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[1] Here we present a 3-D multi-observable probabilistic inversion method, particularly
designed for high-resolution (regional) thermal and compositional mapping of the
lithosphere and sub-lithospheric upper mantle that circumvents the problems associated
with traditional inversion methods. The key aspects of the method are as follows: (a) it
exploits the increasing amount and quality of geophysical datasets; (b) it combines
multiple geophysical observables (Rayleigh and Love dispersion curves, body-wave
tomography, magnetotelluric, geothermal, petrological, gravity, elevation, and geoid)
with different sensitivities to deep/shallow, thermal/compositional anomalies into a single
thermodynamic-geophysical framework; (c) it uses a general probabilistic (Bayesian)
formulation to appraise the data; (d) no initial model is needed; (e) compositional a priori
information relies on robust statistical analyses of a large database of natural mantle
samples; and (f) it provides a natural platform to estimate realistic uncertainties. In
addition, the modular nature of the method/algorithm allows for incorporating or isolating
specific forward operators according to available data. The strengths and limitations of
the method are thoroughly explored with synthetic models. It is shown that the a
posteriori probability density function (i.e., solution to the inverse problem) satisfactorily
captures spatial variations in bulk composition and temperature with high resolution, as
well as sharp discontinuities in these fields. Our results indicate that only temperature
anomalies of �T & 150°C and large compositional anomalies of �Mg# > 3 (or bulk
�Al2O3 > 1.5) can be expected to be resolved simultaneously when combining
high-quality geophysical data. This resolving power is sufficient to explore some
long-standing problems regarding the nature and evolution of the lithosphere (e.g.,
vertical stratification of cratonic mantle, compositional versus temperature signatures in
seismic velocities, etc) and offers new opportunities for joint studies of the structure of
the upper mantle with unprecedented resolution.
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1. Introduction
[2] There are two main sources of information avail-

able to constrain the present-day physical state and
chemical composition of the Earth’s lithosphere and
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sub-lithospheric upper mantle: the interpretation of
geophysical observables (e.g., gravity anomalies, traveltime
data, surface heat flow, etc.) and studies on exhumed man-
tle samples (e.g., xenoliths, tectonically exposed mantle
bodies). Experimental petrology/mineralogy [cf. Ringwood,
1975; Herzberg, 1999; Walter, 2004] and numerical simula-
tions [e.g., Tackley and Xie, 2002; Brandenburg et al., 2008;
Nakagawa et al., 2010; Tirone et al., 2012] offer an impor-
tant complement, but they cannot constrain the present-day
compositional and temperature structure of the upper mantle
per se. Both geophysical observables and exhumed man-
tle samples have their own set of, virtually independent,
advantages and limitations when used to make inferences
about the upper mantle. Geophysical observables offer
a larger and more continuous spatial coverage, but their
conversion into estimates of composition and temperature
is populated with difficulties[e.g., Jones-Evans-and-Eaton,
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2009; Afonso et al., 2010; Cammarano et al., 2011; Becker,
2012; Afonso and Schutt, 2012, Afonso et al., Paper I,
this issue]. Exhumed mantle samples, on the other hand,
represent direct evidence of the compositional and thermal
structure of the upper mantle at the time of exhumation.
However, their spatial and temporal coverage are highly
discontinuous, their original compositions may have been
modified by or during the exhumation process, and there
may be an inherent bias in that large mantle samples (> 40–
60 cm in diameter) may be too heavy for transportation
to the surface by magmatic events [O’Reilly and Griffin,
2010]. Ideally, these sources should be used together to
provide a more complete picture of the thermochemical
state of the Earth’s upper mantle than that resulting from
the evaluation of them individually.

[3] The main question is then how to combine both
sources of information into an internally consistent, general,
and objective inverse framework. By internal consistency
we mean that all physical and chemical parameters are for-
mally linked together by a unique and sound physicochem-
ical model. Likewise, generality and objectivity require the
inverse framework to be applicable to a large number of
scenarios (e.g., different tectonic settings, different terres-
trial bodies) and to a multitude of data with the minimum
(necessary) input of subjective information. Probabilistic
formulations (statistical inference) of such inverse problems
are particularly well suited for the task at hand, simply
because the actual solution to the problem is probabilistic in
nature. Since (i) the available information from geophysi-
cal measurements and/or exhumed mantle samples is always
incomplete and subject to uncertainties, (ii) the physical the-
ories we use to make predictions may be imperfect, and (iii)
the sensitivity of our measurements to variations in some
of the parameters of interest are nonlinear and relatively
weak, any inference made on the physical state of the Earth’s
mantle is necessarily probabilistic. In other words, the best
one can, and should, achieve is to obtain a probability den-
sity over the parameters of interest, rather than a single,
necessarily non-unique solution [cf. Tarantola and Valette,
1982; Mosegaard and Tarantola, 2002; Congdon, 2006;
Biegler et al., 2011].

[4] Within the context of statistical inference, the most
general solution to the inverse problem is represented by
a joint probability density function (PDF) in the param-
eter and data space, � (d, m), known as the a posteriori
PDF [cf. Mosegaard and Tarantola, 2002; Tarantola, 2005;
Congdon, 2006]. This PDF summarizes all the information
we have on both the model parameters m and the observable
data d, and represents our best “state of knowledge.” Under
most practical circumstances, we can integrate out the data
vector component from � (d, m) to obtain the marginal PDF
in the model space as [see Mosegaard and Tarantola, 2002;
Tarantola, 2005; Afonso et al., this issue]

� (m) _ �(m) L(m) (1)

with
L(m) _

Z
�(d) � (d | m) dd (2)

where �(m) is the a priori PDF describing all the information
in the parameter space that is independent from the actual
measurements, L(m) is the so-called likelihood function,
which describes the probability of obtaining the observed

data d given m (i.e., a measure of how good the model m
is in explaining the data), �(d) the a priori PDF describing
data uncertainties, and � (d | m) the conditional probabil-
ity describing the uncertainties associated with predictions
from our theoretical models. In the general case, where there
are no formal mathematical expressions for these PDFs and
the number of parameters is large, a sampling scheme based
on a Monte Carlo analysis is necessary. The computational
cost associated with such probabilistic analysis, however,
can be notoriously large. Traditional linearized inversion
methods would be preferable given their computational effi-
ciency; however, they are not well suited to deal with
(i) the non-linearity of the system, (ii) the much larger sen-
sitivity of geophysical observables to temperature than to
compositional anomalies, (iii) the non-uniqueness of the
compositional and thermal fields (more than one valid solu-
tion), (iv) the poorly known correlations between modeled
physical parameters and geophysical observables, and
(v) the well-known trade-off between temperature and
composition in wave speeds [e.g., Khan et al., 2007; Afonso
et al., this issue]. These are all intrinsic issues related
to the current problem of inverting directly for tempera-
ture and composition, and thus, any method attempting to
provide reliable estimates of the thermochemical structure
of the lithosphere and sub-lithospheric upper mantle must
address them.

[5] Multi-observable probabilistic inversions based on
thermodynamic grounds offers a robust means to invert
for the thermochemical structure of the Earth’s mantle and
has the potential to minimize, and in some circumstances
overcome, the above-mentioned problems. However, such
multi-observable probabilistic schemes are largely an under-
studied field. The closest method to the one presented in
this paper is that of Khan et al. [2007, 2011a, 2011b]. The
Bayesian method used by these authors is truly nonlinear
and thermodynamically self-consistent, and it represents one
of the most advanced and well-suited approaches available.
Our present implementation of the Bayesian method differs
from that of Khan et al. [2007, 2011a, 2011b] in (i) the
treatment of a priori information on the compositional space
[Afonso et al., paper I, this issue], (ii) the integration of more
(3-D) geophysical observables, and (iii) the way in which
we account for theoretical (modeling) uncertainties. These
differences are mostly related to, and justified by, the dif-
ferent scales of interest. While Khan et al. [2011a, 2011b]
deals with large-scale whole-mantle structures, our interest
is on smaller scale (. 100–200 km) structures, suitable for
regional (. 1.0 � 106 km2) studies of the lithospheric and
sub-lithospheric upper mantle.

[6] In this work, we include the simultaneous, inter-
nally consistent, inversion of gravity and geoid anomalies,
surface heat flow, electrical conductivity, absolute eleva-
tion, Rayleigh and Love dispersion data, body-wave data,
and petrological data within a probabilistic (Bayesian)
context. We have purposely chosen these observables
because they are differently sensitive to shallow/deep, ther-
mal/compositional structure and anomalies, which allows
superior control of the lateral and vertical variations of
the bulk properties. Our implementation is specifically
designed to circumvent the aforementioned problems affect-
ing traditional linearized inversions. It also offers critical
insights into the incompatibilities between predictions from
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stand-alone methods (e.g., seismic versus MT studies) and
it can easily incorporate a priori geochemical/petrological
information, when such information is available and have
reliable error estimates. Importantly, given the modular
nature of the method, it can be applied to either all of the
abovementioned observables (simultaneously) or to a subset
of them, depending on data availability.

[7] This paper focuses on the general inversion methodol-
ogy and its computational implementation. The advantages
and limitations of the method are thoroughly discussed and
illustrated with synthetic examples. The information that
controls the estimations of L(m) and �(m) in equation (1) are
discussed in detail in an accompanying paper [Afonso et al.,
this issue]. Readers interested in the entire methodology will
benefit from reading part I first. We emphasize here that the
new probabilistic method described in these two papers is
not new in the sense of the Bayesian formulation but rather
in the practical implementation/adaptation to solve a spe-
cific inversion problem (strictly, make inferences about the
problem) that seeks to provide reliable estimates of the tem-
perature and bulk composition of the Earth’s upper mantle.
The application of the method to a real case scenario will
be presented in a forthcoming publication (Afonso et al.,
Part III).

2. General Methodology
[8] In the most general case, there will be no explicit

mathematical expressions to calculate �(m) and/or � (m),
and exhaustive Monte Carlo sampling will be needed
[Mosegaard and Tarantola, 1995]. This is particularly rele-
vant for the 3-D problem discussed in this paper, since using
complicated priors and Monte Carlo sampling to invert for

major-element composition and temperature in true 3-D
with high resolution is practically impossible. This is sim-
ply a consequence of both the large number of parameters
needed to define a full 3-D model (see below) and the much
larger number of samples for which the 3-D forward prob-
lem needs to be solved in order to obtain reliable estimates
of the posterior � (m).

[9] In order to make the general problem tractable,
we choose to divide the inversion into two main stages
(Figure 1). In the first stage, we subdivide the 3-D model
into its constituent 1-D rectangular columns (Figure 2) and
invert a subset of the data vector associated with each col-
umn individually. As a result of this column-by-column
inversion, we obtain first-order estimates of marginal PDFs
describing 1-D thermochemical structures that are compat-
ible with 1-D data. We then use these PDFs as a priori
information in a second “refinement stage” in which the
full 3-D problem is addressed within a formal Bayesian for-
malism (explained below). This two-stage approach shares
some similarities with the so-called “empirical” and “hier-
archical” Bayes methods [cf. Carlin and Louis, 2000]. The
main characteristic that distinguishes empirical from full
Bayes methods is the way in which the priors are assigned
or defined. In the full Bayes approach, only priors that
are defined before the inclusion of any observation are
considered true priors (i.e., information independent of
data). The empirical approach, on the other hand, relaxes
this requirement and allows some or all available data
to inform the priors defining the parameters of interest.
Without entering the controversial debate of empirical ver-
sus full Bayes approaches [e.g., Scales and Snider, 1997;
Scales and Tenorio, 2001; Kitanidis, 2011, and references
therein], we note that different forms of the empirical

First Part (MC search in 1-D)

Input

MC search/inversion
emphasis on T (+ crust) 

(Approximate PDFs for all parameters
in all individual columns)

MCMC

Second Part (refinement in 3-D)

pure forward linearized  inversion

Dispersion maps
1D geoid anomalies
Xenolith data*
Vp structure#

Elevation
1-D MT data
Surface heat flow

MC search/inversion
emphasis on C 

Output

Input

Inversion/Forward

Dispersion maps
3-D geoid anomaly
3-D gravity anomalies
Xenolith data*
Vp structure#

Elevation
3-D/1-D MT data
Surface heat flow
output from part 1 

Output
(posterior PDF of the 3-D compositional and

thermal structure of the lithosphere and
sublithospheric upper mantle)

Figure 1. Flow chart illustrating the two-part inversion approach presented in this study. In this paper,
we only describe the Markov Chain Monte Carlo inversion method (solid lines) for the second part. Other
potential approaches, such as pure forward or linearized inversions (dashed lines), are simpler and more
restrictive and therefore will not be discussed here.
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Figure 2. Discretization scales used in the inversion. A 3-D model can be thought of as made up of
a collection of 1-D columns. Each column has three discretization scales. The finest discretization scale
(computation nodes) is used in the numerical solution of the forward problem, both in 1-D and 3-D. The
vertical grid step is typically set to � 2 km. The intermediate discretization scale (thermodynamic nodes)
is used in the solution of the Gibbs free energy minimization problem. Typically, 10–20 nodes are used
in the intermediate discretization. The third discretization scale (compositional layers) refers to the actual
number of independent compositional layers allowed in the model. The number of compositional layers
in most practical applications varies between 6 and 8. See text for details.

