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Methods 

We solve the model equations shown in Fig. 1 using a combined 4-node penalty-method finite 

element method to solve for viscous flow, finite differences to solve for heat transport, and a 

tracer particle algorithm to solve for transport and dewatering of hydrous phases. To enhance 

resolution we use an asymmetric mesh with a maximum resolution of 4km in the region of 

interest (Fig. 2). The flow field formulation is based on the Stokes equation for creeping flow 

(eq. 2&3) solved using finite elements (Zienkiewicz and Taylor, 2000). For boundary 

conditions we assume: on the left-hand side of the box the horizontal velocity decreases 

linearly from the convergence rate at the top to zero at the bottom of the box; the bottom of 

the region is assumed to be stress free; the right-hand side of the region is a symmetry plane; 

the top surface has zero vertical velocity with the horizontal velocity of the overriding plate 

set to zero; the horizontal velocity of the incoming plate is set to the convergence rate (see 

Fig. 2). Experiments with different kinds of boundary conditions show that the box is 

sufficiently large (1800kmx750km) to minimize the influence of possible boundary effects on 

the solution within the dewatering region. To decouple the motion of the overriding plate 

from the subducting plate we prescribe “weak nodes” along the trench (Kincaid and Sacks, 

1997) according to the initial slab dip. We parameterise the viscosity using a slight extension 

of a previous method (Kincaid and Sacks, 1997); the temperature-dependence of the viscosity 

follows an Arhennius relation, and the pressure-dependence results in a factor of 250 increase 

from the upper to the lower mantle. The temperature solution is based on the heat transport 

equation including the latent heat,  L*∂φ/∂t, of water release (eq. 1) which is solved with 

finite differences (Smolarkiewicz, 1984). To calculate the dewatering rate, ∂φ/∂t, we use look-

up tables of water content for a range of pressure-temperature conditions and different slab 

fluid sources, i.e. sediment, altered ocean crust, and serpentinized mantle. We create the look-

up tables using the PERPLEX program (Connolly, 1990) and the compositions shown in 



 

 

Figure 1.  To account for compositional differences we use differing values of the depletion 

dp, of mantle, incoming plate, and overriding plate material. Here the depletion is the amount 

of post melt extraction, a value that stays constant throughout the model runs since we do not 

solve for melting. To initialise the depletion field we assume that the degree of depletion rises 

linearly from a depth of 70km to 20% depletion for the incoming plate and from a depth of 

70km to 30% for the overriding plate. For self-consistency we use an inner loop with a 

sequential iterative scheme to treat the dependence of each of these equations upon each 

other. 

From a series of model runs we picked the ones that best fitted the seismically-inferred 

locations of the subducting plate beneath Nicaragua and Costa Rica. 
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Figure 1 Model formulation with the pressure-temperature dependent water contents for 

hydrated sediment, altered ocean crust, and serpentinized mantle. 

Figure 2 The boundary conditions we use to solve the temperature and flow equations. To 

decouple the motion of the overriding plate from the subducting plate, we assume a low 

viscosity layer along the fault by prescribing “weak nodes” along it (Kincaid and Sacks, 

1997). 

 



The Model:

Energy Conservation:

Volume Conservation and Constituative Law:

Momentum Conservation (Force Balance):

Buoyancy and Viscosity Relationship:

- Viscosity

- Depletion Density Parameter = 0.005

- Spatial Coordinates

- Velocity (horizontal, vertical)

- Temperature

- Density = 3300 kg/m
3

- Specific Heat = 1100 J/kgK

- Thermal Diffusivity = 10 m /s
-6 2

- Thermal Density Parameter = 3.0x10 K
-5 -1

Glossary of Variables:

rüpke_fig1

-4-

-3-

-2-

-1-

- Fraction of Chemically Bound Water

- (Latent Heat)/(Specific Heat)

- Depletion (extent of melt extraction)

- Pressure

- Time

Initial Composition in wt.%: SiO2 55.78, Al2O3
11.82, FeO 5.62, MgO 2.20, CaO 2.70, Na2O
2.08, K2O 1.84, Co2 0.97, H2O 16.15

Initial Composition in wt.%: SiO2 45.8, Al2O3
15.53, FeO 10.02, MgO 6.66, CaO 12.88,
Na2O 2.07, K2O 0.56, TiO2 1.12, CO2 2.95,
H2O 2.68

Initial Composition in wt.%: SiO2 44.5, Al2O3
1.7, FeO 9.6, MgO 42.6, CaO 1.4, H2O 5.8

Model Equations:
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