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[1] Traditional inversion techniques applied to the problem of characterizing the thermal
and compositional structure of the upper mantle are not well suited to deal with the
nonlinearity of the problem, the trade-off between temperature and compositional effects
on wave velocities, the nonuniqueness of the compositional space, and the dissimilar
sensitivities of physical parameters to temperature and composition. Probabilistic
inversions, on the other hand, offer a powerful formalism to cope with all these
difficulties, while allowing for an adequate treatment of the intrinsic uncertainties
associated with both data and physical theories. This paper presents a detailed analysis of
the two most important elements controlling the outputs of probabilistic (Bayesian)
inversions for temperature and composition of the Earth’s mantle, namely the a priori
information on model parameters, �(m), and the likelihood function, L(m). The former is
mainly controlled by our current understanding of lithosphere and mantle composition,
while the latter conveys information on the observed data, their uncertainties, and the
physical theories used to relate model parameters to observed data.
[2] The benefits of combining specific geophysical datasets (Rayleigh and Love
dispersion curves, body wave tomography, magnetotelluric, geothermal, petrological,
gravity, elevation, and geoid), and their effects on L(m), are demonstrated by analyzing
their individual and combined sensitivities to composition and temperature as well as their
observational uncertainties. The dependence of bulk density, electrical conductivity, and
seismic velocities to major-element composition is systematically explored using Monte
Carlo simulations. We show that the dominant source of uncertainty in the identification
of compositional anomalies within the lithosphere is the intrinsic nonuniqueness in
compositional space. A general strategy for defining �(m) is proposed based on statistical
analyses of a large database of natural mantle samples collected from different tectonic
settings (xenoliths, abyssal peridotites, ophiolite samples, etc.). This strategy relaxes
more typical and restrictive assumptions such as the use of local/limited xenolith data or
compositional regionalizations based on age-composition relations. We demonstrate that
the combination of our �(m) with a L(m) that exploits the differential sensitivities of
specific geophysical observables provides a general and robust inference platform to
address the thermochemical structure of the lithosphere and sublithospheric upper mantle.
An accompanying paper deals with the integration of these two functions into a general
3-D multiobservable Bayesian inversion method and its computational implementation.
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1. Introduction
[3] The conversion of geophysical observables [e.g.,

travel time curves, gravity anomalies, surface heat flow
(SHF)] into robust estimates of the true thermochemical
structure of the Earth’s interior is one of the most funda-
mental goals of the Geosciences. It is the physical state
of the deep rocks that drives processes such as volcanism,
seismic activity, and tectonism. Detailed knowledge of the
thermal and compositional structure of the upper mantle is
an essential requirement for understanding the formation,
deformation, and destruction of continents, the physical and
chemical interactions between the lithosphere and the con-
vecting sublithospheric mantle, the long-term stability of
ancient lithosphere, and the development and evolution of
surface topography.

[4] Inferring physical parameters such as wave velocities,
density, or electrical conductivity, within the Earth is infor-
mative but not particularly useful if they are not converted
into information about the Earth’s thermochemical structure.
Ultimately, the ability to perform such conversions not only
determines our understanding of the Earth’s interior but also
has the potential to directly inform about the location of
mineral and energy resources.

[5] Current knowledge of the thermal and compositional
structure of the lithosphere and the sublithospheric mantle

essentially derives from four independent sources.
[6] (i) The most widely applied modeling approach

uses gravity and/or SHF data to obtain a model of
the temperature and/or density structure of the litho-
sphere that fits the data to some acceptable level [e.g.,
Zeyen and Fernàndez, 1994; Zeyen et al., 2005; Ebbing
et al., 2006; Jiménez-Munt et al., 2008; Chappell and
Kusznir, 2008; Kaban et al., 2010]. Typically, the den-
sity of the mantle is treated as constant or T-dependent
only. More sophisticated variants integrate concepts from
thermodynamics, mineral physics, heat transfer, and/or
isostatic modeling to derive lithospheric/sublithospheric
models that simultaneously fit two or more constraining
datasets [e.g., Sobolev et al., 1997; Khan et al., 2007;
Afonso et al., 2008; Fernàndez et al., 2010; Fullea
et al., 2009, 2010, 2011; Simmons et al., 2009; Kuskov
et al., 2011].

[7] (ii) The second most common approach applied to the
lithosphere and upper mantle is based on the modeling of
seismic data. The aim here is to test thermal and mineralog-
ical (or density) models that are compatible with seismic
data (usually shear waves) by using either thermodynamic
concepts and/or experimental data from mineral physics
[e.g., Bass and Anderson, 1984; Shapiro and Ritzwoller, ;
Ritzwoller et al., 2004; Priestley and McKenzie, 2006;
Ritsema et al., 2009; Cammarano et al., 2011]. Typically,
these studies do not invert directly for composition but
rather assume a priori “representative” compositional mod-
els. These are then used to generate synthetic data that can
be compared with some seismological observation to test
whether or not the model is consistent with the observation.

[8] (iii) The third source of independent information is
provided by models and data derived from magnetotellurics
(MT). MT is a natural-source electromagnetic method based
on the relationship between the temporal variations of elec-
tric and magnetic fields at the Earth’s surface and its

subsurface electrical structure [cf. Jones, 1999]; the latter is
the output of an MT model. Since the electrical conductivity
of solid aggregates is exponentially sensitive to tempera-
ture through an Arrhenius relationship, MT has the potential
to provide relatively tight constraints on temperature in the
lithosphere. Recent studies have shown encouraging results
towards linking conductivity, composition, temperature, and
seismic velocities through petrophysical parameters [e.g.,
Xu et al., 2000; Khan et al., 2006; Jones et al., 2009; Fullea
et al., 2011 and references therein].

[9] (iv) Finally, the only direct approach is the
petrological-geochemical estimation of thermobarometric
and chemical data from xenoliths (fragments of upper man-
tle brought up to the surface by volcanism) and exhumed
mantle sections. Where specific mineral assemblages (typ-
ically olivine + orthopyroxene ˙ clinopyroxene ˙ gar-
net) are present, xenoliths can be used to derive the
compositional and paleo-thermal structure beneath spe-
cific localities [e.g., Griffin et al., 1984; O’Reilly and
Griffin, 1996, 2006; Kukkonen and Peltonen, 1999; James
et al., 2004]. Unfortunately, the spatial and temporal cover-
age provided by this method is limited, and the extrapola-
tions and interpolations needed to model large sections of the
mantle carry unquantifiable uncertainties (see below). Also,
the bulk composition of specific xenolith suites may have
been affected by the exhumation process [cf. O’Reilly and
Griffin, 2012], and therefore, the question of whether they
provide a representative picture of the mantle they sampled
is raised.

[10] At present, there are often significant discrepancies
between the predictions from these four approaches [cf.
O’Reilly et al., 2010]. Indeed, different research groups
have recently proposed mutually incompatible models of
the lithosphere while using similar input data and/or meth-
ods [e.g., Priestley and McKenzie, 2006; Deen et al., 2006;
Li et al., 2008; Fishwick, 2010; Becker, 2012]. In partic-
ular, given the trade-offs between temperature and com-
position, seismic wave velocities alone are not sufficient
to tightly constrain the thermal and compositional struc-
tures of the upper mantle [e.g., Trampert et al., 2004;
Afonso et al., 2010]. Moreover, as we show here, many
different ultramafic rocks (i.e., compositions) can produce
the same seismic response, so nonuniqueness is inherent.
Uncertainties associated with traditional seismic tomogra-
phy methods, anisotropy, anelasticity, and geotherm estima-
tions further complicate the task. All this leads to a lack
of confidence in our knowledge of some important fea-
tures of the Earth’s lithosphere and upper mantle [e.g., the
lithosphere-asthenosphere boundary (LAB)].

[11] One strategy for obtaining more consistent and robust
models, and at the same time understanding the root causes
of the discrepancies between the different methods (an
important problem in itself), is to simultaneously fit all the
available geophysical and petrological observables using
an internally consistent approach in which all observables
and model parameters are related through a unique and
robust physical theory. In principle, such a scheme would
reduce the uncertainties associated with the modeling of
individual observables and could distinguish between ther-
mal or compositional variations at different depths, since
different observables respond differently to shallow/deep,
thermal/compositional anomalies.
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[12] Such an integrated modeling approach has been
proposed recently within a forward, user-guided scheme
[Afonso et al., 2008; Fullea et al., 2009]. This method has
two critical advantages over traditional inversion schemes:
(i) the model can be made as complicated (i.e., realis-
tic) as needed, given modest computational power, and (ii)
modeler’s experience (i.e., “human intuition”) is maximized
during the modeling process instead of relying purely on
a fixed set of algorithms. However, the forward approach
also has three important drawbacks: (i) it requires contin-
uous (time-consuming) input from the modeler as well as
a high level of expertise, (ii) uncertainties and the unique-
ness of the model are practically impossible to quantify, and
(iii) erroneous preconceptions from the modeler can nega-
tively affect the reliability of the model to a large extent.

[13] Inversion schemes, on the other hand, deal objec-
tively with data and overcome most of the above limitations.
Unfortunately, traditional (nonprobabilistic) inversion meth-
ods used to make inferences about the thermochemical
structure of the Earth’s mantle are not well suited to deal
with one or more of the following problems:

[14] (1) Strong nonlinearity of the system. Traditional
linearized inversions do not generally provide reliable
estimates.

[15] (2) The temperature effect on geophysical observ-
ables is in most cases greater than the compositional effect;
therefore, the latter is more difficult to isolate.

[16] (3) Nonuniqueness of the compositional field. Differ-
ent compositions can fit equally well seismic and potential
field observations.

[17] (4) Intrinsic correlations between physical parameters
(e.g., shear and compressional velocities) and/or between
geophysical observables (e.g., dispersion data and apparent
resistivity) are commonly ignored or modeled with simple
empirical equations (e.g., Birch’s law) that do not necessar-
ily have general applicability.

[18] (5) Trade-off between temperature and composition
in wave speeds.

[19] The nonlinear thermodynamically self-consistent
method of Khan et al. [2011a, 2011b] is a relevant exception.
Their Bayesian method is truly nonlinear and inverts directly
for composition and temperature. However, although it rep-
resents one of the most advanced and well-suited meth-
ods available, it has been applied only to low-resolution
tomographic problems (5ı � 5ı spacing) within a limited
compositional space.

[20] In this work, we present a new nonlinear, 3-D, mul-
tiobservable probabilistic inversion approach specifically
designed to circumvent/minimize the abovementioned prob-
lems. The method uses a probabilistic (Bayesian) inference
approach as the general framework to solve the inverse
problem. In the past 20 years, Bayesian methods applied
to inverse problems have become standard and powerful
tools in geophysics, and many review papers and textbooks
are now available on the subject [cf. Mosegaard, 1998;
Bosch, 1999; Mosegaard and Tarantola, 2002; Mosegaard
and Sambridge, 2002; Tarantola, 2005; Idier, 2008; Biegler
et al., 2011]. Within this probabilistic framework, the objec-
tive is to assign representative probabilities to competing
hypotheses by combining information from observed data
(measurements), physical theories, and any prior informa-
tion we may have about the problem at hand.

1.1. Summary of Bayesian Inversion
[21] In geophysics, we typically deal with a (continu-

ous or discontinuous) hypothesis space characterized by
the entire set of parameters defining “acceptable Earth
models,” that is, models that reproduce or explain cer-
tain observed/measured data to some “acceptable” degree.
In this context, the most general solution to these kinds
of inversion problems is represented by a probability den-
sity function (PDF) known as the posterior PDF. This
PDF contains all current information about the prob-
lem at hand, and it can be thought of as an objective
measure of our best state of knowledge on the prob-
lem. Formally, this posterior PDF can be written as
[cf. Tarantola, 2005]

� (d, m) = k
�(d, m)‚(d, m)

�(d, m)
(1)

where � (d, m) is the posterior PDF (strictly, a joint PDF

in the parameter and data space), k a normalization con-
stant, �(d, m) the joint prior PDF describing all a priori
information in the data and parameter space, ‚(d, m) a joint
PDF describing the correlations and uncertainties of a par-
ticular physical theory connecting model parameters and
predicted data, �(d, m) the homogenous joint PDF (constant
in Cartesian spaces), m the vector of model parameters, and
d the vector containing the observable data. The posterior
PDF so defined contains all available information on both
observable data and a priori information on model parame-
ters. Importantly, integrating out the data vector component
from � (d, m) gives the marginal PDF in the model space as

� (m) =
Z
� (d, m) dd (2)

[22] The latter gives the probability of all possible combi-
nations of model parameters allowed for the vector m, and
therefore, it constitutes the solution to the inversion prob-
lem. Under most circumstances, applying standard rules of
probability theory allows us to define [cf. Tarantola, 2005]

‚(d, m) = � (d | m)�(m) (3)

�(d, m) = �(m) �(d) (4)

�(d, m) = �(m)�(d) (5)

where � (d | m) is the PDF for d conditional on m. This PDF
plays the role of assigning uncertainties to the predictions
from the physical theories used to model the data (forward
problem). Using equations (1)–(5), we can write

� (m) = k �(m) L(m) (6)

L(m) =
Z
�(d) � (d | m)

�(d)
dd (7)

where �(m) is the prior PDF describing our a priori knowl-
edge (or prejudice) on the model parameters and L(m) is
the so-called likelihood function, which measures how well
a particular model explains the data. Clearly, � (m) is con-
trolled by the respective forms of �(m) and L(m), and thus,
particular care needs to be taken in defining/evaluating these
functions. For example, assume that we have a system with

2588



AFONSO ET AL.: THERMOCHEMICAL STATE OF THE MANTLE: BAYESIAN ANALYSIS I

only one model parameter m0; if the observed data d(m0)
are extremely sensitive to variations of this target parameter,
and our physical theory describing the problem is exact, then
the likelihood function L(m0) will have a very narrow peak
about the true value of m0, and so will � (m0) (Figures 1a
and 1b). In this case, the true value of m0 is easily recov-
ered (with high probability), regardless of the poor quality
of our prior knowledge �(m0). Conversely, if d(m0) is insen-
sitive to m0 (Figures 1c and 1d), the posterior PDF, � (m0),
will be entirely determined by our a priori information on
m0. In reality, we typically deal with intermediate situa-
tions in which our prior knowledge is somewhat vague, the
physical theory imperfect, and the sensitivity of geophysi-
cal observables to some or all parameters of interest is often
nonlinear and relatively weak. Although L(m) usually can
be determined in a straightforward manner, the choice of
�(m) is not trivial and often controversial [e.g., Scales and
Tenorio, 2001; Kitanidis, 2011a,2011b]. In essence, �(m)
has to describe (i) everything we know about the problem
that is independent of the observed data and (ii) how cer-
tain we are about this knowledge. This prejudice can affect
(bias) our evaluation of � (m) to a large extent when the
observables at hand are not strongly sensitive to changes in
model parameters.