Bayes approach have been proven to be some of the most
practical and effective tools for the solution of geophysi-
cal inverse problems [e.g., Gouveia and Scales, 1998; Oh
and Kwon, 2001; Malinverno and Briggs, 2004; Sambridge
et al., 2006; Kitanidis, 2011]. Although we do not use a
formal empirical Bayes formalism, we implicitly borrow
concepts from the empirical paradigm by allowing some of
the data to define, in an approximate manner, the priors used
in the final 3-D stage.

[10] The described division of the inversion scheme into
a preliminary 1-D stage and a final 3-D stage is sensi-
ble for the following two reasons. First, the observables
used in the first 1-D stage (dispersion maps, elevation, MT
data, 1-D geoid anomaly, surface heat flow) are largely
controlled by the 1-D structure of the lithosphere and
upper mantle. Second, the initial 3-D models constructed by
assembling the best-fitting 1-D columns, and used as start-
ing models in the 3-D refinement stage, typically represent
already acceptable models (i.e., they explain most of the
data well). We discuss these two main stages further in the
following sections.

3. 1-D Column-by-Column Inversion
[11] As noted above and in Paper I, the response of

our system (i.e., predicted observables) to perturbations
in the parameter space (e.g., Al2O3 content, depth to the
lithosphere-asthenosphere boundary, etc.) is nonlinear, and
the number of free parameters and their initial variation
ranges are large. We therefore are forced to rely on an exten-
sive sampling of the parameter space through stochastic
nonlinear techniques. To this end, here we adopt a mod-
ified version of the direct search algorithm known as the
Neighborhood Algorithm (NA) [Sambridge, 1999a]. The

objective of the search is to find models in the entire
multi-dimensional model space that are compatible, to a sat-
isfactory degree, with observed data. The original version of
the NA does this by randomly sampling the entire parame-
ter space, guided by the fitting properties (good and bad) of
all previous samples [Sambridge, 1999a]. This self-guided
non-uniform sampling approach concentrates the sampling
around the regions (neighborhoods) where the models best
fit the data and avoids unnecessary sampling in areas where
the fit is not optimal. In this way, the entire model space is
well sampled, computational efficiency is maximized, and
the problem of entrapment in local minima is reduced. In an
optional second stage (the appraisal stage), the entire ensem-
ble of “acceptable” models obtained during the search stage
is re-sampled and analyzed using a Bayesian (probabilistic)
inference framework [Sambridge, 1999b]. We do not use
this capability here, since our final Bayesian analysis is
performed during the 3-D stage.

[12] The original NA requires four main control param-
eters to be defined prior to execution: the number of initial
samples to be generated (Ni), the maximum number of itera-
tions (maxit), the total number of random models generated
in each iteration of the search (Ns), and the number of best-
fitting neighbor cells to be re-sampled per iteration (Nr). For
instance, if Ni = 100, maxit = 20, Ns = 100, and Nr = 10,
then the algorithm will create 100 samples randomly dis-
tributed in the n-dimensional parameter space, and in each
successive iteration, only the 10 best-fitting cells will be re-
sampled by generating 10 new models within each of these
cells (Ns / Nr). The total number of models generated during
the complete search is 2100 (Ni + Ns � maxit). The values
needed for these parameters in order to perform a “good”
or “successful” search are strongly dependent on the actual
problem at hand, and they must be chosen based on trial
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experiments. In general, large values for Ns and Nr makes
the algorithm more explorative, thus reducing the prob-
lem of converging to local minima and guaranteeing good
sampling of the entire parameter space. This is particularly
relevant to our problem, since the search process, which
includes solving the forward problem, must be repeated for
each column making up our model (typically between 100
and 400 columns) before we can construct the 3-D model
for the next inversion stage. Therefore, the tuning of these
four parameters to warrant both computational efficiency
and acceptable solutions is critical. In order to maximize the
efficiency of the search, and customize the NA to our prob-
lem, we have modified the original NA in two ways. Each of
these modifications will be introduced below as the relevant
problems are being discussed.

3.1. The Forward Problem in 1-D: Parameters and
Discretization Scales

[13] At this point, we need to define (i) the variables or
parameters to be used during the search of the parameter
space and (ii) the numerical discretization used to solve the
forward problem of each realization or sample. The param-
eters that we choose to define a particular 1-D realization
are the thermal thickness of the lithosphere (i.e., depth to
the lithosphere-asthenosphere boundary or LAB) and the
major-oxide compositions of each of the n-compositional
layers defined for the simulation (Figure 2). We use the
depth to the LAB as an independent parameter because
it defines the first-order thermal structure of the column
(section 3.2.1). Each column typically would have six to
eight compositional layers of variable thickness; the number
of compositional layers is kept constant in all the columns
during the entire inversion procedure. Each of these layers is
defined by its five major oxides within the system CaO-FeO-
MgO-Al2O3-SiO2 (strictly, since CaO+FeO+MgO+Al2O3
+SiO2 = 100, only four oxides are needed). We choose this
system instead of the more complete system Na2O-CFMAS
because the added computational cost does not translate
in any significant improvement of the results (Appendix B
in Paper I). We have modified the original NA to sample
the compositional space following the method discussed in
Paper I (Afonso et al., this issue). Briefly, this method uses
two “key” oxides (Al2O3 and FeO) as independent param-
eters (Figures 3a–3c and 4a–4c in Paper I) and additional,
dependent, Gaussian distributions (Figures 3d, 3d, 4d, and
4e in Paper I) to sample the remaining CaO and MgO
according to their occurrence probabilities. This approach
is able to generate independent random samples that cover
the entire compositional spectrum observed in real mantle
samples without oversampling low-probability regions.

[14] In the present implementation, the solution of the
1-D forward problem depends on three different discretiza-
tion scales (Figure 2). The finest discretization scale is
used in the numerical solution of the heat-transfer, poten-
tial field, isostasy, Love and Rayleigh dispersion curves,
and Maxwell’s equations (Appendix A). We will refer to
the nodes making up this mesh as the computation nodes.
In this case, the grid step is typically set to � 2 km. The
intermediate discretization scale is used to calculate equilib-
rium assemblages and associated thermophysical properties
(e.g., seismic velocities, compressibility, bulk density, etc.)
by free energy minimization at specific P-T-C conditions.

We use components of the software Perple_X [Connolly,
2009] to solve the Gibbs free energy minimization problem
together with the database and thermodynamic formalism
of Stixrude and Lithgow-Bertelloni [2011]. The number of
nodes used in this discretization varies between 10 and 20,
and we will refer to them as the thermodynamic nodes.
All properties calculated at the thermodynamic nodes are
then interpolated to the computation nodes during the itera-
tive solution of the forward problem (see below). The third,
and coarser, discretization scale refers to the actual number
of independent compositional layers used in each column
(Figure 2). Typically, each compositional layer will include
at least two thermodynamic nodes. When the location of
a thermodynamic node coincides exactly with a limit of a
compositional layer, the composition of the node is assumed
to be that of the compositional layer immediately above it.
Since the bulk composition in each layer is constant, com-
positional anomalies of smaller scale than that defined by
the number of compositional layers assumed in the inversion
will not be resolvable. In this context, six to eight layers usu-
ally suffice given the resolution of the observables to vertical
gradients in composition.

[15] In order to compute the stable assemblages (by free
energy minimization) and their associated properties in the
thermodynamic nodes, one needs to know the temperature,
pressure, and composition of each node. This is straightfor-
ward in the case of temperature and composition (Appendix
A), since they are the independent variables. Pressure, on
the other hand, depends on the integrated bulk density of
the column, which in turn depends on pressure, temperature,
and the compositional structure of the column. Therefore,
an iterative scheme must be used to compute the lithostatic
pressure at the nodes [e.g., Fullea et al., 2009]. This is
particularly important when calculating absolute values of
physical properties, such as density or elastic moduli, since
the accumulated error in pressure when using non-iterative
schemes can reach values > 500 MPa at depths > 220 km
(i.e., > 7% error). This is equivalent to an error of � 15 km
in node depth. Likewise, neglecting changes in the acceler-
ation of gravity with depth can introduce systematic errors
in the calculation of pressure, albeit significantly smaller
(� 100 MPa at 380 km depth, equivalent to 0.8% error). We
therefore use a linear correction factor in our computations
to account for this effect. The density-pressure iterations are
stopped when the difference in calculated pressure between
two successive iterations becomes less than 70 MPa (i.e.,
assumed error in pressure). This is equivalent to an uncer-
tainty of only � 2 km in the node depth. In practice, one or
more “master pressure profiles” can be constructed a priori
and used as the initial guesses in the iteration scheme. We
find that by correctly tuning these profiles, the number of
necessary iterations during the 1-D forward problem can be
reduced to 0 at shallow levels and to 1 or 2 at the deepest
levels (z > 300 km depth).

3.2. Temperature Versus Compositional Parameters
[16] It is important to know the sensitivities of the observ-

ables to the different parameters in the model in order to
devise an efficient implementation of the 1-D search. As
discussed in Paper I, the sensitivity of geophysical observ-
ables to changes in bulk composition is much weaker than
to variations in temperature, or equivalently, to variations in
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the LAB depth. Moreover, different bulk compositions can
result in similar physical properties of the aggregate, thus
offering equally good fits to geophysical observables.

[17] The problem of having a system in which the indi-
vidual contributions of the model parameters to the global
likelihood are significantly different (i.e., data with differ-
ent sensitivities) is illustrated in Figure 3. In this simplified
example with only two parameters, observations (data) are
strongly sensitive to changes in parameter m1 but only
slightly sensitive to parameter m0. As a result, if the ini-
tial random sampling (e.g., Ni in the NA algorithm) does
not produce models close to the true values of the two
parameters, a situation can arise in which the proximity to
the true value of m1 in the initial sampling (case shown
in Figures 3a–3c) bias the evolution of the search algo-
rithm to wrong values of m0. This occurs because the
combined likelihood L(m0, m1) is dominated by the contri-
bution from m1 (Figure 3d). Consequently, those models
that are close to the true value of m0, but relatively far
from the true value of m1, are left unsampled in subsequent
iterations (Figures 3b and 3c). Although Markov Chain
Monte Carlo (MCMC) methods are arguably better suited
to handle this problem, a similar situation could arise if a
MCMC simulation without optimal adaptation is not let to
run long enough to guarantee good sampling (Figure 3e).
This is particularly relevant when the prior is vague and
the proposal distribution inaccurate [cf. Gilks et al., 1996;
Gregory, 2005].

[18] In principle, the above-mentioned difficulty could be
overcome or minimized by (i) increasing the values of Ni,
Ns and Nr in the NA (defined at the beginning of section 3),
(ii) applying weighting factors to L(m0, m1) in order to
increase the sensitivity to m0, or (iii) by subdividing
the search in two parts, each designed to maximize the
differential sensitivities. While (i) would be possible in
low-dimensional cases, it rapidly becomes impractical as
the dimensionality of the parameter space increases [e.g.,
Sambridge, 1998]. Similarly, weighting L(m) adds an arti-
ficial and arbitrary effect to the system that, in most cases,
is difficult to justify objectively. Arguably, (iii) represents a
better strategy as long as both the forward problem and the
misfit function can be specifically tailored to take advantage
of the different sensitivities to m0 and m1 (somewhat simi-
lar to the “cascade” approach of Mosegaard and Tarantola
[1995]). In this way, the first search focuses on constrain-
ing acceptable models using only parameter m1 (i.e., m0
taken constant) and a simplified forward problem. Given the
strong sensitivity of the data to m1 (Figure 3d), we only need
to generate a modest number of models in the initial sam-
ple (inasmuch as they are uniformly distributed) to greatly
reduce the initial range of potential values for m1, as con-
strained by the data. In the second part, the search algorithm
is focused on sampling parameter m0 more extensively by
allowing only small variations in m1 (already constrained
during the first stage; Figure 3f ).

