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ABSTRACT. Variation in the composition of a solution phase in a
univariant equilibrium can lead to a condition such that the reaction
coefficient of one phase in the equilibrium vanishes. This condition is
known as a singular point, and at such points the univariant equilibrium
becomes degenerate with a singular univariant equilibrium. In general,
in a (c + 2)-phase system that contains a single binary solution any two
univariant equilibria will share a common singular equilibrium. The
number of ways two univariant equilibria can be related by a singular
equilibrium is constrained by Schreinemakers principles. These con-
straints are summarized by seven rules that limit the number of ways in
which singular points can be arranged about an invariant point in a
Schreinemakers projection. The resulting projection is a singular-point
net, and for each singular-point net the direction of compositional
variation in the solution phase is uniquely determined along every
univariant curve. This has the interesting consequence that if the
direction of compositional variation along one univariant curve around
an invariant point is known, then the directions of compositional
variation along the remaining curves can be determined solely from
topologic constraints. The same constraints can be applied to systems
containing simple mineral solutions or melts in order to predict compo-
sitional variations.

INTRODUCTION

The principles governing the invariant point topologies of phase
diagram projections for systems in which all phases have fixed composi-
tion have been widely applied to geologic problems since their introduc-
tion by Niggli and Johnston (1914), Korzhinskii (1959), and Zen (1966).
These principles are also valid for invariant points at which one, or more,
of the phases has variable composition, but until recently (Connolly and
Trommsdorff, 1991) it does not appear to have been recognized that
these principles can also be used to predict compositional variations
along univariant curves. The object of this paper is to present a more
general and systematic treatment of these principles. The treatment is
useful not only in a predictive capacity but also permits the recovery of
essential information on the compositional variations of phases.

Several new features appear in phase-diagram projections if compo-
sitional degrees of freedom are associated with the phases of a system.
These features are the traces of singular equilibria that arise from composi-
tional variations of phases that lead to degeneracies in composition space.
Singular equilibria project as curves in P-T projection which coincide
with univariant curves at singular points. The basis of the treatment
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presented here is that the arrangement of the singular points that occur
along univariant curves emanating from an invariant point is subject to
topologic constraints that can be deduced from chemographic relation-
ships. The first section of this paper details the topology of the singular
points and curves along an individual univariant curve for an equilib-
rium involving a binary solution. When two such curves, involving the
same binary solution, intersect at an invariant point the resulting arrange-
ment of singular points and curves form a network designated here as a
singular-point net. An analytic method for constructing singular-point nets
is developed in the second section. The complications caused by composi-
tional degeneracies are discussed in the subsequent section. The final
section gives an example of application of singular-point analysis to a
geologic problem.

FREQUENTLY USED SYMBOLS

c number of thermodynamic components

d dimension of a phase-diagram element

G; Gibbs free energy of phase 1

P pressure

T temperature

n; number of moles of component j

S; composition of a solution phase atan invariant condition
Sn singular point, n indexes the singular composition

Sy singular point, x and y are phases absent from the equilibrium

X; composition of phase i with respect to component ]

o reaction coefficient of phase i

b; composition vector of phase i

Bx coefficients of a plane in composition space

Oy displacement of composition x with respect to a (c — 2)-
dimensional plane in composition space

Lyy  8:/0y

TOPOLOGY OF SINGULAR POINTS AND CURVES ALONG A UNIVARIANT CURVE

To illustrate the principles governing the arrangement of singular
points it will be useful to begin by considering a univariant equilibrium in
a hypothetical ternary system consisting of 3 compounds, that is stoichio-
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metric phases, and a binary solution. The P-T loci of the equilibrium will
define a univariant curve in P-T space that satisfies the condition

c+1

> aG; = 0, (1)

i=1

where the o4 are reaction coefficients obtained from the mass balance
constraint:

c+1

> oy = 0, 2)

i=1

where i indices the phases in equilbrium, and c is the number of
thermodynamic components for the system, ¢; is a vector describing the
composition of the i phase, and ¢; is the reaction coefficient of that
phase. At any arbitrary condition for this equilibrium the P, T, and
composition of the solution phase ¢ will be fixed, and if any one of these
parameters is varied then all the remaining parameters will vary as a
function of this parameter. This implies that ¢, and the reaction coefhi-
cients (ay, . . ., acyy) Will vary along the univariant curve as it is traced
through P-T space. In the course of such variation it is possible that a
reaction coefficient changes sign and therefore that at a point in P-T
space one coefficient vanishes, such a point is called a singular point. At a
singular point the univariant equilibrium is still among ¢ + 1 phases, but
the reaction involves only c phases that can be described by a subset of
¢ — 1 components. As it is possible to constitute a system consisting of only
these ¢ — 1 components, it must also be possible to obtain an equilibrium
with the same reaction equation among only ¢ phases. Therefore, at a
singular point, two univariant equilibria are realized, one consisting of all
¢ + 1 phases, and another consisting of a subset of ¢ phases. Both
equilibria have the same reaction equation at the singular point; how-
ever, in contrast to the reaction equation of the (c + 1)-phase equilib-
rium, the reaction coefficients of the c-phase equilibrium cannot vary as a
function of P or T, because the solution composition is fixed. Thus, the
P-T loct of the two equilibria are the same only at the singular point and
must diverge away from it. This is illustrated in figure 1 which shows a
three-component system. For this system if the composition of the
solution S is §;, the reaction willbe 1 + 3 = 2 + S;. If the composition of
the solution shifts toward S,, the coefficient o, becomes smaller, reaching
zero at S,. This condition is a singular point. Inspection of figure 1 reveals
that there are three possible singular points, represented by [1], [2], and
[3] which occur respectively at compositions S}, S, and Ss. Thus, in this
case there are three c-phase univariant curves related to the (¢ + 1)-
phase univariant equilibrium. Such curves were first designated turning
lines by Schreinemakers (1916), but Schreinemakers more general term
singular curve is preferred and used in this restricted sense.
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solution phase 1

Fig. 1. Chemograph&' of three compound phases (1-3) and a binary solution S in the
three component system discussed in the text. The composition of the soﬁxtion phase at the
invariant ﬁoint is S;. Compositions S;, Sy and S3 represent singular compositions of the
solution phase that arise through linear compositional degeneracies between the solution
and two compound phases, as shown by thin lines (hinges). The arrowhead points in
direction of the solution composition Ss, this composition is used arbitrarily to indicate the
direction of solution-composition variation in a univariant equilibrium.

Enumeration of Singular Points

Singular equilibria involve only a subset of the phases involved in the
univariant equilibrium. For purposes of introduction, consideration will
first be restricted to phase chemographies in which the compounds are
nondegenerate and in which none of the compounds lies within the
composition space of the solution. In this case, the singular reactions can
be enumerated by taking all possible permutations of ¢ — 1 compound
phases. The compositional coordinates of such a (¢ — 1)-phase permuta-
tion are spanned by a (c — 2)-dimensional geometrical element which
will be shown to be of importance in determining phase diagram topolo-
gies and will be referred to as a hinge. If a hinge intersects the solution-
composition space, then the equilibrium of the phases that define the
hinge together with the solution comprise a singular equilibrium, where
the singular solution composition is given by the intersection of the hinge
with the solution-composition space.