[23] This paper focusses on the information that controls
the estimations of L(m) and �(m) during the inversion of
geophysical data for the thermochemical structure of the
lithosphere and sublithospheric upper mantle. The likeli-
hood function L(m) depends not only on the chosen data
(i.e., geophysical observables), their associated uncertain-
ties, and their intercorrelations but also on the physical
theory relating these data to model parameters; the prior
�(m) is controlled by our current understanding of mantle
composition, thermal state, and thermophysical properties.
An accompanying paper [Afonso et al., part II, this vol-
ume] discusses in detail the general inversion methodology
in full 3-D geometry, its computational implementation
(LitMod_4I), and synthetic examples. Readers interested in

the entire methodology will benefit from reading parts I and
II together. The application of the method to a real-case sce-
nario will be presented in a forthcoming publication [Afonso
et al., part III].

2. The A Priori Information: Compositional
Parameters

[24] Any information about the model parameters and
data acquisition/processing that is independent of the actual
results of measurements (i.e., data values) can be treated as
a priori information. It is customary in geophysical stud-
ies to distinguish between a priori information on model
parameters m and on observable parameters d or data. The
former often consists of an idea or prejudice about possi-
ble distributions and associated uncertainties for the model
parameters, while the latter is related to the uncertainties
affecting the actual measurements. We refer the reader to
Duijndam [1988] and Tarantola [2005] for more detailed
discussions. We note here, however, that when a joint PDF
�(d, m) = �M(m)�(d) can be defined, the prior PDF �(d)
becomes part of the likelihood function L(m) (equation (7))
[Mosegaard and Tarantola, 2002]. Therefore, we will deal
with this PDF when discussing L(m) in context of the actual
data and geophysical observables. In this section, we focus
on the definition of the compositional parameters included
in our vector m, their associated �(m), and how to explore
them (by generating random and statistically independent
samples) in an efficient manner.

2.1. The Crust: Independent Information
[25] Being the shallowest solid layer of the Earth, the con-

tinental crust has been extensively studied by geochemical,
geophysical, petrological, and structural means. Entire
sections down to lower crustal levels are accessible to
direct observation/sampling in many orogenic belts [cf.
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Figure 1. The posterior PDF is proportional to the product of L(m0) and �(m0). (a and b) Case where
the observable is strongly sensitive to variations in the target parameter (m0) and our prior information
on model parameters is poor. The posterior PDF is controlled by L(m0) and it offers a good estimate of
the true value. (c and d) Case where our prior knowledge of the parameter space is incorrectly biased
towards wrong values and the observable is weakly sensitive to variations in the target parameter (m0).
The posterior PDF is controlled by our faulted prior information and therefore the posterior PDF provides
a high probability to wrong values.
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Salisbury and Fountain, 1990], and abundant xenoliths have
been carried to the surface in many volcanoes and igneous
provinces around the world [e.g., Rudnick and Gao, 2004].
Consequently, there is an extensive bibliography not only
on the compositional structure of the continental crust [cf.
Taylor and McLennan, 1985; Rudnick, 2004] but also on
its average physical properties [cf. Meissner, 1986; Rud-
nick, 2004; Brown and Rushmer, 2006]. Since the main
interest of the present study is the inaccessible thermal
and compositional structure of the underlying subcontinen-
tal mantle, we will not deal with the detailed structure of
the crust. Robust information on the latter can be obtained
through independent studies, such as active-source seismic
surveys, ambient noise tomography (ANT), gravity surveys,
and/or field analysis. Nevertheless, since some of the geo-
physical observables used in our method are sensitive to
crustal structure through their implicit or explicit integrating
property (particularly Moho depth and average density and
conductivity), its signature has to be either “removed” (i.e.,
filtered) or explicitly accounted for in the inversion scheme.
Ideally, we will have access to high-quality information on
the crustal structure when modeling a particular region, and
therefore, its effects can be accounted for in the inversion
process. When this is not the case, however, the crustal struc-
ture itself becomes an unknown that has to be obtained from
the inversion scheme. Optimal parameterizations and a pri-
ori information used when inverting for crustal structure are
discussed in detail in paper II [Afonso et al., this issue].

2.2. The Lithospheric Mantle: Melt Depletion and
Refertilization

[26] The four main mineral phases in the upper mantle
are olivine, clinopyroxene, orthopyroxene, and an Al-rich
phase. The latter can be either garnet, spinel, or plagioclase
depending on the equilibration pressure and typically defines
the “facies” from which the samples have been recovered
(e.g., garnet facies). Secondary phases, such as apatite (phos-
phate), rutile (TiO2), zircon (ZrSiO4), monazite (phosphate),
phlogopite (Mg-rich mica), and amphibole (hydrous sili-
cate) are also common, although their combined mode rarely
amounts to more than 5% of the total assemblage, except
in localized veins or strongly metasomatized samples [cf.
Nixon, 1987; Pearson et al., 2004]. The four main mineral
phases are complex solid solutions that accommodate differ-
ent amounts of the major elements (e.g., Si, Al, Mg, Fe, and
Ca) in their lattice depending on temperature, pressure, and
bulk composition. The physical properties of a solid assem-
blage thus depend not only on the volumetric proportions
(modes) of the constitutive mineral phases and environmen-
tal variables (e.g., oxygen fugacity and stress/strain state) but
also on their individual compositions (e.g., fayalite content
in olivine).

[27] Although the bulk composition of the lithospheric
mantle can be represented as that of a peridotite sensu
lato, processes such as melt extraction and/or melt percola-
tion can change this average composition considerably [cf.
Griffin et al., 1999, 2009]. Moreover, solidified melts within
the lithospheric mantle coupled with fluid-rock interaction
processes can result in local, but significant, lithological con-
trasts (e.g., eclogite and/or pyroxenite bodies, Appendix A;
SiO2-enriched harzburgitic domains) [Kelemen et al., 1998;
Jacob, 2004; Pearson et al., 2004; Bodinier et al., 2008].

[28] The terms “depleted” and “fertile” are commonly
used to describe the degree to which the composition of a
peridotite has been modified, relative to some assumed start-
ing composition, by melt extraction and/or metasomatism.
Although these two processes affect both the trace-element
and major-element abundances of the residual peridotite,
most of the thermophysical properties of interest for geo-
physical methods are dependent only on the major-element
composition. This is because the major-element abundances
control the modal composition of the rock (i.e., mineral
abundances), which in turn controls its thermophysical prop-
erties. Trace elements, on the other hand, can provide crucial
information on the nature and timescale of melting and meta-
somatic events [e.g., Hofmann, 1997; Stracke and Bour-
don, 2009], but their effects on the mineral assemblage are
nil.

[29] Despite second-order discrepancies between differ-
ent melting models/experiments, the general “depletion pat-
tern” of the five main oxides SiO2-Al2O3-MgO-FeO-CaO
is well understood, and their atomic ratios are typically
used to quantify the degree of depletion in peridotites [cf.
Herzberg, 2004; Pearson et al., 2004]. Amongst these, the
ratio between MgO and FeO, the so-called “magnesium
number” (Mg# = MgO/[MgO + FeO]) is of particular inter-
est given that (i) together with SiO2, FeO and MgO typically
account for more than 95% by weight of peridotites and thus
exert a major control on modal compositions, (ii) the ratio
MgO/FeO shows a distinctive increase with melt extrac-
tion, and (iii) MgO and FeO have a strong influence on the
relative abundances of mineral end members of volumetri-
cally dominant phases (e.g., olivine and pyroxenes). During
melt extraction, the Mg# of the residue increases almost lin-
early with degree of melting, regardless of whether melting
is a batch or a fractional process and/or whether it occurs
under wet or dry conditions [Hirose and Kawamoto, 1995;
Herzberg and O’Hara, 2002; Herzberg, 2004]. Also, mainly
due to (i) and (iii) above, there are clear correlations between
the residue’s Mg# and its bulk density, shear and compres-
sional velocities, and electrical conductivity [e.g., Lee, 2003;
Speziale et al., 2005; Matsukage et al., 2005; Jones et
al., 2009; Afonso et al., 2010]. Unfortunately, FeO can be
reintroduced into the solid assemblage during metasomatism
by infiltration of mafic melts [Griffin et al., 2009], which
results in an overall reduction of the residue’s Mg#. CaO
and Al2O3 are also commonly added to the system by such
processes. The metasomatic reintroduction of incompatible
elements back into the residue is referred to as “refertil-
ization.” Therefore, the Mg# of peridotites should not be
seen as a measure of melt depletion only but as an overall
indicator of depletion + refertilization. However, the correla-
tions between the residue’s Mg# and its physical properties
remain valid regardless of whether the Mg# is a conse-
quence of depletion, refertilization, or a combination of these
processes.

[30] An important compositional indicator that has
received much less attention in the geophysical literature
is Al2O3. This oxide exerts a strong influence on the
bulk density (mainly through its control on garnet mode)
and seismic velocities of peridotites, and it correlates well
with other depletion indicators (section 2.3). As shown
in paper II, the identification of “Al2O3-anomalies” may
be more practical and informative than those associated
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with FeO and/or MgO contents when inferring upper man-
tle compositional domains through inversion of multiple
geophysical observables.

[31] Another incompatible “element” that affects the
physical properties of the mantle is water. Water is two
to three orders of magnitude more soluble in melts than
in mantle minerals [cf. Hirschmann, 2006]. Consequently,
considering typical water contents in mantle rocks (<200–
400 ppm), melt extractions of only <10% can effectively
“dry out” the residue, significantly increasing its electrical
resistivity and viscosity relative to its hydrated counterpart
[e.g., Karato, 2008; Jones et al., 2012]. Note, however,
that the expected average water contents of <400 ppm in
subcontinental mantle rocks do not affect other relevant
physical parameters (Vs, Vp, density) to any significant
extent (Appendix B).

[32] Another side effect of melt extraction is the removal
of the highly incompatible radioactive elements K, Th, and
U from the lithospheric mantle. The total contents of these
heat-producing elements determine the relative mantle con-
tribution to the SHF and the temperature distribution with
depth in the lithosphere. Although it is usually expected that
highly depleted Archean xenoliths would have the lowest
concentrations of these elements, some compilations of cra-
tonic, off-craton, and massif peridotite xenoliths [Rudnick
et al., 1998] found an inverse correlation. These authors
interpreted this “anomalous” behavior as being a conse-
quence of several issues, such as postextrusion chemical
alteration, analytical detection limits, and sampling bias.
However, Rudnick et al. [1998] concluded that the average
content of K, Th, and U from analyzed cratonic samples
cannot be representative of the heat production of Archean
mantle roots. This indicates that melt extraction processes

are masked, in the case of these radioactive elements, by
refertilization processes, and therefore, the amount of melt
extraction cannot be estimated or accounted for by means
of mass balance methods. Interestingly, anomalously high
contents of K, Th, and U in the lithospheric mantle, as
suggested by some xenoliths, could locally increase the
temperature of the lithosphere above typical conductive
geotherms and produce detectable signatures in geophysical
observables [Hieronymus and Goes, 2010].

2.3. Correlations Among Major Oxides
[33] From the previous section, we can expect the major-

element contents of peridotites to be correlated to some
degree along melting or refertilization paths. In this section,
we show that this holds true in real samples, which allows us
to derive statistical correlations between the five main major
oxides in such a way that only two key element contents will
be needed as free compositional parameters in our inversion
scheme in order to derive the entire set of thermophysical
properties for a peridotitic rock.

[34] Figure 2 shows covariation plots of the main five
oxides in peridotites from a large database (n > 2900)
that includes xenoliths from both subcontinental lithospheric
mantle (SCLM) and oceanic mantle as well as samples
from orogenic massifs and ophiolites (references in the
Supporting Information). The Mg# of these samples ranges
from � 84 to 96, thus covering most of the expected
variability in mantle peridotites, from fertile (or refertil-
ized) lithospheric mantle to highly depleted harzburgites and
dunites from the Archean SCLM. Importantly, the negative
correlation observed in the Al2O3-MgO and CaO-MgO plots
is one of the most robust features observed in peridotites
and is commonly interpreted as the result of either melt
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depletion, late re-enrichment events, or a combination of
both [cf. Griffin et al., 2009].

[35] Figure 3a shows a covariation plot of MgO and
Al2O3 for our entire dataset. We have regressed the data
with both linear and polynomial models using a robust
regression method based on an iterative weighted least-
squares algorithm with a bisquare weight function
[Rousseeuw and Leroy, 2003]. The final fitting model
obtained with this method is less sensitive to outliers in the
data as compared with ordinary least-squares methods. The
best model was obtained with a second-order polynomial
regression, which gives the lowest root mean square errors
and the highest R2 value (R2 = 0.772), respectively. A linear
regression gives a R2 = 0.751, while higher-order poly-
nomials overfit the data. Figure 3c also includes the 95%
confidence interval of the predicted values. The meaning of
this interval is straightforward. If one has a new sample for
which the Al2O3 content is 3 wt%, then its MgO content has
a 95% probability of being between 37.5 and 42.5 wt% (i.e.,
between the two confidence intervals). In addition, it is clear

from the data that the probability (or frequency) between
these two limits is not homogeneous, but it tends to follow a
quasi-normal distribution. This is shown in Figures 3d and
3e, which contain the frequency distribution for two Al2O3
bins, each 1% wide. For comparison, Figures 3d and 3e
include two curves indicating the theoretical distributions
of two particular cases of the generalized Gaussian distri-
bution: Laplacian (i.e., double exponential) and Gaussian
(i.e., normal).

