes conclude with a
short, incompl ete, review of some of the methods currently used to compute petrol ogic phase
equilibria

G—X Diagrams

"Thermodynamics is the science of the impossible. It enables you to tell with certainty what
cannot happen. Thermodynamicsis noncommittal about the things that are possible.
Thermodynamicsis at its best when nothing can happen, a condition called equilibrium. The
concept of equilibrium has been fruitfully extended to reversible processes. Here everything is
impossible except one very specific process and even this processis on the verge of being
impossible." — An anonymous, slightly inaccurate, wit.

The basis of equilibrium thermodynamicsis the Gibbs stability criterion that states that an

i sobaric-isothermal-isochemical systemisin stable equilibrium when its Gibbs energy (G) isa
minimum. Mathematically this criterion is written

dGrp,n> O, (1.1)
an expression that implies that for a system in stable equilibrium any variation will lead to an
increase in the Gibbs energy. To understand this criterion, consider a two-component phase of

variable composition, i.e., asolution. If the molar Gibbs energy is plotted (the Gibbs energy

of the phase per mole of components, G, defined explicitly below) vs. composition (X), then

acurve such as that shown by the heavy curvein Fig 1.1awill be obtained. This curve defines

the possible material states of the system. However, the system may consist of any number of

parts, each of which will be described by a point on the G- X curveof the phase. The only

8 These notes were published in " Pressure and Temperature Evolution of Orogenic Belts," Lectures of
the V. Summer School, Geologia e Petrologia dei Basamenti cristallini of the University of Sienaand
the Italian National Research Council, 1992, p 203-220.



constraints on the system and its parts are that the mean (mole weighted) composition and
Gibbs energy of the parts must be equal, respectively, to the bulk composition and Gibbs
energy of the system. Suppose then that the system has a bulk composition X¥¥*™ and consists

of two equal parts a and b, the Gibbs energy of the system will be given by the point on the

line connecting the G — X coordinates of aand b at X¥**" (G”*"" in Fig 1.1). Now,
considering the Gibbs' stability criterion, it is clear that thisis not the lowest Gibbs energy for
the system, for example if we change the composition of the partsto a' and b', we can lower
the Gibbs energy of the system. In fact, we can keep lowering the Gibbs energy of the system
by making the composition of the two parts of the system approach the bulk composition of
the system X¥**™ and the minimum Gibbs energy will be attained when both parts are of
composition X¥**™, In other words, the system will only be in stable equilibrium if the phase

has the same composition in all parts of the system. It is noteworthy that this would be true
for any bulk composition of the system becausethe G— X surface” of the phase is concave

with respect to the G ordinate. Solutions that have this property are known as continuous
solutions, olivine (forsterite-fayalite) and most Mg-Fe mineral solutions are examples of

continuous solutions.

Thereis no reason to expect that the G — X surface of all phases should be concave, indeed

they are not; however, for regions of composition in which the G — X surface of aphaseis
convex the phase (with the corresponding composition) is always unstable. Thisisillustrated
in Fig 1.1b, consider that a system consistsinitially of a homogeneous phase a, the system can
lower its Gibbs energy if the phase unmixesinto two parts with compositions on either side of
a, and it will minimize its Gibbs energy if the parts have the compositionsa’ and b'. This
would be true for any bulk composition between a' and b'. Such solutions are said to exhibit
immiscibility, and the compositions a and b' locate the limbs of the solutions solvus at
constant P and T, Orthoclase (orthoclase-albite) and Muscovite (muscovite-paragonite) are

mineral solutions with immiscibility (at least at low temperature). It is aso conceivable that

the G- X surface of asolutionis always convex asin Fig 1.1c. In this case, a mechanical

mixture of the solution end-membersis always more stable than any solution composition,

and so, for practical purposes, thereis no solution. In principle the G- X surface of any

solution cannot be always convex, that is, on afine enough scale, the surface must be concave

* Throughout these notes the terms surface and plane are used in a general geometric sense,
i.e., in an n-dimensional space these are n-dimensional nonlinear and linear geometric
elements. Thus, in the context of a 2-dimensional (c=2) G — X diagram, acurveis asurface
and alineisaplane.



near the end-member compositions (e.g., there is some solubility of Zr in forsterite, and
likewise some solubility of Mg in Zircon). In the limit that these concave regions are small
they can be ignored and the end-members regarded as phases with fixed compositions, i.e.
compounds (e.g. zircon and forsterite, or o and B in Fig 1.1c). The G- X surface of a

compound is actually a point rather than a surface.

In general the shape of G— X surfaces varies as afunction of both P and T; thus, a solution

maybe continuous at one P —T condition and immiscible at another.
The Gibbs Energy

The Gibbs energy of a c-component system or phase is defined by the summation
G= Z Ny, (1.2)
i=1

where n;is the number of moles of component i, and ; is the chemical potential of the

component defined as

W= (%} . (13)
F/PT(ny,j=#i)

The significance of ; isthat it tells us how the Gibbs energy will change if we change n; by

an infinitessmal amount, holding all the other independently variable properties (P, T, n;;.;) of

the system or phase constant. The physical importance of chemical potentials will be

considered in the next section.

Eq (1.2) enables usto calculate G for a system of arbitrary size, as defined by the number of
moles of each component, but in the study of phase relations we are only concerned with the
state of the system, which is determined by its pressure, temperature, and composition. Thus it
is convenient to define a property that givesthe G as afunction of composition, this property

is known as the molar Gibbs energy and is related to G by:

G= (1.4)
2

If the composition (or "mole fraction™) of component i is defined as:

X, = Zr:j - (1.5)

izt

then by substituting Eq (1.2) into Eq (1.4) we obtain:

6= Xy, (16)
i1



Any expression in terms of the integral properties (G and n; ... n;) isequally valid in terms of

(6 and X; ... X.), but the advantage of the second form isthat it involves one less independent

variable because of the constraint:
>X =1 )

Thus Eq (1.2) isalinear equation in c-dimensional space, whereas Eq (1.6) isalinear

equation in c—1-dimensional space.

