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ABSTRACT. There are only two basic types of phase diagram
variables, potentials (for example, P, T, and p, ), defined by the partial
derivative of one extensive property with respect to another, and
compositions, defined arbitrarily as a ratio of extensive properties (for
example U, H, S, V, and n;). Each variable has a different physico-
chemical significance, but from a computational perspective there is
no reason to distinguish among the variables of each group. Recogni-
tion of this serves as a basis for a method of calculating and interpret-
ing phase diagrams that is completely general with respect to the
variables chosen for any problem. This method can be used to
calculate some unusual diagrams (polythermal and polybaric projec-
tions), but the utility of such diagrams is obscured by the conventional
notions of components and composition. The logical extension of
these notions into the context of a general thermodynamic model
requires that a component is associated with each independent conser-
vative extensity of a system. For example, in the analysis of an
isochoric or adiabatic system, it is necessary to include a component
that determines the mechanical property (V;’or thermal property (for
example, H), respectively, of the system. The relative amounts of the
components, defined in this Feneral sense, are the thermodynami-
cally significant composition of a system. The interpretation of such a
composition is exactly analogous to the interpretation of the chemical
composition for a chemically closed system. This understanding of
components and composition emphasizes the underlying canonical
basis of thermodynamics and reveals basic similarities in the analysis
of all physicochemical models.

By incorporating generalized concepts, the mechanics of phase
diagram calculations for multivariable systems have been reduced to
a siumple algorithm which has been automated with a computer
program called Vertex. Vertex is based on an abbreviated combinato-
rial algorithm which derives a piecewise linear approximation of the
isopotential thermodynamic surface for a system. This approxima-
tion is accomplished by modeling the continuous nonlinear thermo-
dynamic surfaces of solution phases by inscribed polyhedra, the
vertices of which are considered to define pseudocompounds. Because
the approximated thermodynamic surface of the system is piecewise
linear, changes in its geometry or topology are easily detected as one
potential is varied to define low variance phase equilibria. Low
variance equilibria can then be traced as a function of a second
potential. Computations can be terminated at different levels in this
sequence to obtain a composition, mixed-variable, or Schreinemakers
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diagram. It is also possible to trace low variance equilibria between
pseudocompounds representing the same phase. The conditions of
such equilibria define an isoglethal contour of a high variance phase
field, and these contours can be shown in Schreinemakers diagrams to
characterize high variance equilibria. The strategy of Vertex mini-
mizes the combinatorial aspect of phase diagram calculations; it is
thus well suited for problems in which the stable phase equilibria
cannot be prescribed and all possible equilibria must be considered
simultaneously. In addition to potentials and compositions, the com-
putational variables for Vertex may include related variables such as
the composition or activity of a saturated phase (for example, a fluid).
A variety of buffering and sectioning constraints can alsoli)e imposed
within Vertex to simplify the phase diagrams of complex systems.

INTRODUCTION

The topologies and calibrations of phase diagrams are of great
importance to petrologists. Since the work of Schreinemakers (1965)
and Roozeboom (1904), much attention has been focused on the
topologic constraints of phase diagrams. This avenue of investigation is
of value because it allows theoretically rigorous, though qualitative,
integration and extension of knowledge from a variety of sources. The
need for this qualitative approach stemmed from uncertainty in the
thermodynamic parameters of phases of geologic interest. However,
considerable effort has been made toward obtaining thermodynamic
data for rock forming minerals (Robie and Waldaum, 1968; Nuamov,
Ryzhenko, and Khoclakovsky, 1971; Helgeson and others, 1978; Robie,
Hemingway, and Fisher, 1978; Haas, Robinson, and Hemingway, 1981;
Robinson and others, 1983; Holland and Powell, 1985; Berman, 1988;
et cetera), so that direct quantitative calculation of phase diagrams is
now possible. Although these calculations are simple in concept, they
involve such a large number of operations that they must be automated
to be practical on an ab initio basis, even for relatively simple chemical
systems. This paper, which describes a strategy for the automated
construction of phase diagrams from thermodynamic equations of state,
presents an attempt to fulfill this need.

"This paper consists of two parts: in the first part certain aspects of
canonical thermodynamic formalism are presented, and in the second
part the application of this formalism in an algorithm and computer
program for the construction of multivariable phase diagrams is
discussed. The objectives in developing this program were to design an
efficient and completely automated procedure which (1) would be
general with respect to the choice of independent variables, (2) would
not require assumptions about phase stabilities and compatibilities, and

' The work of F. A. H. Schreinemakers, which extended Roozeboom’s (1904)
treatise, was published as a series of forty-seven articles appearing in the Proceedings of
Koninkliijke AEadamz’e van Wetenshapen Te Amsterdam, between 1898 and 1915. Reference is
made here to a collection of these papers published and preserved by The Pennsylvania
State University.
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(3) would be independent of the form of analytic expressions for the
energy of solution phases as a function of composition.

The conventional framework for the interpretation of phase dia-
grams is based largely on Gibbs’ (1957% p. 63) notion of components
applied to isobaric-isothermal chemically closed systems. In this context,
components are defined as the smallest set of chemical entities necessary
to specify the chemical composition of all possible phases of a system.
This definition has special utility for an isochemical system because the
components of such a system correspond to its independent extensive
properties. However, because the isochemical system is a special case of a
more general thermodynamic model, the conventional notion of com-
ponents is unwieldy when applied to adiabatic, isochoric, or chemically
open systems. Recognition of this in petrology has led to the distinction
between “mobile” and “inert”” components for chemically open iso-
baric-isothermal systems (Korzhinskii, 1959; Thompson, 1954). For
such systems, the chemical potentials of “mobile” components are
variable properties analogous to pressure and temperature, and the
“inert” components have a role identical to the components of a
chemically closed isobaric-isothermal system. The success of this
approach reflects the fact that the components of a chemically open
system are a subset of those of a chemically closed system. However, the
utility of Korzhinskii’s ‘“mobile”” and ‘‘inert”’ components fails for
adiabatic or isochoric systems because these systems have thermal or
mechanical extensive properties which cannot be described by chemical
components. The intent of Part I of this paper is to avoid this shortcom-
ing by extending the idea of thermodynamic components and composi-
tion into the context of a general thermodynamic model. When compo-
nents are understood in this context, it becomes relatively simple to
understand the phase relations of adiabatic and isochoric systems in light
of conventional techniques. More importantly, with reference to com-
putational methods, thermodynamic generalization demonstrates that
identical logic can be applied to the calculation and interpretation of any
phase diagram, regardless of the variables under consideration.

The presentation of generalized thermodynamics in Part I is used
as the basis for the explanation of the computational strategy for
construction of multivariable phase diagrams in Part II. Although
generalized thermodynamics is useful in the interpretation of phase
diagrams, and essential for the development of efficient computational
methods, an understanding of generalized thermodynamics is unneces-
sary for the application of such methods for most petrologic problems.

? J. Willard Gibbs established the theory of phase equilibria and chemical thermody-
namics in a series of articles that appeared between 1873 and 1878 in the Transactions of the
Connecticut Academy. These papers were subsequently published as The Scientific Works of J.
Willard Gibbs in 1906 and later as the more complete publication The Collected Works of |.
Willard Gibbs in 1928, 1948, and 1957. Reference is made here to the third printing of this
last publication.
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For this reason, an attempt has been made to make Parts I and II as
independent as possible.

A computer algorithm and program, Bounds, for calculating
composition phase diagrams was described by the author in a previous
paper (Connolly and Kerrick, 1987). Connolly and Kerrick also dis-
cussed the use of Bounds within 2 more comprehensive algorithm for
constructing phase diagrams as a function of other variables. This
comprehensive algorithm was implemented earlier (Connolly and Ker-
rick, 1984) but has now been discarded in favor of the algorithm
discussed here in Part II. Bounds cannot be used to calculate phase
diagrams as a function of variables like pressure and temperature, but its
algorithm is still the basis of the methods described in Part 11.

PHASE DIAGRAM NOMENCLATURE

The independent variables of phase diagrams can be related to a
simple ratio of extensive properties (for example, chemical composition)
or to an intensive state function (for example, P, T, u,, . . ., ). Both
kinds of variables are intensive, and to distinguish them they will be
designated compositional (Hillert, 1985a; Palatnik and Landau, 1964)
and potential variables, respectively. It is convenient to consider these
variables to be the representative coordinates of a system and its constitu-
ent phases. The association of the variables of a diagram with the
determinative physicochemical properties of a real system is, of course,
unspecified because it is impossible to prescribe the way a phase diagram
will be used.

A diagram is considered to be a phase diagram only if its geometry
defines the respresentative coordinates of both a system and the stable
equilibrium phases of the system (Schmalzried and Pelton, 1973; Lukas,
Weiss, and Henig, 1982; Hillert, 1985a). For multicomponent systems
there are two basic kinds of phase diagrams, composition diagrams that
show phase relations only as a function of composition, and mixed-
‘variable diagrams that show phase relations as a function of both
potentials and composition. Phase diagrams are composed of geometric
elements or phase fields that define the loci of conditions for which a
specific phase assemblage is in equilibrium. The term phase field is used
to describe an element of any dimensionality (Hillert, 1985ba), whereas
the term phase region is applied only to geometric elements of the same
dimension as the corresponding diagram. In discussing phase diagrams
it is useful to define the variance of a phase field, or equilibrium, of P
phasesas n — p, where n is equal to the number of components plus the
number of independent potential variables for a diagram, that is, n — 1
is the dimension of the diagram.