[36] A similar analysis can be applied to the covariation of
CaO and Al2O3 (Figure 4). In this case, there is no noticeable
improvement when fitting the data with higher-order models
than linear. The result of a robust linear regression is shown
in Figure 4c, together with the two 95% confidence limits.
As in the previous case, the distribution between these confi-
dence limits is not homogeneous but follows a quasi-normal
distribution (Figures 4d and 4e).

[37] In contrast to CaO and MgO, SiO2 and FeO do
not exhibit any significant correlation with either Al2O3 or
CaO. Although the data show a tendency for SiO2 and FeO
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Figure 4. Covariation plot of CaO with Al2O3 for all samples in our dataset. (a) Color scale indicates
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to increase with Al2O3 and decrease with MgO, in accor-
dance with melting systematics, robust regression yields R2

values . 0.1 for both cases. This lack of correlation in
natural samples reflects the interplay between mineral chem-
istry, modes, and bulk composition. High-Mg olivine or
orthopyroxene will have higher SiO2 contents (on a wt%
basis) than the Fe-rich end member of each solid-solution
series. On the other hand, in mantle peridotites, higher FeO
contents typically are found in more fertile rocks, which
will have higher ratios of pyroxene (both opx and cpx) to
olivine, raising SiO2 contents and countering the effect of
Fe/Mg variations.

[38] Monte Carlo methods for sampling or exploring the
parameter space of a model require the generation of many
random and statistically independent realizations (samples).
For our purposes, such realizations will involve generating
random compositional samples (i.e., synthetic rock com-
positions) within the system CaO-FeO-MgO-Al2O3-SiO2
(CFMAS). In the most general case, we could define wide
lower and upper limits for the ranges of variation of each

oxide, assign a uniform probability density to all values
within this range, and then generate random samples for each
of them with the constraint that the sum of all five oxides
must add to 100%. This approach would unavoidably sample
the entire parameter space, provided enough iterations are
performed, including those regions that are “empty” in the
data space (e.g., the region between 45 < MgO < 50 and 3 <
Al2O3 < 4 in Figure 2). Conversely, when each oxide has a
definite and known probability distribution, we could sample
the compositional space much more efficiently by generating
samples according to these distributions, thus avoiding over-
sampling regions of low probability.

[39] In principle, the histograms in Figure 5 suggest pos-
sible distributions. However, it is entirely possible, indeed
likely, that these distributions are the result of a sampling
bias in existing databases, including ours. In particular,
the double peaks in Al2O3 and CaO are controlled by
the Archean and Phanerozoic xenolith populations, which
tend to be numerically dominant in most global databases.
This is simply because kimberlites, which preferentially

2593



AFONSO ET AL.: THERMOCHEMICAL STATE OF THE MANTLE: BAYESIAN ANALYSIS I

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

4 6 8 10 12 14
0

50

100

150

200

250

300

35 40 45 50 55
0

50

100

150

200

250

30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

SiO2

MgO

FeO

Al2O3

CaO

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y

0.3

0.2

0.1

P
D

F

0.1

0.06

0.02

P
D

F

0.1

0.3

0.5 P
D

F

0.1

0.2

0.4

0.3 P
D

F

0.1

0.2

0.4

0.3

P
D

F

Figure 5. Histograms for the five major oxides in our
entire dataset (shown in Figure 2). Best-fitting density
distributions are shown for each case. The latter have
been calculated with a Gaussian kernel density estimator
[Venables and Ripley, 1999]. If these probability densities
were used to generate samples of the compositional space,
samples with Al2O3 contents �1 would have much higher
probabilities than samples with Al2O3 contents >2. How-
ever, this is a fictitious effect due to the dominance of
“Archean” samples in the database (see text).

sample stable cratonic areas, and alkali basalts, which tend
to sample young intraplate settings, are the most prolific
sources of mantle xenoliths. By contrast, xenolith-rich vol-
canic rocks are relatively rare in collisional settings (e.g.,
island arcs), so these environments are under-represented in
xenolith databases.

[40] There are other built-in biases in xenolith datasets.
Alkali basalts typically sample shallow, less depleted
mantle, with few samples from deeper than approximately
60 km; garnet-bearing ultramafic xenoliths are rare or absent
in most localities. Kimberlites typically sample down to
depths of &180 km, but most studies of kimberlite-borne
xenoliths have focussed on garnet-bearing samples, partly
because they are amenable to P-T estimation; these xeno-
liths are all from depths greater than approximately 80–100
km. Shallower and/or more depleted (hence garnet-free) cra-
tonic mantle is strongly under-represented in the published
record. Published databases on kimberlite-borne ultramafic
xenoliths also have been strongly dominated until recent
years by the abundant material from a small number of
kimberlites in the Western Terrane of the Kaapvaal Craton
(Kimberley area), where mining has produced a veritable
mountain of xenolith debris. Many of these samples are
highly enriched in orthopyroxene (high opx/oliv), and it has
been argued that the low FeO content of “average Archean”
peridotites (Figure 2) simply reflects dilution by orthopy-
roxene, rather than high-P melting [Simon et al., 2007;
Pearson and Wittig, 2008]. However, the distinctive low
FeO contents of peridotite xenoliths from Archean cratons
are also observed in suites from North America, Siberia,
and even other terranes of the Kaapvaal craton (e.g., N.
Lesotho) where enrichment in orthopyroxene is not common
[Griffin et al., 1999, 2009].

[41] Bearing in mind these considerations, any method
that relies on a priori PDFs based on specific compilations
or on compositional/tectonic regionalizations (e.g., Archean
domains are assigned “Archean-like” compositions) can-
not be considered entirely general. We therefore adopt a
sampling approach intermediate between the two extreme
sampling examples described above. Since statistically sig-
nificant correlations between Al2O3 and CaO and Al2O3 and
MgO are found in all published compilations of peridotitic
samples, regardless of their tectonic environment and/or
facies (see references in the Supporting Information), we
assign more weight to these correlations (Figures 3 and 4)
than to any specific univariate or multivariate probability
distribution (e.g., Figure 5). Therefore, in order to gen-
erate random, statistically independent, and representative
compositional samples during our inversions, we proceed
as follows:

[42] (i) Choose a wide initial variation range for Al2O3
and FeO that covers >95% of the entire natural variability,
and assign a uniform probability density within these ranges
(i.e., equal probability to all values within the chosen range).
Typically, we will use 0 < Al2O3 < 5.5 and 5 < FeO < 11
(Figure 2), but these can be easily updated as more data is
included in the database.

[43] (ii) Select a value for Al2O3 and FeO within their
respective variation ranges using a random sampler.

[44] (iii) Use the selected Al2O3 value with the Al2O3-
MgO and Al2O3-CaO regressions derived above (Figures 3
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and 4) to obtain a preliminary (mean) value for MgO and
CaO.

[45] (iv) Randomly select a new value for MgO and
CaO from the known probability distributions associated
with each Al2O3 value (Figures 3d and 3e and 4d and 4e).
Typically, we will use a Gaussian distribution.

[46] (v) Calculate the SiO2 content of the present sample
as 100 – (FeO + CaO + MgO + Al2O3).

[47] This approach generates independent random sam-
ples that cover the entire compositional spectrum observed
in real mantle samples, without oversampling low-
probability regions. Since it is based on well-established
correlations between oxides (Figures 2–4) instead of whole-
data PDFs (Figure 5), it is less sensitive to biases in
the dataset. Importantly, only two free parameters (Al2O3
and FeO), instead of four, are needed in the random search
to obtain a complete representative compositional sample.
As we show in paper II [Afonso et al., this volume], this
feature is particularly useful when performing the full non-
linear inversion in 3-D geometry, without compromising the
results to any extent in comparison to a full search with
four-free parameters.

3. Mineral Assemblages and Inexact
Physical Theories

[48] As stated in section 1, the evaluation of the likelihood
function L(m) depends not only on the chosen observables
and their uncertainties but also on the physical theory used
to relate these observables to the model parameters. The
problem of predicting the values of observable parame-
ters d = (d1, d2, : : : dn) that would correspond to a certain
model m = (m1, m2, : : :mn) is known as the forward prob-
lem. In other words, the forward problem maps m into d
through an operator g(�). This mapping, which can be non-
linear, is usually written as d = g(m) [Tarantola, 2005].
The operator g typically represents more than one physical
theory (e.g., heat transfer and potential field), and the con-
nection between them can be complex. In general, g will
not represent an exact (i.e., error-free) or perfect theory, and
therefore, it will be subject to modelization errors. However,
the question of how to describe or quantify these errors is not
straightforward and depends on the actual theory and model
discretization (see below).

[49] In this work, the operator g is composed of suboper-
ators associated with the solution of the following forward
problems: Gibbs energy minimization gG, heat transfer gT,
Maxwell’s equations gM, gravity potential gP, Love and
Rayleigh dispersion curves gD, and isostasy gI. An impor-
tant part of the theoretical uncertainties associated with gG,
gT, gI, and gM are intimately related to the actual physical
theory (e.g., adopted solid-solution models, electrical con-
ductivity as function of bulk composition, and local isostasy
assumption) or assumed thermal parameters (e.g., radiogenic
heat production and thermal conductivity), rather than to the
discretization of the model. Here, we discuss briefly the the-
oretical uncertainties of gG, gM, gI, and gT that arise during
the computation of the governing physical parameters (e.g.,
electrical conductivity); those dominated by the discretiza-
tion of the model and/or the numerical technique used to
solve the governing equations will be discussed in detail in
paper II.

3.1. Gibbs Energy Minimization (gG)
[50] The thermodynamic (Gibbs energy minimization)

operator gG is used to obtain mineral assemblages from
major-element compositions and given P-T conditions.
The equilibrium mineral assemblages of all relevant ultra-
mafic lithologies (i.e., eclogite, pyroxenites, and peridotites)
and their relevant physical properties are computed with
components of the software Perple_X [Connolly, 2009]
within the CFMAS system using the database and ther-
modynamic formalism of Stixrude and Lithgow-Bertelloni
[2011]. The CFMAS system accounts for &98 wt% of
the Earth’s crust and mantle, and therefore, it is consid-
ered to be an excellent starting basis for modeling phase
assemblages in the Earth. More complete systems, includ-
ing, e.g., Na2O and H2O, can also be easily included in
our method. However, as we show in Appendix B, the
added value of including additional elements in our compu-
tations is insignificant when compared with the increase in
computational time.

[51] The estimation of the uncertainties associated with
the computation of the mineral assemblages (i.e., mineral
modes and their compositions) and their physical proper-
ties can, in principle, be done by comparing laboratory
observations with predictions. In practice, however, this
is problematic for two main reasons: (i) available labo-
ratory “observations” on modal proportions of ultramafic
rocks are subject to measurement uncertainties that are of
the same order (sometimes significantly larger) as those
related to the modeling [cf. El-Hinnawi, 1966] and (ii)
the lack of a large population of well-studied representa-
tive mantle samples for which modal proportions, mineral
chemistry, and physical properties have been measured with
high precision at high P-T conditions. Typically, mineral
modes of real samples are estimated either by point-counting
techniques [cf. El-Hinnawi, 1966] or from bulk and min-
eral chemical analyses by solving a least-square problem
with assumed density values for each phase. Although the
uncertainties associated with these techniques depend on
the actual analyses and individual phase analyzed, val-
ues between 1 and 3 wt% for two standard deviations are
common. To illustrate the statement in point (i) above,
we compare predicted and “observed” modal compositions
(Table 1) for 10 representative xenoliths that span most
of the compositional range in our database (see also Afonso
and Schutt, 2012). In most cases, the difference between
our predictions and the “observed” values is within the
experimental error, and when this is not the case, the dif-
ference is negligible in terms of the associated changes in
physical properties.

[52] In this study, we use the standard Voigt-Reuss-Hill
average for computing the elastic properties of the solid
assemblage. A number of studies in which modes and elas-
tic properties of polyphase materials have been measured
and compared with predictions from physical theories of
composites suggest that, as long as the modes are properly
accounted for and the elastic parameters of the constituent
phases are well known, predictions are typically within
˙1.2% [e.g., Ji et al., 2003a; Ji, 2004; Afonso et al., 2005;
Naus-Thijssen et al., 2011]. Interestingly, this value is
comparable to the differences between predictions from
standard theories of composites and from different mineral
physics methods used to calculate the seismic properties of
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Table 1. Comparison Between “Observed” and Calculated
Modes for 10 Representative Samples From our Databasea

Sample phase obs. calc. �% 2STD

KGG13

Ol 68 68 0 2.48
Opx 13 15 2 1.79
Cpx 12 11 1 1.73
Gt 7 6 1 1.36

KGG14

Ol 63 61 2 2.57
Opx 11 14 3 1.66
Cpx 10 9 1 1.60
Gt 16 16 0 1.95

KGG06

Ol 72 71 1 2.39
Opx 11 13 2 1.66
Cpx 9 8 1 1.52
Gt 8 8 0 1.44

KGG83

Ol 79 75 4 2.17
Opx 9 14 5 1.52
Cpx 5 5 0 1.16
Gt 7 6 1 1.36

KGG88

Ol 72 68 4 2.39
Opx 20 24 4 2.13
Cpx 4 4 0 1.04
Gt 4 4 0 1.04

FRB1684

Ol 69 72 3 2.46
Opx 22 20 2 2.20
Cpx 5 4 1 1.15
Gt 4 4 0 1.04

FRB1685

Ol 63 65 2 2.57
Opx 28 27 1 2.39
Cpx 4 3 1 1.04
Gt 5 5 0 1.16

PHN5304

Ol 73 76 3 2.36
Opx 19 16 3 2.09
Cpx 3 4 1 0.91
Gt 5 4 1 1.16

PHN5316

Ol 60 60 0 2.61
Opx 23 24 1 2.24
Cpx 7 7 0 1.36
Gt 10 9 1 1.60

U506

Ol 77 75 2 2.24
Opx 16 18 2 2.01
Cpx 3 3 0 0.91
Gt 4 4 0 1.04

aThe thermodynamic database and formalism are that of Stixrude and
Lithgow-Bertelloni [2011]. All samples are garnet-bearing peridotites
(KGG13, KGG14, KGG06, KGG83, and KGG88 from Franz et al.
[1996]; FRB1684, FRB1685, PHN5304, and PHN5316 from Boyd
et al. [2004]; and U506 from Ionov et al. [2010], see references in the
Supporting Information). �% is the absolute difference in modal per-
cent between calculated and “observed” modes; 2STD is an estimation
of the absolute error associated with the “observed” values (2 standard
deviations) computed as 1.85 � 0.6745

p
k(100 – k)/n, where k is the

estimated mode of the phase in % and n the number of point counts,
here assumed = 550 [El-Hinnawi, 1966].�% values larger than 2STD
are shown in italics.

rocks [Ji, 2004; Schutt and Lesher, 2006; Afonso et al., 2008;
Afonso and Schutt, 2012].