If you are familiar with thermodynamics, you may be thinking that there is something missing
from Egs (1.2) and (1.6), namely P and T, in which case you are confusing the differential

form of the Gibbs energy:

dG =-SdT +VdP+ > p,dn, (1.8)
i=1

with the integrated forms given here, in which the P, T dependence of G or G is hidden in the
chemical potentials. Eq (1.8) isthe basisfor calculating the changein G from one condition to
another through the use of complicated sounding things like heat capacity, isobaric
expansgivity, isothermal compressibility, Margules expansions, and enthalpy. Although such
calculations can be arithmetically complex, they are unimportant for understanding
thermodynamics, and can be summarized by the simple statement:
G=f(P, T,Nn....ne). (1.9
In practice, it is rarely even necessary to know the actual form of this function, one simply
looks up thevalue at the P, T, and n; ... n. of interest, or calculates them with a computer
program such asthe Perple_X program FRENDLY . Thereisatrick though, the values one
looks up, or calculates, are the Gibbs energy per molar formula unit of the phase in question.
A molar formula unit contains v; moles of component i (i=1 ... ¢), therefore from Eq 1.4:
Gm
2LV

Suppose we have calculated G of enstatite (MgSiOs). If we areinterested in a system with the

G=

(1.10)

components MgO and SiO,, thenvy o =1, Vo, =1Venmgo = 1, and Ger =G,, /2. Notethat if

we choose a different set of components for our problem Gen Will also change, e.g., if we

choose Mg,SiO, and SIO; then Gen =G,

Eq (1.6) hasthe interesting implication that if atangent to the G- X surface of aphaseis

drawn, the intersection of the tangent with theG axes of a G — X diagram gives the value of

the chemical potentiasin the phase when its composition corresponds to the point of



tangency (Fig 1.1). That the tangent has this property can be demonstrated by expanding Eq

(1.6) for atwo-component (c=2) system:

G=u X, +1,X, (1.12)
If X; = 1-X, issubgtituted into Eq (1.11), and the result rearranged, one obtains:
6:u1+X2(u2—u1) (1.12)

which isthe equation of aline for which G= W at X, =0and G= Uy at Xo= 1.
Chemical Potentials

"Having had occasion some years ago to learn the art of lip-reading | noticed yesterday when
| was giving my paper that at the end of each of my sentences you said, 'Horse shit." Evidently
you had made special note of the word 'equilibria’ in the title of my paper and were fromtime
to time reminding yourself and your neighbors of the gist of the discussion. You are, however,
under a misapprehension as to the derivation of the word 'equilibria’. It does not come from
equus = horse and libria = things liberated or discharged, but is from quite different roots .If
you will consult a chemist you will be able to learn the real significance of the word and |
may add that | fed one so highly placed in geological circles as you should make it a point to
acquire some familiarity with the exact significance of common terms used in collateral
sciences.

Trusting that you will not resent my corrections and suggestions | am, yours sincerely,” /s/
Norman L. Bowen, April 29, 1948.

To understand the physica significance of chemical potentias, it isuseful to draw an analogy
between chemical potentials and temperature or pressure. There are three basic kinds of
thermodynamic processes, heat (entropy) transfer, mechanical work (volume transfer), and
mass transfer. A system isin stable equilibrium when no thermodynamic processes are
possible. Intuitively, you will probably accept that heat transfer will only occur between two
parts of asystem if there is atemperature difference between the parts of the system (Fig 1.2).
Moreover you know from experience that the heat will be transferred from the high-T part to
the low-T part. Likewise one part of the system will only do mechanical work on the other if
there is a pressure difference within the system. This work is done by the high pressure part of
the system compressing the low pressure part (i.e., negative volume transfer) In these cases,
we can think of temperature and pressure, respectively, as the thermal and mechanical
potentials for the system, and if these potentials are uniform then no thermal or mechanical
processes can occur. Chemical potentials are exactly analogous, that is, they are a measure of
the potential for chemical processes (mass transfer) in a system, and in the absence of a
chemical potential difference no chemical processwill occur. These process occur such that

mass is transferred from an area where its chemical potential is high to onein which it islow.



For those familiar with mechanics, it may be useful to note that work (W) in mechanics can be
defined, with some poetic license, from the differential:

OWinechanica = FOX (1.13)
where dx is the displacement of an object, and F is the opposing force. The only difference

between mechanics and thermodynamics is that in thermodynamics we consider three kinds

of work:
dWmechanicaI = Pd(-V)
dVVthermcaI = TdS (114)

dWeremica = 4dm

Comparison of egs (1.13) and (1.14) suggeststhat P, T, and . can be thought of asthe
thermodynamic forces against which mechanical, thermal, and chemical work are done. If
these forces are equal in al parts of a system, then no work will be done by any part of the

system.

Returning to the two part system of Fig 1.2, it is now easy to see why Gibbs' criterion works,
as the chemical potentialsin different parts of the system can only be the sameiif all parts of
the system have the same composition. Thiswill always be true for a system in which the

only possible phase is a continuous solution.
Thermodynamic Activities

Up to this point we have mainly been concerned with properties of the system rather than the
properties of the phases. We can always define our system in such away that it includes just

one phase, so from Egs (1.2) and (1.3) we can express the Gibbs energy of phase k

. & (oG
G _iZ:l:r; ( n JPWM (1.15)
or

= N e is (1.16)
Although it is probably apparent that in an equilibrium system
o [
M ot oo ~on PIT (), i%i) s (1.17)

It is often useful to distinguish phase properties from system properties by defining the partial

molar free energy of a component in a solution as

k
G EEaG j (1.18)
ani P.T,(nj,j#i)




in which case Eq (1.15) can be written for a two-component solution
G =D XKGF . (1.19)
i=1

Eq (1.19) suggests that one way of thinking about the partial molar Gibbs energy of the
component i, isto regard it as the molar Gibbs energy that the component has in the solution.
In practice solutions are usually described in terms of the properties of their end-member
compositions, by introducing a quantity known as the thermodynamic activity of the end-
member defined as

G'-G j (1.20)

k:
4 _eXp( RT

where G’ isthe molar Gibbs energy of the solution k when it has the composition of
endmember i. The form of the expression for the activity is chosen that so, to afirst
approximation, it may be regarded as a measure of the concentration of the end-member in the
solution, i.e., 8 = X; but more generallya’ = f (P, T, X}). In practice, Eq (1.20) is usualy
rearranged to

G“=G +RTIna" (1.22)
so that G* is expressed in terms of tabulated or measurable quantities, the val ues of

G obtained in this way can then be used, if desired, in Eq (1.19) to obtain the molar Gibbs

energy of the solution. | have assumed here that the composition of the components and the
solution end-members are identical, when thisis not the case it is necessary to introduce

stoichiometric factors, but the fundamental principles remain the same.