The singular points that occur along a (¢ + 1)-phase univariant
curve can be enumerated through linear algebra. To accomplish this it is
useful to choose the endmember compositions of the solution phase as
components. These will be designated here as the ¢ — 1* and c¢®
components. The intersection of a hinge with the composition space of
the binary solution is then determined by solving the equation:

o Q Xc—l
Xp Xt X Xi_l
Xpoox3oceoxgr| ||
Xy Xip 77 X3
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where the leftmost matrix contains the composition vectors of the ¢ — 2
compound phases in the subcomposition defined by the first ¢ — 2
components. The solution composition vector is then

c—1

> cudy = &, (4)
i=1
and the composition of the solution with respect to component c, X is
given by n./(n. + n._;). If 0 < X} < 1 the intersection lies between the
solution endmembers, and the assemblage is a potential singular equilib-
rium for which the singular reaction equation is:

Xt ox3o-oxg) ™
a
X} X2 .- Xs||®
. . .. . ____O. (5)
X! X2 XS
aC

Otherwise the hinge does not correspond to a real singular equilibrium.

SINGULAR POINT TOPOLOGY

Given the existence of singular points along a (¢ + 1)-phase univari-
ant curve the question arises as to the nature of the connections between
this curve and its conjugate! singular curves. The topology of these
connections is dictated by the rules presented below:

1. The stability of a (c + 1)-phase univariant curve cannot change at a
singular point.—This rule can be justified given that in order for the
stability of the univariant curve to be affected, the representative G-X
coordinates of an additional phase must pass through the G-X plane
containing the coordinates of the phases in equilibrium. As the singular
equilibrium involves only a subset of the phases of the conjugate univari-
ant equilibrium, there is no additional phase present to affect the stability
of the univariant curve.

2. The stability of a singular curve may change through a singular point.
—This is due to the fact that the singular equilibrium involves only a
subset of the phases of the univariant equilibrium. Therefore it may
become metastable with respect to the additional phase present in the
univariant equilibrium.

3. A singular curve cannol cross a conjugate univariant curve.— There
are two scenarios in which such crossings can be envisioned. In one case
the solution phase in both conjugate curves has the same composition,

! The term conjugate is used here to describe any equilibria, or representative
phase-diagram elements, that include a common c-phase assemblage; in the present
context this implies that any curves connected by a singular curve are conjugate to each
other and to the singular curve.
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that is, the intersection would be a singular point. This in itself is
extremely improbable as it would require the coincidence of an inflection
in one of the curves and the singular point. However, even if this should
occur, such a crossing would affect the stability of the univariant curve in
violation of rule (1), as the singular curve always must limit the stability of
a subset of the phases present in the conjugate univariant equilibrium. In
the alternative scenario the solution would have a different composition
in the conjugate singular and univariant curves. In this case, which
implies immiscibility of the solution, there would be ¢ + 2 phases in
equilibrium at the crossing, which would therefore be an invariant point,
This scenario would require the coincidence of the singular solution
composition and a limb of the solvus together with the conditions for the
univariant equilibrium, which is extremely unlikely.

4. The singular curve divides P-T space into regions in which a divariani
assemblage exclusive of the solution is more and less stable than at least one other
c-phase permutation of the univariant assemblage (for example, assemblage
1 +2+ 3 in fig. 2).—As the univariant reaction is identical with the
singular reaction at the singular point this assemblage must lie on the
same side of both conjugate curves. Without this restriction there are

T+3 s, 17043 1+3 s, T+073
N
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N s ~
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N*3 ~ ~. 8 P
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1+3 Sy 1+2+3 1+3 Sy 14243

Fig. 2. Eight topologically distinct ways of arranging a singular and a univariant curve
around a conjugate singular point, shown for the examlple of singular point §; in figure 1.
Singular points are labeled by the composition of the solution phase. Stable and metastable
singular curves are shown by thin sohd and dashed curves, respectively. Nondegenerate
univariant curves are drawn with thick lines. Of these topologies onry D represents a
thermodynamically valid topology. Topologies E to H violate rule 2 and consequently rule
5, according to which stability of a singular curve changes as it passes through a conjugate
singular point and thus are not valid topologies. Likewise topologies A, C, E, and G are
invalid because the solution-absent assemblage is stable on opposite sides of the conjugate
univariant and singular curves in violation ofg rule 4. Lastly topology B is invalid accorging
to rule 5, because the assemblage 1 + 3 cannot be stable on botﬁ sides of the extension of the
univariant curve that limits the stability field of 1 + 3. Note that on either side of a singular

oint the reaction coefficient of the phase present in the univariant equilibrium, but absent
rom the singular equilibrium, changes sign.
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solution phase

S 3.4 S14)_— >Sm

Fig. 3. Chemographic relations among the compound phases 1 to 4 and a binary
solution S in a three-component system. The invariant solution composition is S;, and S(; 9
to S34) represent singular solution compositions which are labeled by the phases absent
from tile corresponding hinges. Hinges are shown by thin lines.

eight ways in which a singular and univariant curve can be arranged
around a singular point as illustrated in figure 2. It can be seen in this
figure that this rule excludes the choices A, C, E, and G.

5. The segments of the curves that limit the stability of the assemblage or
phase referred to in rule (4) cannot have the same stability on the same side of the
singular point.—This rule can be argued by observing that if these sections
of the conjugate singular and univariant curves lie on the same side of the
singular point they necessarily affect each others stability. This leads to
the conclusion that of the topologies B, D, F, and H shown in figure 2
only D is thermodynamically valid. It should be noted that, in the general
case, this requires that the stability of a singular curve.always changes
through a singular point.?

CONNECTION OF UNIVARIANT CURVES THROUGH SINGULAR CURVES

In a (c + 2)-phase system (fig. 3) any two univariant curves may be
connected by a common singular curve. The nature of such connections
is constrained by the topology of the singular curves around each
singular point as dictated by the rules detailed in the foregoing section.
By considering a ¢ + 2% phase it is then possible to distinguish two kinds
of chemographic relationships between univariant assemblages related
by a conjugate singular equilbrium. Either the (¢ — 2)-dimensional hinge
spanning the compositions of the ¢ phases of the singular equilibrium
separates the compositions of the two phases not present in the singular
equilibrium, as illustrated in figure 4B or both these phases lie on the
same side of the hinge (fig. 4A). This distinction is manifest in the
singular-point topologies of both curves. Thus, relative changes in stabil-
ities of the singular curves emanating from conjugate singular points on
univariant curves labeled by phases that lie on the same side of a hinge
are the same with respect to the direction of compositional variation of
the solution along each univariant curve. This must be true because the

2 An exception to this rule occurs if a hinge contains an extremal composition of the
solution. This will be dealt with in a later section.
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Flg 4. Possible topologies of a singular curve and its conjugate univariant curve
around conjugate singular points. On singular curve (1, 2) (left chemography and topolo-
gies) the stability se%uence with respect to the solution compositional variation along the
univariant curve is the same around S(; ¢y on univariant curves (1) and (2), but the stability
sequence on singular curve (1,3) (right chemography and topologies) is different around
S(1,3 on (1) and (3) with respect to the direction of solution compositional variation along (1)
and (3). This difference reflects the chemographic relationships in that phases 1 and 2 lie on
one side of the hinge corresponding to S, 2), whereas phases Fand 3 lie on opposite sides of
the S5 hinge. Arrowheads indicate the direction in which the solution composition
approaciles C. (figure 1).

two univariant chemographies differ geometrically but are topologically
identical relative to the hinge. In contrast, if the phases absent from the
singular equilibrium lie on either side of the hinge then the relative
stability sequences around the singular points on the univariant curves
labeled by these phases are opposite with respect to the compositional
variation of the solution along the univariant curves.