3.2. Electrical Conductivity of Polymineralic
Samples (gM)

[53] Another important source of theoretical uncertainty
arises from the calculation of the electrical conductivity of
the assemblage �. Several authors have recently reviewed
the connection between the composition and temperature of

peridotites, their water content, and their bulk electrical con-
ductivity [e.g., Xu et al., 2000; Khan et al., 2006; Jones
et al., 2009, 2012; Yoshino, 2010; Fullea et al., 2011, and ref-
erences therein]. It is generally assumed that the dependence
of � on pressure, temperature, water content, and compo-
sition for each phase can be adequately modeled by an
equation of the form

� = �0 exp
�

–�H(XFe, P)
kBT

�
+ �0i exp

�
–�Hi

kBT

�

+ f (Cw) exp
�

–�Hwet(Cw)
kBT

�
(8)

where kB is the Boltzmann constant and T the absolute tem-
perature. The first to the third terms in the right-hand side of
equation (8) describe the contribution from small polarons
(i.e., electron hopping and its associated lattice distortion),
the contribution of Mg vacancies at high temperatures, and
the contribution by proton conduction (dependent on water
content, Cw), respectively [cf. Jones et al., 2012 and ref-
erences therein]. Pre-exponential parameters (�0, �0i, f (Cw))
and activation enthalpies (�H(XFe, P), �Hi, �Hwet(Cw))
are experimentally derived [cf. Jones et al., 2009; Fullea
et al., 2011].

[54] Fullea et al. [2011] have recently evaluated the cur-
rent experimental discrepancies between different laborato-
ries and their impact on the calculation of � for each phase.
Using the maximum discrepancies between different exper-
imental models of � as a proxy, we can assign the following
compositional uncertainties to each phase: ��ol = 0.35
for olivine; ��opx = ��cpx = 0.46 for clinopyroxene and
orthopyroxene; and ��gt = 0.44 for garnet. Here, each ��
represents a first-order estimate of the standard deviation
associated with log units (i.e., log(�)). The propagation of
these phase uncertainties to the final estimation of the bulk
rock electrical conductivity �T depends on the actual aver-
aging method employed to calculate �T. Berryman [1995]
and Jones et al. [2009] have discussed the available meth-
ods for estimating the electrical conductivity of multiphase
materials and concluded that the Hashin-Shtrikman extremal
bounds are the most reliable approach. In practice, the two
extreme bounds are rather similar and therefore their geo-
metric mean can be taken as the best estimate of �T for
most purposes. Using these equations and typical modal
compositions for peridotites, a standard error propagation
analysis results in a representative estimate of ��T � 0.4.
Note that this value includes the uncertainty associated with
temperature (�0.3) [Xu et al., 1998].

[55] For the purposes of the present work, water content
Cw will be considered known a priori and constant. Future
work will include Cw as an unknown to be retrieved from the
inversion (Appendix B).

3.3. Isostasy and Elevation (gI)
[56] The principle of isostasy is one of the oldest,

best-tested, and most powerful concepts in geophysics
[cf. Turcotte and Schubert, 1982; Watts, 2001]. Following
Afonso et al. [2008] and Fullea et al. [2009], we compute
absolute elevation under the assumption of local isostasy
(see paper II for details). Except in regions of strong mantle
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upwellings or subduction zones, local isostasy provides tight
constraints on the average (integrated) mass of lithospheric
columns with areas & 1 � 104 km2 [Lachenbruch and
Morgan, 1990; Turcotte and Schubert, 1982]. This holds
true even when the wavelength of the density anomaly is less
than 250–300 km, since corrections for flexural support can
readily be made when gravity anomalies are available [e.g.,
Fullea et al., 2009].

[57] It is common in the literature to distinguish
between crustal, thermal, and dynamic compensation
mechanisms [cf. Phillips and Lambeck, 1980; Turcotte
and Schubert, 1982; Nakiboglu and Lambeck, 1985;
Lachenbruch and Morgan, 1990; Zhong, 1997; Hasterok
and Chapman, 2007], depending on the nature of the density
anomaly compensating the associated topography. Of these
three isostatic mechanisms, the first two typically account
for more than 85% of the global surface elevation, regard-
less of whether local or regional isostasy assumptions are
used in the computations [Phillips and Lambeck, 1980;
Mooney and Vidale, 2003; Kaban et al., 1999; Fullea et al.,
2009]. In crustal isostasy, the density contrasts controlling
elevation are those between mantle and crustal rocks at
the Moho and between air (or water) and surface topogra-
phy. Thermal isostasy, on the other hand, refers to changes
in topography due to temperature anomalies (strictly, to
the associated thermal expansion) in all or parts of the
lithosphere (not only in oceans!). When the lithosphere
is defined as a thermal boundary layer, the terms thermal
isostasy and lithospheric isostasy can be used interchange-
ably. Sublithospheric processes, such as plume impingement
or forced convection, or intralithospheric processes, such as
mantle delamination, can also modify surface topography
through the generation and transfer of viscous stresses to
the surface (the so-called “dynamic effects”) [e.g., Marquart
and Schmeling, 1989; Lithgow-Bertelloni and Silver, 1998;
Petersen et al., 2010]. Results from convection simulations
indicate peak dynamic contributions to the total topogra-
phy of the order of �400–800 m [Marquart and Schmeling,
1989; Crameri et al., 2012] for relatively large plumes.
However, these estimates need to be taken with caution,
since convection computations rely on relatively uncertain
parameters (e.g., asthenosphere viscosity and lithospheric
strength) and in some cases, inaccurate numerical schemes
[cf. Crameri et al., 2012].

[58] Considering all of the above, we assign an average
theoretical uncertainty of 15% to our computed elevation
(with a minimum uncertainty of˙200 m), except in regions
where evidence for large dynamic loads exists. In this case,
higher local uncertainties or appropriate topographic correc-
tions should be used.

3.4. Thermal Conductivity and Radiogenic
Heat Production (gT)

[59] The main physical parameters controlling results
from forward thermal modeling of the lithosphere are the
radiogenic heat production RHP and thermal conductivity
kt of the rocks. Both these parameters are known to vary
within relatively large ranges when different lithologies are
considered. In particular, kt of the main silicate minerals
can vary from �1.6 to >7 W m–1 K–1 at room P-T con-
ditions, although �90% of typical rocks exhibit kt values
of 2–4 W m–1 K–1 [cf. Diment and Pratt, 1988; Clauser

and Huenges, 1995; Jokinen and Kukkonen, 1999; Jaupart
and Mareschal, 2011]. Likewise, although RHP of typical
lithospheric rocks can vary by as much as �0 to >10 �W
m–3 between individual samples, regional averages (more
suitable for lithospheric studies) are typically limited to
RHP values <3.6 �W m–3 [Vilá et al., 2010; Jaupart and
Mareschal, 2011]. Using Monte Carlo simulations, Jokinen
and Kukkonen [1999] showed that if the thermal conductiv-
ity and RHP of crustal layers can be estimated with standard
deviations of 0.5–1.0 W m–1 K–1 and �2 �W m–3, respec-
tively, then the uncertainty in calculated temperatures within
the lithosphere would amount to˙45–80ıC. The uncertain-
ties associated with calculated values of SHF, as estimated
by these authors, are of the order of ˙6–15 mW m–2. Com-
parable, although somewhat larger, values were recently
estimated by Vilá et al. [2010]. It therefore seems reasonable
to assign minimum uncertainties of ˙80ıC and ˙10 mW
m–2 to temperature and SHF predictions from gT, respec-
tively. We will typically use the same uncertainty values for
temperatures at sublithospheric depths.

3.5. Putting Everything Into � (d | m)
[60] With the above considerations, and in lieu of more

detailed information, we ignore the uncertainty in the com-
putation of mineral modes and phase composition associated
with gG, since it is the smallest estimated uncertainty. For
predictions of the aggregate’s seismic properties, �, temper-
ature, elevation, and SHF, we will assume Gaussian PDFs of
the form (refer to equation (7))

� (d | m) =/ exp
�

–
1
2

(d – g(m))TC–1
t (d – g(m))

�
(9)

where Ct is the covariance matrix describing the theoreti-
cal uncertainties. It is also expected that a certain amount
of correlation exists between these theoretical uncertainties.
We address these correlations and the computation of the
full-rank Ct in paper II.

[61] An important problem that arises when calculating
seismic velocities is the estimation of anelastic effects at
high temperatures. Anelasticity in mantle rocks, and the
associated attenuation of seismic waves, become impor-
tant at temperatures >900ıC [e.g., Jackson et al., 2002;
Jackson and Faul, 2010] . Since all of the sublithospheric
upper mantle and up to �40% of the SCLM have tempera-
tures higher than this limit, a correction to the anharmonic
velocities obtained from the minimization problem is neces-
sary. Unfortunately, experimental studies at relevant seismic
frequencies and P-T conditions addressing the effects of
grain sizes, volatile content, and bulk composition are either
scarce or nonexistent. Moreover, meaningful comparisons
between mineral physics models and observations are prob-
lematic due to the uncertainties affecting observations of
seismic attenuation [e.g., Dalton and Faul, 2010] and, more
importantly, the uncertainties in the average grain size and
temperature structure of mantle sections. All these make
it difficult, if not impossible, to objectively quantify the
theoretical error associated with anelastic corrections. A
first-order estimation of this error and its implementation in
Ct are discussed in paper II.
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4. Geophysical Observables: Sensitivity and
Observational Uncertainties
4.1. Two Levels of Functional Relationships

[62] The fundamental goal of this study is the conver-
sion of observations into robust estimates of temperature
and composition in the lithosphere and sublithospheric upper
mantle. This requires the assessment of two different but
related levels of functional relationships (or parameteriza-
tions). The first is between the raw observations and the
set of governing physical parameters, e.g., the physical
relationship between travel times and the subsurface seis-
mic velocity structure or between variations in the surface
electromagnetic field and the subsurface electrical conduc-
tivity structure. The second level of functional relationship
is between the set of governing physical parameters (e.g.,
seismic velocity) and a more fundamental set of model
parameters represented by the major-element composition,
pressure, water content, and temperature of the aggregate.
Since this set of fundamental parameters (e.g., composition)
controls the second set of governing physical parameters
(e.g., shear velocity), they are commonly referred to as
the primary and secondary parameters, respectively [Bosch,
1999; Khan et al., 2007].

[63] The first level is the simplest and most widely used
in conventional inversion methods. Typically, an appropriate
physical theory (e.g., seismic wave propagation) is assumed
and used to relate the secondary model parameters to the
observations during the inversion. The final result is one or
more sets of secondary physical parameters (i.e., Earth mod-
els), such as shear velocity or electrical conductivity, which
exhibit an acceptable data fit. The second level of func-
tional relationships is commonly ignored in inversion studies
or treated as a posteriori independent (not self-consistent)
corrections. Partly because of this, but also due to its intrin-
sic complexities (e.g., different compositions give the same
seismic velocity), this functional level and its relationship
with different geophysical observables in joint inversions are
a less well-understood subject.

[64] In the following, we address both levels by dis-
cussing (i) the strengths and weaknesses of our choice of
geophysical observables as well as their experimental uncer-
tainties (section 4.2) and (ii) the intrinsic sensitivities of
the secondary parameters Vs, Vp, bulk density, and � to
changes in the primary parameters in peridotitc assemblages
(sections 4.3 and 4.4).

4.2. The Need for Multiple Observables
[65] The main purpose of inverting multiple geophysical

observables is to minimize the range of acceptable mod-
els consistent with data. In other words, we aim to reduce
the number of acceptable solutions to the inverse problem
by taking into account more constraining data. It is there-
fore not only desirable but necessary that each piece of
information (e.g., a new observable) newly added to the sys-
tem has a different sensitivity to the model parameters of
interest. If a new constraining dataset is added to the inver-
sion, but its sensitivity to model parameters is similar to,
or less than, that of the existent data, the inversion will
not provide new information about the state of the system.
In this work, we will combine information from grav-
ity and geoid anomalies, seismic velocities, SHF, absolute

elevation, and magnetotelluric data. We have purposely
chosen these geophysical observables because they are dif-
ferently sensitive to shallow/deep, thermal/compositional
anomalies, which allows superior control over the lateral and
vertical variations in the mantle’s bulk properties. From a
Bayesian point of view, what we want to achieve by includ-
ing different datasets in a probabilistic inversion is to narrow
the likelihood function L(m) towards “good” values. How-
ever, the form of L(m) is largely controlled by the form of
�(d), which in turn is controlled by the nature of the chosen
geophysical observables, their associated uncertainties, and
their intercorrelations (equations (7) and (9)). In this section,
we discuss in detail the first two. The intercorrelations
between uncertainties (both theoretical and observational)
are addressed in paper II.
4.2.1. Gravity and Geoid Data

[66] Gravity and geoid anomalies are arguably the
simplest and most commonly used geophysical observ-
ables for investigating lithospheric features [Zeyen and
Fernàndez, 1994; Zeyen et al., 2005; Ebbing et al., 2006;
Jiménez-Munt et al., 2008; Chappell and Kusznir, 2008;
Kaban et al., 2010; Watts, 2001; Jacoby and Smilde, 2009,
amongst others]. Unfortunately, given the 1/r2 dependence
to the depth of the density anomaly, their sensitivity to
typical lithospheric density anomalies decays to almost
nil at depths &50 km, except for large-scale anomalies
with unusual density contrasts (e.g., continent-ocean bound-
ary, Trans-European Suture Zone). Nevertheless, satellite-
derived gravity anomalies offer one of the best spatial
coverages of all available observables and can be used to
put strong constraints on possible short-wavelength density
distributions for the shallow lithosphere, especially when
they are combined with seismic information [e.g., Korenaga
et al., 2001; Roy et al., 2005]. For example, gravity anoma-
lies are particularly suited to estimating the structure of
the Moho and the elastic thickness of the lithosphere [cf.
Watts, 2001; Jacoby and Smilde, 2009]. Their measurement
uncertainties are typically low, varying between 2 and 10
mGal in global databases [Sandwell and Smith, 2009] to
between 0.1 and 0.01 mGal in regional surveys.