To obtain aphysical understanding of activity it may be helpful to consider an osmotic system
(Fig 1.3). Here the main portion of the system contains a two-component solution such as
biotite (modeled as a solution between the Fe-endmember annite “ann” and the Mg-
endmember phlogopite “phl™), which is separated from two, initially empty, chambers by
rigid membranes that are permeable with respect to only one of the endmembers, i.e., osmotic
membranes. Since the pressuresin these chambersis independent of the pressure on the main
portion of the system, we can arrive at an equilibrium condition in which the chambers are
filled with pure endmembers at pressures dictated by the constraint that the partial molar
Gibbs energy of the endmember must be equal in both the chamber and the main portion of

the system, e.g., for the phlogopite endmember we have
Gav (P.T,X)=G;, (P T) (1.22)
whereit is essentia to redlize that although P F?;m ,the partial pressure Py is afunction of

thetotal P on the biotite solution through Eq (1.22). Activities are smply a means of



accounting for this difference, this can be done explicitly in terms of pressure in which case

the activity isreferred to asafugacity asin

éfr:? (P.T,X)= G;hl (Rm ’T) = G;hl (R, T)+RTIn foni
where P, is an arbitrary reference pressure, and, in the limit of an ideal solution, the fugacity
fon = Ppni. However, for solids it is more conventiona to define the properties of the pure

endmember at the total pressure, i.e.

Giv (P.T,X)=G;, (P . T) =G, (P.T)+RTIna,,
asin Eq (1.21). It is noteworthy that such definitions are arbitrary and introduce artificial

complexity into thermodynamic theory.
Heter ogeneous Systems

In the previous section it has been argued that Gibbs' stability criterion requires that the
chemical potentials of each component must be uniformin all parts of a stable equilibrium
system. For a system composed of a single continuous solution, thisimpliesthat dl parts of
the system must have the same composition because the values of the chemical potentials are

different for every composition. In systems where more than one phase may occur there will

be a separate G- X curve corresponding to every possible phase (e.g., o, B, y, and d in Fig
1.4). Asthe chemical potentials of the components can be determined for any composition of
any phase by drawing atangent line or planeif c>2) at the composition of interest, itis

evident that the chemical potentials of the components must be equal in phases which are

tangent to acommon linein G-X space. In general, such phases will not have the same
composition, but because the chemical potentias are uniform no thermodynamic process may
occur and the phases will be in equilibrium. Thus, the Gibbs stability criterion requiresthat in

a c-component heterogeneous system composed of p coexisting phases:

1

w=..=u” i=Ll..c (1.23)
Since the chemical potential of a component in the system isidentical to the partial molar

Gibbs energy of the component in each phase, Eq (1.23) can also be written

G'=..=G" i=Ll..c (1.24)
The foregoing discussion has been simplified in that in addition to thermal, mechanical, and
chemical processes, thermodynamics has spontaneous processes (Fig 1.2) that occur (in
theory) in the absence of any potential gradients (in reality, or in statistical mechanics, which
isat least closer to redlity, they occur because of microscopic gradients). Thus, the equality of
potentials at equilibrium is considered a necessary, but not sufficient criterion for stable
equilibrium, and it becomes necessary to distinguish stable, metastable, and unstable

equilibria. In unstable equilibria, there are no potential gradientsin the system, but the



composition of at least one phaseisin aconvex region of the G— X surface of the phase

(e.g., point ain Fig 1.1b). In metastable equilibria, al the phases have compositions along the

concave portions of their G — X surfaces, but there is an accessible state (involving at least
one additional phase) of lower Gibbs energy (e.g., the equilibrium of phases 6 and , tangent
to the dashed line in Fig 1.4b, is metastable with respect to phases 3 and o).

The fundamental problem in equilibrium thermodynamics is the determination of the stable
state of a system in which there is more than one phase possible. In fact, thereis no simple
solution to this problem and there are severa journas (e.g.,, CALPHAD and the Bull. of Alloy
Phase Diagrams) devoted to trying to find one, but it is easy to answer graphically. Consider
the system illustrated in Fig 1.4a. We can determine all the possible stable phase assemblages

by draping a rope under the G — X surfaces of all the phases and then pulling upwards on the

ends of the rope (Fig 1.4a). When the ropeistaut it will define the minimumG surface of the

system, that is, it will define all possible stable states of the system (at constant P and T).

Along this surface we can distinguish two different kinds of regions, linear regionsin which

the surface spans the surfaces of two phases and non-linear one-phase regions in which the

surface overlaps the surface of asingle phase. This exercise demonstrates three points:

1) Linear regions of the surface define the composition interval over which a particular two-
phase assemblage is stable, and in such a region the compositions of the phases and the

chemical potentials of the system are independent of the composition of the system.

2) Because the minimum G surface of the system is never convex, the chemical potential of
any component must always increase if the composition of the component in the systemis
increased.

3) If the surfaces of the phases are independent (and they are) and the P —T condition
arbitrarily specified, the probability that more than two phases will ever be stablein a
two-component system is zero.

These arguments can easily be made more general, for example, in a three-component system

the G- X space is three-dimensional and we can expect the maximum number of phases
tangent to athree-dimensional plane to be three. Thisisjust agraphical statement of
"Goldschmidt’s mineralogical phaserule,” p < c(thisruleisvaidifthePand T are
independent; however in many geol ogic systems processes may buffer T and/or P so that they
are not independent). More importantly, it implies that in any c-component system, if c-

phases are in equilibrium their composition is auniquely determined at any P and T.



Heter ogeneous Systems Composed Entirely of Compounds

Many minerals can be regarded to a good approximation as stoichiometric compounds. This
approximation has the interesting consequence that all the phase regions of the system are
defined by c-phases (Fig 1.4c) and the chemical potentialsin any region can be determined by
linear algebraic solution of Egs (1.2) or (1.6).