To illustrate this point it is useful to define the direction of composi-
tional variation relative to an arbitrarily chosen extremal composition of
the solution phase, S.. Referring to figure 4, consider the two univariant
curves (1) and (2)% which share the hinge and singular curve defined by
the phases 3, 4, and S, 5). Both phases absent from the singular equilib-
rium (1,2) lie on one side of the hinge. If the singular point S, 3 on both
univariant curves is drawn such that the solution composition shifts
toward S, to the right, then the relatively more stable segment of the
singular curve (1,2) about each singular point must lie to the right of the
singular point as shown in figure 4C. If instead, univariant curves (1) and
(3), labeled by phases that lie on either side of the (1,3) hinge, are drawn
such that the solution composition along the univariant curves shifts
toward S, to the right, then the relative more stable segment of (1,3) must
lie to the left of the singular point on univariant curve (1) and to the right
of the singular point on (3) (fig. 4D).

3 Univariant curves and equilibria are designated by the phases absent from the
equilibria in parentheses.
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The foregoing consideration dictates the manner in which any two
univariant curves are connected by a conjugate singular curve; in this
respect there are two general cases: either both univariant curves have
the same levels of stability, or their stabilities differ by one level. Given
that a singular curve cannot cross itself then it is evident that two
subparallel univariant curves (x) and (y) which share a hinge (x,y) that
separates x and y can only be connected if either the directions of
compositional change of the solution phase are opposite, and they are
equally stable; or the directions of compositional change are the same
along both univariant curves, and they have different stability levels.
Likewise if x and y lie on the same side of the hinge (x,y) then (x) and (y)
can only be connected if either the directions of compositional change of
the solution are the same, and the stability levels are identical; or the
directions of compositional variation are opposite, and the curves have
different stabilities. This leads to a total of eight topological types of
connection among two univariant curves (x) and (y) and their conjugate
singular curve, four of which are illustrated in figure 5, the remaining
four topologic types are obtained by inverting the stabilities of the
univariant curves in figure 5.

For topologies in which the directions of solution compositional
change along the univariant curves are the same (fig. 5D and E), it is
possible that the univariant curves could intersect at a P-T condition at
which they have the same solution composition generating an invariant
point. However this intersection can only occur at a solution composition
on one side of the singular composition. If both phases absent from the
univariant curves lie on one side of the hinge, then the solution composi-
tion at the invariant point must be on the same side of the hinge as the
phases absent from the hinge if both univariant curves are stable (fig.
5D) and must lie on the opposite side of the hinge if both univariant
curves are metastable. A violation of these conditions would require an
assemblage to be stable over a sector of more than 180° around the
invariant point, or that a univariant curve crosses its conjugate singular
curve. Likewise, if the hinge separates the phases absent from the
univariant curves, then the solution composition at the invariant point
must be on the opposite side of the hinge from the phase absent from the
metastable univariant curve, and it must be on the same side of the hinge
as the phase absent from a stable univariant curve (fig. 5E). A violation of
this would require connection of a singular curve with different levels of
stability which is impermissible.

For topologies in which the directions of change in solution composi-
tion along the univariant curves are not the same (fig. 5C and F), it is
evident that the first crossing of the univariant curves must be indiffer-
ent, because the solution composition in both equilibria must be differ-
ent. However, if the univariant curves are traced from their conjugate
singular points in the same direction through the indifferent crossing it is
possible that they may then intersect at an invariant point. In this case the
invariant solution composition may lie on either side of the hinge.
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Fig. 5. In general in a ¢ + 2 phase system there are two phases, x and y, the
compositions of which are not spanned by the hinge (x,y). Phases x and y may lie on either
side of the (x,y)-hinge as in (A) or on the same side as in (B). This distinction, in combination
with the stability levels of univariant curves (x) and (y), determines the manner in which (%}
and (y) can be connected by a singular curve. For chemographies (A) and (B), if both
univariant curves are of the same stability they must be connected as in topologies (C) and
(D), respectively, but if the univariant curves are of different stabilities they must be
connected as in topologies (E) and (F), respectively. Arrowheads indicate the direction in
which the solution composition approaches S« (fig. 1). Doubly metastable singular curves
are dotted, other notation as in figure 2.

This distinction permits classification of topologic connections into
two broad categories designated herein as type I and type II connections.
Univariant curves that connect by a type I connection must cross at an
indifferent crossing before an invariant point is possible, whereas univari-
ant curves connected by a type II connection can intersect at an invariant
point with no intervening indifferent crossing.
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Based on the foregoing discussion a rule can be formulated on the
stability of singular points along univariant curves intersecting at an
invariant point connected by a type 11 connection:

6. If the phase absent from the univariant curve is separated from the
invariant solution composition by a hinge, then the singular point on the univari-
ant curve corresponding to this hinge will be metastable. Likewise if the absent
phase and the invariant solution composition are on the same side of the hinge,
then the singular point will be stable.

The foregoing considerations allow a total of eight topologically
distinct ways of connecting two univariant curves with a common singu-
lar equilibrium. The problem addressed in the next section is to deter-
mine the additional constraints imposed by the presence of more than
one singular equilibrium.

SINGULAR-POINT NETS

The complete topology of a singular point net about an invariant
point can only be determined if the invariant-point chemography is
known, that is, the solution composition at the invariant point is known
with respect to the singular-point compositions. This composition deter-
mines the topology of the univariant curves in the immediate vicinity of
the invariant point. Given such a topology then the specification of the
stability of a singular point along a univariant curve determines the
stability of all the other singular points along that univariant curve,
assuming monotonic compositional variation of the solution along the
univariant curve. For the chemography illustrated in figure 3, if an
invariant point occurs with the composition S; then the invariant point
topology can be deduced from Schreinemakers method to be that shown
in figure 6. Beginning with one univariant curve the stability of one
singular point can be arbitrarily specified as there are as yet no topologic
arguments against this. For example, S; 4, can be placed on the metasta-

(2)

Fig. 6. Schreinemakers projection of univariant curves around the invariant P-T
conditions of the three component system of figure 3.
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(1

Fig. 7. Schreinemakers projection showing singular equilibria around the invariant
P-T conditions of the ternary system illustrated in hgure 3. Only the singular points on
univariant curve (1) and its conjugate singular points and curves are shown. S 4 was
arbitrarily placed on the metastable extension of (1), and 8 ) and 8?1 3y were placed on (1)

t

so as to be consistent with monotonic compositional variation of the solution along (1).