The equilibrium phase relations of a system with more than two
independent variables can be described by a multidimensional phase
diagram. In general the information in such diagrams must be presented
in two dimensions by sectioning or projection to be of value. Phase
diagram sections may be defined by potential or composition sectioning
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variables and are designated potential and composition sections, respec-
tively. A variety of projection schemes has been proposed for the
graphical representation of multidimensional phase diagrams (Palatnik
and Landau, 1964); however, affine projections after Schreinemakers
(1965; Korzhinskii, 1959; Zen 1966a, b) have proven the most effective,
With the Schreinemakers method, univariant phase fields are projected
onto a two-dimensional coordinate frame defined by two potentials.
This scheme is based on the fact that univariant fields project as curves
and that the intersections of these curves define conditions of invariant
equilibria (invariant points). The term phase diagram is often incor-
rectly applied to composition sections and Schreinemakers projections.
This usage is incorrect because neither of these diagrams defines the
equilibrium phase compositions; in addition, Schreinemakers projec-
tions do not define high variance (p < n — 1) phase fields.

A physicochemical system is open with respect to some extensity if
the extensity can be transferred to or from the systems environment. A
system that is not open with respect to some extensity is closed with
respect to that extensity. For brevity it is useful to describe a system by
specifying only those properties to whic@espect to all the unspecified
properties. Thus, if a system is described as isochemical or chemically
closed, the open character of this system with respect to volume and
entropy is implicit. As phase diagrams show only equilibrium states, with
reference to phase diagram systems the isobaric-isothermal nature of a
chemically closed system is also implicit.

FREQUENTLY USED SYMBOLS

—number of unconstrained components

——number of fundamental kinds of matter

—Gibbs free energy

—enthalpy

—number of moles of the k™ kind of matter

—c plus the number of independent potentials

—number of equilibrium phases

—pressure

—number of internally buffered components

—entropy

—temperature

—internal energy

—volume

—composition of a system or phase with respect to the j* uncon-
strained component

—composition of a system or phase with respect to the j** compo-
nent

—reaction coefficient for the i phase

—potential state function

—thermodynamic component for adiabatic systems
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p; —chemical potential of the j® component

w —total number of phases considered to be possibly stable at the
outset of a calculation

—number of endmember compositions of a solution phase

——composition vector for the i™ phase

—extensive state function

—dependent extensive state function in eq (1) usually “free energy”’
function

Co RS

— —superscript indicating a matrix or vector quantity
/\ —superscript indicating a unit quantity of the superscripted prop-

erty
PHASE NOTATION

Symbol Phase Chemical composition
Ab albite NaAlSi;Oq
Ab, subcritical Ab-rich feldspar Ab,OR,,
AGC, tricalcium aluminate CazAl, O
Ad andradite CagFe,SI;0,,
An anorthite CaAl,Si,Of
And andalusite AlL;SiO,
CA calcium aluminate CaAl,O,
C,A calcium dialuminate CaAl,O,
CsA calcium hexaluminate CaAl;,0,4
Cc calcite CaCO,
Co corundum Al, O,
Cr cristoballite S10,
Ep-cpd epidote compound CayFeAl,SisO,5(OH)
Fs ferrosillite FeSi0,
Ge gehlenite Ca,AlL;SiO,
Gr grossularite CazAl,Si;0,
Gr, or Gt garnet solution Gr,Ad,,
Hm hematite Fe,Oy4
Ky kyanite Al,S10,
La larnite Ca,S10,
Lm lime CaO
Mu muscovite KAlSi,O,(OH),
Mu, subcritical Mu-rich mica Mu,Pa,
Pa, subcritical Pa-rich mica Pa,Mu,
Or orthoclase KAI1Si;O4
Or, subcritical Or-rich feldspar Or,Ab,
Pa paragonite NaAl;Si; O, (OH),
Pa, subcritical Pa-rich mica Pa,Mu,,
Pw pseudowollastonite CaSi0;,
Q quartz SiO,
Rn rankinite Ca;yS51,0,
S silica melt SiO,
Sil sillimanite Al,Si0,
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S.A, CAS melt (Ca0),,y(AlyO4),(SiOy),
SCy tricalcium silicate Ca3Si04

Tr tridymite Si0,

Wo wollastonite CaSi0y

Zo zoisite CayAlSi30,,(0OH),

Zo, or Ep epidote solution Zo,(Ep-cpd),

PART 1. THERMODYNAMIC GENERALIZATION

There are three basic types of thermodynamic properties: exten-
sive properties (for example U, S, V, n,, . . . , ny), potentials, defined by
the partial derivative of one extensive property with respect to another,
and compositions, defined as a ratio of extensive quantities. This
definition of composition is somewhat broader than conventional usage,
and its use will be justified later. Although each variable has a different
physicochemical significance, from a computational perspective there is
no reason to distinguish among the variables within each group. Conse-
quently, it is possible to develop computer methods for calculating phase
diagrams that are completely general with respect to the variables
specified for any problem. These computer methods can perform a
much wider variety of calculations than currently in use, and the
question naturally arises as to which calculation is optimal for a particu-
lar problem. A broad thermodynamic formalism, though perhaps ini-
tially difficult to grasp, not only makes the applicability of such calcula-
tions apparent, but also demonstrates that seemingly exotic calculations
require only minor modification of well known principles. In the
following sections certain aspects of this formalism and the notions of
thermodynamic composition and components are introduced. The
reader may wish to refer to Hillert (1985a) for an excellent review on
the generalization of phase diagrams and to Tisza (1966), Buchdahl
(1966), and Rey de Luna and Zamora (1986a, b) for theoretical justifica-
tion and amplification of this discussion. :

THERMODYNAMIC COMPONENTS

A thermodynamic system is characterized uniquely by the values of
aset of n + 1 extensive macroscopic properties (Gibbs 1957 p. 63). In
general, it is supposed that more than one thermodynamic state is
consistent with any given material configuration of a system, where a
material configuration is defined by the relative amounts of each
extensive property. It follows that one coordinate is required to differ-
entiate the states of the system, and remaining n properties specify the
material configuration of the system. If a spontaneous change of state is
possible in such a system, then this former property must be nonconser-
vative and capable of variations independent of the other n properties.
Properties of this kind, such as entropy, are nondeformation properties,
and all other properties are deformation properties (Born, 1964, p. 143;
Landsberg, 1956; Buchdahl, 1966 p. 9; Gokcen, 1975, p- 107).
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Variation in the state® and extent of an equilibrium system can be
described by the relation:

C n
d =3 6,dy; — > y;df, (1)
Jj=1 J=c+1
where Q is a generalized state function, and ¢; and 6; represent, respec-
tively, the extensities and potentials of the system. Each dependent

potential is related to its extensive conjugate by:

0j=(§2") (j=1,...,0), )
C')"bj Yi,i=j,iscdic<izn

and each dependent extensive property is related to its conjugate
potential by:

30 |

30:(—”-) (J=c+1,...,n), (3)
’ aej \bi.lgai.i¢j.c<isn

Q can usually be interpreted as an extremal work function (Salamon,

Anderson, and Berry, 1977) (for example Gibbs and Helmholtz free

energy functions) and for the sake of generality will be referred to here

as a free emergy function. For a system subject to the constraints

0=dy,=...=dy.=db.,, =...=4d8,l, it will be supposed that @ is
formulated in such a way that the condition:
dQ =0 (4)

is true for all possible variations from a stable equilibrium. Condition (4)
is therefore a necessary and sufficient criterion for stable equilibrium. If
condition (4) is to provide an efficient criterion for stability, then Q must
also be a nondeformation property (Connolly, ms, app. B). A potential is
undefined for a system unless it is uniform in all parts of the system.*
Therefore specification of the constraints {0 = df.,, = ... = dé,} pre-
supposes uniformity of the potentials {6, , . . . , 8,}. For heterogeneous
systems it is convenient to express condition (4) as:

P
> doi = 0, (5)
i=1

® It is often written that the extent of a system is determined by its state, this is a
matter of definition; the distinction between state and extent is maintained here followin
the usage of Gibbs (1957, p. 88). It may be noted that the relative extent of the different
phases of a system can be completely specified by intensities.

* This statement must be modified for the special case that occurs when the conjugate
extensive propert{l of a potential is not a possible attribute in all parts of a system. In such
cases the potential is nil where its extensive conjugate is absent, and its value in the other

parts of the system is taken to be characteristic of the system in its entirety (Gibbs, 1957,
p. 67, 68, 79).
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where i indexes the phases of the system. It is easily demonstrated from
eq (1) and condition (4) that in a heterogeneous system consisting of p
coexistent phases the equalities:

Bl=...=0 (j=1,...,0 (6)

are necessary conditions for stable equilibrium.