Thermobarometry and activity-corrected equilibria

Mineral thermobarometry makes use of the thermodynamic fact that we have just deduced,
namely, that in a c-component system the compositions of the phasesin a c-phase equilibrium
are uniquely determined at any pressure and temperature (in practice, mineral
thermobarometry is applied to a subset of arocks real components, with the supposition that
the only significant variation occurs in this subsystem, e.g., the Fe-Mg subsystemis used for

garnet-biotite thermometry). Because the position of the G— X surface of each phaseis an

independent function of pressure and temperature, if the pressure and temperature of a system

is changed, the G — X surfaces of the phases will shift relative to each other and hence the

compositions of coexistent phases will also change asillustrated by Fig 1.5a.

In the foregoing discussion we have been using thermodynamics to tell us what composition
phases will have at agivenP—T , mineral thermobarometry turns the problem around, that is
we observe certain mineral compositions and try to find theP —T at which the minerals were
in equilibrium. To demonstrate how thisis done consider the equilibrium of garnet and biotite
in the K,O-FeO-MgO-Al,03-SI0,-H,0 system. Without going into the gory details of
thermodynamic projections, accept that under certain circumstances we can reasonably
represent the equilibrium of these two minerals by the system MgO-FeO (i.e., thiswould be
true when biotite and garnet coexist with, e.g., quartz, muscovite, kyanite and water) where
each mineral forms a continuous sol ution between MgO and FeO end-member compositions.
If garnet and biotite are in equilibrium, then from Eq (1.23) at the pressure and temperature of

the equilibrium the partial molar Gibbs energy of MgO and FeO end-member compositions of

both phases must beidentical, i.e., G5, 4o = Gorcye (OF S, =p2 ) and

Gorope = Grtiogopite (OF Mo =Myso )- From Eqp (1.21), these equalities can be reformul ated as

pyrope phlogopite

AG, =0=G§! ~G2° =AG; +RTInK, (1.25)
where

AG =G, -G,

Ik, Bio aa“‘n X Gt (1.26)

N2 =Ny =In 55 =In- 55

n ann
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The condition AG, =0 is sometimes mistakenly called a stability criterion, but infact itisa
necessary, but not sufficient, condition for the equilibrium of the garnet and biotite. Since the
value of AG; isasimple function of pressure and temperature Eq (1.25) invariably definesa
curve as afunction of pressure and temperature for any pair of observed, or arbitrarily chosen,
biotite and garnet compositions (Fig 1.5d). The condition AG, =0 is sometimes mistakenly

called a stability criterion, but in fact it is a necessary, but not sufficient, condition for the
equilibrium of the garnet and biotite. Another common mistake in geological literature is the

claim that condition AG, =0 defines the activity-corrected equilibrium of the univariant

reaction (after projection through various components)

am=ann. (2.27)
Thisis adangerous falsehood for two reasons: (i) the “equilibrium” curve does not define the
conditions of areaction that will be observed in any real system (except the pure FeO
system); and (ii) geologists frequently assume that dl of the pressure-temperature conditions
defined by this“equilibrium” are the possible conditions at which an observed mineral
assemblage formed. This second misconception isthe root of all evil in thermobarometry,
because in genera the conditions of the “equilibrium” do not correspond to real equilibrium

conditions. The reason for thisis that we have only solved for the condition u&, =u2? , but

we have not made use of the second condition uﬁ‘go = uf,,‘;’o. Fig 1.5c-f illustrates that if we

solve only one chemical potential equality for P or T (and it is always possible to find a
solution to just one), it is quite probable that the second equality will not be satisfied. In other
words, either the mineral compositions are not the equilibrium compositions (very probable),
or the thermodynamic formulation of the thermobarometer is incorrect (even more probable).
The only way to test for consistency isto solve all the chemical potential equalities;
unfortunately the thermodynamic datais often not available (although thisisdonein afew

cases, such asfeldspar thermometry). In the present case, analogous with Eq (1.25), the

condition uﬁ‘go = ufﬂigo defines the conditions of a second activity-corrected equilibrium

AG, =0=GJ -Gi’ =AG; + RTInK, (1.28)
as afunction of pressure and temperature. In general, Egs (1.25) and (1.28) will only be true
simultaneoudly at one point and this point corresponds to the only conditions a which the two
phases could have been in equilibrium. 1t should be evident from our “osmotic” equilibrium
example, that an activity-corrected equilibrium merely defines conditions at which the partial
pressures of the endmembers satisfy the constraints imposed by conditions like Eq (1.28).
However, because at equilibrium these partial pressures are not independent of the total

pressure it follows that the total pressure on the phases represented by an activity corrected
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equilibrium can only be identical to the nominal for an activity-corrected curve at only one
point. Even when such a condition exists, e.g., where the two activity-corrected curves cross
in Fig 1.5¢, it is till possible that the equilibrium is metastable. This danger isillustrated by
the case shown in Fig 1.5¢,f where biotite is metastable with respect to garnet+staurolite.
Such aresult would be a strong indication of some kind of problem, but a petrologist making
use of only activity-corrected equilibriawould have little chance of recognizing or diagnosing
it. Thistype of problem provides a strong argument for both incorporating solution behaviour
in phase diagram calculations, and using the resulting phase diagrams for thermobarometric
analysis.

An observation that follows from this discussion, is that if one has the thermodynamic data to
solve all the chemical potential equalities, then any almost any assemblage of minerals with
variable composition provides enough information to obtain a unique solution for both P and
T.

Thisis not intended as an indictment of mineral thermobarometry, but rather merely a
warning that mineral thermobarometry does not (as applied in petrology) provide any test for
the validity of the measured compositions, nor even whether or not the observed phase
assemblage was stable. In contrast, phase diagram, or equilibrium, calculations have the merit
of being thermodynamically consistent in that they show (or they should, when done correctly
with correct data) the stability fields and equilibrium compositions of al phasesin a system.
In defence of thermobarometry, it must be remarked that most thermobarometers are based on
careful empirical observations, and that phase diagrams cal culations are based on
thermodynamic databases that have a much weaker link to the stark reality posed by real data.

What isa phase diagram?