Singular points on (1) were then connected to the conjugate singular points on (2), (3), and
(4) through type I connections. Arrows on univariant curves point toward Se.

ble extension of (1) as done in figure 7. The arrangement of the singular
points along the remaining univariant curves can then be determined by
considering the topologic connections with the singular points on the
first univariant curve. In this regard the distinction between type I and
type 11 topologic connections is important; for it is always possible to
connect two univariant curves on either side of an invariant point with a
type I connection, whereas type II connections are confined to one side
of the invariant point. Thus it can be anticipated that type 11 connections
will not, in general, be possible given an arbitrarily specified stability for
one singular point. This is demonstrated by the case of Sq 4 which occurs
on both (1) and (4). Consideration of the possible type 11 connection for
this case reveals that there is no way to connect these curves such that
S+ is metastable on (1) for an invariant point composition of Xg, < Xs

As type I connections allow singular points to lie on either side of an
invariant point it will always be possible to construct singular-point nets
involving only type I connections. Therefore the approach taken here
will be to first construct singular-point nets with all possible type I
connections and subsequently to consider the possibility of type II
connections.
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Construction of Singular-Point Nets of Type I Connections

In a (c + 2)-phase system, the same invariant phase assemblage may
be stable at more than one invariant condition. This would require that
all the univariant curves emanating from one invariant point intersect
the fluid-absent univariant curve at each additional invariant point. For
present purposes this possibility will be excluded. This suggests a rule
concerning type I connections, which will later be shown to be also true in
systems where the same invariant assemblage is stable at more than one
condition:

7. Only those extensions of univariant curves that lie on the same side of the
solution-absent reaction (S) about an invariant point may be connected through a
type I connection.—A requirement of rule (7) is that two singular points
related by a type I connection will have equal stability levels if they occur
on univariant curves labeled by phases that have the same sign in the
reaction equation of (S); otherwise they will have different levels of
stability. This rule can be justified in the present context because univari-
ant curve extensions emanating from an invariant point and connected
by type I connections must cross indifferently. However, if the singular
points to be connected lie on univariant curve extensions on opposite
sides of (S) it would be impossible to generate an indifferent crossing
without creating a second invariant point. The construction of a type I
singular-point net about a single invariant point may be accomplished
through the following procedure:

A. The stability of one singular point along a univariant curve is
specified, and the remaining singular points along this curve are located
to be consistent with this specification (that is consistent with the direction
of compositional variation of the solution implicit from the relative
positions of the singular point and the invariant point).

B. Each univariant curve that shares a conjugate singular equilib-
rium with the first curve specified in (A) is connected to the original curve
through a type I connection so as to satisfy rule (7). Each connection
requires an indifferent crossing of the conjugate univariant curves such
that the singular curve lies on the same side of both univariant curves.

The foregoing procedure can be demonstrated for the invariant
point and phase chemography of figure 3. Given the assumption that the
Sq,4) singular point is metastable on (1), the type I connections with
curves (2), (3), and (4) can be drawn with the result shown in figure 7.
These connections constrain the locations of all the remaining singular
points, and if these singular points are also connected by type I connec-
tions the topology of figure 8 is obtained. Given such a topology it is
always possible to derive three additional type I topologies. The second
topology can be derived by inverting the stabilities of the singular points
of the first (that is, by placing S, 4) on the stable extension of (1) in fig. 8).
The other two topologies are enantiomorphs of the first two. In such
constructions the order of the univariant curves immediately about the
invariant point is determined by Schreinemakers analysis, and the shape
of the curves is topologically irrelevant.
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@

Fig. 8. Complete Schreinemakers projection around the invariant P-T condition of the
ternary system of figure 3. This topology involves only type I connections and thus
represents one of the four type I singular-point nets that can be drawn for the system. Note
that the direction of solution compositional variation across (S) is the same in’all solution
present univariant curves and that every type I connection requires an indifferent crossing.

The topology of figure 8 demonstrates a feature common to all
topologies of type I connections which is that the direction of composi-
tional variation across the invariant point with respect to the solution-
absent reaction is the same along all univariant curves (arrows in fig. 8).
This implies that in a P-T phase diagram if (S) were parallel to either axis,
the compositional variation of the solution phase is constrained to be the
same in all univariant equilibria in a direction perpendicular to that axis.

The characteristics of type I singular-point nets can be summarized
by a table such as that shown in table 1A for the system of figure 8. The
rows of such tables give the stabilities and sequence of singular points
along each univariant curve, and the columns locate and represent the
stabilities of conjugate singular points. It is useful to note that such tables
can be constructed without actually drawing the topology, because the
stability of all the singular points is determined once the invariant point
composition and the stability of one singular point is specified. For
example the effect of changing the invariant point composition for the
system illustrated in figure 8 to a composition between Sy 5y and Sy 9y and
specifying that S, 4 is on the stable extension of (1) can be derived from
table 1A. First the stabilities of all singular points in table 1A are inverted
to obtain table 1B which gives the inverted singular-point net of figure 8.
The effect of changing the invariant point composition from a value



designaled univariant curve. (A) Pure type I singular-point net with an

TABLE 1

Descriptive tables for the singular-point nets around invariant points for the
phase chemography illustrated in figure 3. The rows of each table indicate
stability levels (s-stable, m-metastable) and sequence of singular points along the

wnvariant solution composition between S, 5y and S 4. (B) Inverse stability
singular-point net of (A). (C) Singular point net as (A), but with the invariant
point composition of the solution between Sy 3y and Sy o). (D) Pure type II
singular-point net for an invariant point comparison between S; 3y and S, 4 )-
Table (D) was constructed by applying rule 6 for each entry independently; as the
rows contain inconsistencies the singular-point net is not valid (for example, on
(3), singular points Sz 3y and S, 3y have different stabilities but lie on the same
side of the invariant point). (E) Mixed-type singular-point net, obtained by
inverting the stability levels along (1) in (A). This inversion requires that all
connections with (1) are of type Il and leads to inconsistencies; for example, a
type LI connection between the S ; 5) singular poinis on (1) and (2) is only possible
if the singular points are stable on both curves (as indicated by (D)). Thus,
singular-point net (E) is not valid. (F) and (G) Valid mixed-type singular-point
nets derived from (A) by inverting stabilities of singular points along (2) for
(F), and both (2) and (3) for (G). (H) and (I) Valid mixed-type singular-poinit
nets derived from (B) by inverting stabilities of singular points along (4) for

(H), and both (1) and (4) for (I). Together, tables (A, B, F-I) define

all the valid singular-point nets for an invariant solution phase
composition between S; 3y and Sz, 4.
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between S 5, and Sy 4, to a composition between S35y and S;; 5 is simply
to invert the stabilities of all the singular points in the columns between
the old and new invariant point compositions with the result given in
table 1C. It may be noted that although four different type I singular-
point nets can be drawn around an invariant point, the tables for the
enantiomorphic nets are identical. Thus there are only two tables for all
four type I topologies, and these two are related to each other by
inverting the stabilities of the singular points.