In phase equilibrium, the problem is to characterize the p stable

equilibrium phases of a system given the parameters {{,, ..., ¥, 6. +1s

.+, 8,} for the system and the state functions (2, i = 1, . . . , =) for each
possible phase. The equilibrium phases are completely characterized by
the parameters {{\, . . . , ¥, calr - a0, =1,..., p)}. Because of the
uniformity of potentials at equilibrium the paramters {6 FETRNY
(i=1,..., p)are degenerate with the independent potentials of the
given system as specified at the outset of a calculation. Consequently, the
state of a system and its constituent phases can be defined by representa-
tive coordinates in a c-dimensional metric space which represents the
quantities {, . . . , ¥.}. Any coordinate in this space can be expressed as
the sum of ¢ vector components, {({, 0, . . ., 0),...,(0,...,0,¢)l In
thermodynamics, the ‘“‘components” of a chemically closed system are
taken as the extensive properties represented by such vector compo-
nents, rather than the vector components themselves. Following this
usage, thermodynamic components are defined here as the properties
{'(l/l: e lpc}- : ’

Although components are defined here on a computational basis,
the choice of components, and the appropriate dependent state function
in eq (1), is usually dictated by the physicochemical model for the system
of interest. This follows by noting that the constraints {0 = do. ., = ...,
df,} can be maintained in a dynamic system only if the system is open
with respect to {.,;, ..., ¥.} and the potentials 0.00,..., 8) are
determined by environmental conditions. Likewise the constraints {0 =
d¢; = ... = d¢.} imply the system is closed with respect to the
components {y,, . . ., ¥}, which are invariant for all internal processes.

To clarify the idea of components, as defined here, it may be useful
to consider two possible models for the system CaO-SiO,. For a
chemically closed system the suitable independent variables in eq (1) are
those of the Gibbs free energy {—P, T, ngo,, neol:

dG = VdP _ SdT + “Si02 dn5i02 - Mcao dncao. (7)

If instead, the system is isochoric, closed with respect to CaO and open
with respect to SiQ,, the appropriate state function, Q, with the indepen-
dent parameters {V, T, Hsio, Dcaols can be obtained from eq (7) by the
Legendre transformation:

dQ = d(G - VP — Ksio, Nsio,) ‘
= —PdV — SdT — Ngio, dMSio9 + Hcao dng,o- (8)

SR S R R e
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In a petrologic context, eq (7) is applicable to a system with P and T as
environmentally determined properties and ngo, and ng,o as conserva-
tive properties, whereas eq (8) is appropriate when T and pugo, are
environmentally determined and V and nc,, are conservative proper-
ties. In these examples, both systems are two-component systems; for the
isochemical system the components are {nggq,, ng,o}, and for the isochoric
system the components are {V, ng,o}-

The recognition that the conventional notion of components
should be modified for physicochemical models other than isochemical
systems is not unique to this work. For instance, Korzhinskii (1959)
d1st1ngu15hes the roles of Si0, in eqs (7) and (8) by de51gnat1ng Si10, an

‘inert component in the former equation and a ‘“‘perfectly mobile
component” in the latter. “Inert components’” are equivalent to the
components of chemically open and closed systems as defined here.
However, because ‘“‘inert components” are defined as a subset of
isochemical system components this treatment precludes the selection of
properties such as volume and entropy as “inert components.” Korz-
hinskii’s treatment therefore becomes awkward when applied to iso-
choric or adiabatic systems. In contrast, the present approach empha-
sizes that the volume property of an isochoric system is in every way
analogous to the chemical components of an isochemical system.

Thermal Components

Conservation constraints on nonthermal extensities (V, ny, . . . , 1)
can be imposed independently of any other thermodynamic restrictions.
For a given diathermal system, the nonthermal components are invar-
iant coordinates for all environmental conditions, that is, all possible
values of the independent potentials {f, 1, . . . , 8,}. This invariance is not
a requisite for components as defined here, but it is useful if a phase
diagram represents the variation of the potenitals {f.,,, ..., 8,}. By
definition, the properties of an adiabatic system must satisfy the
relation:

0=dU— > 6dy 9)
j=c+1
for all reversible variations of the properties {eits -+ - » Yal, subject to
the constraint {0 = dy, — ... = dy.}. From eq (9) it follows that at
constant {0, ,, . . ., 0,} the property:
A=U- > ¥ (10)

j=c+1

is conservative and a component in the context of the phase equilibrium
problem as discussed earlier. Unfortunately, because A = f(0_,,, ..., 0,),
A does not provide the basis for a useful coordinate in phase diagrams as
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a function of the potentials {6, ,, . . ., 6,}. Inasmuch as phase diagrams
represent equilibrium states, for which:

dS = d\/T, (11

this difficulty can be circumvented by choosing the entropy of an
adiabatic system as a component. This choice implies the identities y, =
S, and £ = A. In this regard it is important to recognize that A is a
deformation coordinate (Buchdahl, 1966) and therefore condition (2)
describes variations to virtual, rather than actual, adiabatic states (Tisza,
1966; Connolly, ms, app. B).

THERMODYNAMIC COMPOSITION

In the analysis of phase relations, the absolute extent of a system
and its phases are not ascribed significance. The extensive quantities in
eq (1) can therefore be replaced by the relative proportions of the
extensive quantities. In the most general sense, these proportions
express the composition of matter with regard to its thermal, mechani-
cal, and chemical state. However, for thermodynamic systems in which
the parameters {ﬁc tlsc e s 0.} are independent, only the relative propor-
tions of the components of the system are determinative, and, in this
sense, it is useful to include only these proportions in the definition of
composition.

Because only ¢ — 1 independent ratios can be formed among the
properties {y, . . . , ¥, the most rational means by which these proper-

ties can be transformed into intensive quantities is by the transformation
(Gibbs, 1957, p. 88, 115):

Yj=¢j/¢c (j=l,...,C——1), (12)

where the quantities iv,,..., Y. _,lare compositional parameters. This
transformation is concise because c extensities are transformed into
¢ — 1 compositions. It can also be demonstrated by application of the
Gibbs-Duhem relation that for two equilibrium phases, if Y! > Y?, then
0; > 67, This is of value if phase diagrams are constructed with composi-
tional variables on more than one axis as emphasized by Hillert
(1985a).

Although the compositional parameters {Yl, ..., Y._,}as defined
by eq (12) have useful theoretical attributes, they have certain properties
that are undesirable for numerical applications. These properties are a
consequence of the fact that {Y,, ..., Y._,} define an unconfined space,
and therefore a one-component phase may have an infinite coordinate.
‘This destabilizes numerical computations and complicates the graphical
analysis of composition. These complications are avoided here by the
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adoption of the following transformation which is symmetrical with
respect to the components: -

Y=Y (j=1,...,0 (13)
2_ Wi/
i=1
Where {{/, . . ., J/c} represent unit quantities of the components, and the
compositional parameters are subject to the constraint:
2_ (V¥ = 1. (14)

j=1
Although there are no other theoretical constraints on compositions,
for reasons of practical necessity, the composition space of any system
considered here must be finite. For any real system a finite space may
always be defined by selecting components such that {0 =< Y, = 1} for any
allowed composition. With this constraint the composition space of a
system is restricted to a ¢ — 1 dimensional simplex, the triangular
(c = 3), and tetrahedral (c = 4), representations of which are familiar to
petrologists. This transformation maintains a one-to-one correspon-
dence between the compositions {Yl, C e, Yc} and the extensive quanti-
ties {\,bl, C e, \,bc} and is the mathematical equivalent of the normalization
contraint used by Gibbs (1957, p. 119) in his analysis of isochemical
systems.

Each kind of thermodynamic model system is described by a
different set of components. Thus, a different composition space and
free energy function is best suited for each model. The Q-Y spaces
appropriate for models other than isochemical systems are probably
unfamiliar, but the principles for the analysis of Q-Y space are identical
to those employed in the analysis of G-Y space for isochemical systems.
This identity is illustrated geometrically in figure 1 for the two models of
the CaO-S8i0O, system discussed earlier with reference to eqs (7) and (8).
For the isochemical system the independent compositional parameter
is:

Neao
Yc O = ~ P . (]. 5)
* Ncao/ Ao + Ngio,/Nsio,

Assuming each phase is stoichiometric , that is, a compound, then the
G-Y state of each phase can be represented by a point at constant {P, T}
(fig. 1A). For the model that is isochoric and closed with respect to CaO,
the independent compositional parameter is:

rlGaO
Nc.o/ N0 + V/V

(16)

YCaO =
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T constant P,T
[

'3 €S
G ¥V oY

Hsio, [~

A.

0 1

YCaO
T "/1 ‘constant u3i02,1:r '
/’C.
— ~ —|Hcao

B.

0 1

YCaO

Fig. 1. Schematic free energy-composition diagrams for the system CaO-SiO,. (A)
G-Y diagram appropriate for the analysis of the isochemical s¥lstem. (B) 2-Y diagram
approgrlate for the analysis of the isochoric system closed with respect to CaO. The
hypothetical phases indicated by greek letters aré assumed to have fixed stoichiometry and
molar volume. Note that (imaginary) phases r and A have infinite and zero density,
respectively.

This parameter is closely related to density; thus, the Q2-Y state of a phase
with constant molar volume (a common assumption for condensed
phases) will be represented by a point in figure 1B at constant {”Siog’ T}.
The compositional coordinates of a phase vary depending on the choice
of components. Therefore, two phases compositionally equivalent in the
composition space suitable for an isochemical system may become
nondegenerate in the composition space suitable for an isochoric
system. A similar effect is illustrated schematically by the phase § which
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is a one-component phase in the context of figure 1A and is a two-
component phase in the context of figure 1B.