[19] A similar, but more problematic, issue is having
more than one possible bulk composition fitting the data
equally well. In Paper I, we showed that samples with almost
identical physical properties tend to form a trend in the
compositional space, particularly at pressures pertaining to
lithospheric depths. In the same paper, we discussed a prob-
abilistic approach that succeeded in reducing the ensemble

of acceptable samples consistent with the data. However,
one critical aspect upon which the method relies is that the
search performed in the first stage (which defines the priors
for the second stage) must sample well the entire compo-
sitional space, including the trends of acceptable models
(Afonso et al., Paper I, this issue). In the context of direct
search methods such as the NA, if the original sample is
too small to properly explore the region defined by the trend
of acceptable samples, successive iterations could concen-
trate the search only in some parts of the acceptable region
that nevertheless do not contain the true value (Figures
3g–3i). Short MCMC simulations with vague priors and/or
proposal distributions could potentially be affected by the
same problem.

[20] Although the above illustrative examples are delib-
erately simplified, they do portray real complications iden-
tified during extensive trial-and-error experiments. Based
on this experience, and considering the differential sensi-
tivities of observables to temperature and composition, we
subdivide the 1-D column-by-column inversion stage into
two parts. The emphasis of the first part is on temperature
structures (the main parameter affecting observables), while
the second is designed to explore more thoroughly the
compositional space.
3.2.1. 1-D Search With Emphasis on
Temperature Structure

[21] The search in this first stage involves generating ran-
dom samples (via NA) of LAB depths within the range
50 < LAB < 380 km. This range is large enough to
include most of the variability commonly thought to exist in
continental settings [e.g., Pasyanos, 2010; Fishwick, 2010;
Hasterok and Chapman, 2011, and references therein]. We
also generate samples of the average composition of the
lithosphere (i.e., the model contain only one compositional
layer; the composition of the sub-lithospheric mantle is
assumed constant). This is necessary to avoid the potential,
albeit unlikely, problem that arises when the actual (real)
average lithospheric composition is significantly different
from the assumed one. In such a case, the search/inversion
could compensate the large compositional contrast with rel-
atively large and erroneous variations in the LAB or in the
internal thermal structure of the lithosphere.

[22] Once a particular LAB depth and average litho-
spheric composition have been chosen, we solve the 1-D
heat transfer equation under the assumptions of steady
state in the lithosphere and adiabatic gradient in the
sub-lithospheric upper mantle (Appendix A for numerical
details). Although these are standard assumptions in ther-
mal modeling of the lithosphere [cf. Jaupart and Mareschal,
2011], in general one could expect deviations from these
assumptions both within the lithosphere (e.g., transient
effects, local heating) and in the sub-lithospheric mantle
(e.g., hot plume material). In order to account for this pos-
sibility, and to keep the search as general as possible, we
introduce additional variables to the parameter space. These
new variables are discrete temperature deviations �Tn from
the conductive geotherm within the lithosphere, and discrete
deviations from the nominal adiabatic profile �dT/dzn in
the sub-lithospheric mantle. Since we only allow the algo-
rithm to propose finite increments of �Tn = 100°C and
set the minimum possible departure from the conductive
geotherms to 200°C, we force the search to be sensitive to

1655



AFONSO ET AL.: THERMOCHEMICAL STATE OF THE MANTLE II

Figure 3. (a–c) A direct search of a two-dimensional parameter space is performed with the Neighbor-
hood Algorithm [Sambridge, 1999a]. The initial sample (a) is made up of 30 random samples (Ni = 30).
Only the best five cells (thick borders) are chosen for resampling (Nr = 5), and three new random samples
are created in each cell (Ns = 15). Given the strong sensitivity of the data to parameter m1, the sampling
has been concentrated in two regions that define m1 well but do not include the true solution (red star).
(d) The total likelihood of the system L(m0, m1) is dominated by the contribution from parameter m1.
(e) A MCMC simulation with vague priors and an inadequate proposal distribution converges rapidly to
a good value of m1 but slowly toward good values of m0. If the chain is not let to run until global conver-
gence, the final result can be misleading. (f) Similar to Figures 3a–3c, but now the search has been divided
into two parts. The first part significantly narrowed the original variation range of m1, and therefore, the
sampling in the second part is focused on parameter m0. In this case, 50 samples have been enough to
locate the true solution (red star), as indicated by the five best-fitting cells (in gray). (g–i) The gray ellipse
denotes the region of models with identical fitting properties. Fifteen samples are generated in the first
iteration (g) and the two best cells (thick borders) are chosen for resampling (h). Since the original sam-
pling did not sample well the gray region, subsequent sampling is concentrated in an area of acceptable
fitting that nonetheless does not contain the true value.

only relatively large temperature anomalies. Similarly, for
the adiabatic gradient we use discrete values �dT/dzn =
0.10°C km–1. By doing this, we also minimize the ambigui-
ties that could arise at this stage from the trade-off between
temperature and composition in seismic velocities. Under
most circumstances, compositional variations in peridotites
can result in maximum Vs variations of � 1.5–1.7% [Afonso

and Schutt, 2012; Afonso et al., Paper I, this issue], which is
equivalent to maximum changes in temperature of � 200°C
[e.g., Afonso et al., 2010]. Hence, by setting the minimum
possible departure from the conductive geotherms to 200°C,
we effectively remove local compositional effects from this
part of the inversion (relaxed later). We emphasize that this
is also entirely consistent with, and justified by, the intrinsic

1656



AFONSO ET AL.: THERMOCHEMICAL STATE OF THE MANTLE II

theoretical uncertainties associated with the calculation of
conductive geotherms (operator gT in Paper I), which can be
of the order of ˙ 80°C [Joniken and Kukkonen, 1999; Vilá
et al., 2010].

[23] In summary, this first part only aims to identify first-
order temperature structures and large thermal anomalies
from the conductive and adiabatic regimes. Given the strong
sensitivities of the observables to variations in temperature,
this first part of the search converges rapidly. As we show
below, temperature anomalies are successfully identified
and the initial range of 50 < LAB < 380 km is typically
reduced to . 40 km with the evaluation of only 3500–6000
random models per column.
3.2.2. 1-D Search With Emphasis on Composition

[24] This part is the most computationally demanding and
time-consuming part of the method. Here we generate ran-
dom samples of (i) LAB depths (within the new reduced
range, Section 3.2.1), (ii) deviations�Tn for the lithospheric
thermodynamic nodes in increments of 50°C, (iii) deviations
�dT/dzn in increments of 0.05°C km–1, and (iv) five-oxide
compositions for all compositional layers defined in the
model. Any large temperature anomaly from conductive or
adiabatic profiles detected in the first part is transferred to
the second part.

[25] While the range of LAB depths typically varies only
between˙20–25 km in this part, the compositional space to
sample is extremely large. Each thermodynamic node (inter-
mediate discretization) has four quasi-independent variables
(SiO2 is not independent) when the system CFMAS is used
to describe bulk compositions. Note that although the num-
ber of independent oxides (parameters) in the sampling
method described in Paper I is only two (Al2O3 and FeO),
the NA needs to consider a four-dimensional space (i.e.,
the regressions in Figures 3 and 4 in Paper I have a finite
“thickness,” represented by Gaussian distributions describ-
ing CaO and MgO as functions of Al2O3). Therefore, in this
stage, the total number of parameters is � 31–36 per col-
umn (4 oxides� layers + 1 parameter for LAB depth +�Tn +
�dT/dzn).

[26] The sampling of the compositional space needs to
be exhaustive in order to locate a representative ensem-
ble of acceptable models. Importantly, not only the number
of samples generated in each iteration Ns and the num-
ber of re-sampled best-fitting cells Nr need to be large, but
more critically, the initial sample Ni must be large (e.g.,
Figures 3g–3i). In practice, we found that the combination
Ni = 120, 000–140, 000, Ns = 5000–7000, Nr = 200–300,
and maxit = 40–60 achieves satisfactory results. Therefore,
the final number of models (for which a forward prob-
lem is solved) generated with the NA is of the order of
320,000–560,000 per column. With such large number of
forward evaluations, it is critical that the forward problem
(heat-transfer, potential field, isostasy, Love and Rayleigh
waves, and Maxwell’s equations) is thoroughly optimized.
In our current 1-D implementation, the slowest part of the
forward problem is the solution of the free energy mini-
mization problem. We adopt the general strategy of solving
the minimization problem ex tempore for any composition
drawn during the inversion process in each thermodynamic
node. By doing this, we do not need to limit the composi-
tional space to a few pre-selected compositions, but rather
the data “decides” which compositions need to be sampled.

Each time one minimization problem is solved, we save
the relevant information (i.e., seismic velocities, densities,
etc) in pre-allocated CPU RAM memory vectors, for later
use. In this way, if a similar sample in the parameter space
(similar T, P and composition, see below) is drawn by the
NA at later iterations, the minimization problem does not
need to be solved again, instead we retrieve the informa-
tion from the previously calculated sample. Importantly, as
the simulations saturate the pre-allocated memory vectors,
the algorithm automatically selects the least used values
saved in the memory vector, and updates the register with
the most recently computed value. Since by design, both
MCMC simulations and the NA concentrate the sampling
around specific regions of good fit as they proceed, the
newly generated samples become gradually more similar to
the previous ones, and thus the minimization problem is
solved fewer times. This results in a rapidly increasing per-
formance as the search/inversion proceeds. In the case of the
NA, the actual gain in performance depends upon a slight
modification in the way the algorithm generate new samples
(Appendix B).

[27] It remains to be defined what we mean by “similar
samples.” We consider two samples to be similar (strictly,
identical physical properties) if they are located within
the same T-P-C cell in our discretized T-P-C space. The
discretization parameters for this T-P-C space are chosen
before starting the search. Unless otherwise indicated, we
will use �T = 3°C, �P = 5 MPa, �FeO = 0.2 wt%,
�Al2O3 = 0.2 wt%, �MgO = 0.5 wt%, and �CaO =
0.2 wt%.
3.2.3. A 1-D Synthetic Example

[28] A typical set of results from the full 1-D search
stage described above is shown in Figures 4–6 for a sin-
gle column of a 3-D synthetic model. The “observed” data
used in the 1-D search/inversion included surface heat flow,
geoid height, Love and Rayleigh dispersion curves (6 <
period < 170 s), 1-D Vp structure, and absolute elevation.
Each of these synthetic observables was obtained by adding
Gaussian random errors to the predictions from the original
3-D model. The latter consisted of six compositional lay-
ers; three in the lithosphere and three in the sub-lithospheric
upper mantle. The bulk compositions assigned to each of
the compositional layer are listed in Table 1, together with
their respective Mg# values. The misfit function used with
the NA was defined as

misift(m) =
1
2
�
(g(m) – dobs)TC–1

D (g(m) – dobs)
�

(3)

The computation of the covariance matrix CD used in this
example is described in detail in Section 4.

[29] The ensemble depicted in Figures 4–6 has been
selected from the entire populations of generated samples
according to their fitting properties. Only those samples that
fit the data within ˙ the variance of the data uncertainty
(i.e., diagonals of CD) are plotted and used to estimate PDFs
with a Gaussian kernel density estimator [e.g., Venables and
Ripley, 1999].