A phase diagram is a diagram that indicates the relative amount and state of every phasein a
stable equilibrium system. The most basic kind of phase diagram is an isobaric-isothermal
diagram that shows the phase relations of a system as afunction of composition, i.e. a
composition diagram (the chemographic diagrams of petrography). Such diagrams are simply
the projections of the mini mum G surface onto composition space asillustrated by the vertical

projection of Fig 1.6. By projecting the tangents of the minimum G surface onto theG axis of

aG-X diagram we can derive a second kind of phase diagram that tells us how the system

would respond if we could control ;.
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Thereis an interesting distinction (see Hillert 1985 for discussion) between the diagrams, in
the composition diagram if we arbitrarily specify the composition of the system we have
about the same probability of being in a 1-phase region asin atwo-phase region. In contrast,
in the u, diagram we have zero probability of landing in atwo-phase region (if w, is
arbitrarily specified, i.e., it isatrue independent variable). Recognition of this difference led
Korzhinskii (1959) to restate the mineralogic phase rule as p < ¢ — m, where misthe number

of independent potentials for a system.

Phase diagramsasa function of Pand T

More complex phase diagrams are derived by looking at the changes in the minimum G
surface as afunction of variables like P and T, such phase diagrams are known as mixed-
variable phase diagrams. To illustrate how mixed-variable diagrams can be computed
consider a system with three phases, o, 3, and v, such that at low T, only o and vy are on the
minimum G surface (Fig. 1.7). Then we have three phase fields, o, ai+y, and y. Now, if the
Gibbs energy of B decreases relative to the other phases as temperature increases, then
eventually the system will reach a condition (T,) at which al three (c+1) phases, o, 3, and ¥
are simultaneously tangent to a G — X plane. This condition is a c+1-phase equilibrium, if we
cross the equilibrium condition a+y will react to form 3. Any c+1-phase equilibrium can be
described by a mass balance reaction, the stoichiometry of which will depend on the
compositions of the phases as given by their points of tangency with the minimum G surface.
Whenthe G- X surface of P crossesthe oty G— X plane, a+y becomes metastable with
respect to the assemblages o+3 and B+y. If temperature isincreased till further, the system
will reach apoint (T>Ts) at which the G- X surface of pure 3 crossesthat of pure o inthe

component 1 subsystem (i.e., at X = 0). This corresponds to the reaction o = 3, which would
never be observed in atrue binary system (i.e., 0 < X < 1), and marks the thermal limit of the
assemblage o+, asimilar reaction, y = 3, will limit the stability of y+f. Y ou may wonder

why this diagram looks so much different than the T — X[, diagrams of petrological fame,

the reason is that the X here is a composition variable of the system, whereas X[, isthe
composition of a phase (that is assumed to be stabl€). When used as a phase diagram
variable X{:OZ determines the potential of H,O and CO,and istherefore not realy a
compositiona variable at all, but more like a potential. For this reason, petrologists habit of

calingP-T — X/, diagrams simply P—T — X diagramsis soppy and misleading.
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The foregoing procedure could be repeated for other pressures, and if the pressures were
reasonably close, the resulting diagrams could be stacked upon each other, and the phase
relations interpolated between the diagrams, to obtain athree-dimensional P-T — X phase
diagram. For simplicity, let us construct such a diagram assuming that the phase equilibria of

our T-X diagram are only shifted to higher temperature with increasing pressure (Fig 1.8a).

P—T—-X phase diagrams

Given that the phase diagram shown in Fig 1.8ais only for abinary system, and that each
additional component added to the system would add another dimension to the diagram, the
complexity of the phase diagram problem is apparent. In fact, multidimensional phase
diagrams are in themselves to complex to be of any value and they must be simplified for our
use. In this respect, there are two methods by which the phase relations of a multicomponent

system may be represented inthe P—T plane, sectioning or projection.
P—T Phase Diagram Sections

The P-T phase diagram section is conceptualy simple, it is atwo-dimensional slice at
constant composition through the multidimensional phase diagram (Fig 1.8b). The resulting
section consists of regions of p < ¢ phases, which represent regions of homogeneous reaction,
i.e. regions where the amount and compositions of the phases vary continuously. The
boundaries of such regions are distinguished from true univariant equilibria by the number of
phases represented, for examplein Fig 1.8b, the boundary between the 3 and B+o. field
involves only two (= ¢) phases and therefore is not a univariant equilibrium. The sectionin
Fig 1.8b includes only phase regions of p < ¢ phases; however, it is possible to obtain sections
that represent equilibria of c+1 and c+2 phases. For example, if a section of Fig 1.8awere
constructed, at constant composition, so as to intersect the B eutectic, ac+1 phase equilibrium,

then the section would include a line representing the eutectic reaction.

Phase diagram sections can be very useful for interpreting the phase relations of systemsin
which the bulk composition of the systemis fixed, for example, asin isochemical
metamorphism of a subducted basalt or in mantle phase relations (Saxena & Erickson 1986,
Wood & Holloway 1986). There are two major disadvantages to using phase diagramsections:
(i) the boundaries in sections can be extremely sensitive to the bulk composition chosen; and
(i) their application requires bulk equilibrium, however, in many crustal metamorphic rocks
mineral zonation indicates that this cannot be assumed. Phase diagram sections can contain
some unusual topologic features and these, as well as topologic rules for such sections are
discussed in great detail by Palatnik & Landau (1963, also Hillert 1985)
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P—T Phase Diagram Projections

By far the most widely used type of petrologic diagram isthe P —T phase diagram projection.
Phase diagram projections are obtained by projecting the phase fields of a multidimensional
phase diagram onto aP — T coordinate frame. In principle, it is possible to project all the
phase fields, however, because phase fields of fewer than c+1 phases project as overlapping
fields (e.g., o+p and B+yin Fig 1.8d), as aresult complete projections are so complex as to be
almost meaningless. As an alternative, in the conventional Schreinemakers projection (with
which you are probably familiar), only the geometric elements of the phase diagram which
project as lines (univariant curves) and points (invariant points) are shown. A confusing
feature of Fig 1.8d isthat there are three univariant curves that limit the stability of the 3. The
reason thisis not aviolation of Schreinemakers rulesis that two of the curves, oo =3 and y =
B, represent reactions which would only be observed in the pure component 1 or component 2
subsystems. In systems with more phasesit is possible to get even more curves, for example
consider what would happen if 3 had two eutectoids separated by a thermal maximum for the
phase d asin Fig 1.8e. Then we would have five univariant curveso. =3, B=oa+9,0=f, B =
o+y, and y= . In this case, each two-phase curve represents the equilibrium, and P-T limit
of aspecia composition of 3, such curves are known as singular curves (in systems with
more components this gets even more complex). It isagenera rulethat if there are two c+1-
phase reactions limiting the stability of a phase then there is a c-phase singular reaction
[imiting the stability of the phase as well. This c-phase reaction will be for a composition of
the phase between the compositions of the phase in the two c+1-phase reactions. Singular

reactions do not occur in systems in which there are no solutions.