The stable state of a system with fixed composition will be defined
by the phase assemblage of minimum free energy (condition 5). Given
that the amount of a phase cannot be negative, it can be deduced that
the locus of all stable states in free energy-composition space define a
continuous surface (Connolly, ms, app. B). This surface must be concave
with respect to the free energy coordinate, as shown by heavy solid lines
in figure 1. The equation of a line in the G-Y space represented by figure
1A can be written:

G = usio, Ysio, + Heo Yeaos (17)

where, from eq (14), Ygo, = fAgo, (1 — Ycuo/fco). Thus, a line drawn
through the representative coordinates of any two phases in figure 1A
(such as 8 and 7) can be extrapolated to Yg,o = 0 and Yg,o = 1 to obtain
values of G numerically equivalent to the dependent potentials p,q and
Hsio,» This kind of analysis is well known for G-Y space, and it can be
carried out in exactly the same fashion for Q-Y space in general. Thus,
for the Q-Y space represented by figure 1B, the equation of a line drawn
through the representative coordinates of the phases 8 and 7 is:

¥ = keio Yo — PYy, (18)

where, from eq (14), Yy = V(1 — Yeio/ fig,,). If this line is extrapolated to
Ye0 = 0, the corresponding value of Q will be numerically equivalent to
the negative of the pressure consistent with the equilibrium of the
phases 8 and 7. Likewise, if the line is extrapolated to Y, = 1, the value
of pc,0 for this assemblage is obtained.

The foregoing examples were simplified in that only phases with
fixed stoichiometry and molar volume were considered. Phases with
variable stoichiometry can take on an infinite number of G-Y states and,
therefore, define surfaces in G-Y space. The effect of variable molar
volume on phases in the Q-Y space shown in figure 1B would be the
same, that is, the possible Q-Y coordinates of a phase with variable molar
volume define a surface. In the remainder of this paper, the terms
compound and solution as commonly applied in reference to chemical
composition will be used in the same sense with respect to thermody-
namic composition. A phase may be a compound in one composition
space and a solution in another. For example, with the components {H,
n5i_02} quartz is a solution, whereas, with the components {V, nSiOQ}, quartz
is a compound (assuming variation in volumetric properties of quartz to
be negligible).

Most readers will have an intuitive understanding of a composition
such as defined by eq (15) because of the emphasis on isochemical
systems in physicochemical analysis. The significance of composition as
defined by eq (16) may be less clear, but such compositions are simply a



680 J- A. D. Connolly—Multivariable phase diagrams:

measure of the relative proportions of the conservative extensities of a
thermodynamic system. The composition of a system is thus unaffected
by environmental or internal processes of equilibration. In considerin
the isochemical system CaO-SiO,, the composition expressed by eq (15)
is important, because, at any fixed P-T condition, it determines the
equilibrium properties {S, V, uc.0, Msaog}- In comparison, for the isochoric
system closed with respect to CaQO, at any given ug,-T condition, the
composition defined by eq (16) determines the equilibrium properties
{S, P, kcao nSiOQ}. Because ngq, is 2 dependent property in this context, it
has no greater relevance in thermodynamic analysis than does a prop-
erty such as the volume of an isochemical system.

Another way of understanding the significance of composition is to
consider the processes of transformation from metastable to more stable
phase assemblages, that is, reactions. Because composition is defined to
be an invariant characteristic of a system, reactions must take place so as
to conserve the amounts of each component in a system. Thus, in the
isochemical CaO-S8i0, system reactions conserve ng,o and ng;o, but may
affect the volume and entropy of the system. Whereas, in the isochoric
model for this system reactions conserve ng,o and V but may vary the
mass of SiO, and the entropy of the system.

The compositions defined by eq (13) are similar to ‘“mole frac-
tions” which appear often in chemical literature. It is pertinent to
observe, contrary to frequent assertions otherwise, that compositions
cannot be unitless. This is apparent by dimensional analysis of expres-
sions such as eq (1'7?, for, if the compositions {Y,0, Ygo0,} were unitless,
then the potentials {uc.0, u3i02}, which have inconsistent units of energy/
mole-Ca0O and energy/mole-SiO,, respectively, would necessarily be
additive. This would be no less absurd than asserting additivity of
pressure and temperature, which may be considered (negative) mechani-
cal and thermal potentials. Because the compositions defined by eq (13)
have the same units as their extensive relatives, any thermodynamic
relationship that holds for the untransformed extensive parameters,
such as eq (1), can also be written in terms of compositions; however, one
compositional parameter is necessarily redundant (@ = £ (Y,, ..., Y. _,
0c+1’ R Bn))

A possible point of confusion concerns the significance of the
denominators in eqs (12) and (13). In both cases, the denominators are
arbitrary scale factors by which the relative concentrations of extensities
are measured and may be chosen entirely for convenience. Thus, in
reference to a transformation of the type expressed by eq (12) Gibbs
writes of the density of entropy (1957, p. 86), that is, the amount of
entropy contained in a specific volume of matter. The scale in eq (13)
(and for mole fractions) simply defines the extent of a system for which
eq (14) is true. This scale is sometimes less useful, because it does not
define a scale relative to a fundamental property. For example, given the
components {ngq, Nge,}, proportions are measured relative to an
amount of matter in which ng,o and ngq, total to one, but this has no
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greater physical significance than the amount of matter in which the
volume and ngo, sum to one.

The physicochemical idealization of a component is rarely realized
in natural systems; moreover, the degree to which this limiting behavior
is approached may vary during the evolution of a system. Consequently,
the choice of whether an aspect of the state of a system should be
characterized by a component or potential in a phase diagram represen-
tation is a matter of judgment and convenience. For this reason no
generalized statement of the ‘“phase rule” is made here, for such
statements obscure the significance of components and perpetuate a
black box treatment of phase equilibria. However, it may be noted that
the equilibrium of p > ¢ phases would occur with null probability in the
limit that the potentials and components of a system are specified
completely independently. The recognition of this is implicit in Gold-
schmidt’s “mineralogic phase rule” and in the writings of Korzhinskii
(1959) and Zhao (1983) concerning geometrically degenerate phase
fields.

CONSTRAINTS

Multivariable phase diagrams can often be simplified by the appli-
cation of dimension reducing constraints. For the procedures described
subsequently in this paper, any constraint must ultimately be reduced to
a constraint on a potential expressed in terms of constants and /or other
potentials. Such constraints can be applied in two different physico-
chemical circumstances. An externally buffered system is assumed to be in
equilibrium with an infinite reservoir which contains the extensity that
determines the potential of interest. The actual presence or absence of a
phase containing this extensity within the system is thermodynamically
irrelevant. The simplest external buffering constraint is the specifica-
tion of a constant value for a potential, this is in effect sectioning a
multidimensional phase diagram perpendicular to the axis representing
the constrained potential. More complex constraints result in oblique
and sometimes curved sections, such as when Ko, 18 expressed as a
function of pressure and temperature, or when pressure is related to
temperature by a geothermal gradient.

External buffering constraints are thermodynamically well
defined. In contrast, buffering constraints are often applied to a chemi-
cal system with the assumption that the system is saturated or internally
buffered with respect to q thermodynamic components {\,DC Flogr v v x//,_.}.s
This amounts to a vague restriction on the composition of the system
which varies with the independent potentials of the system. Application
of an internal buffering constraint is therefore dependent on a priori
knowledge of the phase relations of a system.

® Internal buﬂ"er'mg constraints can only be meaningfully applied to chemical compo-
nents, for example, the “saturation’’ of a system with a physical component such as volume
implies the phenomenological extreme P = 0.
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The equilibrium phase on the saturation surface of a component
for an internally buffered system is by definition compositionally degen-

erate (Y, = ... =Y_, = 0), as is approximately true for many oxide
fluids and solids. The existence of this phase determines both the
potentials (B¢, y_g - - - 8.} and the distribution of the components {g(/cﬂ_q,

., ¥} in the equilibrium phases of a system. Consequently, in phase
equilibria, it is only necessary to consider the compositional subspace

X, .., Xc_q} defined by the transformation:
;//.
X; = g — . (19)
2_ W/
in1

A perculiarity of internal buffering constraints is that the possible
proportions of the buffered components in a system {y, Flogot - -3 Y.} can
only be determined after a phase diagram has been calculated.

Internal buffering constraints may be applied in two different ways
distinguished herein by the designations component and phase saturation.
Phase saturation constraints are applied with the supposition that a
specified phase is stable for all possible {8, ,, . . . , 8,} states of interest for
a system. In this case @ = £ (X, ..., X__._,, Ys_%ﬂ, e Yo g, .., 0)
and the compositions of the saturated phase TY”]_q, e, Y ) may
serve as the independent variables of a phase diagram.

Component saturation constraints are applied with the supposition
that at least one one-component phase, that is, a composant (Schreine-
makers, 1965, p. 266), is stable for all possible {0c+1, ..., 0_} states of the
system; however, the stable composant is not specified and is determined
as a function of the independent potentials. Component saturation
constraints are therefore specified by the identity of a component rather
than a phase. Because the saturated phase contains only one component,
Y., the potential . = £ (6.4, ..., 0,),and Q@ = £ (X, ..., Xeg, Oey1s v+ s
0,). The free energy function consistent with component saturation will
have singularities (it is not differentiable) when two composants are in
equilibrium, and these singularities are manifest as kinks in the geomet-
ric elements of phase diagrams.

Multiple component saturation constraints may be applied simulta-
neously; however, this can only be done if all phases within the composi-
tional join defined by saturated components are stoichiometric com-
pounds. In addition, if a compound is stable within this join it is evident
that the simultaneous saturation of all the composants is thermodynami-
cally inconsistent. This complication can be circumvented by the specifi-
cation of a saturation hierarchy, which defines the relative order in which
the saturation constraints are applied. As an example, consider the
saturation hierarchy {H,0, SiO,, CaO} and the possible phases water,
quartz (SiQ,), wollastonite (CaSiOs), lime (CaO), and portlandite
(Ca(OH)y). HyO is the first component in the hierarchy and must
therefore also be a composant. There are no compounds on the
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H;0-Si0; join, so quartz must also be a composant. Finally, given MH,0
and usio, consistent with these composants it is then possible to deter-
mine the CaO-saturated phase, that is, lime, portlandite, or wollastonite.
If the reverse hierarchy is specified, the stable saturated phases must be
lime, portlandite or water, and quartz or wollastonite.