[67] When the density anomaly is broad and deeper than
around 50 km (e.g., within the SCLM), its signature in grav-
ity anomalies becomes small and therefore, it is difficult to
isolate the effects of the deep anomaly from those of other
shallower anomalies, which dominate the signal. In this case,
geoid anomalies (perturbations of the gravity potential) can
prove a better constraint on the depth distribution of den-
sity due to their sensitivity to nonzero density moments
[Turcotte and Schubert, 1982]. These characteristics make
geoid anomalies better suited than gravity anomalies for con-
straining deep density anomalies, e.g., those arising from
variations in the LAB (Appendix C). Uncertainties associ-
ated with recent geoid height models are extremely low,
usually <5 cm accuracy down to 275 km half-wavelength
[e.g., Reigber et al., 2005]. Modelization errors (e.g., fil-
tering and discretization) are therefore the largest source of
uncertainty when fitting geoid heights (see paper II).
4.2.2. Surface Wave Data

[68] Phase velocity dispersion maps obtained from the
combination of ANT with teleseismic surface wave tomog-
raphy constitute one of the best sources of information
for retrieving absolute Vs values in the lithosphere and
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sublithospheric upper mantle [Yang et al., 2008]. The main
advantage of this method is that while ANT provides
detailed information at short periods (shallow levels), tele-
seismic earthquake methods such as multiple-plane-wave
tomography (MPWT) [Yang et al., 2008] provide the com-
plementary information at longer periods (deep levels). The
ability to recover “good” values of Vs, however, depends
on the uncertainties associated with the phase velocity dis-
persion maps generated by each method. In the case of
ANT, robust estimations of the uncertainties in phase veloc-
ity maps can be obtained by the method of local Eikonal
tomography [e.g., Lin et al., 2009]. This method constructs
a phase travel time map centered on each station of a seis-
mic array by tracking phase travel times measured from
cross-correlations of ambient noise between each station
and all other stations within the seismic array. Each station-
centered phase time map is then converted (separately) to
a phase velocity map based on the Eikonal equation [e.g.,
Shearer, 1999]. The final phase velocity map is obtained by
averaging all the individual phase velocity maps centered at
different stations, and associated phase velocity uncertain-
ties are estimated from the variations of multiple station-
centered phase velocity maps. Lin et al. [2009] applied this
approach to the EarthScope/US Array and showed that the
period-averaged uncertainties associated with their disper-
sion maps typically average to <10 m/s for stations located
in the middle of the array and �20 m/s for stations near
the edges. Phase velocity uncertainties estimated in this way
depend mainly on the quality of the travel time data and on
the total number of stations in the seismic array.

[69] In the case of MPWT, uncertainties are estimated
from the a posteriori model covariance matrix after solv-
ing the nonlinear least-squares problem [Yang and Forsyth,
2006].

�m =
�
GTC–1

nnG + C–1
mm
�–1 �GTC–1

nn�d – C–1
mm[m – m0]

�
(10)

where m0 is the original staring model, m is the current
model, �m is the change relative to the current model, �d
is the difference between the observed and predicted data
for the current model, G is the partial derivative of d with
respect to perturbations of m, Cnn is data covariance matrix
describing the data uncertainties, and Cmm is the prior model
covariance matrix, which acts to damp or regularize the solu-
tion. A minimum length criterion is employed for damping
by assigning a typical prior model variance of �0.2 km
s–1 for phase velocity parameters to the diagonal term of
Cmm and leaving all the off-diagonal terms to zero. For a
study region with dense station coverage and sufficiently
long duration of deployment, such as the US continent cov-
ered by the USArray, the choice of different damping values
has only marginal effects on both phase velocity maps and
uncertainties. In such cases, the uncertainties of data (i.e.,
surface wave phase and amplitude) are evaluated using an
average data misfit for each event. Applying this method to
the USArray data in Western USA, Yang et al. [2008] esti-
mated period-averaged uncertainties of 10–15 m/s at stations
near the center of the array. For other arrays/study regions,
however, the effects of different damping parameters may
not be marginal and thus, they need to be evaluated for that
particular method and array (e.g., the choice of damping
in MPWT could be gauged by comparing resulting phase

velocity maps from MPWT at overlapped periods with those
from Eikonal tomography, which does not require damping
in obtaining phase velocity dispersion curves).

[70] With uncertainties of phase velocity maps both being
able to be estimated for ANT and MPWT, one can then
estimate uncertainties in Vs via Monte Carlo methods [e.g.,
Yang et al., 2008]. In the case of the USArray data, the
propagation of the uncertainties in the dispersion maps men-
tioned above results in uncertainties of 0.05–0.07 km/s
in the absolute Vs structure of the mantle [Yang et al.,
2008]. It is worth noting that the above uncertainty esti-
mates are valid only for the particular method discussed
here, when using the dense USArray dataset. This exem-
plifies the ideal case for the sort of inversions described in
this work. These uncertainties are not intended to be repre-
sentative of the whole range of velocity models that would
arise from the application of different methods. Specific
uncertainties should be estimated from the particular method
used to obtain the dispersion data rather than by comparing
results from different methods (we do not use a mixture of
results/data/methods).
4.2.3. Body Wave Data

[71] Body wave data have been used extensively to map
the lithosphere and upper mantle structures for over three
decades. Most regional body wave tomography use P-wave
and/or S-wave travel time residuals that are calculated rela-
tive to a 1-D reference model to constrain Vp and/or Vs val-
ues of the lithosphere and sublithospheric upper mantle [e.g.,
Rawlinson et al., 2006; Shomali et al., 2006]. In a regional
tomography, earthquakes are typically located outside the
study region and therefore, in order to remove source path
effects, the resulting Vp model is usually a model of velocity
perturbation rather than an absolute velocities. This means
that in order to obtain estimates of temperature and com-
position, one needs to first convert velocity anomalies into
absolute velocities by superimposing the anomalies on the
background reference model. However, using different ref-
erence models in body wave tomography commonly results
in similar perturbation models; in other words, different ref-
erence models do not significantly affect the anomaly model.
Thus, absolute velocity models based on regional body wave
tomography only are not robust.

[72] In addition, due to differences in the methodologies
and parameterizations/regulations used by different research
groups, body wave anomaly models tend to be considerably
different, even when using similar input data. For instance,
Becker [2012] has recently compared several Vp models of
western USA constructed from P-wave travel times recorded
at the dense and broad USArray. This author found that,
although the pattern of anomalies at scales �200 km is
remarkably consistent between different models, significant
differences in both amplitudes and small-scale patterns are
the rule rather than the exception. Differences of several per-
cent in the amplitudes of the anomalies are common between
different models [Becker, 2012]. Such discrepancies are of
the same order, if not larger, than those expected from large
and moderate compositional and thermal anomalies, respec-
tively. This illustrates an important limitation of body wave
tomography as a direct proxy for compositional and thermal
anomalies in the lithosphere.

[73] Within the present Bayesian framework, an attrac-
tive alternative that we discuss in paper II is to include
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teleseismic arrival time residuals into the data vector d
together with an additional operator gtt used to compute
synthetic travel time residuals [Rawlinson and Sambridge,
2004; Rawlinson et al., 2006]. Although this adds a new
set of uncertainties to the problem (those associated with
observed and computed arrival times), it does guarantee
that the absolute velocity model used to compute travel
time residuals is simultaneously (and thermodynamically)
consistent with dispersion data as well as with all other
observables. This is, in itself, an important step forward for
joint inversions. In this context, the uncertainties associated
with arrival times are important to judge whether a model is
acceptable or not under the framework of a Bayesian inver-
sion. However, travel time uncertainties are notoriously hard
to estimate, and thus most body wave tomography studies
do not address the problem. Based on the few studies that
attempted to estimate realistic uncertainties [e.g., de Wit et
al., 2012; Gudmundsson et al., 1990; Amaru et al., 2008],
values of 0.5–1 s seem reasonable for large-scale studies.
When dense local seismic networks are used instead, uncer-
tainties associated with relative arrival time residuals can be,
in average, less than 0.1 s [e.g., Rawlinson et al., 2006].
4.2.4. Magnetotelluric Data

[74] Experimental uncertainty in magnetotelluric data
comprises two types, random error and bias error. Random
errors are well known and well understood, and modern
jackknife-based methods give appropriate error estimates
on the MT impedance tensor elements without assumptions
about the distributions of the estimates [e.g., Chave and
Jones, 1997; Eisel and Egbert, 2001; Chave, 2012]. High-
quality data can usually be acquired with random errors of
order 1% of the impedance values. In many places, however,
the data errors are larger, mostly as a consequence of high
noise disturbances (DC trains etc.). Also, long period sig-
nals can be lower, as signal strength is directly related to the
11-year sunspot cycle.

[75] Far more difficult to quantify are bias errors that
are caused by distortion effects [e.g., Jones, 2012]. These
take two forms, either galvanic distortion that can lead par-
ticularly to errors in primarily the magnitudes of the MT
impedances or inadequate dimensionality assumption, i.e.,
interpreting 2-D data using 1-D methods or 3-D data using 2-
D (or 1-D) methods. For the latter, there are dimensionality
tests that can be performed, and the one in most current use is
the Groom-Bailey approach [Groom and Bailey, 1989], par-
ticularly the multisite, multifrequency code of McNeice and
Jones [2001]. For the former, there are approaches in use to
control the indeterminable part of distortion, the so-called
“static shifts” [Jones, 1988]. Generally, for high-quality MT
data that are appropriately treated, experimental uncertainty
is of order some 1–2% of the impedance values.

[76] The mapping from experimental errors into model
errors is difficult and fraught with high potential for misun-
derstanding. Although there exists a uniqueness theorem in
1-D and one of the 2-D modes for perfect MT data at all fre-
quencies [Bailey, 1970], for real data with error, one must be
cognizant of the issues. The functional relationship between
conductivity and observed response is highly nonlinear, and
again, there are random errors and bias errors. Random
errors can be quantified through linearized approaches, such
as that of Schwalenberg et al. [2002] in two dimensions
(2-D). Bias errors are far more difficult to quantify and

relate mainly to the insensitivity of inductive methods to
the resistivity of a resistive region, where “resistive” and
“conductive” are relative terms. For example, the resistivity
of the uppermost mantle directly below the crust is typi-
cally impossible to determine accurately due to the presence
of conducting material in the lower crust [see, e.g., Jones
1999, figure 3]. Only in cases where the crust is resistive
for its entire depth extent is it possible to determine the
absolute resistivity of the uppermost mantle [e.g., Jones and
Ferguson, 2001; Ledo et al., 2004]; otherwise, a minimum
bound can be set for the resistivity, but not a maximum
bound. Regularization errors will be discussed in paper II.
4.2.5. Absolute Elevation

[77] Observational uncertainties associated with elevation
are low, amounting to .15 m in high-resolution (30 arc s
resolution) global databases [Becker et al., 2009]. In our
inversions, however, the area of the individual columns is
sufficiently large (�2500–10,000 km2) to include significant
local variations in elevation that need to be averaged to a
single value with a representative uncertainty. We do this by
calculating the mean and standard deviation of the individual
data points within each column. In most cases, the standard
deviations so obtained are .150 m.
4.2.6. Surface Heat Flow

[78] Surface heat flow measurements are expensive, par-
ticularly in continents, and therefore they are scarce and
heterogeneously distributed [e.g., Davies and Davies, 2010].
In addition, SHF values are typically dominated by
the heat production of the crust and are significantly
affected by shallow advection processes; their sensitiv-
ity to deep mantle thermal anomalies is strongly dimin-
ished when these are located at depths >180 km [cf.
Jaupart and Mareschal, 2011]. For these reasons, litho-
spheric/sublithospheric models based purely on SHF data
are not considered to be reliable. Despite these limitations,
SHF nevertheless provides some constraints, albeit weak,
and can be a useful “secondary” observable when dealing
with the mantle thermal structure. By secondary we mean
that, although the relative weight assigned to SHF during
the inversion is low in comparison with other observables
(e.g., seismic waves), any acceptable model of the litho-
sphere/sublithosphric upper mantle must be consistent with
SHF data as well.

[79] Typical uncertainties associated with SHF measure-
ments in continents amount to˙5–10 mW m–2 [e.g., Powell
et al., 1988], which is equivalent to a depth change in the
LAB of �50 km (if the LAB is defined as an isotherm, e.g.,
1300ıC). However, this equivalency is strictly valid only if
the LAB change is confined to a depth range between �60
and 180 km. At 250 km depth, an identical change in depth
translates into a SHF change of only 5–8 mW m–2.
4.3. Dependence of Physical Parameters on
Major-Element Composition
4.3.1. An Illustrative Example

[80] Let us assume that we have laboratory measurements
of the (secondary) parameters Vs, Vp, electrical conductiv-
ity �, and bulk density for a peridotite sample at P = 3 GPa
and T = 900 ıC (assume that Vs and Vp are high-frequency,
unrelaxed, velocities). Our task is to retrieve the true
major-element composition of the sample by exploring the
entire compositional space with a Monte Carlo method and
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Figure 6. Ensemble of 2382 acceptable compositions from a total random population of 2500 samples.
The only constraining parameter is the Vs velocity. The true (target) composition is indicated by the white
star (SiO2 = 44.03, Al2O3 = 3.81, FeO = 8.08, and MgO = 40.82, CaO = 3.25) and the corresponding
target Vs velocity is 4.634 km s–1 (calculated at T = 900 ıC, P = 3 GPa). The color scale represents
the misfit in absolute values. The sampling is performed following the steps explained in the text and
truncating the samples at the 95% confidence limits.

comparing our predictions to the observed parameters. Pre-
dicted values of Vp, Vs, �, and bulk density for all tested
compositions are obtained by solving the Gibbs energy mini-
mization problem (section 3.1). To make a (much simplified)
comparison with real-case scenarios easier, further assume
that the measurements have associated uncertainties in Vs
and Vp comparable to those from dense surface wave and
refraction studies (˙52 and ˙82 m s–1 for Vs and Vp,
respectively). We warn the reader that these uncertainties,
although realistic, are strictly valid for the present illustrative
example only. More appropriate values (particularly for Vp
and dispersion curves) will be used in a real 3-D inversion
(paper II).