Repeated Invariant Points in a Type I Singular-Point Net

In the foregoing section, the possibility of two univariant curves
intersecting to generate an additional invariant point was excluded.
However there is no fundamental reason to reject this possibility. The
number of invariant points for a (¢ + 2)-phase system is unlimited in that
any two univariant curves may intersect any number of times. As long as
the compositional variation along both univariant curves does not cross a
singular composition, each successive invariant point topology will be
enantiomorphic. As there is no topological constraint on the nature and
number of these invariant points, this type of invariant point repetition
will not be considered further. The alternative is that the intersections of
the univariant curves occur at solution compositions separated by a
singular composition. In this case the phase chemography at each
invariant point will be different.* Each change in chemography is reflected
by a change in relative order of two univariant curves (exclusive of (S))
about the invariant point. Such a change in relative order of two univariant
curves occurs on either side of an indifferent crossing. Figure 9 illustrates
the interrelation of the invariant point topologies and the singular-point
net that results if an invariant point occurs after every indifferent crossing.
This case relates every possible nonenantiomorphic invariant point
topology for the system given in figure 3. It is, of course, possible to draw
a similar diagram with fewer invariant points and a greater number of
intervening indifferent crossings. With regard to the general application
of rule (7) (p. 790), it may be noted that if two singular points of the same
composition lie on two univariant curve extensions that emanate on
opposite sides of (S) from one invariant point, then the two singular
points will always be separated by (S) even if the invariant point is
repeated. This follows from the consideration that it would be impossible
to cross one univariant curve extension over (S) without crossing the
second at the same point.

TYPE IT SINGULAR-POINT NETS

The feasibility of topologies consisting entirely of type 1I connections
can be tested through the use of tables similar to those presented in table
1 for type I connections. However in contrast to type I topologies the

4 A change in chemography is considered here to occur when the number of phases on
either side of any hinge changes. This is a phase-region deformation in the sense of
Schreinemakers (1916).
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Fig. 9. Multiple-invariant point type I singular-point net for the phase chemography
of figure 3, invariant P-T conditions occur at solution compositions between each singular
composition. The arrangement of univariant curves around two adjacent invariant points
differs in that the order of two of the univariant curves is changed. Such changes are
effected by indifferent crossing of the univariant curves. This sequence of invariant points
represents all possible, nonenantiomorphic invariant point topologies for the given system.

specification of an invariant point composition determines the stabilities
of all the singular points in type II topologies. These stabilities are
determined by rule 6 (p. 788). This is best demonstrated by the example
of figure 8. For curve (1), rule 6 requires that S 5, S5, and S 4) are
stable. These stabilities can be entered in a table, which can be completed
by applying rule 6 to each singular point on the remaining univariant
curves with the result given in table 1D. Examination of table 1D reveals
conflicts for curves (1) and (3) in that S; 9, Su3y, and S 4) are equally
stable on (1) although the invariant solution composition lies between
S5y and Sy 4y, and on (3), S 3y and S 3, which both lie on one side of the
invariant point, have different stabilities. Thus it may be concluded that a
singular-point net consisting only of type 1I connections is not possible
for the system with invariant point composition between S(; gy and S 4). It
can be shown that in systems where the number of hinges is the combina-
torial limit (¢*}), it is never possible to construct a type 11 singular-point
net (app.). However, for systems in which the number of singular points
is less than (¢*]) — ¢, type II topologies may be possible (app.). An
example of such a system was used by Connolly and Trommsdorff (1991,

fig. 4).

MIXED-TYPE TOPOLOGIES

Although it is generally not possible to construct type II nets,
consistent nets can be drawn by mixing type I and type II connections.
Mixed topologies can be derived from type I nets by inverting the
stabilities of singular points along one or more univariant curves. Such
inversions can be envisioned as the result of flipping of the singular
points on the effected univariant curve across the invariant point and are
represented by inversion of the stabilities in the corresponding rows of
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the descriptive tables. Such inversions yield consistent topologies only if
the columns of the resulting table occur either in the table for type 11
connections or in one of the two possible tables for type I connections.
The maximum number of inversions is modulus [(c + 1), 2], as inversion
of a greater number of rows would be equivalent to inversion of the
remaining curves in the alternate type I table.

The derivation of all possible topologies by the use of descriptive
tables for the ternary chemography illustrated in figure 3, with the
invariant solution composition between S(; 3 and S 4, 1s demonstrated
here. As a first step, one of the two type I tables is constructed by
arbitrarily specifying the stability of a singular point and completing the
table according to rule 7 (p. 790) with the result given in table 1A. This
table is then inverted?® to yield the second type I table shown in table 1B.
The type II table (table 1D) is then constructed by determining the
singular point stabilities by rule 6 (p. 788) The tables for mixed-type
topologies can then be derived by inverting the singular-point stabilities
in one or more of the rows of the type I tables. Such descriptive tables
represent valid singular-point nets if, and only if, every column of the
table is identical with the corresponding column of either the type II
table or one of the type I tables. If, for example, in table 1A the
singular-point stabilities along (1) are inverted, table 1E results, which
contains inconsistencies and thus does not represent a valid topology. If
instead the singular-point stabilities on (2) are inverted in table 1A, a valid
singular-point net is obtained (table 1F). Topologically valid singular-
point nets also result from inverting the singular-point stabilities along
(2) and (3) simultaneously (table 1G), starting from table 1A, and from
inverting singular-point stabilities in table 1B along (4) (table 1H) or
along (1) and (4) simultaneously (table 1I). There are no other mixed-
type topologies possible. Without taking into account the constraints
from singular-point analysis, each solution-present univariant curve
around an invariant point can be independently oriented with respect to
the direction of compositional change in the solution phase. As there are
¢ + 1 solution-present univariant curves, there are a total of 2¢*! nonenan-
tiomorphic topologies® possible. According to the foregoing analysis
there are only 6 nonenantiomorphic singular-point nets possible for the
given invariant-point chemography; thus in this case singular-point
analysis eliminates more than half the number of ways in which univari-
ant curves can be oriented around an invariant point entirely from
topologic considerations.

5 In this context, inversion refers to the change of stabilities of only the singular points,
whereas the univarient curves are not affected.