GENERALIZATION OF SCHREINEMAKERS PROJECTIONS

The projected axes in conventional Schreinemakers projections
are taken to characterize the possible chemical states of a system; thus,
these projections may be considered to be polychemic projections.
There is no theoretical reason for this limitation of the Schreinemakers
method, and it is possible to construct polythermal and polybaric
projections as well (Skippen and Trommsdorff, 1975). The kind of the
variable represented on a projected axes of a diagram (compositional
versus potential) is not prescribed and has no effect on the geometry of a
projection (Hillert, 1985a). However, projections are most useful when
the projected axes can be associated with the compositional parameters
of a physicochemical system. Polychemic projections are thus used for
systems in which it is presumed that chemical state, or at least aspects of
it, is determined by chemical composition. This presumption is consis-
tent with the classical model of petrologic system as isochemical (Bowen,
1940); in this model environmental (petrogenetic) factors determine
thermal and mechanical state, but chemical composition is an intrinsic
(paragenetic) property of each system. However, it is well known that for
certain magmatic and low-pressure vein-filling processes the thermal or
mechanical state of a petrologic system may be determined by intrinsic
properties (Korzhinskii, 1959; Thompson, 1954, 1970). More recently,
it has been recognized that many petrologic systems are dynamic, and
that the state of such systems may be controlled by the interaction of a
system and its environment, for example “buffered”’ systems (Rice and
Ferry, 1982), whereupon the distinction between paragenetic and petro-
genetic factors is meaningless. In these instances polychemic-polyther-
mal and polychemic-polybaric projections may prove useful. Admittedly
these are special cases, and the primary motivation for introducing such
projections here is to demonstrate the general character of the Schrei-
nemakers method. Understanding this character emphasizes the ther-
modynamic significance of components and provides a better grounding
for selecting phase diagram representations.

If the state and extent of a system are characterized by n thermody-
namic properties, then the complete phase diagram of the system is
n — 1 dimensional, because only n — 1 intensive properties are capable
of independent variaton. For this n — 1 dimensional phase diagram,
thereare then ("3 1) topologically unique two-dimensional Schreinemak-
ers projections. Three such projections are illustrated in figure 2 for
CaO-8i0O, systems. Figure 2A is the conventional polychemic pro-

Jection, and B and C of figure 2 are polythermal and polybaric projec-
tions as an explicit function of ugq,. The projections were calculated
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Fig. 2. Computer calculated and drafted (A) polychemic, (B) polythermal (T = 400-
2200 K), and (Cg) polybaric (P = —w to «) phase lagram projections for CaO-SiO,
systems. The é)ro'jections are apgropriate for analysis of 1sochemical systems (A), adiabatic
systems closed with respect to CaO (B), and isochoric systems closed ‘with respect to CaO
(C). (D) Detail of (]B), for P = 3 to 7 kb and p,p, = —200'to — 180 kJ /mol. In lf curves are
labeled at intervals by equilibrium temperature in hundreds of Kelvins. Dashed curves in
(C) are imaginary phase fields in equilibrium at negative pressures. Greek letters are used

as prefixes on phase names to indicate different polymorphs. Data from Berman and
Brown (1984).

(using methods discussed later) by ¢dmputer with the data of Berman
and Brown (1984) assuming invariant volume and stoichiometry for the
equilibrium phases. Note that some of the phase fields in figure 2 may be
metastable with respect to phases, such as CaO-SiO, melt and vapor, for
which thermodynamic data are lacking.

If the projected axis of the three-dimensional CaO-SiO, phase
diagram is taken to represent a compositional parameter, a different
composition space can be associated with each projection in figure 2. For
the projections shown in figure 2A through C the components may be
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taken, respectively, as {ng,o, ngio,}, {Ncu0, SI, and (ng,0, V1. Because of the
assumptions of invariant volume and stoichiometry, the phases repre-
sented in figure 2A and C may be considered compounds. The composi-
tion of a compound is implicit in its definition, thus the dependent
potentials (that is, pc,o, and ug;o, or P) in any phase field of figure 2A and
C are completely determined by the projection coordinates. In contrast,
the thermal state of any phase can be varied independently of its mass, so
in the composition space defined by the components {nc,o, S} all phases
that contain CaO must be treated as solutions. Consequently, some
information, in addition to the identities of the equilibrium phases, must
be provided to characterize completely the state of the system in a phase
field. In figure 2B this information is provided by indicating the
temperature at intervals on the univariant curves. It should be noted
that if the entropy is regarded as a component, the thermal state of the
system is considered to be determined by its entropy, and temperature is
a dependent property. Despite this, temperature was used to charac-
terize thermal states in figure 2C because it is the more familiar thermal
variable.

For figure 2A the independent compositional variable, X, o may
be defined as in eq (15), and the projection is of all compositions such
that {0 =< X, = 1}. It happens that over the entire range of coordinates
represented in the projection, the equilibrium states correspond to
possible physical states but it is not uncommon that components may be
selected for which this is not true and that the composition represented
by a pure component corresponds to an imaginary state. This is the case
for the components specified for figure 2C, from which the independent

compositional variable, X,q, is defined as in eq (16). As with figure 2A,
figure 2C is a projection of the compositions {0 < X, < 1}, however,
for compositions defined by eq (16) the compositional extremes corre-
spond to the physical extremes of infinite volume and mass.® Therefore,
although all the phase fields of figure 2C satisfy condition (2) it can be
deduced, by comparison with figure 2A, that the fields {Pw, yLa, 8Tr}
and {Rn, vLa, Pw} must occur at imaginary pressures (P < 0). Even
though these fields are not possible in real systems, they are shown
because they restrict the possible equilibrium ugo,-T states of assem-
blages containing rankinite or pseudowollastonite.

The calculation of the projections in figure 2A and C is relatively
simple because the free energy of a compound can be expressed entirely
in terms _of the independent potentials of a system, that is, for figure 2A
and 2C ' = {(T, P or ugp,)- In contrast, each CaO-bearing phase in figure
2B is a binary solution for which Q' = f(Xi,., P, Msio,), where:

% _ Necao @ 0)
=0 Ncao/MNeo + S/S

° If ng,o is regorously zero, that is in a pure SiO, system, the molar volume of the
system is not independently variable, and the system has no compositional degrees of
reedom; thus pure 8iO, systems are excluded from consideration here.



686 J- A. D. Connolly—Multivariable phase diagrams:

Thus, in the calculation of projections it is necessary to specify a
compositional range for each solution. Conventionally for chemical
solutions this is done by specifying endmember compositions from
phenomenological considerations; however, there is no phenomenologi-
cal basis for defining “end-member”’ thermal states. For the calculation
of figure 2B it was therefore necessary to specify an arbitrary set of
endmember states for each solution; these states were taken to be
characterized by temperatures of 400 and 2200 K. As a result of this
arbitrary definition, figure 2B represents only thermal states within this
range of temperatures.

An interesting feature of the different projections in figure 2 is
that a phase field that is geometrically degenerate in one projection may
be nondegenerate in another. For example, the field {aLa, SLa, yLa} is
invariant in figure 2A, but is univariant in both figures 2B and C, and
would be divariant in a polythermal-polybaric projection. This occurs
because chemically degenerate phases are compositionally nondegener-
ate in the composition space appropriate for the analysis of a polyther-
mal or polybaric projection.

PART II. AUTOMATED CONSTRUCTION OF MULTIVARIABLE
PHASE DIAGRAMS

Calculation of a phase diagram and calculation of an individual
equilibrium state are problems of a different scale, for a phase diagram
represents the infinite number of possible stable states of a system
characterized by the variable parameters {X,, ..., X._,, Ocrrs - o5 017
The phase diagram problem is thus a problem of strategy in that it is
necessary to devise an efficient scheme to outline the stable phase fields
of a diagram. Many procedures have been developed for automating, in
part or entirely, phase equilibrium and phase diagram calculations; to

place the work presented here in perspective it may be useful to review
these procedures.

REVIEW OF COMPUTATIONAL METHODS

The characterization of the equilibrium phases of a system speci-
fied by invariant state coordinates, that is, calculation of an individual
equilibrium state, is a problem that has been addressed extensively
(Zeleznik and Gordon, 1968; Van Zeggeren and Storey, 1970; Eriksson,
1971; Brown and Skinner, 1974); more recent contributions have
achieved a high level of sophistication with regard to the thermody-
namic models that may be employed (Hillert, 1981b; Lukas, Weiss, and
Henig, 1982; Eriksson and Hack, 1984). These techniques can be used
to calculate phase diagrams by incrementally varying the state coordi-

’ The compositional variables of a saturated phase are directly related to potentials;
consequently, calculations and diagram topologies as a function of the composition of a
saturated phase are essentially identical to potential variable calculations and diagram

topologies. Therefore, for brevity, the compositional variables of saturated phases are not
distinguished here from potentials.
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nates of a system and determining the equilibrium phase assemblage at
each new set of coordinates. The resulting assemblages are assigned to
the different phase fields, and the field boundaries can be determined by
iteration or interpolation. The advantage of such a procedure is that it is
easy to implement, and that there are no constraints on the nature of the
coordinate pattern used. These methods have been applied in the
calculation of composition sections of multicomponent petrologic sys-
tems (Brown and Skinner, 1974; Saxena and Eriksson, 1983; Wood and
Holloway, 1984; DeCapitani and Brown, 1987).