[81] We generate sets of 2500 random compositional sam-
ples each, using the method described in section 2.3 (this
number is sufficient to sample well the entire compositional
field indicated by real samples; Figure 2). During each sim-
ulation, we save a subset containing the samples that fit the
data within their defined uncertainties. This subset then con-
stitutes an ensemble of acceptable samples. Figure 6 shows
the result of one such simulations in which Vs is the only
constraining parameter. All samples in this subset fit the true
Vs value within ˙52 m s–1 (the assumed uncertainty). Note
that the assumed uncertainty is close to the low end of repre-
sentative uncertainty values in high-resolution surface wave
studies (section 4.2.2), and thus, this example represents the
best possible scenario. Even when the uncertainty is reduced

by a factor of two (unrealistically good), the resulting subset
of samples consistent with the data still spreads over a large
compositional range. This simple exercise demonstrates that
Vs alone defines neither the composition of our synthetic
sample nor the fine compositional structure of the Earth’s
upper mantle; it only suggests that a peridotitic composition
sensu lato is compatible with the observed Vs value.

[82] When Vp is used as the only constraint, the subset of
acceptable samples is smaller than when using Vs, but the
acceptable compositional range remains large (Figure 7). In
this case, the samples of this subset fit the true Vp value
within ˙82 m s–1, which is again close to the low end of
typical uncertainties in refraction studies. The reason for
the reduction on the number of acceptable samples when
using Vp instead of Vs is mainly due to the disappearance
of the “low-Al2O3” samples (yellow-red dots in Figure 6).
This is because, at equal MgO contents, the bulk modulus of
the assemblage is more sensitive to changes in bulk Al2O3
(i.e., garnet mode) than the shear modulus. Therefore, the
acceptable Al2O3 range for samples with an identical MgO
content is narrower in Figure 7. However, as in the Vs case,
the compositional range allowed by Vp is large enough to
include most of the natural variability (Figure 2). Note the
two regions of low misfit (blue dots) at high and low MgO
contents. The low-residual samples at the high-Mg end are
harzburgites (opx + ol) and dunites (mostly ol) while those
at low-Mg end are lherzolites (cpx + opx + ol + gte). When
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Figure 7. Ensemble of 1363 acceptable compositions from a total random population of 2500 sam-
ples. The only constraining parameter is the Vp velocity. The true (target) composition is the same as in
Figure 6 (white star) and the corresponding target Vp velocity is 8.185 km s–1 (calculated at T = 900 ıC,
P = 3 GPa). The color scale represents the misfit in absolute values. Sampling method as in Figure 6.

larger uncertainties are considered (˙120 m s–1), the sub-
set of acceptable samples is larger, but the two regions of
low misfit at high and low MgO contents remain. In the
ideal case of small uncertainty in the observed Vp value
(˙10 m s–1), the diagram would show two separate clusters
of acceptable samples, and independent information would
still be needed to decide on the composition of the sam
ple. This two-branched pattern in Vp has been recognized
before [Afonso and Schutt, 2012] and reflects the competi-
tion between modal (phase abundances) and chemical (com-
position of the phases) effects in peridotites as their Al2O3
and CaO contents decrease. As expected, fitting Vp and
Vs simultaneously (or their ratio) produces similar results
as those in Figure 7, and therefore, we do not include an
additional figure.

[83] At first glance, these results seem to be at odds
with the strong correlations between Vp/Vs and Mg%
found in several previous studies [e.g., Lee, 2003; Speziale
et al., 2005; Afonso et al., 2010]. However, although the cor-
relations are a robust result, the actual application of them to
infer the Mg% of mantle domains is hampered by the unre-
alistically low uncertainties required for Vp, Vs, and/or �.
When realistic uncertainties associated with these properties
are considered (e.g., ˙0.02 for Vp/Vs ratio), the range of
possible Mg% as given by the above correlations becomes
large enough to cover most of the natural range in peridotites
[compare with Figure 2 in Afonso et al., 2010]. This is pre-
cisely what Figures 6 and 7 highlight; the contradictions are
therefore only apparent.

[84] Assigning uncertainties to density data in the upper
mantle is more problematic, since traditional geophysical
methods are weakly sensitive to absolute density values
at small scales (<250 km). For our present (illustrative)
purposes, an objective uncertainty can be estimated based
on the discrepancies between predictions from differ-
ent thermodynamic [Holland and Powell, 1998 (revised
2002); Stixrude and Lithgow-Bertelloni, 2011], hybrid
[Afonso et al., 2008], and mineral physics methods [Schutt
and Lesher, 2006] for identical compositions. We have com-
pared predictions from the methods of Schutt and Lesher
[2006], Afonso et al. [2008], and Stixrude and Lithgow-
Bertelloni, [2011] for identical samples and found that their
discrepancies amount to <1% for conditions pertaining to
the upper mantle [see also Afonso and Schutt, 2012]. With
these estimates, a simulation using density as the only con-
straint generates the subset of acceptable samples shown
in Figure 8. Since bulk density is the bulk property that
correlates best with Mg#, the compositional range along
the MgO and FeO axes has been reduced compared with
those from Vs or Vp. Also, at identical MgO contents, the
range in SiO2 content has been reduced. This is due to the
significant effect of the low-density phase Opx (which is
controlled by the SiO2 content of the sample) on bulk den-
sity. Despite these improvements, the compositional range
still is too large to provide a definite composition for
our sample.

[85] Electrical conductivity alone does not represent any
improvement with respect to the other parameters (Figure 9),
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Figure 8. Ensemble of 883 acceptable compositions from a total random population of 2500 samples.
The only constraining parameter is the bulk density. The true (target) composition is the same as in
Figure 6 (white star) and the corresponding target density 3378.79 kg m–3 (calculated at T = 900 ıC,
P = 3 GPa). The color scale represents the misfit in absolute values. Sampling method as in Figure 6.

except that there is more clearly defined region of low
residuals. This is a consequence of the large effect that
garnet has on the bulk conductivity of peridotites (garnet
conductivity is typically 1–2 orders of magnitude greater
than that of other phases). Thus, the “banding” depicted
by the residual in the SiO2-MgO panel follows closely
the original banding in garnet content. Interestingly, the
region of low residuals seems to be equally spread around
the true values of Al2O3, FeO, and CaO but preferen-
tially displaced towards lower MgO and higher SiO2 values.
This apparently odd feature is the result of competing
modal effects and can be understood as follows: reduc-
ing MgO and increasing SiO2 results in assemblages with
larger Opx/Ol, Cpx/Ol, and Gt/Ol ratios. Orthopyroxene and
clinopyroxene have electrical conductivities slightly lower
than, or comparable to, that of olivine [Fullea et al., 2011].
Therefore, while an increase in Opx + Cpx/Ol reduces the
bulk conductivity of the rock, increasing the Gt/Ol ratio
has an opposite and stronger effect. The overall result is
that small increases in the Gt/Ol ratio can compensate for
larger increases in the Opx/Ol ratio. This is a somewhat
unfortunate characteristic of electrical conductivity that sys-
tematically biases the location of regions with low residuals
to lower MgO and higher SiO2 values than those in the
target sample.

[86] The obvious next step is to simultaneously fit Vs, Vp,
� and bulk density within their uncertainties in an attempt
to constrain the range of acceptable samples as much as

the data allow. The results of such simulation are shown in
Figure 10. The residual in this case is simply defined as

residual =
|Vs(m) – Vsobs|

�Vs
+

|Vp(m) – Vpobs|
�Vp

+
|�(m) – �obs|

��
+

|�(m) – �obs|
��

(11)

where m is the vector of compositions, Vs(m), Vp(m), �(m),
and �(m) the predicted values, Vsobs, Vpobs, �obs, and �obs
the observed values, and �Vs, �Vp, ��, and �� the respective
mean deviations (�Vs = 52 m s–1, �Vp = 82 m s–1, �� = 20 kg
m–3, �� = 0.25 log10 S m–1). As expected, Figure 10 shows
a much more restricted compositional range than the ones
obtained using Vs, Vp, �, and density separately. Only 22%
of the total number of random samples generated met the
imposed fitting criteria. Although this result is encouraging,
we still would have difficulties in choosing a definite com-
position for the sample at hand, even if we only needed to
define its Mg# approximately. Even samples with residuals
<1 do not cluster around definite values but rather follow a
trend in the compositional space. A more thorough search
in compositional space reveals an even clearer but identical
trend of acceptable samples (Figures D2a–D2d in Appendix
D). It is important to identify the reasons behind this behav-
ior since (i) this trend of acceptable samples seems at odds
with the common idea that different Mg# represent signif-
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Figure 9. Ensemble of 2326 acceptable compositions from a total random population of 2500 sam-
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tion of increasing garnet content in the samples. The color scale represents the misfit in absolute values.
Sampling method as in Figure 6.

icantly different physical properties and (ii) it complicates
any inversion procedure within the compositional space.

[87] The trend of low misfit samples (blue dots), running
roughly from high-Mg/low-Al/high-Fe to low-Mg/high-
Al/low-Fe, is the result of a combination of modal and
compositional effects. The high-Mg/low-Al/high-Fe sam-
ples are basically harzburgites with anomalously high Al
and Fe contents, while the low-Mg/high-Al/low-Fe samples
are lherzolites with anomalously low Fe contents (compared
with natural samples in Figure 2). Over 95% of high-Mg
peridotites in our database are depleted rocks with low con-
tents of Al and Ca (Figure 2), which typically results in
low-density rocks with higher Vs and Vp velocities than
their fertile counterparts. In the present case, however, the
anomalously high FeO contents of the harzburgites pro-
mote the stabilization of denser olivine (Fa-rich olivine)
with lower Vp and Vs velocities than normal. Additionally,
the relatively high Al contents of these samples result in
higher than normal contents of the dense phase garnet. The
final result is that the FeO and Al2O3 effects counterbal-
ance the high-Mg effect, and thus the physical properties
of the harzburgitic samples resemble those of more fertile
lherzolites. This is the reason why the field of acceptable
samples is extended towards higher Mg# in Figure 10. The
cause of the extension towards lower Mg# can be understood
on similar grounds. The anomalously low FeO contents
in the lherzolitic samples of Figure 10 result in samples

with higher Vs and Vp and lower densities than average
natural lherzolites (low-Fe end members are typically less
dense and have higher velocities). Importantly, note that
although the Al2O3 content is relatively high, this does not
translate into significantly larger amounts of denser garnet
due to a “buffer” effect by the pyroxenes, which can accom-
modate larger amounts of Al2O3 at low pressures [e.g.,
Perkins and Newton, 1980]. This buffer effect is discussed
further below.

[88] The existence of this trend complicates any attempt
to constrain the composition of the sample, since all samples
are identical in terms of their relevant physical proper-
ties (Table 2). This hitherto described problem represents
a serious challenge for any inversion scheme attempting to
provide estimates of the compositional structure of the upper
mantle. Interestingly, this modal-compositional effect is sig-
nificantly minimized as the pressure increases, mainly due to
the disappearance of the buffer effect provided by pyroxenes
(Appendix D). As mentioned above, the capacity of pyrox-
enes to accommodate Al_2O_3 in their structure decreases
with pressure [Perkins and Newton, 1980], which in turn
amplifies the dependence of modal garnet on bulk Al2O3
content. At the same time, the majoritic component of opx
becomes more soluble in garnet as pressure increases [e.g.,
Irifune and Ringwood, 1993], thus increasing modal gt/opx.
All this results in that even relatively small changes in Al2O3
content at high pressures (P &10 GPa) can translate into
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Figure 10. Ensemble of 546 acceptable compositions from a total random population of 2500 samples.
These acceptable samples simultaneously fit Vs, Vp, electrical conductivity, and bulk density constraints
(within uncertainties). True (target) composition and P-T conditions as in Figure 6, and the corresponding
Vp, Vs, �, and density as in Figures 6–9. The color scale represents the combined residual explained in
the text.

significant variations in the garnet mode. Since garnet is the
densest, fastest, and most conductive phase in the rock, mod-
est variations in its mode significantly affect the physical
properties of the rock. Because this modal effect is more
important than that exerted by modest variations in FeO
content, the dependence of bulk density, Vs, Vp, and electric
conductivity on compositional variations is effectively aug-
mented at high pressures and thus the trend seen in Figure 10
is much reduced (Appendix D). In summary, constraining
the composition of an upper mantle peridotite using only its

physical properties is easier at depths &300 km. Thus, the
depth range over which constraining compositional anoma-
lies with geophysical observables is less robust encompasses
most of the lithospheric mantle. Inversion schemes that
include a compositional space for the lithosphere should
explicitly consider this matter.
4.3.2. A Simple Bayesian Strategy

[89] To this point, it would seem that the combination
of the four observations fails to define a good estimate
of the sample’s composition, even when the experimental

Table 2. (a) Volumetric Proportions, Phase Compositions, and Physical Properties of a Peridotite Sample With Bulk Composition SiO2 =
45.59, Al2O3 = 4.82, FeO = 7.0, MgO = 38.01, and CaO = 4.93. (b) Volumetric Proportions, Phase Compositions, and Physical Properties
of a Peridotite Sample With Bulk Composition SiO2 = 42.27, Al2O3 = 2.50, FeO = 9.84, MgO = 45.00, and CaO = 0.57a

(a) Phases vol% SiO2 Al2O3 FeO MgO CaO � [kg m–3] Vs [km s–1] Vp [km s–1]

Ol 54.65 41.81 0.00 8.13 50.68 0.00 3324.0 4.65 8.20
Opx 10.65 57.50 0.95 6.45 34.59 0.51 3300.3 4.53 7.73
Cpx 17.26 54.82 0.89 1.36 18.36 24.57 3296.3 4.36 7.76
Gt 17.43 42.52 23.95 8.96 20.76 3.81 3688.5 4.94 8.89
Aggregate x 45.59 4.82 7.0 38.01 4.93 3380.2 4.63 8.18

(b) Phases vol% SiO2 Al2O3 FeO MgO CaO � [kg m–3] Vs [km s–1] Vp [km s–1]

Ol 83.04 40.83 0.00 9.99 49.17 0.00 3348.3 4.61 8.15
Opx 7.11 57.26 0.89 7.49 33.87 0.47 3313.3 4.51 7.70
Cpx 0.55 54.74 0.88 1.65 18.12 24.59 3299.9 4.36 7.76
Gt 9.30 42.21 23.77 10.47 19.59 3.95 3711.8 4.93 8.86
Aggregate x 42.27 2.50 9.84 45.00 0.57 3379.3 4.63 8.18

aCalculations were performed with Perple_X [Connolly, 2009] at P = 3 GPa, T = 900 ıC. The thermodynamic formalism and database are from Stixrude
and Lithgow-Bertelloni [2011].
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uncertainties are low. This may not be necessarily the case
if we set up the problem as a probabilistic inversion exer-
cise and take into account all the information gained about
the problem by the experiments in previous sections. As a
provisional solution to the current problem, we propose the
following general strategy.