6 In conventional Schreinemakers analysis univariant equilibria are represented b
lines with no associated direction attribute. Here the association of a direction with each
univariant line is equivalent to considering the topologic arrangement of arrows, rather
than lines, about a point.
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COMPOSITIONAL DEGENERACIES

The preceding discussion has been restricted to general chemo-
graphic phase relations among ¢ + 1 compounds and a binary solution
and the compositional degeneracies that give rise to singular equilibria.
However in many cases, particularly in geologic systems additional
compositional degeneracies arise. In such cases the rules derived in the
previous sections always apply, but several new features may appear. In
regard to singular-point analysis there are two categories of degeneracy:
(1) Coincidence of a singular composition with a compositional limit of
the solution phase; and (2) compositional degeneracy among the com-
pounds of the system, or a degeneracy of compounds with the solution.
Systems of ¢ + 2 phases, in which more than one solution-absent reaction
are possible, are excluded from consideration here. |

Coincidence of a Singular Composition with a Compositional Limit
of the Solution

Examples of this are common in systems including HyO-CO, fluids
in which many of the singular reactions involve only one volatile compo-
nent or in AFM projections for which all the important solutions have
endmember compositions that lie in the AF or AM joins.

Four considerations dictate the phase relations about a singular
point defined by a singular reaction that involves a phenomenological
endmember of a solution: (1) the phase relations in a true thermody-
namic subsystem (Connolly and Kerrick, 1987) cannot be affected by
phases outside the subsystem, therefore the stability of the singular
equilibrium does not change at the singular poing; (2) as the singular
equilibrium consists of a subset of the phases of the univariant equilib-
rium it cannot be less stable than the univariant equilibrium; (3) as the
composition of the solution becomes extremal at the singular point the
univariant and singular equilibria must coincide on one side of the
singular point although they are not identical; (4) the singular curves
divide P-T space into regions in which an assemblage involving the
solution is relatively more and less stable, and the univariant curves must
lie in the region in which this assemblage is less stable in order to avoid
violating Schreinemakers principles. Aside from the changes in singular-
point topology this degeneracy has only one significant implication which
is that it eliminates the indifferent crossings that arise from type I
connections (see fig. 7 of Connolly and Trommsdorff, 1991).

Comgpositional Degeneracies Among Compounds or Among Compounds
and a Solution

Compositional degeneracies that occur in a (¢ + 2)-phase system can
be classified by the number of phases involved in the solution-absent
reaction (S). Degeneracy purely among the compounds of the system
results in a solution-absent reaction with fewer than c + 1 phases. This in
turn requires the coincidence of hinges such that d + 3 phase composi-
tions (including the solution phase) lie along a d-dimensional geometrical
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element that spans the compositional coordinates of the phases of (S). All
d + 3 of these phases can only coexist at another invariant point along (S)
which is defined by the intersection of (S) and the singular reactions
corresponding to each of the coinciding hinges. The number of such
invariant points generated along (S) will depend on the chemography of
the system. The effect of a degenerate solution-absent reaction is illus-
trated in figure 10 in which the coincidence of phases 3 and 4 results in
the overlapping of two pairs of hinges. An interesting feature of such
systems is that the solution-absent reaction may occur in the presence of
the solution phase. However, the composition of the solution phase in
equilibrium with the solution-absent reaction is uniquely determined at
any point along (S). The direction of compositional variation of the
solution phase along the solution-absent reaction can be determined
from the location of the (d + 3)-phase invariant point which is located so
as to satisfy the constraints imposed by singular-point analysis. Thus from
the topology of figure 10, it can be deduced that the metastable phase
assemblage 1 + 3 + 4 buffers the solution composition in a direction away
from S; toward S, as the metastable extension of curve (S,1,2) is traced

solution phase 3.4

(3)

Fig. 10. Singular point net for a degenerate ternary system (phase chemography
shown as inset). The degeneracy is such that two pairs of hinges overlap producing
(c — 2)-dimensional geometrical elements containing the compositional coordinates of ¢ +
1 phases. The (c + I)-phase assemblages 2 + 3 + 4 + S, and 1 + 3 + 4 + Ss occur
metastably at invariant points I and Iy, at the intersection of the singular curves involving
S; and Sg with (S). This requires that these assemblages buffer the composition of S along (S)
in opposite directions.
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away from the invariant point, and likewise that the assemblage 2 + 3 + 4
buffers the solution composition toward S; along the same portion of
(S,1,2).

A second type of degeneracy occurs when a hinge has dimension d <
(c — 2). This is manifest from the corresponding singular reaction that
involves (d + 2) < c phases. For systems in which this type of degeneracy
occurs the degenerate singular curves will connect c—d univariant curves.

AN APPLICATION OF SINGULAR POINT ANALYSIS

To demonstrate the application of singular-point analysis to geologic
problems the antigorite(At)—calcite(Cc)—tremolite(Tr)———dolomite(Do)—-
diopside(Di)—forsterite(Fo)—fluid(F) invariant point in the CaO-MgO-—
Si0o—H,O—-COy system will be considered here. In this system, the
minerals have essentially fixed compositions, and the fluid is a binary
solution between HoO and COs. In contrast to the problems presented
earlier for ternary systems, the chemographic relations in the CaO-MgO-
Si0,—H,0—COs, system cannot be visualized graphically because its com-
position space is four-dimensional. Consequently, it is necessary to deter-
mine valid hinges and the relative displacement of phases with respect to
hinges by linear algebra (Connolly and Kerrick, 1987). The equation of a
(c — 2)-dimensional plane spanning the composition of ¢ — 1 phases is
obtained by solving the equation”:

XL

1 XX Bo < !

1X2 ..X2, Py ¢
=) (6)

1X$™ LX) et

c=2 BC—Q XC:I

If an assemblage of c — 1 phases defines a hinge, then the plane spanning
the compositions of these phases determined from eq 6 must also span a
possible composition of the solution. Provided the ¢ — 1t and cth
components are taken as the endmember compositions of the solution,
the intersection of a plane defined by eq 6 with the compositional range
of the solution is:

XS = Bq. (7)

If the intersection is at a valid composition for the solution, then the
composition is a singular composition, and the (c — 1)-phase assemblage
defines a valid hinge. To apply rule 6 (p. 788) with respect to a hinge
(x,y), it is necessary to determine the relative displacements of the
invariant point composition S; and the compositions of phases x and y
relative to the hinge. Given the parameters By, - . . B.¢ of the hinge, the

7 A fortran program for this purpose can be obtained from the authors.
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displacement of a composition x is given by:

c—2
3, = Bo + 2} XiB; — X, (8)

If two compositions x and y lie on the same side of a hinge then the
displacements of both compositions calculated from eq 8 will have the
same sign and the ratio

Oy

Px,y = —6—)' 9
will be positive, and if the compositions x and y lie on opposite sides of the
hinge, I',, will be negative. Returning to the Fo—At=Tr—Do-Di-Cc-F
example, table 2 summarizes the foregoing algebra for the fifteen combi-
natorially possible (c — 1)-phase assemblages. From this table it can be
seen that assemblages (Cc, Fo), (Di, Fo), and (Fo, Tr) do not define valid
singular equilibria, because the corresponding hinges do not intersect
the fluid composition (that is, Bp > 1 or By < 0, eqs 6 and 7). The
equation of the fluid-absent reaction (F) is of the form Do + Di + At =