An alternative to incremental mapping is to define phase field
boundaries directly. This can be done in two ways: (1) all possible
boundaries are calculated, and then the most stable boundaries are
selected; or (2) the equilibrium phases are determined as the saturation
surface of a specified phase is traced. Method (1) is used by Kaufman and
Bernstein (1970) for alloy systems and is flexible, but not easily
completely automated. Method (2) is usually implemented with the
assumption that the saturated phase is stable, as in the calculation of
liquidus surfaces (Lin and others, 1980; Berman and Brown, 1984).
Jansson (cited in Hillert 1981b) has developed a particularly effective
technique after method (2) in which free energy minimization tech-
niques are coupled with the auxiliary constraint that the extent of a
specified stable phase is zero. With Jansson’s modification boundaries
can also be traced in composition sections. By testing the stability of the
equilibrium phases as boundaries are traced, the stable phase fields of a
diagram can be defined. Such a strategy is used for the completely
automated phase diagram calculations described by Sundman, Jansson,
and Anderson (1985).

In comparison to the incremental mapping of phase fields, the
tracing of phase field boundaries is considerably more efficient. How-
ever, for coordinate grids of greater than two dimensions the efficiency
of both methods decreases drastically and the likelihood that a phase
field will be missed entirely increases; therefore, some expertise is
needed to assure that a correct diagram is calculated. Because of these
complications, it is necessary to employ alternative strategies for multi-
variable phase diagrams. Multivariable phase diagrams are usually
shown as Schreinemakers projections; consequently, previous computa-
tional strategies have been designed for the direct calculation of projec-
tions rather than complete multidimensional phase diagrams.

The strategy used by Hillert (1981b; see also Lukas and others,
1982; Hillert, 1982) for calculating Schreinemakers projections is to
determine initially a stable invariant equilibrium condition at which n
(n = c + 2) phases are stable. This condition serves as a starting point
from which at least three and at most n stable univariant phase fields can
be traced. Each univariant field may terminate at a new invariant
condition which, in turn, can be used to generate additional univariant
fields. This strategy has been completely automated in a computer
program which can treat solution phases described by Margules expan-
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sions and any number of components (Hillert, personal commun.,
1986). It is not certain that the loci of univariant conditions will form a
continuous network within the parametric space of the diagram. It is
therefore necessary to test the stability of all possible invariant configu-
rations to assure that stable configurations are not overlooked. Such
testing may result in a significant deterioration in efficiency if the
number of potentially stable phase (7) is much greater than n, because
the number of invariant phase configurations is the combmatomal
function (n) This situation is further complicated by the possibility that
the same invariant phase assemblage may be stable at more than one
condition, as sometimes observed (Skippen, 1971; Trommsdorff, 1972;
Day, Chernosky, and Kumin, 1985). A second diﬂiculty is that univar-
iant curves that do not begin or end at an invariant point within the
specified coordinate frame will not be determined.

Perkins, Brown, and Berman (1986) used a similar technique for
stoichiometric phases that eliminates the possibility for errors of omis-
sion and was specifically designed for geologic problems. Instead of
enumerating invariant phase assemblage the strategy of Perkins, Brown,
and Berman begins with univariant assemblages. This has the disadvan-
tage that it is necessary to test the stability of each assemblage over the
entire range of its equilibrium coordinates within a diagram, rather than
at a single condition as required in Hillert’s strategy. Additionally, the
number of univariant assemblages generated by combinatorial enumer-
ation, (n 7 1), is generally greater than the number of invariant assem-
blages (if # > 2n + 2). Thus, although this strategy is completely reli-
able it is less efficient than Hillert’s, and its use is restricted to systems in
which the possible phases have no compositional degrees of freedom.

COMPUTATIONAL STRATEGY OF THE VERTEX PROGRAM

The program presented here, called Vertex, was initially devel-
oped with the specific goal of automating the calculation of Schreine-
makers projections. Inasmuch as the difficulties inherent in a purely
combinatorial approach to the calculation of projected diagrams are
well known, attention was directed toward the calculation of complete
multidimensional phase diagrams. In calculating a phase diagram, as
opposed to a phase diagram projection, it is simple to determine when
the diagram is complete, because the volume of the different phase
fields must fill the entire parametric space prescribed for the diagram.
Thus the necessity of testing the stability of all possible phase fields can
be avoided. Additionally, because neighboring phase fields differ by
only one phase (Palatnik and Landau, 1964; Zhao, 1983), by systemati-
cally building up a diagram, the number of permutations of phases
considered to define a field is diminished. This is particularly important
in completely automated calculations, because the number of potentially
stable phases is generally large.




an algorithm based on generalized thermodynamics 689

The strategy used in Vertex is almost the antithesis of Hillert’s
(1981b) strategy for calculating Schreinemakers projections. Hillert’s
strategy begins with invariant phase fields, whereas the Vertex strategy
begins by establishing isopotential one-phase one-component phase
fields. The compositional degrees of freedom are then successively
incremented. After each increment the compositional phase relations of
increasing complexity are established, until ultimately a complete com-
position diagram is determined. A degree of freedom is then introduced
in one potential variable, and the compositional phase relations are then
monitored as this potential is varied. The invariant phase fields deter-
mined in this manner can then be traced as a function of a second
potential to trace the networks of univariant phase fields which comprise
a Schreinemakers projection.

The calculation of multidimensional phase diagrams by the strat-
egy outlined for Vertex is divided into three steps, and the result of each
step can be a complete diagram. The first step produces an isopotential
composition phase diagram, and the second and third steps produce
mixed-variable diagrams as a function of composition and one and two
potentials, respectively. Diagrams with two potentials are almost invari-
ably shown in projection and will be referred to as Schreinemakers
diagrams. The following three sections outline the methods used for
each kind of diagram, thereby detailing the overall strategy.

COMPOSITION PHASE DIAGRAMS

The problem in calculating composition phase diagrams is to
determine the phase assemblages that define the thermodynamic sur-
tace of a system, that is, the isopotential locus of possible minimum free
energy-composition (2-X) states. In the most general case, in which all
phases are of variable composition, this task is not straightforward
because the free energy of a system depends both on the composition of
the system and its phases. A more important, though less apparent,
difficulty is that the geometry of the Q-X surface may be complex and
difficult to describe analytically. Such a description is essential if the
phase relations on this surface are to be monitored as potentials are
varied.

The complications mentioned in the previous paragraph combine
to make numerically exact evaluation of the thermodynamic surface of
complex systems untenable by current techniques. However, in some
cases the compositional variation of phases is negligible, and the evalua-
tion of thermodynamic surfaces is greatly simplified. This simplified
problem is relevant to some subsolidus silicate systems and was
addressed initially in the development of Vertex. If the only possible
phases of a system are compounds, the thermodynamic surface of the
system is a hull-shaped simplicial complex concave with respect to the
free energy ordinate. The vertices of this complex correspond to the
coordinates of the stable compounds, and each simplicial facet of the
complex is an invariant phase region.
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The coordinates of any p = ¢ compositionally nondegenerate
phases define a plane in Q-X space which is described by the equation:

j=1
The potentials in eq (21) must satisfy:
X . X, 8, Q!
- (22A)
Xy - - XP 0, QP
or
Xd=40 (22B)

which can be solved for & by standard linear algebraic techniques. If an
invariant assemblage is stable, then the Q-X plane defined by eqgs (21)
and (22) must be tangent to the thermodynamic surface of the system;
thus, the residual free energy 6Q' of all phases relative to this plane must
be positive, that is:

0=6Q =0 — > oxi G=1,..., o). (23)
j=1

Eqs (22) and (23) provide the basis for a simple algorithm for the
evaluation of the thermodynamic surface of a system. This algorithm
consists of essentially three steps: (1) invariant assemblages are gener-
ated, (2) for each assemblage eq (22) is solved for 8, and (3) the validity of
condition (23) is tested. If the only phases of a system are compounds a
set of algebraic rules can be formulated to limit the number of assem-
blages that must be tested in this manner to a small fraction of the total
possible number (7). As a result the algorithm, which has been described
in detail elsewhere (Connolly and Kerrick 1987), is surprisingly eff-
cient.

Because of the efficiency of the algorithm, it is feasible to model the
nonlinear Q-X surfaces of phases with variable composition by a series of
compound phases. This is equivalent to approximating each surface by
an inscribed polyhedron, the vertices of which correspond to arbitrarily
defined compounds. Any desired degree of accuracy in this approxima-
tion can be achieved by varying the number of compounds, although in
practice the accuracy for solutions with more than three endmembers is
limited by the amount of computer memory required. All phase regions
on the thermodynamic surface are defined by c compounds as a result of
this approximation; however, once these regions have been defined it is
possible to determine the true phase relations by determining if more
than one of the compounds represents a single solution. Because it is also
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possible to recognize immiscibility in a solution, this technique provides
an effective means of defining solvi in complex systems (Connolly and
Kerrick, 1987). To emphasize that the compounds chosen to represent a
particular solution are arbitrarily defined, they will be referred to as
pseudocompounds. Similarly, to distinguish the true variance of a phase
region from the variance of a region defined by pseudocompounds, the
term pseudovariance will be applied in the latter case. The subdivision of
phases into pseudocompounds, and the interpretation of the phase
relations calculated as a result, can be accomplished entirely by com-
puter programs and need not concern users.