[30] There are a number of important observations to note
in Figures 4–6. First, the retrieved PDF for LAB depths
is an excellent representation of the true value, reflecting
the fact that the observables are mostly sensitive to tem-
perature structure. These results also reassure the benefits

1657



AFONSO ET AL.: THERMOCHEMICAL STATE OF THE MANTLE II

30 35 40 45 50 55
6

7

8

9

10

MgO

30 35 40 45 50 55

1

2

3

4

5

5 6 7 8 9 1010 5 6 7 8 9 10 5 6 7 8 9 1010

30 35 40 45 50 55 30 35 40 45 50 55 30 35 40 45 50 55

1

2

3

4

5

5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

F
eO

A
l2

O
3

C
aO

FeO FeO FeO

Al2O3 Al2O3 Al2O3

A
l2

O
3

C
aO

C
aO

30 35 40 45 50 55
6

7

8

9

10

30 35 40 45 50 55

1
2
3
4
5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

30 35 40 45 50 55
6

7

8

9

10

30 35 40 45 50 55

1
2
3
4
5

MgO MgO

MgO MgO MgO

MgO MgO MgO

FeO FeO FeO

Compositional layer # 1 Compositional layer # 2 Compositional layer # 3

Figure 4. Ensemble of acceptable models from the 1-D column-by-column inversion described in the
text. The synthetic data used in the inversion were geoid height, absolute elevation, Rayleigh dispersion
curves, 1-D Vp anomalies, and surface heat flow. The PDFs to be used as data-generating priors in the
3-D refinement stage are also shown together with their 50% and 95% regions. A Gaussian kernel density
estimator Venables and Ripley [1999] was used to compute the PDFs associated with the data points. The
sharp cutoffs in the samples (e.g., Al2O3 and FeO) are due to the limits imposed during the compositional
sampling, as described in Paper I (Afonso et al., this issue).

of dividing the 1-D inversion into temperature-oriented and
a composition-oriented parts. Second, the PDFs for com-
positional layers 1, 2, and 6 can also be considered good
representations of the true compositions; the PDFs exhibit
relatively narrow peaks of high probability close to the
true value. This suggests that the concentration of the sam-
pling by the NA has been successful in producing natural

PDFs for the second 3-D stage of the inversion. Although
in most cases the true composition is located within the
50% contour interval of the posterior PDF, some results
for layers 3, 4, and 5 are less clear. Here the resulting
PDFs tend to be broader (i.e., the NA could not concentrate
the sampling) and do not provide significant compositional
information at this stage. Note that the poor localization by
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Figure 5. (continued).

the NA is not a problem of the search algorithm, but rather
the unavoidable consequence of having acceptable samples
spread over a large region of compositional space. In Paper
I, we use synthetic rock samples to show that composi-
tions close to the mean of the entire compositional space
are difficult to isolate by Monte Carlo searches guided by
residuals based only on the fitting properties of the sam-
ple. In these cases, the complex modal versus chemical
effects that control the properties of the assemblages at
lithospheric conditions result in ensembles of acceptable
models large enough to cover most of the original variabil-
ity observed in exhumed mantle samples (e.g., Figures 10
and 11 in Paper I). The situation is aggravated when vague
priors and realistic observables + uncertainties are explic-

itly considered in the modeling and data vectors (as in
the present example). Therefore, only those compositional
anomalies that are significantly distant from the background
composition and produce relatively large signatures in the
observables are expected to be located (probabilistically) by
the search. While in principle the refinement 3-D stage of
the inversion could narrow the posterior PDFs of these lay-
ers, we do not expect major improvements. This is due to
the simple fact that the observed data (plus all the uncer-
tainties affecting the inversion) are not sensitive enough
to significantly increase the value of L(m) over the prior
PDFs during the 3-D stage (section 5). In simple terms, we
cannot extract more information from the observed data than
it actually contains.
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Figure 6. Posterior distribution obtained during the 1-D
inversion/search for the LAB depth. This PDF is used as
data-generating prior in the second 3-D refinement stage.

[31] Another relevant observation from Figures 4–5 is
that the distribution in the deepest layer is clearly more
localized than in the shallower layers. This observation
is consistent with, and can be explained by, the pressure-
dependent modal-compositional effect described in Paper
I. Briefly, the combined effects of larger gt/opx ratios and
the decrease in the capacity of pyroxenes to accommodate
Al2O3 as pressure increases, result in a greater sensitivity
of the secondary parameters Vp, Vs, and bulk density to
changes in primary parameters such as bulk composition.
This in turn translates into somewhat larger sensitivities
of observables (particularly seismological observables) to
changes in composition (especially Al2O3 content) at depths
& 300 km, consistent with the results from the analysis in
Paper I.

[32] An important result from this example is that even
at this early stage of the inversion, we have been able to
identify (on a statistical basis) vertical gradients in composi-
tion independent of the thermal structure. Furthermore, the
recovered mean Mg# for each layer are close to the true val-
ues (Table 1). Although these results are encouraging, by
no means should they be taken as evidence that the present
method can distinguish between temperature and composi-
tional effects at all scales. In fact, we emphasize that the
results in Figures 4–5 clearly suggest that differences in bulk
Mg# . 3 are not expected to be resolvable with confidence
by either the present or any other method based on geophys-
ical observables. That the average Mg# of the acceptable
ensembles are close to the true value simply reflects the ten-
dency of the acceptable samples to cluster around the true
solution; something described in detail in Paper I. However,
the associated dispersion observed in the PDFs of Figures
4–5 (see also the standard deviations in Table 1) do not
allow a statistically robust distinction between the Mg# of
the three intermediate layers (3, 4, and 5). Simply put, with
the current quality and quantity of observed geophysical
data, we can only aim to simultaneously identify and/or dis-
tinguish, in a probabilistic manner, extreme compositional
anomalies (e.g., highly depleted or highly fertile mantle
domains) and relatively large temperature anomalies.

4. Theoretical and Observational Uncertainties
[33] Before moving on to the 3-D refinement stage, we

need to discuss how to deal with both observational and the-
oretical uncertainties within the present inversion scheme.
For most practical purposes, these uncertainties can be

described with a Gaussian model, in which case we can
write

�(d) _ exp
�

–
1
2

(d – dobs)TC–1
d (d – dobs)

�
(4)

� (d|m) _ exp
�

–
1
2

[d – g(m)]TC–1
t [d – g(m)]

�
(5)

as PDFs for observational and theoretical data, respectively.
The covariance matrices Cd and Ct incorporate the uncer-
tainties (and their inter-correlations) in both types of data.
When these expressions are used for �(d) and � (d|m), it can
be shown [Tarantola and Valette, 1982] that the likelihood
function in equations 1 and 2 takes the form

L(m) _ exp
�

–
1
2

[g(m) – dobs]TC–1
D [g(m) – dobs]

�
(6)

where CD = Cd + Ct. Sometimes, double exponential or
Laplacian PDFs are preferred for modeling observational
data since they are less affected by potential outliers [e.g.,
Claerbout and Muir, 1973; Tarantola, 2005]. This is partic-
ularly useful in cases where the uncertainties are uncorre-
lated. If correlations exit, the use of Laplacian PDFs requires
much more cumbersome functions [e.g., Eltoft et al., 2006;
van Gerven et al., 2009], and therefore they are much less
popular in practical geophysical applications.

[34] There are no generally accepted rules for the compu-
tation of the covariance matrix in equation (6) for problems
involving multiple datasets. In particular, Cd is commonly
represented as a diagonal matrix (no correlations), while
Ct is typically neglected. In our case, however, uncertain-
ties associated with some of the observables are correlated
(e.g., gravity and geoid anomalies, Rayleigh and Love dis-
persion curves), and therefore a full-rank CD would be
needed. One of the main difficulties is the large dimension
of the data vector dobs (typically, the number of elements in
dobs > 8208), which makes the associated full-rank matrix
CD = Ct + Cd simply too big to be practical in MCMC sim-
ulations. Fortunately, CD is typically sparse, and for most
practical purposes, it can be subdivided into smaller sub-
matrices (blocks) for an easier computation of equations 6
and 3 (see below).

[35] The diagonal elements of Cd can readily be obtained
from independent analyses of the individual data (see Paper
I for a full discussion on observational uncertainties). For
dispersion curves and/or gravity and geoid anomalies, some

Table 1. Bulk Compositions Used in the Synthetic Model of
Section 3.2.3. The Original and Recovered Mg# of Each Layer
Is Also Included

Layer # SiO2 Al2O3 FeO MgO CaO Mg# MgR#a

1 46.08 1.00 6.45 45.88 0.59 92.7 92˙ 0.9
2 46.34 0.98 6.75 45.34 0.59 92.3 91.7˙ 1.1
3 44.88 1.76 8.21 43.87 1.29 90.5 91.1˙ 1.2
4 45.84 2.06 8.24 42.55 1.31 90.2 90.0˙ 1.4
5 45.45 4.55 8.18 38.18 3.64 89.3 89.4˙ 1.1
6 45.45 4.55 8.18 38.18 3.64 89.3 89.0˙ 0.8

a Mean˙ standard deviation of the recovered values.
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of the non-diagonal elements can also be estimated dur-
ing the processing of the raw data [e.g., Bensen et al.,
2007; Lin et al., 2009]. However, the potential correlations
between all the different observables considered here is dif-
ficult (if not impossible) to estimate with confidence in real
case scenarios.

[36] The evaluation of Ct is arguably more important.
It provides information not only on the reliability of our
forward problem but also can inform us about unforeseen
sources of error in our numerical schemes. Furthermore,
uncertainties in the numerical solution of the forward prob-
lem are typically of the same order as, if not larger than,
those affecting observations. A proper estimation and incor-
poration of theoretical uncertainties is therefore essential.
Here, we follow a procedure similar to that in Gouveia and
Scales [1998] to compute estimates of Ct. Since, in princi-
ple, Ct is independent of the vector of model parameters m,
a single representative covariance matrix Ct could be com-
puted prior to the inversion and then used throughout the
subsequent analysis.

[37] With the above considerations, and noting that the
approach to compute of Ct and Cd is independent of the gen-
eral inversion formalism (i.e., the Bayesian analysis is valid
with or without an explicit definition of these matrices),
in what follows we describe a practical, yet representative,
approach for the estimation of Ct and Cd and their incorpora-
tion into the inversion scheme (see also Gouveia and Scales
[1998] and Sambridge [1999b]).

4.1. A Practical Approach for Computing CD

[38] Besides the intrinsic uncertainties associated with the
models of anelastic attenuation (Appendix A4), the main
source of theoretical uncertainty in our method is related
to the three discretization scales used to numerically solve
the forward problem (Figure 2 and section 3.1). The pur-
pose of estimating the covariance matrix Ct is therefore to
incorporate representative calculation errors (and their cor-
relations) associated with the artificial discretization of a real
thermochemical continuum. We estimate the elements of Ct
as follows:

[39] 1. Create a reference 3-D thermochemical model in
which all three (vertical) discretization scales have a node
spacing of = 1 km (ultrahigh resolution). The horizontal
node spacing in each direction should be at least one half the
spacing in the model used during the inversion.

[40] 2. Solve the 3-D forward problem of this ultrahigh
resolution model and compute all the observables.

[41] 3. Rediscretize the 3-D model using the discretiza-
tion scales described in the text. The new vertical node
spacing is 2 km for the computation nodes, �20–30 km for
the thermodynamic nodes and �40–50 km for the compo-
sitional layers. The node spacing of the last two scales are
average values because they vary depending on the actual
LAB depth (see text).

[42] 4. Compute the observables associated with this re-
discretized 3-D model and calculate the difference �Oi
between its observables and those computed in item 2.

[43] 5. Repeat 1–4 as many times as necessary, always
starting with a different high-resolution model.

[44] 6. Use the results of all simulations to compute the
elements of the diagonal (variances) of Ct as

P
(�Oi)2/N,

where N is the number of repetitions in 5.

B1 B2 B3
B1

B2

B3

Figure 7. Subset (one column only) from the total covari-
ance matrix used in this work to describe theoretical
uncertainties. Gray scale indicates strong (white) and weak
(black) correlations. Block B1 includes surface heat flow,
Bouguer and free-air anomalies, geoid height, and eleva-
tion; Block B2 includes all the seismic observables (e.g.,
dispersion curves for individual periods, Vp for individual
nodes, etc.); Block B3 includes the two MT observables,
namely, apparent resistivity and phase. When Bouguer and
free-air anomalies, geoid height, and elevation are removed
from this matrix (i.e., those exhibiting correlations within
and between columns), the resultant reduced matrix is a real
example of CD2 (see text).

[45] In practice, since the solution of the high-resolution
model is computationally demanding, we only used eight
iterations in this paper. Given the independence of Ct on
the vector of model parameters m, further iterations can be
performed at any time and their results used to update the
global Ct.

[46] The non-diagonals elements need to capture the
extent to which random fluctuations in the calculated data
vector g(m) are correlated. We obtain estimates of these cor-
relations by modifying one column at a time and computing
the effect on the observables of all other columns in the
3-D model (note that for this to be useful, one need to use
the same discretization as in subsequent real inversions).
Given the nature of the chosen observables and the dimen-
sions of each column (i.e., horizontal resolution), it turns
out that the only observables that exhibit non-negligible cor-
relations, both within columns and between columns, are
the geoid height, gravity anomalies, and elevation. All other
observables display significant correlations only within indi-
vidual columns (Figure 7). We therefore assemble Ct in
the following order: gravity anomalies for all columns,
followed by geoid heights for all columns, followed by ele-
vation for all columns, followed by all other observables
ordered by column (e.g., surface heat flow of column 1
+ seismic observables of column 1, followed by surface
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Figure 8. (a) Hypothetical matrix Ct for a 3-D model
composed of only four rectangular columns and a data vec-
tor of length = 16 (i.e., observables A and B have one
datum per column; observable S has two data per col-
umn). Theoretical uncertainties associated with observables
A and B are correlated within and between columns, and
therefore, they are assembled first for all columns (i.e.,
A1 A2 A3 A4 B1 B2 B3 B4). Theoretical uncertainties
associated with observable S are correlated only within
columns, and therefore, they are assembled per column
after A and B (i.e., S11 S12 S21 S22 S31 S32 S41 S42).
(b) Same as Figure 8a but for matrix Cd. Note that in this
example, observational uncertainties for observables A and
B are uncorrelated. (c) Total matrix CD is simply the sum
of Ct and Cd (for Gaussian uncertainties). If both theoreti-
cal and observational uncertainties for observable S are only
correlated within columns, CD can be subdivided into two
master submatrices CD1 and CD2 for a simpler computa-
tion of the likelihood function (Figure 7 for an augmented
example of CD2).

heat flow of column 2 + seismic observables of column 2,
etc.). This ordering results in a sparse matrix Ct (Figure 8a)
with a structure that significantly simplifies the computa-
tion of likelihood functions (see below). Finally, we scale
all non-diagonal elements to be consistent with the diagonal
elements computed previously (steps (i)–(vi) above).