TABLE 2

Equations for the c-2 dimensional hinges defined by the fifteen c-1 phase
permutations of the compounds Tr—Fo—Cc—At—Do—Di which coexist with an
H,0-CO; fluid at an invariant point. Permutations are ideniified by the phases x
and y which are absent from the hinge. The parameter By (eq 6) is the point
0. &% ,) at which a hinge intersects the fluid composition space, only those hinges
that intersect within the real composition space of the fluid (0 < By < 1)
correspond to possible singular equilibria. The parameters I, s, and I, (eq 9)
indicate the displacements of the phases x and y, with respect to both the hinge
(x, y) and the invariant point fluid composition (X to, = 0.01 mol CO,). Posilive
values of I, s, indicate the composition of the phase x lies on the same side of the
hinge as the invariant point composition ;.

x y Bo Bi Ba Bs Iss, [ys,
At Cc 0.714 —0.285 —0.571 —1 0.24.2 0.101
At Di 0.900 —0.800 —0.800 —1.100 0.9257 —0.056
At Do 0.625 —0.250 —0.500 —0.875 0.243 —-0.102
At Fo 0.500 0 0 —1 0.406 0.340
At Tr 1 -1 -1 -1 0.277 0.063
Cc Di 0.173 1.214 0.095 —0.708 1.718 0.896
Cc Do 0 0 0 0 50.00 50.00
Cc Fo 2 -2 -4 -1 0.251 —0.502
Cc Tr 0.244 0.890 0.134 -1 0.808 —(.440
Di Do 0.111 0.778 0.061 —0.454 0.927 —1.779
Di Fo —2.147 5.294 5.294 —0.338 —0.153 —0.589
Di Tr 0.392 0.216 0.216 —1.608 —0,795 —0.831
Do Fo I —1 -2 —0.500 —0.252 —=0.505
Do Tr 0.177 0.646 0.097 —0.726 —0.821 —0.447

Fo Tr —0.823 2.647 2.647 -1 —-0.729 0.198
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Fo + Tr + Cc, and if the invariant point composition S; is between S ¢ po)
and Sp; po) then the descriptive tables for type I singular-point nets can
be constructed by applying rule 7 (p. 000) for the remaining singular
equilibria (table 3A). With reference to the application of rule 6 (p. 000),
the stabilities of any two conjugate singular points connected by a type 11
connection can be determined from the values of I" (eq 9) in columns 7
and 8 of table 2. For example, for the singular equilibrium (Di, Do), I'pis,
is positive, and I'p,g, is negative. Thus, Di and Do lie on opposite sides o

the hinge (D1, Do), and D1 lies on the same side of the hinge as S;; by rule
6 this requires that if (Di) and (Do) are to be connected with a type 11
connection then the (Di, Do) singular point is stable on (Di) and metasta-
ble on (Do). If rule 6 is applied for every singular equilibrium then the
descriptive table for a type Il singular-point net (table 3B) results.
Inspection of this table reveals conflicts in the stabilities of the singular
points along (Fo), (Tr), (Cc), and (Di); thus the pure type II singular-
point net is not possible for this system. The singular reactions (Cc, Do),
(Do, Fo), and (At, Tr) are degenerate in the sense that the corresponding
singular compositions coincide with the phenomenological extremes of
the fluid. Thus, all these singular equilibria are always stable, and rules 6
and 7 only determine the location of the singular points. This implies that
the stabilities of the (Cc, Do), (Do, Fo), and (At, Tr) singular points are
irrelevant in mixed-type topologies and that corresponding columns in
the pure type I and 1I tables do not provide any constraints on mixed-
type topologies. Valid mixed-type topologies can be generated by invert-
ing stabilities of the remaining singular points along one or more univari-
ant curves in table 3A. Omitting the (Cc, Do), (Do, Fo), and (At, IT)
columns in table 3, a total of 12 topologically valid mixed-type singular-
point nets can be derived. For a five component system there are a total of

TABLE 3
Descriptive tables for singular-point nets around the Fo—At—Tr—Do—Di—Cc—F
invariant point in the CaO-MgO—Si0,—H,0—CO; system for an invariant fluid
composition between S ¢ pe) and S pi po)

A. Pure type I singular-point net
Sicepoy Smibey Scedy SmeTn ST Sty Sk Saube  S@auco  Saudh  SauTn  Seru
m m

(Fo)

(Tr) m m m m

(Cc) s m m m

(A1) s s s S S

(Di) 3 s 3 s

(Do) m s s 5 ]
B. Pure type II table; this table does not represent a valid singular-point net, as
conflicts occur in the stability levels along univariant curves (Tr), (Ce), and (Di)

Sceboy Smipw  Swepy Swern S Soitn Stk Suwbe  Suuco  Sauby St Sworo)

Fo) s m

(Tr) m m m s

(Cc) s s s s

(At) $ s ] s S

(Di) s s m m
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64 (2¢+1) nonenantiomorphic singular-point nets, but in this example it is
possible to eliminate 50 nets through singular-point analysis even though
only 12 of the 15 combinatorially possible singular equilibria occur, and
of these only 9 provide constraints in singular-point analysis.

Both thermodynamic calculations and field evidence suggest that
the singular-point net about the Fo—At—Tr-Do—Di—Cc~F invariant point
is that of table 3A (Connolly and Trommsdorff, 1991; Carmichael, 1991).
Indeed, it is interesting to note that in topologies calculated from thermo-
dynamic data only type I connections have been observed by the authors.
More generally, it has been observed in calculated phase diagrams of
degenerate invariant points (for example, the zoisite—aluminosilicate—Cc—
quartz—anorthite-F invariant point in the Ca0-Al,03—-5105—H,0-CO,
system (Connolly and Trommsdorff, 1991) that univariant curves may
have opposite orientations on the same side of the solution-absent reac-
tion if the curves are not connected by a singular curve.