Asaresult of projection we lose alot of information, but the projection has the advantage of
telling us the absolute P — T stability field of the stable phase assemblages of the system. For
examplein Fig 1.8d, the curve o+y=f tellsusthelowest temperature that 3 can be stable,
however, 3 will only appear in the system if the bulk composition of the system is between
the eutectoidal compositions of oe and 3 . Likewise from the position of the singular curves,
we may deduce that the assemblages o+ and 3 will only occur at temperatures between
the curve o+y=[ andthecurves o =3 thecurve y=J3, respectively. In this example we
have an unfair advantage in that we have seen the complete phase diagram, but consider what
would happen if you only had the projection. In this situation, if someone were to ask you if
two phases coexist, say 6 and €, you would have no way of answering from the projection
alone, which only tells you there is no reaction involving & and € over theP —T range of the

projection. In essence, Schreinemakers projections tell you the changes in the topology of the

15



compositiona phase relations for a system; thus, you must have some idea of the
compositiona phase relations (or better still, a composition diagram) at someP —T point

within the projection coordinate frame.

Computational M ethods

There are two basic approaches to computing phase diagrams or projections and sections of
phase diagrams, Gibbs energy minimization, and combinatorial enumeration. The following
sections briefly describe each method and discuss the applications and limitations of the
methods with respect to geologic problems.

Free Energy Minimization.

The oldest and most basic computational method is constrained Gibbs energy minimization,
by this method the user specifiesaP —T — X coordinate for a system and the stable phase
assembl age at this coordinate is determined. For example, the user might specify the systemis
at pressure P, temperature T, and composition X; asin Fig 1.9a. A minimization method
would then determine the stable phases for these conditions and the amount and composition
of each phase (i.e. phasesb and d, Fig 1.9a). If this procedure were repeated for a number of
different compositions at the sasme P — T condition, the results could be used to map out the
compositional phase relations of the system. Thiswould be a 1-dimensional composition
diagram; the problem with this method for cal culating phase diagrams becomes apparent if
we consider the effect of adding variableslike P and T or additional components. For the sake
of argument let us suppose that we decide to divide our X space into agrid by spacing the
points so that we will have ten points along each axis (this would be rather coarse spacing). If
we have a five-component system, we will have four independent composition variables and
P and T, thus our grid would consist of 10° points. At each point we would have to do a
minimization, and the number of operations for each minimization goes as nc?, where t is the
total number of possible phases. Therefore, not only would the method involve an
astronomical number of operations, but aso we would be left with the job of interpolating
between amillion grid points in six-dimensional space. The difficulty with minimization
techniquesisthat they requireasinput P—T — X conditions, but in a phase diagram there are
an infinite number of possibleP —T — X conditions and there is no a priori means of choosing
the important ones. Basicaly, using minimization methods to determine a phase diagram of

more than two dimensionsis like trying to map the moon with a microscope.

Although minimization methods are not practical for multidimensional phase diagrams, they

have proved useful for the calculation of phase diagram sections (Fig 1.8b). For example they
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have been used to calculate how the phase relations of arock with fixed bulk composition
(e.g., pyralite) change as afunction of Pand T (e.g., Saxena & Eriksson 1983, Wood &
Holloway 1986). More generally, minimization can be used to cal culate any two-dimensional
section through a multidimensional space, thusit is possible to compute how a
multicomponent system behaves if only one compositional variable is changed, i.e., the
pseudo-binary phase diagrams of igneous and mantle petrology fame. Minimization methods
have the advantage that they are capable of treating complex solution behavior and systems
with any number of components. Two recent examples of minimization programs designed
specifically for geologic problems are given by DeCapitani & Brown (1987) and Harvie et a.
(1987). Thereis also awedlth of literature on minimization techniquesin the engineering and
metallurgical journals (see bibliography), which has been largely ignored by the geol ogical

community.

A major drawback of minimization methods applied to crustal metamorphism problemsis that
the methods assume bulk equilibrium. Thus, they are not applicable to systems where mineral
zonation occurs or where the phase rule is violated. An additional caveat isthat the phase

relations of a multicomponent system can be extremely sensitive to its bulk composition.
Combinatorial Methodsfor Computing Phase Diagram Projections

Combinatorial methods make use of the fact that although there are an infinite number

of P—T — X conditions in a phase diagram there are only afinite number of phase
equilibria,or phase fields. Consider the system of Fig 1.9a, there are atotal of four phases
possible in the system, thus there are atotal of four one-phase and six two-phase equilibria.
The compoasition of the phases in the two-phase equilibria are fixed, so the phase diagram can

be determined in athree step process, first atwo-phase assemblage is chosen, say a+c, then

equilibrium composition of a and c is determined (i.e., the plane tangent to the G- X surface
of both a and cislocated), and lastly the stability of a+c is evaluated by testing whether any

phases lie below the a+c G-X plane (in Fig 1.9a a+c is metastable with respect to phases b
and d). If thiswere repeated for al the two-phase assemblages then all the two-phase fiel ds of
the composition diagram would be known, and the identity of the one-phase fields that fill the
gaps between the two-phase fields could be determined from the two-phase fields. Strategies
of this sort are used in anumber of metallurgical programs, they become alittle more
complicated for multicomponent systems, but they are generally quite efficient and reliable
(e.g., Sundman et al. 1985, Lukas et al. 1982).
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Schreinemaker s Projections, GEO-CALC and THERMOCALC

For phase diagrams as afunction of P—T combinatorial methods become less efficient
because c-phase assemblages are stable over regionsin P —T space, and these regions can
only be determined by incremental or grid mapping. However, the combinatorial method is
still feasible for the calculation of Schreinemakers projections, because in this caseit isonly
necessary to determine the stability of c+1-phase assemblages. A simple combinatorial
method algorithm for thisis: (i) a c+1 phase assemblage is selected, (ii) temperature (or
pressure) is specified, (iii) the equilibrium pressure and the equilibrium compositions of the
phases are determined (i.e., the G— X plane), and (iv) the stability of the equilibrium is
tested. The temperature is then incremented and steps (ii)-(iv) repested until the stability of
equilibrium has been determined over the entire temperature range of the diagram (Fig 1.10b).
This process is repeated for every possible permutation of c+1 phases. This method was
implemented by Perkins et al. (1986) in a computer program now called GEO-CALC for

cal culating Schreinemakers projections as a function of P—T — X[,

In the computer program THERMOCALC, Powell & Holland (1990) have used asimilar but
more efficient strategy. Neither THERMOCALC nor GEO-CAL C are capable of treating
solution phasesin afully automated mode (all the programs are capabl e of making activity
corrections; however, fixed activity corrections are amost always thermodynamically
inconsistent and should be avoided, as discussed earlier), but THERMOCALC can be used to
calculate solution phase equilibria (although it will not tell you if they are stable).