[90] (1) The prior for compositional parameters �(m) is
based on the data provided by the dataset of exhumed sam-
ples (Figure 2). It is sampled as described in section 2.3,
now explicitly including in �(m) the Gaussian distributions
for CaO and MgO associated with each Al2O3 bin (Figures 3
and 4). Note that �(m) represents a true prior, as it is
independent of any geophysical data.

[91] (2) Assign a PDF for the relevant operators solv-
ing the forward problem; equation (9) represents an
appropriate option.

[92] (3) Define the likelihood function L(m) of the prob-
lem. Based on the discussions in previous sections, an
appropriate option is [Tarantola, 2005]

L(m) =
Z
�(d) � (d | m)

�(d)
dd

= k
�

–
1
2

(g(m) – dobs)TC–1
D (g(m) – dobs)

�
(12)

where k is a constant, dobs is the observed data vector (i.e.,
observed values of Vp, Vs, and �), and CD is the covariance
matrix that incorporates both theoretical and data uncertain-
ties. The second equality in equation (12) implies Gaussian
PDFs for both �(d) and � (d | m) (the analytical solution
of the integral in equation (12) can be found in Mosegaard
and Tarantola [2002]). For this simple example, it suffices to
assume a diagonal CD (i.e., uncorrelated uncertainties). The
computation of the full-rank covariance matrix for the 3-D
inversion problem is discussed in paper II.

[93] (4) Substitute the above PDFs into equation (6) and
solve for � (m). Since there is no closed-form mathemati-
cal expressions for either �(m) or � (m), we use a Markov
Chain Monte Carlo (MCMC) method to sample these PDFs.
A thorough discussion of MCMC methods is beyond the
scope of this paper, and we refer the reader to Gilks et al.
[1996] and Brooks et al. [2011] for details. Here, it suffices
to state that the algorithm samples the posterior PDF by
iteratively proposing independent samples of the prior �(m)
and evaluating their likelihoods. The proposed sample mnew
are accepted as samples of the posterior with a probability
P = min[1, L(mnew)/L(mprev)], where mprev is the likelihood
of the last accepted sample.

[94] We emphasize that the only (loose) constraint in
this scheme is that the sampling of the prior is restricted
to a space defined by our large database of natural sam-
ples from different tectonic settings (Figure 2). This con-
trasts with the more common and restrictive assumptions of
(i) models based on limited, local xenolith samples [e.g.,
Fernàndez et al., 2010; Fullea et al., 2010], (ii) com-
positional regionalizations based on assumed crustal age-
composition relationships [e.g., Cammarano et al., 2011],
and (iii) small compositional ranges for the upper mantle
[e.g., Khan et al., 2011a] . This is important for sev-
eral reasons. First, there is abundant evidence that the
relationship between crustal age versus mantle composi-
tion does not apply worldwide [e.g., Griffin et al., 1998;
Griffin et al., 2009]. Second, local xenolith suites may not
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histograms (i.e., marginal distributions) from an MCMC
simulation performed following the steps explained in the
text. The bin containing the true value is colored black. In
all cases, the histograms have been significantly narrowed
towards the true value.
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be representative of the lithospheric mantle as a whole
[e.g., Afonso et al., 2008; Griffin et al., 2009]. Third,
and perhaps more important, most geophysical observ-
ables are not strongly sensitive to major-oxide composi-
tional anomalies (section 4.3.1), and therefore, restrictive
priors can significantly condition the final result of the
inversion (Figure 1).

[95] The results from an MCMC simulation using the
steps described above are shown in Figure 11 for the same
composition and P-T conditions as in Figures 6–10. The
prior and posterior marginal distributions are depicted as
histograms computed from the full posterior ensemble. The
acceptance rate of the MCMC algorithm was about 30%,
and therefore, the prior ensemble is �70% larger than the
posterior. Note that the region of highest probability success-
fully encloses the true solution and defines a Mg# within
� ˙0.5 units. Changing the target (true) composition to
more extreme compositions does not affect the general con-
clusion, and our method still is able to retrieve a satisfactory
estimate of the true composition (Appendix D). Regard-
less of these results, the application of this approach to
3-D inversion problems with real geophysical data, as well
as its capacity to recover robust estimates of the thermo-
chemical structure of the Earth’s upper mantle, requires
a number of additional considerations, both conceptual
and computational. These will be thoroughly addressed in
paper II.

[96] The type of strategy described here is common prac-
tice in full Bayesian analyses, where only information
that is entirely independent of data is accepted as prior
[Tarantola, 2005]. However, other “objective” information
could be implemented by reformulating the problem as a
hierarchical or empirical Bayes problem [Carlin and Louis,
2000; Efron, 2010]. In particular, in all of our tests, the
resulting ensemble of acceptable samples obtained through
a simple Monte Carlo search tends to be evenly distributed
around the true value (e.g., Figure 10). This is not surprising,
as the fitting properties of a particular sample are expected
to decrease the further it is from the true value. Under
certain circumstances, this information could be treated as
hyperprior information about the problem and let the data
inform the actual prior of compositional parameters. For
example, the hyperparameters could be the mean vector
and covariance matrix defining the prior �(m). Alterna-
tively, a reduced data vector could be used in a “first
approximation” step to obtain hyperparameters that would
define the priors to use when incorporating all available
data in the Bayesian analysis. Such approach, in which the
prior is informed by all or part of the data (and therefore
not a true prior in the strict Bayesian sense), has proven
to be particularly useful in geophysical inversions [e.g.,
Butcher et al., 1991; Gouveia and Scales, 1998; Scales
and Tenorio, 2001; Oh and Kwon, 2001; Malinverno and
Briggs, 2004; Woodbury and Ferguson, 2006], but the actual
procedure depends on both the problem and the type of
information to be retrieved. Similar grounds applied to our
full 3-D inversion scheme will be discussed in paper II
[Afonso et al., this issue].
4.3.3. Linear �-Velocity Correlations for Peridotites

[97] A related issue relevant to this section, in which dif-
ferences in major-element composition can potentially affect
Vp-density or Vs-density joint inversions, is the validity of
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Figure 12. Vp-bulk density plot for 2500 random peri-
dotite samples from a Monte Carlo simulation at P = 3 GPa
and T = 900 ıC. These samples cover >95% of the entire
compositional range as depicted in Figure 2. The dashed
lines are the empirical linear relations for ultramafic rocks
from Birch [1961] and Christensen and Mooney [1995]. The
Mg# of each sample is indicated by the color scale.

the so-called Birch’s law [Birch, 1961] for mantle samples
at lithospheric conditions. Similarly to what is assumed at
crustal levels, joint inversions typically assume that there
is a linear correlation between Vp and bulk densities at
sub-Moho depths [e.g., Nielsen and Jacobsen, 2000; Bailey
et al., 2012]. Figure 12 shows the result of a Monte Carlo
simulation in which 2500 random samples have been gen-
erated within the compositional bounds given by Figure 2.
Bulk density and Vp of these samples were calculated at
P = 3 GPa and T = 900 ıC. We also include in this figure
the predictions from the original fit of Birch for mantle
rocks [Birch, 1961] at pressures up to 1 GPa and the more
recent estimation of Christensen and Mooney [1995] for
sub-Moho depths. As expected from the different pressure
ranges, the original fit is well outside the predicted values.
That of Christensen and Mooney [1995], on the other hand,
passes through the ensemble, almost parallel to the field of
“fertile” lherzolites (i.e., samples with Mg# �0.89). This
suggests that the linear parametrization of Christensen and
Mooney [1995] is a reasonable approximation only for rela-
tively fertile peridotites. Samples with higher Mg#, i.e., from
typical depleted cratonic upper lithospheric mantle, depart
significantly from the linear fit, resulting in differences up
to �80 kg m–3 in the predicted density. This value is of
similar order to that resulting from a change in lithology
(Appendix A). For the SCLM beneath Phanerozoic terranes,
the “fertile” xenoliths may represent a reasonable approx-
imation to the composition. However, beneath cratons and
Proterozoic terrains, such fertile rock types are probably in
a minority and concentrated along specific zones that have
experienced repeated refertilization [Griffin et al., 2009;
O’Reilly and Griffin, 2012]. Therefore, caution should be
exerted when applying generalized linear fits in Vp-density
joint inversions.
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Figure 13. Histogram of 990 samples that fit Vp, Vs,
bulk density, and electrical conductivity within uncertain-
ties. Note that more than 92% of these samples are found
within the range 800 < T < 1000ıC. (b) as in (a) but exclud-
ing electrical conductivity from the constraining parameters.
The color scale denotes values of the normalized poste-
rior PDF. Numbers between two temperature bins are the
average residuals (as defined in equation (11)) for the two
adjacent bins. See text for details.

4.4. Dependence of Physical Parameters
on Temperature

[98] The effect of temperature on anharmonic physi-
cal properties of upper mantle minerals is generally better
understood than the compositional effects [cf. Ahrens, 1995,
Anderson, 1995; Rubie et al., 2004; Yoshino, 2010;
Price, 2009; Jones et al., 2012]. Therefore, we do not
attempt to address this subject here; the interested reader can
find detailed reviews in the references given above. More
relevant to us is the minimum range of temperatures that
our observables can constrain when compositional effects
are simultaneously included in the inversion. In Bayesian
terms, we would like to know how broad the likelihood
function is (and therefore the posterior PDF) with respect
to temperature. An instructive and simple way to achieve
this is to add temperature to our vector of model parame-
ters m and run Monte Carlo simulations to find acceptable
ensembles that fit the data within uncertainties. The strategy
here is first to generate 2500 random compositional sam-
ples in the same way as in the previous section and then to
calculate their physical properties for 40 different tempera-
ture bins of 25ıC each. This provides a sufficiently smooth
sampling of temperature from 500 to 1500ıC (note that the
target sample still is at T = 900 ıC). Thus, the total num-
ber of random samples generated in this example amounts
to 100,000.

[99] The results of this simulation for two cases, one
including electrical conductivity as a constraint and the
other neglecting it, are shown in Figure 13. When the
constraining parameters include the electrical conductivity,
the total number of acceptable samples is 990, which rep-
resents �1% of the total number of generated samples.
In this case, more than 90% of the samples comprising
the acceptable ensemble are restricted to a temperature
range of 200ıC (Figure 13a), and more than 62% lies
within a range of 100ıC. Removing the electrical con-
ductivity from the constraining parameters (i.e., Vp, Vs,
and density only) results in an acceptable ensemble con-
taining 2326 samples, �2.36% of the original samples.
Approximately 90% of the ensemble now lies within a
temperature range of 250ıC (Figure 13b), which reflects
the fact that the electrical conductivity of solid assem-
blages is much more sensitive to temperature changes than
the other three parameters. While electrical conductivity
is exponentially dependent on temperature (equation (8))
[Jones et al., 2009; Fullea et al., 2011], Vp, Vs, and den-
sity exhibit a quasi-linear or weakly nonlinear dependence
(i.e., for most mantle phases the first temperature derivative
is dominant) [see Jones et al., 2009; Afonso et al., 2010, and
references therein].

[100] The reason for obtaining larger acceptable ensem-
bles when temperature is included as a free parameter is
twofold. First, small changes in the temperature (i.e., from
one temperature bin to another) are likely to translate into
small changes of the physical parameters, which in turn are
likely to remain within the assigned experimental uncer-
tainties. For instance, a change from 500 to 525ıC results
in changes of –2.51 kg m–3, –0.008 km s–1, and –0.014
km s–1 in density, Vs, and Vp, respectively. These varia-
tions are much smaller than the experimental uncertainties
assigned to each variable (see previous section). The sec-
ond factor is the well-known trade-off between temperature
and composition for some parameters [e.g., seismic veloci-
ties) [Afonso et al., 2010], which has the potential to convert
unacceptable samples at one temperature into acceptable
samples at another temperature. This is particularly evi-
dent in Figure 13b, where larger numbers of acceptable
samples are found at temperatures lower than the true
value. In this case, most of the samples with low FeO
and low MgO, characterized by low relative densities and
rejected in Figure 10, become acceptable at lower tempera-
tures (i.e., they compensate their low compositional density
with temperature). Since electrical conductivity constrains
temperature better, this effect is diminished in Figure 13a
(albeit still visible).