SUMMARY AND CONCLUSIONS

Any two univariant curves that represent equilibria involving the
same solution phase may be connected by a singular curve. If these
curves emanate from a common invariant point then there are only two
possible types of topologic connections between them by the singular
curve. These kinds of connections are distinguished in that one of the
types, designated type I, requires an indifferent crossing of the intercon-
nected univariant curves, whereas the second type, designated type 11,
does not require such an indifferent crossing. Both types of topologic
connections constrain the direction of compositional change of the solu-
tion along the interconnected univariant curves. For a set of univariant
curves emanating from an invariant point these constraints limit the
possible arrangements of singular points and curves around the invariant
point, that is the singular-point nets. For each such net the direction of
compositional variation in the solution phase along every univariant
curve is uniquely determined. Seven rules based on Schreinemakers’
principles have been formulated to facilitate the construction of singular-
point nets. About any invariant point it is always possible to construct four
topologically valid singular-point nets consisting entirely of type I connec-
tions. These four topologies are related to each other by inversion of the
singular-point stabilities and by mirror symmetry. The characteristics of
type I singular-point nets are that singular points of the same composi-
tion always lie on the same side of the solution-absent curve. The singular
points have equal stabilities if they occur on univariant curves labeled by
phases that have the same sign in the solution-absent reaction equation,
and they have different stabilities if the phases labeling the intercon-
nected univariant curves have different signs in the solution-absent
reaction equation. This implies that all univariant curves have the same
direction of solution compositional change across (S). These characteris-
tics can be summarized in tables consisting of rows giving the stabilities
and sequence of singular points along individual univariant curves and
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columns giving stability relations between singular points of the same
composition. Such tables can also be drawn for singular-point nets
consisting entirely of type II connections. There is a degree of freedom in
the construction of type I singular-point nets in that the stability of one
singular point can be arbitrarily specified. In contrast, the stability of any
singular point connected through a type II connection is uniquely
determined by topologic principles (rule 6, p. 788). Descriptive tables for
type 11 singular-point nets can thus be constructed by determining the
stability of every singular point according to rule 6. In the general case,
the stabilities of the singular points along the univariant curves indicated
by the rows of such a table are inconsistent with the stabilities of the
univariant curves; thus it is generally not possible to draw type II
singular-point nets. Although type II singular-point nets are generally
not possible, consistent topologies can always be drawn by mixing type I
and type II connections. These topologies can be derived from pure type
I singular-point nets by inverting the stabilities of singular points along
one or more univariant curves, which in terms of the “table description”
means the inversion of the stabilities of the singular points in the relevant
rows. Such operations yield consistent topologies if each of the resulting
columns is identical with a corresponding column in either the type II
table or one of the type I tables.

Without taking into account the constraints from singular-point
analysis, each solution-present univariant curve around an invariant
point can be independently oriented with respect to the direction of
compositional change in the solution phase; that is, if the compositional
variable of the solution is X5, XS may increase or decrease toward the
invariant point along the stable extension of the curve. As there arec + 1
solution-present univariant curves, in the general case, there are 2°*!
nonenantiomorphic singular-point nets or a total of 2¢*2 singular-point
nets possible. Although there does not seem to be any simple way of
counting the number of topologically consistent singular-point nets,
singular-point analysis can eliminate a large fraction of the topologies.
This fraction increases with the number of univariant curves around the
invariant point; in the two examples considered here singular-point
analysis of a ternary invariant point eliminates 10 out of 16 possible nets,
whereas the analysis of a quinary invariant point eliminates 50 out of 64
nonenantiomorphic singular-point nets. Type II connections have not
been observed in calculated phase-diagram projections, but type I topol-
ogies are commonplace. In this regard, two general features of type I
topologies are important (1) for a given invariant point composition, in a
system involving a binary solution, there are only four singular-point nets
possible; and (2) regardless of the invariant point composition, the
direction of compositional change of the solution phase across the solution-
absent reaction is the same in every univariant curve through a nondegen-
erate invariant point.

The reason for the importance of Schreinemakers’ principles is that
they enable theoretically rigorous integration and extension of knowl-
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edge from a variety of sources, which include thermodynamic data and
field and experimental observations. This work contributes to the tools
available to petrologists. Recent advances in computational methods
(Connolly, 1990; Powell and Holland, 1990) have enabled the calculation
of phase diagrams for systems involving solution phases. The principles
enumerated here are useful for both understanding and testing the
validity of such diagrams. Although not explicitly discussed here, an
understanding of phase-diagram projections is also an aid in interpreting
phase-diagram sections with the compositional variable of a solution
phase on one axis of the section coordinate frame (Connolly and Tromms-
dorff, 1991).

Only systems containing a single binary solution have been treated
here, but the rules concerning singular-point topology are completely
general. However, in more complex systems the interconnections of
univariant curves can be considerably more complex or entirely absent.

APPENDIX

The topologies and relative stability levels around singular points connected by type II
connections are determined by rule 6 (p. 788). For ternary systems involving a single binary
solution it can be shown geometrically that, in the general case, it is impossible to draw
consistent type 11 topologies that match the stability requirements for singular points along
an individual univariant curve imposed by the assumption of monotonic solution composi-
tion change. According to rule 6 the stabilities of singular points along an univariant curve
(x), which are connected to the conjugate singular points by type II connections, are
determined by the relative position of the compound x and S; with respect to the hinges

open sector

half open sector half open sector

solution phase

closed sector

Fig. 11. Phase chemography of four compounds u, v, w, and x and a binary solution in
a three-component system. If singular points S, ) and Sy x) on univariant curve (x) are to
be connected with their conjugate singular points through type II connections, their
stabilities can be deduced b app%ication of rule 6. The stabilities are not compatible with the
stability sequence of singular points required by monotonic solution compositional varia-
tion along (x). If the invariant solution composition lies between S, and S,y both
singular points Sq, x) and S, would have same stabilities according to rule 6, which is
incompatible with their occurrence on different sides of the invariant point. Similar
arguments can be used to show that inconsistencies occur also if S; does not lie between the
two singular compositions.
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under consideration. Any two non-parallel hinges relevant for an individual univariant
curve intersect and thus divide composition space into four sectors: two of which will
contain half-infinite portions of the solution compositional range, designated half-open
sectors, one will contain a finite portion of the solution compositional range, designated a
closed sector, and the fourth sector will not span any portion of the solution compositional
range and is referred to as an open sector.

From figure 11 it can be seen that if a compound phase lies within a closed or open
sector the stabilities of the singular points along the univariant curve labeled by this phase,
determined by rule 6, are incompatible with the required stability sequence along an
individual univariant curve regardless of the invariant solution composition. If the com-
pound phase labeling a univariant curve lies in a half open sector, then the stabilities of the
singular points on this univariant curve that correspond to the hinges defining the half

solution phase

DO

JERN

RN
[ N

Fig. 12. Phase chemography of four compounds and a binary solution in a three-
component system. In the general case (A and B), there is always a phase that lies in a closed
or open sector, and it is impossible to draw consistent singular-point nets involving only
type 11 connections. The only case where no compound phase 1s positioned in either an
open or closed sector is shown in (C) where two hinges are parallel to the solution
compositional range. For this chemography, a consistent singular-point net consisting of
only type II connections can be drawn (see Connolly and Trommsdorff, 1991).




Singular point analysis: projections for systems with a binary solution 805

open sector will be compatible with monotonic solution compositional variation along the
univariant curve.

From these observations it follows that inconsistencies in stability levels arise as soon as
a compound phase lies in a closed or open sector with respect to one pair of hinges. A pure
type 11 singular-point net is only possible if none of the compound phases lies in a closed or
open sector with respect to all hinges. From figure 12A and B it can be seen, that in the
general case at least one compound phase will be positioned in open or closed sectors. The
only way to avoid this case in a ternary system is to orient two of the hinges parallel to the
solution compositional range, as shown in the chemography of figure 12C, for which
Connolly and Trommsdorff (1991) have presented a pure type II singular-point net.
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