A drawback of combinatorial methods is that they become inefficient as the number
components and possible phases for a system, because the number of c+1-phase permutations
rapidly becomes large. For example in the system CaO-SiO,-Al,03-CO,-H,0 there are a total
of about 80 phases possible and the number of c+1 phase permutations is 3.2x10°, each of
which must be tested for stability.

Solution Phase Equilibriawith THERM OCALC and the “ Gibbs M ethod”

The most popular methods of treating metamorphic phase equilibriainvolving solutions make
use of phase equilibrium calculators (Powell & Holland, 1988; Powell et a., 1988; Spear
1988; see also Hillert, 1981). The strategy of Powell et al. (1998) asimplemented in
THERMOCALC is distinguished from free-energy minimization in that the phases of an
equilibrium are specified, rather than the variables of the system. THERMOCALC computes

the equilibrium compositions of the coexisting phases, but, in contrast to a minimization
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technique, does not test the stability of the assemblage. The calculator can also determine
whether the assemblage is possible for a specified bulk composition of a system, and if it is,
the environmental conditions at which one phase in the equilibrium vanishes. These
conditions may define a phase field boundary in a phase diagram section. Because phase field
boundaries can be located directly, rather than by the iterative procedures, the technique
offers some advantages over free-energy minimization. Spear (1988) advocates a strategy by
which the changes in the phases of a stable equilibrium are determined as a function of
environmental variables by application of the Gibbs-Duhem relation in conjunction with mass
balance constraints, i.e., the “ Gibbs Method”. This technique permits a user to model the
evolution of a system as afunction of its environmenta variables from an initial condition
that is assumed to be a stable equilibrium. Aswith Holland and Powell's strategy, this
methodology can be used to determine the conditions when a phase disappears from a system
due to homogeneous equilibration in response to changing environmental conditions. Because
these techniques do not directly establish the stability of equilibria, construction of a phase
diagram section by these methods is labor intensive and requires a priori knowledge of phase
stabilities.

Perple X

The necessity for combinatorial methods arises from the difficulties involved in evaluating

and keeping track of all the changes that occur on the minimum G surface of a systemas a
function of P and T. These difficulties have been overcome by a simple linear agorithm for
evaluating thermodynamic surfaces (Connolly & Kerrick, 1987) used in the Perple X
program (Connolly 1990). Through this algorithm it is possible to cal culate composition
diagrams, i.e. chemographies, for systems with an unlimted number of components. It is then
arelatively simple matter to monitor the changes in such chemographies as a function of
variables like pressure and temperature in order to obtain mixed-variable phase diagrams or
Schreinemakers-type phase diagram projections. The advantages of this method are twofold;
it can be used to calculate any kind of phase diagram; and, in contrast to pure combinatorial
methods, it is extremely efficient and virtually independent of the number of phases
considered in a calculation. In addition the program can be used to treat highly non-ideal

solutions.

The Perple_X algorithm is numerically exact only for phases with fixed composition. For

problemsin which it is necessary to consider phases of variable composition, Perple X
approximates the continuous G- X surface of solutions by a series of arbitrarily defined

compounds, designated pseudocompounds. As aresult, the G- X surface of each phaseis
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approximated as a polyhedron, the vertices of which are the pseudocompounds (Fig 1.11).
The user controls the number and positions of the pseudocompounds, and thereby the
accuracy of the approximation. The primary weakness of the pseudocompound approximation
isthat it becomes impractical for solutions with more than seven species mixing on asingle

| attice site.
Problems

1) The Gibbs energy (J/mole of phase) of Quartz (SiO,), Forsterite (Mg,SiO,), Endtetite
(MgSiO3), and Periclase (MgO) are -856287.6, -2055023.0, -1458181.0, and -569209.3,
respectively (at 298.15 K and 1 bar). Use these data to construct a G — X diagram for the
system MgO-SiO,. What are the stable assemblages? What is the 150, for the assemblage
forsteritetenstatite? Be careful to distinguish between the free energy per mole of phase
and the free energy per mole of system components (G ).

2) What would the isobaric T-X diagram look like if  first became tangent to the a+y G — X
planeto theleft of ocin Fig 1.7.

3) The G — X surfaces of ordered solution phases tend to have strong curvatures, whereas
disordered phases tend to have relatively flatter G — X surfaces. Based on this, draw an
isobaric T-X diagram showing the transition from an ordered to disordered binary
solution.

4) If the upper thermal stability of aternary garnet islimited by a eutectoidal reaction, how

many univariant curves will appear limiting the upper thermal stability of garnetin a

Schreinemakers projection?
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Figure Captions

Figl.1a) G- X diagram for an isobaric-isothermal binary system illustrating equilibration
in terms of the minimum energy criterion (Eq 1.1). If the system initially consists of partsa
and b, its molar Gibbs energy is given by the value where the line connecting aand b
coincides systems composition. The system can lower its energy if the composition of aand b
shift toward & and b’. The system is stable when the compoasitions of both parts become

identical to the bulk composition of the system. b) G— X diagram for apartially miscible
solution. Any composition between & and b’ is metastable with respect to a mixture of & and
b’, these compositions define the solutions solvus. Feldspar and micas show this kind of

behavior. ¢) G- X diagram for a completely immiscible solution. No intermediate solution
compositions are stable because the second derivative of free energy with respect to
composition is negative for al compositions. For any non-degenerate composition of the
system, the stable state is amixture of phasesa and b’, quartz and corundum approximate
such amixture.