[47] The final covariance matrix CD in equation (6) is
obtained by simply adding Ct to the covariance matrix Cd.
Ideally, Cd would be obtained from a previous analysis of
the individual observables, and in general, it will not exhibit
the same structure as Ct. For instance, while uncertainties
in measured geoid and gravity anomalies are expected to
be correlated, observational uncertainties in elevation may
be independent of those associated with gravity measure-
ments (Figure 8b). For the synthetic cases used in this paper,

we use the synthetic data as observed data and compute Cd
as follows:

[48] 1. Solve the 3-D forward problem of the synthetic
model and compute all the observables.

[49] 2. Add moderate Gaussian noise to the model param-
eters and compute the new set of observables.

[50] 3. Generate as many realizations Nd as necessary
by repeating 1–2. This generates a matrix with dimensions
Nd � dobs. Each row vector represents a new realization or
measurement of the full data vector.

[51] 4. Compute the unbiased covariance matrix Cd =
1

Nd–1

PNd
i=1(dobs – dmean) (dobs – dmean)T, where dmean are the

elements of the mean vector from the sample Nd.
[52] For this work, we have only generated 50 realiza-

tions (Nd = 50). Finally, we ignore the correlations between
elevation and gravity/geoid, since they are an artifact of the
actual numerical method that is not representative of real
observational uncertainties (except in cases such as satellite-
derived bathymetry/geoid). Furthermore, to be consistent
with the computation of Ct, we only allow correlations
within columns for the rest of the observables (Figure 8b).
This is a suitable assumption, since the computed correla-
tions between columns are small. To minimize the artificial
effect of the arbitrary initial random noise assigned to the
model parameters and obtain a Cd representative of real
observational noise, one should normalize the elements of
Cd by forcing the diagonal values to coincide with realis-
tic uncertainty values (� 2) for each variable. Representative
uncertainties for each observable are discussed in detail in
Paper I.

[53] The final structure of CD allows us to subdivide the
computation of L(m) in two steps that involve only two
matrices of modest size (Figures 8c and 8d):

L1(m) _ exp
�

–
1
2

(g1(m) – d1)TC–1
D1(g1(m) – d1)

�
(7)

L2(m) _ exp
NX
1

�
–

1
2

(gi(m) – di)TC–1
D2(gi(m) – di)

�
(8)

where d1 is a subset of the total data vector containing the
data that shows correlations within and between columns,
di are subsets of the total data vector containing the data
that shows correlations within columns only, g1(m) and
gi(m) are the appropriate forward operators for d1 and di,
respectively, N the number of columns for which there is
a subset gi(m), CD1 the (sub)covariance matrix describing
the uncertainties associated with the subset d1, and CD2 the
(sub)covariance matrix describing the uncertainties associ-
ated with the subsets di. The total likelihood is simply L(m)
= L1(m) L2(m).

5. 3-D Refinement Stage
[54] The 1-D nonlinear inversion process described in

section 3 greatly reduces the large initial range of model
parameters. In particular, the original range of LAB depths
is usually reduced as much as 95% and its resulting poste-
rior is thus very narrow (Figure 6). For the compositional
space, on the other hand, the posterior PDFs are wider, but
in most cases, they exhibit defined regions of high proba-
bility (Figures 4–5). A preliminary pseudo 3-D model can
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be constructed simply by assembling the best-fitting model
columns obtained in the 1-D inversion part. This first pseudo
3-D model is used as the starting model for the refinement
3-D part (e.g., starting point in a MCMC simulation). During
this second refinement part, the physical or forward problem
(e.g., potential field equations) of each new drawn model is
solved in full 3-D geometry, except for Maxwell’s equations,
which are approximated as 1-D due to the time taken by the
3-D forward solver (see section C for details).

[55] It transpires that, if the 1-D inversion was exhaus-
tive, the initial pseudo 3-D model already fits most of
the 3-D data well. In principle, this allows the mod-
eler to choose among a number of approaches for the
refinement stage; foremost amongst these are: (i) a purely
forward approach, (ii) a linearized inversion method, or
(iii) a Bayesian analysis. In this paper, we will deal only
with the Bayesian approach, which we consider the most
general case. Although an exhaustive comparison of the
virtues and limitation of these methods is beyond the scope
of this paper, we note that a linearized inversion represents
a particularly attractive option, since it would significantly
reduce the computation time. However, as with any other
linear inversion method that includes the modeling of mul-
tiple observables, the success of the linearized approach
relies upon an optimal regularization of the model, which
is a difficult problem itself [cf. Zhdanov, 2002]. Moreover,
preliminary tests with synthetic models indicate that if the
compositions of particular columns or layers in the initial
pseudo 3-D model are relatively far from their true value
(something that can be considered the rule rather than the
exception), a linearized technique is not able to retrieve sat-
isfactory estimates of the true composition. Despite these
preliminary results, and considering the significant gains in
computational efficiency, a thorough future assessment of
the practicality and reliability of linearized methods for the
current problem is warranted.

5.1. Sampling the A Priori Information
[56] The a priori information used in the 3-D refinement

stage is obtained during the 1-D column-by-column inver-
sion described in section 3. It consist of (i) first-order PDFs
describing the acceptable distributions of major oxides for
all the compositional layers making up the 3-D model,
(ii) a PDF describing the LAB depth, and (iii) discrete
�T and �dT/dzn (departures from a conductive geotherm
and nominal adiabatic profile, respectively) values asso-
ciated with the thermodynamic nodes of the intermediate
discretization. Since there are no analytical expressions
for these PDFs, we use a Metropolis-Hastings algorithm
to draw samples from these a priori probability densities
[cf. Mosegaard and Tarantola, 2002; Tarantola, 2005].

[57] As described in Mosegaard and Tarantola [1995], it
is important that the steps in the sampling of the prior do not
lead to radical changes in the predicted observables. Other-
wise, the probability of being accepted as samples of the a
posteriori density (proportional to L(m)) becomes extremely
low and the performance of the algorithm is seriously dete-
riorated. In our case, a simple way of sampling the prior
without compromising the acceptance rate of the models
proceeds as follows:

[58] 1. Randomly choose one column of the 3-D model;
guarantee that the probability of being chosen is the same for
all columns.

[59] 2. Use a Metropolis-Hastings algorithm to obtain a
new sample of the column (i.e., different LAB depth and
layers’ compositions) according to its prior PDFs.

[60] The samples or models so generated correspond
exactly to the a priori information we want to input into our
problem. At the same time, this random walk does not per-
turb previous good samples to a large extent, thus favoring a
greater acceptance rate by the Metropolis rule (see below).

5.2. Sampling the A Posteriori Probability Density
[61] The first sample in our MCMC simulation is the ini-

tial pseudo 3-D model. Once a new sample mnew of the
prior has been chosen as described above, the 3-D forward
problem is solved and its likelihood function L(mnew) is
obtained. We then decide whether mnew is accepted as part
of the chain or rejected according to the Metropolis rule
[cf. Mosegaard and Tarantola, 1995; Tarantola, 2005]:

[62] 1. if L(mnew) � L(mprev), then accept mnew
[63] 2. if L(mnew) < L(mprev), then randomly decide to

accept or reject mnew with probability P = L(mnew)/
L(mprev) of accepting mnew

where mprev is the last accepted model (pseudo 3-D model
if we just started the simulation). The final ensemble of
accepted samples so obtained constitutes an estimate of the
posterior � (m). It is customary in MCMC simulations to
define a “burn-in” period in which the accepted samples are
not included in chain [cf. Gilks et al., 1996]. This has the
purpose of minimizing or removing the “memory effect” of
the original or starting sample, which in principle, could be
far from the high a posteriori probability region. Since in our
case the starting sample typically is already a good sample,
defining a burn-in period is not strictly necessary. Neverthe-
less, to allow for the possibility of a poor starting sample,
we usually adopt a burn-in period of 4500 samples.

5.3. A 3-D Synthetic Example
5.3.1. Synthetic Model and “Observed” Data

[64] In this section, we consider a basic example to
illustrate the benefits and limitations of the probabilistic
inversion method discussed above. The synthetic model is a
3-D Cartesian region that we subdivide into 144 (12 � 12)
columns to be used in the 1-D stage. The total number
of columns in a given model depends on both the total
dimension of the region under study (typically . 1.0 �
106 km2) and the minimum surface area assigned for each
column. The surface area of individual columns is, in turn,
dictated by the assumptions used in the solution of the 1-D
forward problem (Paper I and Appendix A), and for the
present implementation, it should be � 5000–10,000 km2.

[65] The 3-D model includes four distinct compositional
domains embedded at different depths within a slightly
depleted “Tecton-type” background (Figure 9 and Table 2).
The LAB and therefore the long-wavelength thermal struc-
ture of the model have an irregular geometry with localized
lateral gradients (Figure 10a). The crustal structure is dom-
inated by variations of shorter wavelength than those of the
LAB (Figure 10b). Bulk density, Vp, and Vs within the crust
are assumed to vary linearly with depth as �(z) = 2670 + 9*z
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Figure 9. Columns making up our 3-D synthetic model.
The surface projections of the four anomalous composi-
tional domains together with their bulk Mg# are indicated.
The bulk Mg# of the background is 89.9.

[kg m–3], Vs(z) = 3.45 + 4.25 � 10–3*z [km s–1], Vp(z) =
6.0 + 1.7 � 10–2*z [km s–1], where z is in km.

[66] We generate the “observed” data for our test by first
solving the 3-D forward problem associated with the 3-D
model described above and then contaminating its predic-
tions by adding Gaussian random noise. We do this on a
finer grid (120 � 120) in order to simulate real data more
closely and to be able to compute “observational” variances
for the inversion (see below). Figure 11 shows three of these
synthetic observables. The first-order general patterns of
the geoid height, Bouguer anomaly and elevation are easily
understood in terms of the assumed thermochemical struc-
ture of the model. For instance, the two major features in the
elevation, namely, the high and low domains in the left side
of the model, are the response to the highly depleted (buoy-
ant) lithospheric domain in the lower left corner (Figures 9
and 12) and the denser (colder) lithospheric root in the upper
left corner (Figure 10), respectively. The same two struc-
tures are also identifiable in the geoid height (Figure 11). As
expected, the pattern of Bouguer anomalies shows a closer
correlation with the crustal structure than with the long-
wavelength structure of the thermal lithosphere. The only
clear perturbation to this pattern is the large low anomaly
region associated with the topographic high. Note that there
is no crustal compensation in this case; the topography
is compensated by the low density depleted body in the
lithospheric mantle. Yet, since the density anomaly is rel-
atively shallow and large, it influences considerably the
pattern of gravity anomalies.

[67] Before starting the 1-D part of the inversion, we
need to assign a unique observed value for each column plus
uncertainties. For gravity anomalies, geoid height, surface
heat flow, and topography, we first select the area associated
with a particular column and subdivide it into 100 subre-
gions (i.e., 10 by 10). We then take an individual value

in each subregion from the observed data (Figure 11) and
compute the average and variance of all 100 values. The
averages so calculated represent the input data for each col-
umn, while the variances are added to the diagonals of Cd
(section 4). This is possible because these variances are
related exclusively to the averaging process (i.e., averag-
ing the natural variability of the data over the area of a
column), and therefore they represent an independent source
of uncertainty.