Figure 3 shows a composition phase diagram calculated by com-
puter for the chemically closed system CaO-Al,04~SiO, at a tempera-
ture roughly 200 K above the solidus. Three different kinds of phase
regions can be distinguished in the diagram: divariant melt regions are
shown by shading, univariant regions are defined by dashed tielines, and
invariant phase regions are outlined by solid lines. Within the melt
regions, the pseudoinvariant phase regions are also outlined. The

o3as P(bar)=1.0
T(°C)=1400.0

2

V. -

[ - ™t
LIME AC3 C2Z2A C6A coO

Fi%. 3. Computer calculated and drafted composition phase diagram for CaO-
Si0,~Al O, supersolidus systems (P = 1 bar, T = 167% K). Three kinds of phase regions
are distinguished: divariant melt regions by shading, univariant melt-solid regions by
dashed tielines, and invariant three phase regions outlined by solid lines. Witﬁin melt
regions, pseudoinvariant regions are also outlined. Numbers in symbols should read as
subscripts (for example, S7TA15 is S;,A,;). Polymorph types are indicated by an arabic
letter prefix. Data from Berman and Brown (1984).
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calculation, in which the melt phase was represented by 700 compounds,
involved a total of 733 compounds and consumed 0.17 seconds of CPU
time.® Had this calculation been done by brute force enumeration of
pseudocompound assemblages, the calculation would have involved
nearly one million assemblages.

Mixed-variable Phase Diagrams

Mixed-variable phase diagrams show changes in compositional
phase relations as a function of one independent potential. Ordinarily
the calculation of mixed-variable phase diagrams is not a simple task,
because the geometry of high variance phase regions (p = c) usually
varies continuously in such diagrams. However, if the only phases of a
system are compounds, all geometric variations are discrete and mani-
fest in the topology of mixed-variable diagrams. Topologic changes are
associated with invariant equilibria and can be defined by a reaction
equation that relates the compositions of the coexistent phases. The
approximation of solutions by pseudocompounds results in such a
situation but, in this case, it is possible to distinguish reactions that
involve compounds representing different phases from those in which
two or more pseudocompounds represent a single homogeneous phase.
Reactions of the former kind correspond with topologic changes and
heterogeneous invariant equilibria in a true phase diagram, whereas,
reactions of the latter kind approximate the continuous variation of a
homogeneous phase region. Given isopotential phase relations for a
system, the location of the conditions at which reactions occur as a
function of one potential is then sufficient to determine the geometry of
a mixed-variable diagram.

The most obvious strategy for locating the conditions at which
reactions occur is to vary one potential and then to test the stability of
the original univariant (or pseudounivariant) phase assemblages. This
strategy was implemented in preliminary versions of Vertex (Connolly
and Kerrick, 1984, 1987), and although intuitively appealing, it has
practical shortcomings. These shortcomings arise because one reaction
may affect the stability of many univariant assemblages, and this situa-
tion must be distinguished from one in which more than one reaction
occurs within a finite potential increment. The formulation of criteria
for distinguishing these situations is a formidable problem in combinato-
rial topology (Hudson, 1959). This problem was solved for one-, two-,
and three-component systems, but the resulting criteria could not be
generalized for higher order systems.

An alternative strategy is to evaluate the stability of each univariant
assemblage individually as a function of the potential variable 4,.

® Calculations reported here were done on an IBM 3090-180 computer (clock speed
18.5 Ns) running under VM /SP (HPO level 4.2). The capabilities of this computer are
typical of main frame computers currently available at most universities; however, CPU
time consumption may vary by orders of magnitude, depending on the operating system,
clock speed, and compilers used.
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Reactions are identified when an originally stable assemblage is metasta-
ble with respect to one phase, designating this phase by the index p
(p = ¢ + 1), the reaction equation may be written:

C

Bp = 2_ b, (24)
j=1
where ¢; is the composition vector of the i phase and is usually
designated by the name of the phase. The reaction coefficients {og, ...,
o} may be determined from:

b SEENEID & x Xk

Xe + + X e \XP (25A)
or
Xt&“-ap, (25B)

where X'is the transpose of the composition matrix of eq (22). The value
of the independent potential variable 6, for the invariant equilibrium
associated with the reaction must satisfy:

S w0 = A9(0,) =0, (26)
i=1
where the functional dependence of Q is indicated parenthetically, and,
from eq (24), it follows that a, = —1.

Eq (26) can be solved to any desired accuracy by numerical
techniques. For this purpose, the secant method (Conte and DeBoor,
1980) is superior to other methods, because it does not require that Q be
analytically differentiable. The input for the secant method is an initial
estimate for the value of the independent potential §° and an arbitrary
increment 6,. The equation:

(AQ(07))56,
AQ(82 + 86,) — AQ(A°)

is then solved for 4,. If 6, is sufficiently close to 2 or AQ(6°) is close to
zero, 8, is accepted as a solution to eq (26). Otherwise 8, is made the new
estimate, 67, and the procedure is repeated until the convergence
criteria are met.

Once an invariant phase boundary has been located by solving eq
(26), the stable univariant phase regions on the opposite side of the
boundary from the region defined by the original assemblage {6, ...,
$.} must also be determined. The regions can be defined by the method
Just described, but first it is necessary to determine the stable assemblage

(27)

— g0

v
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in each region, that is, assemblages that may be generated by the
reaction of the original assemblage {¢,, . . . , .} with the phase $,. These
assemblages can be enumerated by noting that phases with null reaction
coefficients must be compatible with all phases of the invariant assem-
blage on either side of the invariant boundary, and phases with negative
reaction coeflicients must be compatible with each other on the opposite

side of the boundary from {51, C e, EEC}. Thus, phases with null and
negative coefficients will be present in all possible assemblages gener-
ated by the reaction from {@,, . . ., .}. Of the remaining k phases with

positive reaction coefficients only k-1 at a time may coexist. Provided k is
greater than one, the invariant reaction will therefore generate k new
stable univariant assemblages, each of which consists of a permutation of
k-1 phases with positive coethicients plus all phases with null or negative
coefficients. If only one phase has a positive coefficient, this phase is
un}stable on the opposite side of the invariant boundary from {¢,, . . .,
¢t

The procedure for locating invariant conditions must be repeated
for every univariant or pseudounivariant assemblage defined in the
initial composition diagram. Because a reaction may generate the same
univariant assemblage from up to ¢ distinct original assemblages, a large
number of redundant calculations may be done. This problem can be
avoided by applying tests for redundancy in programs based on the
algorithm.

The result of this procedure consists of a list of invariant (and
pseudoinvariant) conditions and the assemblages. To construct a phase
diagram from these data, the invariant conditions must first be sorted
with respect to 6,. Because the univariant phase regions are known from
the initial composition diagram calculation, these regions can be drawn
parallel to the 6, axis of the diagram to the first invariant boundary. At
this condition it is necessary to determine the topology of the new
univariant regions relative to the invariant boundary. The new regions
can then be drawn to the next invariant condition. This process is
repeated until the diagram is complete. In this construction, which may
be accomplished by computer, the curvature of phase region boundaries
is represented by a series of steps, where each step is defined by a
pseudoinvariant condition (figs. 10 and 12, Connolly and Kerrick,
1987). These stepped boundaries may be fit with spline functions to
obtain smoothed curve approximations for graphical representation.

Figure 4 shows a mixed-variable phase diagram calculated with
Vertex for the CaO-SiO, system. The diagram can be thought of as an
isopotential section of the phase diagram represented by projection in

® This procedure has a basis similar to Fujii’s (1977) Divariant Region Theorem.
Inasmuch as there are only a finite number of possible chemographic arrangements of
c+1 phases, it seems that it should be possible to employ this method to determine the
unique chemographic relations of ¢+ 2 phases and, therefore, the number and topology of
possible invariant configurations in Schreinemakers projections.
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Fig. 4. Computer calculated and drafted P-X¢.o diagram for CaO-SiO, system, at
constant pgio, = —160 k] /mol. Xc,q is defined by eq (20) and is similar to the inverse of
molar entropy. Lines of constant X, are isentropic. Data from Berman and Brown
(1984).

figure 2B for which composition (Xg,) is defined as in eq (20). This
diagram is appropriate for the analysis of a physicochemical system in
which the mass of lime and the thermal state are or are determined by
properties of the system, but silica chemical potential and pressure are
externally controlled. The variable X, is closely related to the recipro-
cal of the molar entropy, and figure 4 can be interpreted accordingly,
that is, low and high values of X, are, respectively, cold and hot
conditions, and the extremes X, = 0 and Xco = 1 correspond,
respectively, to the phenomenological extremes of TT =00 K, g0 = —c0
J/mol} and {T = 0 K, ugo = 0 J/mol}. Calculations by Vertex are
necessarily done over the entire compositional range represented by the
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selected components; however, valid thermodynamic data may be avail-
able over only a portion of this range, and only this portion of a diagram
will represent real phase relations. The phase relations shown by figure
4 represent thermal states characterized by temperatures within the
range 400 to 2200 K.