Fig 1.2 a) A systemisininternal equilibrium when no thermodynamic processes are possible
among the existing phases of the system, i.e., when the potentia for any processis uniform
throughout the system. b) Phases a and b cannot be in equilibrium because the chemical
potentials are not equal in both phases. ¢) A spontaneous process may occur in a system
initially in internal equilibrium, in an isolated system such processes occur so as to increase
the entropy of the system, in an isobaric-isothermal system spontaneous processes lower the
Gibbs energy of the system.

Fig 1.3 &) Anisothermal system consisting of the mineral biotite, a solution between the Mg
and Fe endmembers phlogopite and annite. The system is connected to two compartments by
rigid osmotic membranes that are permeable with respect to only one endmember. At
equilibrium the pressure in each compartment is dicatated by the constraint that the partial

molar G of the pure endmember in the compartment must be equal to that of the endmember

in biotite solution. It follows that only one of the three pressures is independent for an
equilibrium system. b) The conventiona definition of the activity of a solution endmember is

related to the difference in the partial molar G of the endmember in the solution and in its
pure state at the same pressure and temperature. Alternatively, activities may be defined

relative to the partial molar G of the pure endmember at a different pressure, in which case
the activity is usudly referred to as afugacity.

Fig 1.4 a) The stable states of a heterogeneous system can be determined conceptually by
draping arope under the G — X surfaces of the phases and then pulling upwards on the ends

of the rope. b) When the ropeistaut it defines the system mini mumG surface. This surfaceis
linear where p=c=2 phases coexist. In such aregion the chemical potentials and phase

compositions are determined by the point at which the systems minimum G surfaceis
tangent to the surfaces of the coexisting phases and the amounts of the phases are determined
by the lever rule. In non-linear regions (i.e., p<c phases) the curvature of the systems

minimum G surface is aways positive, this requires that chemical potentias are proportional
to their conjugate compositional variables. c) In a system consisting only of compounds, all
phase regions consist of p=c=2 phases, in the pathological case that the system has exactly the
composition of a stable compound the system must be treated as a one-component system
because such a compound does not define the chemical potentials of the componentsin the
two-component system.
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Fig1l.5a) G- X diagramsillustrating that the compositions of coexisting phasesin a
divariant equilibrium are a unique function of pressure and temperature and therefore a
potential thermobarometer, higher variance assemblages may also serve this purpose, but their
compositions depend also on the composition of the system. b) In conventional
thermobarometry measured phase compositions are assumed to be those of ardlict
equilibrium, the conditions of an activity-corrected equilibrium based on these compositions

are the conditions at which the partial molar G of the endmembers are equa ina
subcomposition of the system. c) P-T conditions of the activity-corrected phl=py and
ann=alm “univariant” equilibria, and the true univariant equilibrium of bictite with staurolite

and garnet. d, e, and f) G— X diagrams corresponding to various pointsin c.

Fig 1.6 A composition phase diagram is the projection of the stable phase relations of a

systems minimum G surface onto composition space. Alternatively, a second phase diagram
which shows the phase relations of the system as afunction of the y; can be derived from the

projection of the tangent of the systems minimum G surface.

Fig 1.7 The relation between an isobaric T-X mixed variable diagram and G- X diagrams.

Sincethe G— X diagrams depend also on pressure, it is to be expected that all the features of
the T-X diagram, such as the eutectic reaction stoichiometry, will depend on pressure as well.

Fig 1.8 a) The simplest possible multicomponent phase diagram is three-dimensional; such
diagrams may be simplified by either sectioning (b) or projection (c and d). None of these
simplifications are proper phase diagrams because they do not completely define the state of
the system and its constituent phases. Projections may be complicated by singular equilibria
that limit specia phase compositions, in genera there must be at least two singular equilibria
for every eutectoidal equilibrium asillustrated in f.

Fig 1.9 a) Classical minimization strategies involve two major components, one component is
to establish the equilibrium of phase assemblage such as a+c, the second component
determines whether this equilibrium is stable. b) A virtue of minimization strategies is that the
user is completely free to specify any point or path through the systems multidimensional
parameteric space. ¢) Minimization can be used to construct a phase diagram or phase
diagram section by computing stable assemblages on a grid defined by the variables of
interest; however, the phase boundaries must be determined by interpolation between the grid
points.

Fig 1.10 In combinatoria strategies phase assemblages are enumerated and their stability is
tested, these strategies are only feasible for systems in which all phases are compounds (or
activity-corrected compounds). The PTX program, and its numerous derivatives, strategy
involves enumeration of univariant assemblages, THERMOCALC differsin that divariant
assemblages are enumerated. Neither of these strategies define the higher variance equilibria
of a system and therefore cannot be used to construct true phase diagrams. THERMOCALC
offers a second computational mode that is capable of computing equilibriainvolving
solutions, but, a present, in this mode the program doesnot test the stability of the equilibria.
PERPLE_X determines all phase equilibria, irrespective of variance, and therefore can be
used to construct any kind of phase diagram. In PERPLE_X solutions are modeled by
approximating solution behavior by a series of discrete compounds referred to as
“pseudocompounds’.

Fig 1.11. In the pseudocompound approximation, pseudocompounds are used to define the
possible compositions of solutions, e.g., the solution B is represented by
pseudocompounds B1...Bg, the accuracy of this representation is determined by the
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pseudocompound spacing. PERPLE_X determines which of the pseudocompounds
are stable and thereby the approximate stability field of the corresponding solution.
Given current computational resources, such calculations can be made with essentially
unlimited accuracy.

Fig 1.12 A composition phase diagram computed with PERPLE_X for the CaO-SiO,-
Al,O3 at super-solidus conditions. The melt field (shaded) is divided into triangular
regions defined by the stable pseudocompounds used to represent the melt phase.

Fig 1.13 A mixed variable phase diagram computed with PERPLE_X. The stepped
phase boundaries are due to the pseudocompound approximation.

Fig 1.14 A phase diagram projection computed with PERPLE X, the dashed curves
correspond to the steps in amixed variable phase diagram such asillustrated in Fig
1.13. These curves are essentially isoplethal contours of high variance phase fields.
Heavy solid curves represent true univariant phase fields.
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Fig. 1.3
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Fig. 1.6
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Fig. 1.8
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Fig. 1.9
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Fig. 1.10
Combinatorial Phase Diagram Projection Methods
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