[68] In all cases, synthetic seismic observables (and the
methods to compute them) include corrections for high-
temperature anelastic behavior as described in section A4.
For the dispersion curves, we use the prediction from the
true model and assume the following observational uncer-
tainties (i.e., diagonals of Cd): 15 m s–1 for 6 s < periods <
30 s, 20 m s–1 for 30 s < periods < 60 s, and 25 m s–1 for peri-
ods > 60 s. For the Vp structure, we first subtract the AK135
model [Kennett et al., 1995] from each computation node to
obtain the respective Vp anomalies (which are the only reli-
able information from body-wave tomography studies; see
Paper I). We then add Gaussian noise with a standard devi-
ation of 0.5% to these anomalies and used them as data in
the inversion. This simulates maximum anomaly uncertain-
ties of � 1.2%. Larger uncertainties would render the use of
Vp anomalies unviable for the present purposes/method. We
emphasize, however, that the present choice of working with
synthetic Vp anomalies is only for illustrative purposes. A
more objective approach of including body-wave data into
the inversion is discussed in section 7.

5.3.2. Results From the Inversion
[69] The final amount of data generated by the inver-

sion is extremely large, and typical visualization techniques
such as marginalization of the posterior is impractical unless
we are interested in a small number of parameters. Since
the solution to the problem is not a single model, but a
probability density over the model parameters (in practice,
an extremely large collection of acceptable models), the
question of how to visualize this posterior and evaluate the
resolving power of the method for 3-D models has no triv-
ial answer. For instance, how do we visualize the marginal
posterior for the LAB depth? Ideally, we would need to
construct marginals of the LAB depth for different points on
the surface of the model (e.g., one for each column), since
each 2-D surface region has associated a probability density
describing the depth to the LAB under that region. For illus-
tration purposes, here we choose to describe the solution
of our inversion by plotting the means of randomly cho-
sen subsets from the entire collection defining � (m) (cluster
analysis is another option). For each subset, we randomly
choose 500 models from the entire posterior ensemble and
compute the mean vector and covariance matrix of the sub-
set. Figure 13 shows eight examples of such mean maps for
the LAB, together with the original model. Since the method

Table 2. Bulk Compositions Used in the 3-D Synthetic Model
of Section 5

Domain SiO2 Al2O3 FeO MgO CaO Mg#

Depleted domains 44.70 0.50 6.50 48.20 0.10 93.0
Fertile domains 45.66 4.50 8.10 37.83 3.91 89.3
Background 45.60 3.50 8.00 39.80 3.10 89.9
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Figure 10. Contour maps of the (a) LAB and (b) Moho used in the 3-D synthetic model of Section 5.
Note the different wavelengths of these two structures.

is particularly designed to generate model features with a
frequency proportional to their a posteriori PDF, those fea-
tures that appear more frequently and consistently in the
subsets (and also in the total ensemble of acceptable models)
are considered well resolved. Remember that our inversion
scheme starts by assuming very vague priors for the ther-
mal and compositional structure of the model, and therefore
the features that appear with high frequency in the final col-
lection are favored mainly by the likelihood function (i.e.,
data). From the maps in Figure 13, we can conclude that the
inversion has been able to retrieve satisfactory solutions for
both the two original anomalies (persistent in all maps) and
the mean LAB depth.

[70] Since the LAB posterior has a simple form and is
well behaved (no multiple peaks, etc.), plotting the mean of
all possible solutions together with some estimation of the
variance is informative. Constructing 2-D transects across
the model showing the probabilities of having the LAB
at specific depths (Figure 14) is therefore an appropriate
option. The same is not true for the visualization of the
compositional parameters.

[71] Figures 15a–15h and 16a–16h show the results for
eight mean subsets for bulk Mg# and Al2O3 content,
together with the initial true model. As in Figure 13, each
subset has been constructed by randomly choosing 500
models from the entire posterior ensemble and comput-
ing the mean of the subset. The most salient features in
Figures 15 and 16 are the two highly depleted domains.
Importantly, both the lithospheric and sub-lithospheric
depleted domains are well resolved with relatively high spa-
tial resolution. The resolving power for the fertile domains,
on the other hand, is less obvious, particularly in the case
of Mg# (Figure 15). Most of the subsets in Figure 15
correctly depict the presence of an anomalously fertile sub-
lithospheric domain at the northeastern lower corner of
the model, although the true shape is not well recovered.

Similarly, a fertile shallow region at the southeastern corner
is a consistent, yet dimmer, feature across all subsets.

[72] A better picture of the anomalously fertile domains
is obtained when looking at the bulk Al2O3 contents
(Figure 16), a well-known indicator of depleted versus fer-
tile peridotites. Although the depleted domains are also
identifiable when looking at CaO and FeO, the same is
not true for the fertile domains. Only Al2O3 offers a rel-
atively clear picture of the fertile domains. This is no
surprise, as bulk Al2O3 has the strongest effect on the phys-
ical properties of peridotitc assembleges (see also Paper
I). That the highly depleted domains have been recovered
with higher probability/resolution than the fertile domains
simply reflects the fact that the contrast between the physi-
cal properties of the background and depleted assemblages
is stronger than that between the background and the fer-
tile domains. In particular, the irregular and patchy pattern
recovered for the fertile domains is consistent with our pre-
vious observation (section 3.2.3) that differences in bulk
Mg# < 3 are not expected to be resolvable with confidence
by methods based on geophysical observables. It seems
therefore that bulk Al2O3 rather than Mg# could be a bet-
ter parameter to discriminate between compositional end
members in thermodynamically constrained studies.

[73] Perhaps more important is the fact that the poste-
rior probabilities of both horizontal and vertical gradients in
composition are good representations of the true model (also
in the 1-D example of section 3.2.3). In other words, the
important step forward is not the recovery of accurate abso-
lute amplitudes, but the robust discrimination/identification
of both lateral and vertical thermochemical changes within
the lithosphere and sub-lithospheric upper mantle. To this
respect, what makes our method particularly well suited
for discriminating thermal and compositional anomalies is
the internally consistent combination of observables that
are differentially sensitive to bulk density and seismic
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Figure 11. (a) “Observed” geoid, (b) Bouguer anomaly,
and (c) topography datasets used in the 3-D inversion, gen-
erated by adding noise to the synthetic data predicted by the
true model described in Section 5.3.1.
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Figure 12. 3-D spatial distribution of the anomalous com-
positional domains in our synthetic model. The color scale
denotes bulk Al2O3 content. Predicted topography plus
noise (Figure 11) is also shown.

velocities. For instance, useful indicators such as �/Vs
[Forte and Perry, 2000; Deschamps et al., 2002; Afonso et
al., 2010] or topography/geoid ratios are intrinsically built
in our method, and therefore, there is no need to assume ad
hoc scaling factors or depth-dependent behaviors for them.

6. Further Comments on the Methodology
6.1. A Note on Computational Requirements

[74] As with any other high-dimensional problem solved
with Monte Carlo techniques, the computational cost asso-
ciated with the current method is high, and parallelization
of the problem becomes essential. In principle, there are
many different ways to parallelize our algorithms. In prac-
tice, however, only trial and error dictates which of them
are best suited for the present problem. Despite the particu-
lar parallel implementation adopted, the number of columns
in a typical 3-D model ranges between 144 and 400, and
approximately, 180,000–300,000 models need to be eval-
uated in each column. This bring a total of forward eval-
uations to 25–120 million in the 1-D stage only; another
550,000–850,000 models need to be solved during the 3-D
stage. The need for large clusters (ideal number of CPUs =
number of columns) and efficient parallel implementations
is thus evident. Without attempting to perform an exhaustive
analysis of all possible techniques, we will briefly describe a
particular parallelization scheme that has proven adequate.

[75] Two parallel versions exist for the NA algorithm
[Rickwood and Sambridge, 2006]. The first one, referred to
as the canonical version, distributes the forward problem
to different processors but collects and processes all their
information in the master node only. This implementation
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Figure 13. Mean LAB models of eight subsets of 500 random samples taken from the entire collection
of acceptable models defining the posterior � (m). The true model is shown for comparison at the bottom
right (i). Note that LAB anomalies with amplitudes close to the original values are persistent across all
mean maps.

creates a bottle-neck at the master node level when the num-
ber of forward problems is as large as in our problem, since
it is the master node that evaluates all the information from
the computing nodes and generates the new samples for the
next iteration. The second implementation attempts to over-
come this limitation by truly parallelizing both the forward
problem and the generation of samples. Unfortunately, when
applied to our specific problem, neither of these implemen-
tations performed well as stand-alone. We therefore adopt
the following strategy. Since the columns are considered
independent in our current implementation of the 1-D inver-
sion problem, we solve each 1-D problem (one column) as a
serial problem in a single CPU. Each 1-D problem typically
takes between 7 and 12 hs, depending on the total number of
CPUs and memory available. Therefore, it is imperative to
have access to at least Ncols/2 CPUs, where Ncols is the total
number of columns in the 3-D model. The collection of all
the information from each computing node is done by the
master node at the end of the simulation. If more computing
nodes were available, a better strategy could be to assign n

nodes to each column and distribute the forward problem to
these n nodes. This would require a total number of nodes
of the order of number of columns � n, with n > 2. We have
not tested this approach yet.

[76] For the 3-D stage of the inversion, we use a simpler
and more popular parallelization strategy based on running
different MCMC simulations in different CPUs [Gelman
and Rubin, 1992; Gelman, 1996; Wilkinson, 2005]. This
approach is particularly attractive when the burn-in period
is short in comparison with the total number of samples,
as it occurs in our problem. In this way, we can vary the
properties of each chain and see whether they all provide
consistent results. In particular, starting from different 3-D
models taken from the PDFs obtained during the 1-D inver-
sion stage can be useful, since it provides a measure of how
dependent the solution is to the initial guess. Also, and per-
haps more important, comparing different chains can inform
us about the global convergence of the MCMC simulation
[Gelman, 1996; Rosenthal, 2000; Wilkinson, 2005]. Given
that this stage takes between 100 and 150 hs, future work
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Figure 14. Mean values (black solid lines) for LAB depths
and associated dispersion from the posterior ensemble of
acceptable models. Bars denote one standard deviation from
the mean value. Red solid lines denote the true values from
Figure 10a.

on the parallelization of the actual 3-D forward operators
and the independent chains will be highly beneficial (see
Section 7.2).
6.2. Including Crustal Structure in the Inversion

[77] So far we have assumed that the density, resistivity
and velocity structures of the crust is known from previ-
ous independent studies (reflection-refraction profiling, MT
studies, ambient-noise tomography, etc.). While this may be
true in some well-studied regions, it is likely that we will
not have a thorough coverage of the crustal structure in all
regions of interest. Therefore, since some of the geophysical
observables used in our method are significantly sensitive to
crustal structure (particularly Moho depth and average den-
sity), its signature has to be included in the inversion process
(i.e., the crustal structure becomes an unknown).

[78] When this is the case, we propose to discretize the
crust as either three or four consecutive layers and define
the following additional variables in the 1-D temperature-
oriented search (section 3.2.1): bulk density �, Vs, Vp (actu-
ally, Vp/Vs ratio), electrical conductivity, and layer thickness
for each crustal layer. Note that the thermodynamic equilib-
rium problem is not solved within the crust, and therefore,
we do not explicitly solve for its compositional structure.
This is justified by the lack of reliable quantitative informa-
tion on reaction kinetics and metastability at temperatures
< 500°C. However, this is a restriction that can be easily
relaxed if reliable data is available.

[79] The reason for inverting for the crustal structure
during the 1-D temperature-oriented part is the strong
sensitivity of the observables (particularly surface waves
and isostasy) to both temperature and crustal structure.
Therefore, similarly as for temperature, a large reduction
of the initial parameter space for crustal parameters is
achieved with a modest number of forward evaluations
(25,000–60,000 for the combined temperature-crust case),
and the resulting PDFs are typically narrow and well
behaved. We therefore consider the best-fitting crustal
model as known data during the second 1-D search with
emphasis on composition (i.e., crustal structure is not
allowed to vary). For the 3-D refinement stage, however, the
full PDFs of crustal parameters are used to generate samples
of crustal models.

[80] We acknowledge that the above discretization and
approach to include the crustal structure in the inversion are
not the only possible options, but they represent a sensi-
ble compromise between performance and robustness. The
addition of a receiver function operator to the forward prob-
lem (work in progress, see next section) when inverting
for crustal structure is of particular relevance. This could
provide valuable additional constraints to determine the
Moho structure and the location of the interfaces between
the internal layers, provided reliable receiver function data
exist in the region of interest.

7. Future Work
7.1. Additional Operators

[81] One of the main advantages of probabilistic meth-
ods such as the one described in this paper is the possibility
of working with different forward operators in an inter-
nally consistent way. Likewise, the modular character of our
implementation allows for including or excluding operators
from the inversion according to available data. Since the
main purpose of inverting multiple geophysical observables
is to minimize the range of plausible or acceptable mod-
els consistent with data, it is a requisite that each forward
operator contributes a different (an ideally independent)
sensitivity to the model parameters.