[101] If we were to adopt a frequentist point of view, it
would be tempting to assign 875 and 825ıC as the most
likely temperatures in these ensembles. However, using the
definition in item 4 in section 4.3.3 for the posterior PDF
and an MCMC simulation, the most likely temperature is
located within the range 875 < T < 925ıC in both cases.
This is depicted in Figure 13 by superimposing a color
scale of the resulting marginal posterior on top of the Monte
Carlo histograms. We emphasize that the histograms repre-
sent the number of samples that are compatible with data
within uncertainties (frequentist analysis), while the color
scale is the result of a full MCMC simulation (Bayesian
analysis) with a flat prior in the temperature range 500 < T
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< 1500ıC. Although the marginal posterior for temperature
is narrower in the case which includes electrical conductiv-
ity, the marginals for compositional parameters are slightly
deteriorated in comparison to the case with Vs, Vp, and den-
sity only. This seems to be an unavoidable consequence of
the intrinsic dependence of electrical conductivity on modal
garnet and bulk MgO content (section 4.3.1). The addition
of fluids and/or carbon-rich phases to the system would add
another layer of complexity to the simultaneous treatment
of Vs, Vp, density, and electrical conductivity. However, we
deem that the results in this paper warrant a more compre-
hensive exploration of the potential benefits (temperature?)
and limitations (composition?) of incorporating electrical
conductivity in multiobservable inversions.

5. Conclusion
[102] In this paper, we have analyzed the main problems

associated with the definitions and use of a priori infor-
mation on compositional parameters �(m) and likelihood
function L(m) for probabilistic inversion schemes aimed to
constrain the thermochemical structure of the Earth’s litho-
sphere and sublithospheric upper mantle. Within this con-
text, the need for combining multiple geophysical datasets
in a probabilistic manner has been justified and demon-
strated by analyzing the sensitivity of each observable to
composition and temperature, as well as their experimental
uncertainties. The dependence of physical parameters such
as bulk density, electrical conductivity, and seismic veloci-
ties to major-element composition has been systematically
addressed using Monte Carlo simulations and an internally
consistent thermodynamic formalism.

[103] Based on this analysis, we propose a general
strategy to define �(m) that does not rely on restrictive
assumptions such as small ad hoc compositional ranges,
limited/local xenolith populations, or predefined �(m) for
specific tectonic settings based on age-composition rela-
tionships. This is important as there is ample evidence
of exceptions to such age-composition relationships; these
exceptions carry significant tectonic information and are
thus one of the targets to be identified by the present
approach. The problem of using age-composition rela-
tionships as a priori information is aggravated by the
fact that the likelihood, which should account for realis-
tic uncertainties in data and theory, is only mildly sen-
sitive to bulk compositional parameters. We have shown
the intrinsic difficulties in obtaining reliable compositional
estimates of peridotite samples when using geophysical
parameters/observables. Most importantly, by using simple
synthetic examples, we have shown that a wide range of
naturally occurring compositions can equally well explain
multiple geophysical data. This nonuniqueness problem is
heightened at lithospheric depths, where most of the com-
positional variability is expected to occur, and thus, it rep-
resents a major challenge not only for traditional linearized
inversions but also for explorative Monte Carlo methods.
Any method attempting to estimate the compositional and
thermal structure of the upper mantle should address these
problems.

[104] In this first paper, we have demonstrated that a
multiobservable Bayesian approach, in which the a priori
information is based on large databases of natural mantle

samples and robust correlations between major oxides offer
a promising and general inference platform to address the
abovementioned difficulties. The two key elements of the
method are (i) the internally consistent combination of mul-
tiple geophysical observables with differential sensitivities
to compositional/thermal parameters and (ii) a priori com-
positional information based on statistical analysis of large
databases of natural mantle samples from many different
tectonic settings. This database can be updated as more sam-
ples are analyzed, without affecting the general inversion
scheme. We have shown that such approach can provide
acceptable (probabilistic) estimates of both compositional
variables and associated uncertainties. Nevertheless, the
application of this probabilistic approach to 3-D inversion
scenarios requires additional considerations at both techni-
cal and conceptual levels. We address these in detail in an
accompanying paper [Afonso et al., paper II, this issue].

Appendix A: Eclogites and Pyroxenites
[105] Eclogitic and pyroxenitic xenoliths are commonly

recovered in both cratonic and off-craton localities around
the world [Schulze, 1989; Jacob, 2004; Griffin and O’Reilly,
2007]. Although in most these two lithologies are subordi-
nate in comparison to peridotite xenoliths, some localities
exhibit a clear dominance of eclogites/pyroxenites in their
xenolith population (e.g., Roberts Victor, South Africa).
However, even in such cases, the relatively large abun-
dance of eclogites is thought to be the result of either
differential preservation effects during xenolith exhumation
or sampling-depth bias [Jacob, 2004; Griffin and O’Reilly,
2007]. In fact, although their origin and role in the evolu-
tion of lithospheric mantle still are a matter of debate [Griffin
and O’Reilly, 2007], it is commonly accepted that eclogites
and pyroxenites cannot make up more than �1% in vol-
ume of the lithospheric mantle [Schulze, 1989], although
higher local concentrations could exist [e.g., Griffin and
O’Reilly, 2007; Huang et al., 2012]. Since our method is
designed to capture average compositional heterogeneities
in the mantle with minimum vertical and horizontal exten-
sions &40 and 80 km, respectively (Afonso et al., paper II,
this volume), it is not suited for detecting sharp lithological
contrasts or volumetrically unimportant bodies.

[106] Although beyond the scope of this paper, we note
that detection of eclogitic bodies in the mantle by other
geophysical techniques is also difficult task [e.g., Ghent
et al., 2004; Bascou et al., 2001], particularly because
not all eclogites are characterized by significantly dif-
ferent physical properties from those of peridotites. For
instance, Figure A1 shows the Vs, Vp, and bulk density
of 2500 randomly generated eclogitic samples based on
the xenolith database of Huang et al. [2012]. The latter is
depicted in the figure as histograms indicating the relative
abundance of eclogitic xenoliths in terms of their Al2O3
and FeO contents. This figure also includes the Vp, Vs,
and density of typical mantle peridotites at the same P-
T conditions (red shaded rectangles). Except for density,
which is always lower in peridotites, Vp and Vs of man-
tle peridotites lie within the compositional range observed
in eclogitic xenoliths. More importantly, the compositional
region at which the two lithologies have similar seismic
velocities coincides with that of the most abundant eclogitic
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Figure A1. The figure shows the main physical parameters for 2500 random samples generated based
on the database of Huang et al. [2012]. Color scale as in Figure 2. The histograms indicate the frequency
of samples in the database. Shaded red bands denote typical values for mantle peridotite at identical P-T
conditions.

xenoliths (i.e., the isotropic seismic velocities of the most
commonly sampled eclogites are not too different from those
of surrounding peridotites). In particular, none of the sam-
ples plotted in Figure A1 produces reflectivity coefficients
>0.07, in agreement with previous studies [e.g., Bascou
et al., 2001; Ji et al., 2003b]. This corroborates previous
suggestions that the simple contrast in physical properties
between peridotite and eclogite is insufficient to produce the
high-amplitude reflections inferred in some localities [e.g.,
Bascou et al., 2001; Morgan et al., 2000; Ji et al., 2003b].
However, interlayered heterogeneities (e.g., vertical layering
of peridotite-eclogite) with the proper thickness could pro-
duce local constructive interference and high reflectivity.

Appendix B: Na-CFMAS and H2O-CFMAS
Versus CFMAS

[107] The addition of Na2O to the CFMAS system
requires additional end members and more elaborated solid-
solution models than in the simpler CFMAS system. This
translates into much longer computation times in the energy
minimization problem, and thus, the performance of the
inversion scheme is deteriorated. Therefore, the following
question arises: does the inclusion of Na2O into the CFMAS
system improve the result of the inversion scheme to a sig-
nificant extent? In order to answer this question, we have run
a number of Monte Carlo simulations at different P-T con-
ditions and for different compositions. Figure B1 shows the
results of one of such simulations for identical P-T-C condi-
tions as those used to obtain Figure 11. A visual comparison
of these figures suggest that the recovered fields of high a

posteriori probability (solution to the inverse problem) with
and without Na2O are almost identical. Similar results were
obtained for other peridotite compositions and P-T condi-
tions. Based on these results, and considering the modest
sensitivity of geophysical observables to bulk composition,
we conclude that there is no practical justification for, or
obvious advantage in, including Na2O in our inversion. We
note, however, that this is strictly valid if the assumption of
an upper mantle dominated by peridotite holds true. If large
amounts of basaltic or eclogitic material (>20 vol% of “nor-
mal” mantle) are present as mechanically and chemically
independent lithologies, the need to consider Na2O in the
computation could be justified [e.g., Xu et al., 2008]. More
work towards subjecting the “mixture hypothesis” to a rig-
orous probabilistic test (using geophysical observables) and
geochemical/petrological arguments will be needed.

[108] The addition of water to the system implies a sub-
stantial increase in the number of phases (e.g., micas and
amphiboles) and solution models that need to be consid-
ered during the minimization problem. The computation
time necessary to solve one minimization problem within
the H2O-CFMAS can be as large as fivefold or more com-
pared to the dry counterpart. We have explored the effects
of including H2O in our computations by using a modified-
augmented version of Holland and Powell’s [1998] ther-
modynamic database as described in Connolly and Kerrick
[2002] and Afonso and Zlotnik [2011]. We found that, as
an approximate rule-of-thumb, for every 1 wt% increase
in H2O, there is a decrease of 1% and 2% in the anhar-
monic Vs and bulk density of peridotites, respectively, due
to the appearance of “soft” hydrous minerals. This is con-
sistent with other previous estimations [e.g., Carlson and
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Figure B1. Results from an MCMC simulation using the
same target composition and P-T conditions as in Figure 11,
but including Na2O in the energy minimization problem.
The thermodynamic database and formalism are those of
Stixrude and Lithgow-Bertelloni [2011].

Miller, 2003]. Since the typical water content in SCLM
rocks is <400 ppm, or �0.04 wt%, the expected anhar-
monic Vs and density reductions are �0.04% and 0.08%,
respectively. Even in localized areas of volatile-rich peri-
dotites (e.g., metasomatized veins/conduits) with average
water contents twice or three times as high, the associated
decrease in Vs and density is not expected reach 0.1% and
0.2%, respectively. Therefore, variations in water content of
the order of a few hundreds ppm can be ignored when deal-
ing with seismic and/or gravity data (except, of course, in
subduction zone environments). Electrical conductivity, on
the other hand, is much more sensitive to small variations
in water content in mantle rocks, and in principle, it could
be used to infer water contents that other observables cannot
detect [Jones et al., 2012]. The difficulty is that the necessary
experimental information on the effects that water has on the
conductivity of mantle minerals at upper mantle conditions
still is subject to debate [see discussion in Jones et al., 2012].
Also, water-assisted attenuation effects on nominally anhy-
drous phases [Karato, 2012, and references therein] has not
been included in this study due to the lack of robust quan-
titative models. However, due to the low water content in
SCLM rocks, this effect also would be negligible. Although
a thorough exploration of the possibility of mapping “water
anomalies” is beyond the scope of this paper, we note
that our method is perfectly suitable to accommodate
such possibility.

Appendix C: Gravity and Geoid Sensitivities to
Shallow/Deep Density Structures

[109] Geoid anomalies are more sensitive to deep den-
sity variations than gravity anomalies, and therefore, they
represent an important constraint in lithospheric modeling.
Figure C1 shows a synthetic model with two topographic
heights, one is compensated purely by crustal isostasy and
the other purely by thermal (lithospheric) isostasy. The dif-
ference between these two heights in terms of the Bouguer
anomaly is only <18 mGals. Such low values could eas-
ily be masked by small density variations at shallow lev-
els and therefore, it would be difficult to identify the
thinning in the lithosphere. The geoid anomaly, on the
other hand, exhibits a difference of >8 m. This value
would be difficult to explain by shallow density anomalies
only, particularly because the magnitude of the anomalies
required to explain the geoid would seriously perturb the
predicted topography.

Appendix D: Different Compositions and PT
Conditions

[110] The Bayesian strategy described in the text has been
justified by the results it predicts, but results for only one
composition at specific P-T conditions were shown. Here,
we show the method still is able to retrieve a robust estimate
of the true composition when the target composition or the
P-T conditions are changed.

[111] Figure D1 shows the results from an MCMC sim-
ulation using the steps described in the text for a different,
more depleted, composition (SiO2 = 44.04, Al2O3 = 1.26,
FeO = 6.52, MgO = 46.95, and CaO = 1.21). Note that the
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2008].

prior histograms have been narrowed towards the true value
in the posterior. In this case, however, FeO is not particularly
well constrained. This is due to the fact that for this partic-
ular bulk composition, the trend defined by samples that fit
the data equally well (such as the one in Figure 10) lies well
within the region defined by our compositional prior. Since
the likelihood function is only mildly sensitive to compo-
sitional parameters (section 4.3.1), it cannot overwhelm the
vague prior and produce a peak around the true value. Never-
theless, the region of high posterior probability successfully
encloses the true value.

[112] Figure D2 shows the results from a regular Monte
Carlo search of acceptable samples (as in Figure 10) for
two different T-P conditions. While the composition is iden-
tical in the two runs, the ensembles in Figures D2a–D2d
have been obtained at T = 900 ıC and P = 3 GPa and
those in Figures D2e–D2h at T = 1447 ıC and P = 11
GPa. As explained in the text, the combined effects of larger
rations gt/opx and the decrease in the capacity of pyrox-
enes to accommodate Al2O3 as pressure increases results in
a greater sensitivity of Vp, Vs, and bulk density to changes
in composition. This is reflected in the reduction of the high-
Mg/low-Al/high-Fe to low-Mg/high-Al/low-Fe trend in the
ensemble of acceptable samples shown in Figures 10 and
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histograms from an MCMC simulation performed following
the steps explained in the text. The P-T conditions are iden-
tical to those in Figure 11, but with a different compositions
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Figure D2. Ensemble of acceptable samples from a Monte Carlo search with 5500 random samples at
two different P-T conditions [(a–d) T = 900 ıC and P = 3 GPa; (e–h): T = 1447 ıC and P = 11 GPa]. Note
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D2a–D2d (high-pressure ensembles tends to form a more
cluster-like shape).
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