[82] Two operators that in principle could provide valu-
able additional information, and that we have not formally
included in this work, are the seismic-wave propagation
and receiver function (RF) operators. The inversion of P
or S teleseismic arrival time residuals for 3-D velocity
variations beneath an array can be performed with a for-
ward calculator such as the Fast Marching Method (FMM)
to solve the forward problem of traveltime prediction
[Rawlinson and Sambridge, 2004; Rawlinson et al., 2006].
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Figure 15. Mean-models of eight subsets of 500 random samples taken from the complete collection of
acceptable models defining the posterior PDF. The color scale denotes the bulk Mg# of the model. The
true model (i) is shown for comparison.

The FMM uses upwind entropy satisfying finite-difference
operators combined with a computational front which tracks
the first-arriving wavefront to robustly and efficiently com-
pute traveltimes on a grid. Ray paths can be extracted a
posteriori by tracking the traveltime gradient from receiver
to source [Rawlinson et al., 2006]. Each time the misfit func-
tion is computed for a particular model, traveltime residuals
can be rapidly computed by a simple integration of slow-
ness along each path. Although this assumes that ray path
geometry is largely independent of velocity structure, this is
an acceptable approximation for teleseismic paths, particu-
larly given that any dependence is second order. Moreover,
by updating the paths occasionally as the inversion pro-
ceeds, the issue of path dependence is explicitly considered.
Although a thorough assessment of the viability/usefulness
of this approach will be reported elsewhere (Afonso et al.,
Paper III), preliminary tests confirm its feasibility within the
present Bayesian framework.

[83] The use of a RF operator is attractive due to the
increasing volume of receiver functions recorded by per-
manent stations and portable networks, the availability of
a number of efficient techniques for forward modeling
[e.g., Frederiksen and Bostock, 2000; Herrmann, 2002;
Sambridge, 1999a], and the unique sensitivity of RF to the
Moho structure [cf. Zhu and Kanamori, 2000; Kind et al.,
2012]. These methods use information from a variety of
secondary wavefields (or phases) scattered off from hetero-
geneities beneath the seismic stations to locate first-order

discontinuities of the impedance structure. In regions where
data are available, the implementation of a RF operator into
the first stage of the inversion could provide critical informa-
tion, particularly when combined with ambient-noise data.
We are currently testing these capabilities.

7.2. Single Stage Inversion
[84] The apparent complexity of the inversion scheme

described in this paper is justified by the actual complex-
ity of the problem. However, some simplifications and
optimizations seem possible. Foremost among these is the
unification of the two parts (1-D and 3-D) into a single full
3-D stage driven by a self-adaptive MCMC. To this respect,
recent progress on the development of delayed rejection
methods, parallel tempering, and adaptive Metropolis algo-
rithms for high dimensions are particularly promising [e.g.,
Haario et al., 2005; 2006; Hasenbusch and Schaefer, 2010;
Roberts and Rosenthal, 2006; Craiu et al., 2009]. If these
strategies can be combined into a single optimized MCMC
[e.g., Haario et al., 2006], they may offer a more effective
way of implementing multi-observable probabilistic inver-
sion schemes. Alternatively, such adaptive MCMC scheme
could be used for both stages of the inversion (1-D and 3-D),
instead of a first search with the NA and then a Metropolis-
Hastings algorithm. In either case, however, the viability of
such approaches relies heavily on the non-trivial problem
of implementing an efficient parallelization of the individual
chains [e.g., Wilkinson, 2005; Brockwell, 2006].
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Figure 16. Same as in Figure 15, but now the color scale denotes the bulk Al2O3 content in the model.
The true model (i) is shown for comparison.

8. Summary and Concluding Remarks
[85] There have been four major advances over the past

10 years that warrants the development of robust inverse
methodologies capable of inverting directly for the thermo-
chemical structure of the Earth’s upper mantle: (i) improve-
ments in instrumentation and data processing of geophysical
data [e.g., Shapiro et al., 2005; Yang et al., 2008], con-
comitant with the installation of dense geophysical arrays
in many regions of the world [e.g., EarthScope/US Array,
PICASSO Array, Wombat Array, NECESS Array], (ii)
recent progress in the thermodynamic and thermophysi-
cal modeling of the Earth’s upper mantle [e.g., Connolly,
2009; Stixrude and Lithgow-Bertelloni, 2011; Holland and
Powell, 2011], (iii) rapid growth in the computational power
available to the scientific community, and (iv) comprehen-
sive documentation of exhumed upper mantle samples and
associated petrological/geochemical processes (see Afonso
et al., Paper I, for references). The main purpose of this
paper is to present a 3-D multi-observable probabilistic
inversion method to study the thermal and compositional
structure of the lithosphere and sub-lithospheric upper man-
tle, specifically designed to incorporate all of these advances
in an internally consistent manner. The method is based on
a Bayesian formalism (statistical inference), in which the
solution to the inverse problem is fully characterized by the
a posteriori probability density function, rather than single
models.

[86] The present method offers several important
advantages over more traditional inversion schemes when

dealing with temperature and compositional structures
simultaneously. First, the a priori compositional informa-
tion is not based on restrictive ad hoc ranges or assumed
age-composition relationships but on a statistical analysis
of a large database of exhumed upper mantle samples from
many different tectonic settings. This database can be easily
augmented as more samples become available, or as theo-
retical petrological models evolve. Second, the geophysical
observables used in the inversion have different sensitiv-
ities to temperature and bulk composition, as well as to
their spatial distributions. Due to the internally consistent
treatment of the observables, the use of important indicators
for temperature versus compositional anomalies such as the
�/Vs and/or topography/geoid ratios is intrinsically included
in the method. Therefore, no ad hoc assumptions regarding
the depth distribution of �/Vs are needed. This makes the
method well suited to handle the simultaneous determina-
tion (probabilistically) of temperature and compositional
anomalies. Third, both observational and theoretical uncer-
tainties (and their inter-correlations) can be taken into
account in a natural and general manner through probability
density functions. In this way, the a posteriori probabil-
ity density function contains all necessary information to
assign realistic uncertainties on the final results.

[87] Although the bulk Mg# (MgO/[MgO+FeO]) of peri-
dotites is typically considered the standard indicator of their
composition and physical properties, we have shown that
bulk Al2O3 content may be a better compositional proxy
in the context of direct inversions for temperature and
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composition. This is due to the strong effect that Al2O3 has
on the bulk density and seismic velocities of peridotites, as
well as its natural correlation with other important oxides
(e.g., MgO, CaO) and with the average degree of depletion
of the rock. Bulk “Al2O3 anomalies” in the upper mantle
may therefore be one of the most informative indicators for
scientific and large-scale prospecting studies.

[88] We have demonstrated that, even in the ideal case
of incorporating multiple high-quality datasets, deep tem-
perature anomalies . 150°C and compositional anomalies
�Mg# < 3 are not simultaneously resolvable by either ours
or any other method based on geophysical observables only.
This is an unavoidable consequence of the uncertainties
associated with both data and the current theoretical rela-
tionships between data and model parameters. Additional
complications related to the non-uniqueness in the com-
positional space and the intrinsic behavior of peridotites’
physical properties at high P-T conditions also contributes to
this problem. Nevertheless, we emphasize that this resolving
power in absolute magnitudes is sufficient for most prac-
tical and scientific purposes. It is not the ability to obtain
accurate magnitude maps of temperature and compositional
anomalies (which, in any case, is currently impossible) but
rather the ability to simultaneously locate large anomalies
that will allow us to examine long-standing problems about
the nature and evolution of the lithosphere–sub-lithospheric
upper mantle system (e.g., vertical stratification of cratonic
mantle, compositional versus temperature signatures in seis-
mic velocities, crust-mantle interactions, etc.). In this con-
text, our results indicate that the present method is able to
accomplish this (probabilistically) at horizontal and vertical
scales of . 100 and 40 km, respectively, provided the input
data has equal or better resolution. Such high-resolution
geophysical datasets are being attained in an increasing
number of regions (e.g., USA, China, Australia, Japan,
Spain, see above). The application of multi-observable prob-
abilistic methods to these datasets opens new pathways to
characterize the thermochemical structure of the lithosphere
and upper mantle beneath these areas with unprecedented
resolution.

Appendix A: 1-D Forward Problem

A1. Temperature
[89] The temperature structure is ultimately obtained by

the inversion procedure (section 3.2.1). However, we need
to define an initial temperature profile that is subsequently
modified during the inversion by proposing finite changes
�Tn and �dT/dzn. To obtain the initial thermal field in the
model, we subdivide the numerical domain into three sub-
domains: (i) a conduction-dominated region in steady state
(i.e., lithosphere), (ii) a convection-dominated region (i.e.,
convective sub-lithospheric upper mantle), and (iii) an inter-
mediate zone where both conduction and convection are
significant [cf. Afonso et al., 2008; Fullea et al., 2009]. We
identify the bottom of the conduction-dominated domain as
the LAB, and assign to it a value of 1315°C. This value
is always associated with a specific thermodynamic node
(defining the LAB), and thus, its temperature is not allowed
to change during the inversion (only its position).

[90] Within the first domain, we solve the steady state heat
conduction equation:

O � [k(z, T, P)OT(z)] = –H(z) (A1)

where T is temperature, P pressure, k thermal conduc-
tivity, H volumetric radiogenic heat production, and z
the 1-D Cartesian coordinate (i.e., depth). We discretize
equation (A1) with the finite-difference method; the nodal
spacing is that of the computation nodes described in the
text (� 2 km). The boundary conditions are the temper-
ature at the surface and at the bottom of the lithosphere
(1315°C). The transition between the lithospheric mantle
and the adiabatic sub-lithospheric mantle is modeled with
a “thermal buffer” of constant thickness (35 km), but vari-
able bottom temperature. This buffer mimics the thermal
effect of a rheologically active layer present at the bottom of
the upper thermal boundary layer in convecting mantle-like
fluids [e.g., Solomatov and Moresi, 2000; Zaranek and Par-
mentier, 2004]. The temperature at the top of the buffer coin-
cides with the LAB temperature; its bottom temperature,
Tbb, is entirely controlled by the inversion (i.e., observables).
Finally, the temperature in the sub-lithospheric mantle is
given by Tsublith = Tbb + z *(dT/dz)adiabatic, where z is depth
and (dT/dz)adiabatic is the adiabatic gradient. The latter is com-
puted as (TBot – Tbb)/(zBot – zbb), where zBot and TBot are the
depth and temperature at the bottom of the model, respec-
tively. TBot is a free parameter and is obtained from the
inversion.

[91] The conductive geotherms so obtained represent our
first-order estimation of the temperature distribution with
depth. These initial geotherms are then perturbed during
the inversion (section 3.2.1), to obtain the final temperature
structure consistent with the data.

A2. Elevation
[92] The application of hydrostatic equilibrium to the

Earth’s crust is commonly known as crustal isostasy
(strictly, local crustal isostasy). Likewise, its extension
to include the Earth’s lithosphere [e.g., Lachenbruch and
Morgan, 1990] may be referred to as lithospheric isostasy.
Lateral pressure (and density) gradients associated with
either temperature, topography, or compositional variations
can exist within the lithosphere over long time scales due to
its high viscosity. Indeed, several authors have demonstrated
that the topography of the outer surface in mantle-like
fluids is primarily controlled by the physical conditions
and buoyancy of the uppermost thermal boundary layer
[McKenzie, 1977; Parsons and Daly, 1983; Marquart and
Schmeling, 1989]. In contrast, the relatively low viscosity
of the shallow sub-lithospheric mantle (i.e., asthenosphere)
allows lateral pressure gradients to be relaxed by flow
over much shorter time scales. This creates a mechanical
and temporal decoupling between the long-term rigid litho-
sphere and the much less viscous sub-lithospheric mantle,
which explains the success of lithospheric isostatic models
in reproducing absolute elevation.

[93] The formulae used in the isostatic calibration and
calculation of absolute elevations have been described in
detail elsewhere [Afonso et al., 2008; Fullea et al., 2009].
The only difference here is that we explicitly decouple
contributions to topography from sub-lithospheric density
anomalies. Therefore, the elevation of any column can be
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written as [Lachenbruch and Morgan, 1990; Afonso et al.,
2008; Fullea et al., 2009]

E = Ls –
�L

�a
L –

Y
(A2)

where
�L =

1
L

Z bot

top
�L(z) dz (A3)

�a =
1

bot –
Q
Z bot

Q �a(z) dz (A4)

and �L(z) is the depth-dependent density of the column, �a(z)
the depth-dependent density of a reference adiabatic col-
umn, L = bot – top the total height of the column (including
water depth, w for columns with negative topography), Ls
the thickness of the solid part of the column (e.g., L – w),
and

Q
is a calibration parameter depending on the assumed

reference column [see Afonso et al., 2008]. To remove the
contribution of sub-lithospheric density anomalies, �L(z) is
divided into two parts:

�L =
1

LAB

Z LAB

top
�L(z) dz +

1
bot – LAB

Z bot

LAB
�a(z) dz (A5)

where LAB is the depth to the lithosphere-asthenosphere
boundary (i.e., 1315°C isotherm). By doing this, we only
account for lithospheric contributions to elevation, while
at the same time considering the effect of depth-dependent
density in the sub-lithospheric mantle (i.e., buoyancy force
depends on the total lithospheric thicknesses). Note that
�a(z) is used only for elevation computations; all other
observables are computed with the real density distribution
of the sub-lithospheric mantle. This decoupling of sub-
lithospheric contributions to elevation is necessary because
density anomalies in the sub-lithospheric mantle are gen-
erally not compensated locally but dynamically. In prac-
tice, dynamic effects can be indirectly introduced into the
inversion by filtering the signal or by assigning additional
uncertainties to the elevation forward calculator. Future
formulations could include a first-order approximation of
dynamic effects by solving a simplified 1-D Stokes prob-
lem (work in progress). Given the area of the 1-D columns
(typically > 6400 km2), flexural effects are not included at
this stage.

A3. Geoid Height
[94] We combine the gravity potential equation for cylin-

drical density anomalies [e.g., Turcotte and Schubert, 1982]
with Brun’s formula to obtain

�N =
2�G

g0

Z h

0
��(z) [(R2 + z2)1/2 – z] dz (A6)

where h is the maximum depth of the model, G the univer-
sal gravitational constant, and g0 the reference acceleration
of gravity on the reference geoid. For all practical pur-
poses, it suffices to take g0 = 9.81 m s–2 everywhere. We
numerically integrate equation (A6) (trapezoidal rule) using
the same internode distance as for the temperature calcula-
tion (computation nodes). We solve equation (A6) instead
of the more familiar isostatic approximation [Turcotte and
Schubert, 1982] due to the fact that not all density anoma-
lies in our models are necessarily isostatically compensated
(e.g., sub-lithospheric anomalies). The only unbounded

parameter in equation (A6) is the radius of the column R. It
is crucial to choose a value for R that guarantees that the 1-
D assumption is a good first-order approximation of the real
3-D effects. Otherwise, when passing from the 1-D to 3-D
stages of the inversion, the density structure constrained by
the 1-D stage may not represent an acceptable model for the
3-D stage. There is no simple rule of thumb to determine
the value of R, albeit intuitively it should be compara-
ble to the actual radius of the column making up the
model. Given the sensitivity of equation (A6) to the
dipole moment of the density distribution, low values of
R tend to underestimate the effects of shallow density
anomalies compared to their real 3-D signature. Simi-
larly, large values of R overestimate the effect of deep
density anomalies. In practice, we find that a value of
80–100 km provides a good estimate of the true 3-D
geoid (˙ 2.5 m).

A4. Surface Waves
[95] For the calculation of surface waves dispersion

curves, we use a modified version (to account for frequency-
dependent dispersion) of the code disp96 [Herrmann, 2002],
based on the Thompson-Haskell eigenvalue problem [cf. Aki
and Richards, 2002]. For this problem, we use a variable
thickness discretization (i.e., number of layers with constant
density, Vs and Vp) based on the finest mesh (computation
nodes); we subdivide each nodal distance of the finest mesh
into 10 sub-layers with constant properties obtained by lin-
ear interpolation of the values at the computation nodes.
Therefore, a typical discretization scale for the calculation
of dispersion curves is � 200 m. For depths below the 410
discontinuity (limit of our physical/numerical domain), we
use the parameters from the AK135 model [Kennett et al.,
1995].

[96] We use the laboratory-based model of Jackson and
Faul [2010] to compute the quality factor for shear waves
Qs as function of period, grain size, T, and P. The corre-
sponding Vs velocities used in the calculation of dispersion
curves are computed from [Minster and Anderson, 1981]

Vs(T, P, t, d) = Vs0

�
1 –

�
1
2

	
cot


�˛
2

�
Qs–1(T, P, t, d)

�
(A7)

where Vs0 is the anharmonic, unrelaxed velocity (obtained
from the free energy minimization operator), and T, P, t, and
d the temperature, pressure, period, and grain size, respec-
tively. For the examples in this paper, we use a constant
grain size d = 5 mm and a activation volume of 1.3�
10–5 m3 mol–1 [Faul and Jackson, 2005; Afonso et al.,
2008; Jackson and Faul, 2010] . Vp velocities can be com-
puted similarly by replacing Qs–1 with Qp–1 = L Qs–1+
(1 – L)Q–1

k , where L = (4/3)(Vp/Vs)2 and Qk is the bulk
quality factor [Anderson, 1989]. We make two standard sim-
plifications to solve for Vp(T, P, t, d) in the upper mantle.
First, we assume that Q–1

k is identically zero (all losses occur
in shear); second, we assume the Poisson solid approxima-
tion, which results in the simple relation Qp = (9/4) Qs
[Anderson, 1989]. Vp is then easily computed as [e.g.,
Afonso et al., 2005]

Vp(T, P, t, d) = Vp0

�
1 –

�
2
9

	
cot


�˛
2

�
Qs–1(T, P, t, d)

�
(A8)
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where Vp0 is the anharmonic, unrelaxed, compressional
velocity obtained from the free energy minimization
operator.

A5. Maxwell’s Equations
[97] Theoretical 1-D MT responses are computed accord-

ing to Wait’s [1954] recursion formula for an N-layered
conductivity structure. Wait’s formula is based on the con-
tinuity of the field components at the transition between the
nth to (n + 1)th conductivity layer. This continuity property
(strictly, a continuity condition for the Maxwell equations)
allows us to compute the transfer function at the top of the
nth layer provided that the transfer function at the top of
the (deeper) (n + 1)th layer is known. Therefore, assuming
that the lowermost Nth layer is a homogeneous half-space
with constant conductivity (i.e., the transfer function can
be easily computed), it is possible to propagate the transfer
function upwards by means of Wait’s formula. In the final
step, the apparent resistivity and the phase at the surface
of the Earth are computed from the transfer function and
compared with the measured MT data.

A6. Equilibrium Assemblages
[98] Equilibrium assemblages at specific P-T-C condi-

tions and all their relevant physical properties are computed
with components of the free energy minimization software
Perple_X [Connolly, 2009]. The algorithms used in the
energy minimization problem as well as the methods to
compute the bulk properties of the equilibrium assemblages
have been described in detail elsewhere [Connolly, 2005,
2009]; the reader is referred to these references for details.

Appendix B: Removing Information in the NA
[99] The NA generates new samples in each iteration

based on the fitting properties of all previous samples.
Therefore, the NA keeps track of these samples and their
associated Voronoi cells in order to generate new samples
in each iteration. This is an important feature that makes
the NA more robust [Sambridge, 1999a] than other search
algorithms, particularly for problems with multiple minima.
In our problem, however, most of the original samples gen-
erated in the first two to four iterations are never sampled
again in the course of the search (the reason for generating
a large number of samples at the beginning of the search
has been explained in section 3.2) due to their significantly
higher misfit values. Keeping this (useless) information dur-
ing the search deteriorates the performance of the NA, since
it has to loop over all previous samples at the beginning of
each iteration. In order to accelerate the search and take full
advantage of our strategy for solving the free energy min-
imization problem (section 3.2.2), we remove all samples
that have not been re-sampled after 10 iterations.

Appendix C: 3-D Forward Problem

C1. Temperature
[100] The only difference between the 1-D and 3-D for-

ward problems for temperature is that the conductive part
(lithosphere) is solved in 3-D Cartesian geometry. The
model is discretized in a 3-D grid with Nx, Ny, and Nz nodes
in the X, Y, and Z axes, respectively. While Nz is the same as
in the 1-D problem, Nx and Ny are typically 3–4 times larger

than the number of nodes defining the lateral extension of
the 1-D columns. This is necessary for numerical reasons
only; the original number of Nx and Ny nodes is too small
to allow an accurate determination of the 3-D temperature
structure than can be compared with the 1-D approximation.

[101] The boundary conditions are (i) no lateral heat flow
at the lateral limits of the model, (ii) constant temperature
at the surface, and (iii) constant temperature at the bottom
of the lithosphere. The current numerical implementation
uses a least-square iterative scheme to solve the linear sys-
tem of equations resulting from the discretization of the heat
transfer equation [Fullea et al., 2009]. No attempts have
been made to test direct solvers, although this is part of
ongoing work.

C2. 3-D Maxwell’s Equations
[102] The computational cost associated with the solution

of this forward problem is notoriously large and renders it
impractical for probabilistic formulations. Other approxima-
tions, such as 2-D solutions embedded in the 3-D model or
post-inversion consistency control, may be worth exploring
in future implementations of probabilistic methods.

C3. Gravity and Geoid Anomalies
[103] Gravity and geoid anomalies in every surface point

of the model are calculated adding the effect of all individual
columns. The vertical gravitational attraction produced by
a right rectangular prism whose density varies linearly with
depth can be expressed analytically in Cartesian coordinates
as [Gallardo-Delgado et al., 2003]

�g(�) = G�0 |||x ln(y + r) + y ln(x + r)
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where
r =

p
x2 + y2 + z2 (C2)

� = (�(z) – �0)/z (C3)

G is the universal gravitational constant and �0 is a con-
stant reference density. The first term on the right-hand side
of equation (C1) is equivalent to the contribution of a con-
stant density prism [e.g., Nagy et al., 2000]. The second term
introduces the effect of the linear density gradient � . The
corresponding geoid anomaly for the same prism is [Fullea
et al., 2009]
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[104] Columns located at the edges of the model are
extended 106 km to avoid border effects. The way in which
regional components and reference models are subtracted
follows the description in Fullea et al. [2009]; the reader is
referenced to this work for more details.

[105] The corresponding anomalies in every surface point
of the model are calculated adding the effect of all individual
prisms:

PF(x, y) =
X

prisms

f(�) g(x, y, z) (C6)

where PF(x, y) is the geoid or gravity anomaly over a point
at the surface of the model, f (�) is a function of the den-
sity distribution within the prism, and g(x, y, z) represents
a geometrical contribution that depends only on the spatial
coordinates of each prim. This decomposition is particu-
larly convenient when computing the 3-D gravity field a
large number of times, where only the density of one or two
prisms (i.e., columns) changes at a time. The rationale is
that the geometrical contribution g of each prism needs to
be computed only once at the beginning of the 3-D phase
(provided that the grid is kept fixed). Once these geomet-
rical contributions are computed for each prism and saved
in memory, the 3-D effect of changing the density structure
of a particular column during the inversion process can be
computed quickly, without having to consider the entire 3-D
density structure.

Appendix D: Convergence of the Chains
[106] The crucial problem of estimating the minimum

number of samples (iterations) in MCMC simulation needed
to achieve a specified accuracy of the posterior has no
unique answer. Many different methods (and criticisms)
can be found in the statistics literature [cf. Gelman, 1996;
Gelman et al., 2003; Wilkinson, 2005; Congdon, 2006], but
the problem is typically ignored in the geophysical liter-
ature. Although a thorough discussion of the benefits and
limitations of such methods is beyond the scope of this
paper, we briefly describe our preferred approach.

[107] The Gelman-Rubin scale-reduction factor [Gelman
and Rubin, 1992] is an attractive option for our case, since
it provides information on convergence and consistency of
multiple chains. The idea is that parameter samples from
poorly identified models will exhibit significant divergence
in the sample paths between different chains, and thus, the
variability of sampled parameter values between chains will
be larger than the variability within any one chain. Given J
chains with T iterations each (after burn-in), the variability
of samples  jt within the jth chain is defined as

wj =
�
 jt –  j

2

T – 1
(D1)

where  j is the average of all  jt defined over T iterations.
The variability within chains W is simply the average of the
wj. Similarly, the variance between chains is defined as

B =
T

J – 1

JX
j=1

�
 j –  

2 (D2)

where is the average of j. With these definitions, a simple
pool estimator of the variance of  is V = B/T + TW/(T –
1) [Congdon, 2006]. The so-called potential scale reduction
factor, GRSRF, [Gelman and Rubin, 1992] compares V with
W as GRSRF =

p
(V/W), which reduces to 1 as  ! 1.

Convergence of the chains can be assumed when GRSRF <
1.2. In our synthetic case studies, GRSRF values � 1.2 are
obtained T . 1000000.
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