Lines of constant composition (isopleths) in figure 4 are equivalent
to isentropics and, by eqs (9) and (11), adiabats. The use of the term
adiabat in this context is equivocal because figure 4 represents states of
constant pggo, (—160 kJ/mol), which could be maintained only in a
system open with respect to silica. However, the concept of heat in
chemically open systems is vaguely defined; the equation of isopleths
and adiabats in figure 4 is consistent with the concept of heat often used
in physics (Born, 1964, p. 146; Tisza, 1966, p. 113) but is inconsistent
with the definitions implicit in the usage of Gillespie and Coe (1933) and
Tunell (1977), which may be more relevant to natural systems. This
situation is further complicated because it is difficult to imagine a
process by which pgo, could be controlled independently of the thermal
state and pressure of a system. Despite the questionable relevance of
figure 4 to a natural system, the diagram was presented because it is
interesting from a theoretical perspective and because it demonstrates
the feasibility of problems involving a large number of solution phases.
It is pertinent to observe that adiabatic mass transfer is realized by
superfluids (London, 1954, p. 72), and in some natural magmatic
systems the transfer of low-molecular weight volatiles may occur with
negligible thermal effect.

Figure 4 was calculated taking into account 37 possible phases.
Each phase was represented as a binary solution as a function of X, by
20 pseudocompounds in the compositional range shown in the diagram.
The calculation of the diagram involved the evaluation of over 100
invariant conditions and consumed a total of 1.2 sec of CPU time.

Schreinemakers Diagrams

Each invariant phase boundary in a mixed-variable phase diagram
corresponds to a point on a univariant field of a Schreinemakers
projection. Thus, if mixed-variable diagrams are calculated which corre-
spond to each boundary of the rectangular 6., -6, coordinate frame of
a Schreinemakers diagram, then the intersections of all the univariant
curves in the Schreinemakers diagram with the boundary of the diagram
are known. Each of these intersections may then serve as a starting point
from which it is possible to trace a Schreinemakers net. Many of the
invariant conditions detected in the mixed-variable diagrams will often
be related by a single net, so typically, it is necessary to determine only a
few nets to establish a complete Schreinemakers diagram.!®

' This strategy is based on the assumption that every Schreinemakers net intersects
the coordinate frame boundarty at least once. Exceptions to this are rare but could occur in
a system in which both ends of a unvariant field are critical points.
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A curve in a Schreinemakers diagram represents the locus of a
univariant equilibrium of ¢ + 1 phases as a function of two potentials,
f..1and 8 , 5. This equilibrium can be associated with a reaction equation
(eq 24) which is found from eq (25). Consequently, it is possible to trace
the conditions of the equilibrium by incrementing one potential and
then iteratively solving, by the secant method (eq 27), for the value of
the other potential which satisfies eq (26). There are two special cases
that may be encountered in tracing a univariant curve, First, the slope of
a univariant curve may equal or approach zero with respect to the
independent potential coordinate in which case (AQ/30.)y; i biivenion
will also approach zero and the secant method will fail to converge. If
this occurs, the independent and dependent potentials must be
interchanged, and the direction of the tracing as a function of the new
independent potential is determined from the generalized Clausius-
Clapeyron relation:

(60c+ 1) _ (0A¢c+2) (28)
60c+2 ¥i1=i=cfic+2<isn 8A¢C+1 Vi, 1si=obicr 2<ixn

The second special case occurs if a univariant curve ends at a critical
point; such conditions are easily identified because the ratio in eq (28)is
undefined at the critical point.

Each univariant equilibrium defines a condition at which the
representative coordinates of the ¢ + 1 phases are coincident with a
plane in Q-X space. The equation of this plane (eq 21) may be
determined from eq (22) from any compositionally nondegenerate
subset of ¢ of the ¢ + 1 phases in the equilibrium assemblage.!! If the
equilibrium is stable, condition (23) must be true given the potentials
consistent with eqs (21) and (22).

A univariant assemblage may be stable over the entire range of its
equilibrium conditions within the coordinate frame of a Schreinemakers
diagram. Alternatively, in the course of tracing the corresponding
univariant curve, an invariant point may be crossed in which case
condition (23) will be false. The invariant point may then be found by
locating conditions along the univariant curve at which the equality in
condition (23) is true for one other phase in addition to the ¢ + 1 phases
of the univariant assemblage. If the c + 2 phases stable at the conditions
represented by the invariant point are compositionally nondegenerate
there will be ¢ + 2 univariant curves emanating from the invariant
point, one of which is already traced. Each of these curves will represent
the equilibrium of ¢ + 1 phases and may be defined by taking the unique
¢ + 1 phase permutations of the invariant assemblage. The reaction
equation for each univariant assemblage may then be determined, and

" Once X has been factored the first time, the upper and lower triangular decompo-
sitions of X may be stored so that subsequent solutions of eq (22) can be obtained by back
substitution (Conte and DeBoor, 1980). Conse uently, there is relatively little computa-
tional overhead associated with testing the stabi ity of a univariant equilibrium.
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the univariant curves traced. If these curves in turn terminate at
invariant points, the invariant assemblages and conditions may be
recorded, and subsequently the curves emanating from these points may
also be traced. Ultimately this procedure will determine a complete
Schreinemakers net within the specified potential variable coordinate
frame. - _

If an invariant phase assemblage is compositionally degenerate the
possibility exists that (1) there may be less than ¢ + 2 univariant
equilibria associated with the invariant condition, and/or (2) the same
reaction equation may be associated with two or more of the univariant
equilibria. Condition (1) is a manifestation of complete degeneracy
between two or more phases in the invariant assemblage, and, conse-
quently, at least one ¢ + 1 phase permutation of the invariant assem-
blage will not define a c-dimensional region of composition space. This
condition is detected if the row rank of the skew matrix formed by the
¢ + 1 column vectors {@,, . . ., @1} is less than c, and the assemblage is
rejected as a possible equilibrium. Condition (2) is the result of a linear
degeneracy among three or more phases; in this case all ¢ + 1 phase
permutations (which do not involve completely degenerate phases) are
possible equilibria. In these cases each univariant curve must be traced
independently, even though curves associated with the same reaction
equation may overlap, because in general, the curves will terminate at
different invariant points.

Much of the efficiency of Vertex derives from the approximation
of solution phases by pseudocompounds. As a result of this approxima-
tion, the reaction coefficients associated with a univariant equilibrium
{al, R occ+1} only change when there is a change in the pseudocom-
pound assemblage that represents the true phase assemblage. These
changes appear as singularities, or pseudoinvariant points, along a
univariant curve, and they represent conditions at which two pseudo-
compounds of the same true phase are stable. This is demonstrated in
figure 5 which shows the topology of a Schreinemakers diagram for a
binary system with four possible phases, three of which {A, B, D} are
stoichiometric, and the fourth phase, G, is a solution represented by
three pseudocompounds {Cl, Cs, CS}. The univariant curve that corre-
sponds to the true assemblage {A, B, C}is defined by the assemblage {A,
B, Cy} in the vicinity of the invariant point I. As this curve is traced away
from the invariant point I eventually the pseudoinvariant point IT is
encountered.'? This point represents conditions where the continuous
compositional variation of phase C is approximated by a discrete change
between the pseudocompounds C, and C;. The assemblage {A, B, C,}

then defines the univariant curve as it is traced on the other side of point
I1.

'2 The terms gseudounivariant curve and pseudoinvariant point are strictly incorrect,
because points and curves are by definition univariant and invariant, respectively. These
terms are used here for brevity in place of the more proper terms pseudounivariant
equilibrium curve and psendoinvariant equilibrium point.
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Fi%‘l 5. Schematic Schreinemakers diagram for a two-component system with four
stable phases {A, B, C. D}, where C is a solution represented by three pseudocompounds
C,, C,, Cs}. Univariant and pseudonivariant curves are shown by solid and dashed curves,
respectively. Composition diagrams illustrate phase compatibilities in different portions of
the Schreinemakers net.

In addition to the univariant pseudocompound assemblages asso-
ciated with a pseudoinvariant point on a univariant curve, there are also
c pseudounivariant assemblages. Each of these assemblages includes two
compounds that represent the same real phase and may be used to
define a pseudounivariant curve in a Schreinemakers diagram. These
curves approximate the loci of conditions in which the limiting composi-
tions of the phases of a high variance (c—p = 0) equilibrium are the
same. Thus, pseudounivariant curves approximate isoplethal contours
of high variance phase region boundaries. For example, the pseudouni-
variant curves associated with pseudounivariant point II in figure 5
correspond to the equilibrium of the pseudocompound assemblages {B,
C,, Cgfand {D, C,, Cs}. These curves define the limiting composition of
phase C in divariant equilibrium with phases B and D, respectively, as a
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function of f.,, and 8., ,. In this example, the one-phase region of C is
only trivariant and is therefore also defined by the pseudounivariant
curves.

In more complex problems than those illustrated by figure 5,
pseudounivariant curves may intersect at pseudoinvariant points that do
not lie on univariant curves. The pseudounivariant curves at these
intersections generally define higher variance phase regions, such as
divariant phase regions (binary solvi) which separate trivariant phase
regions. By tracing all the pseudounivariant curves detected on the
boundary of a Schreinemakers diagram, all the compositionally nonde-
generate phase regions of the diagram can be defined. In comparison to
conventional Schreinemakers diagrams, which show only univariant
curves, the advantage of this extension of the Schreinemakers pro-
jection is that it allows the determination of the compositions of phases
in high variance equilibria. It is only necessary to count the number of
true phases in a pseudocompound assemblage to determine the variance
of the corresponding equilibrium. Such a counting procedure is used by
Vertex to discriminate between equilibria of different variance.

The chemically open system CaO-Al,O4—SiOy—FeO~H,O-CO,~
O, is widely applied as a model for skarn systems and will be used to
demonstrate the application of the procedures just described. To
simplify this example, phase diagrams for this system were calculated
with the assumptions that (1) the system is saturated with respect to SiO,
and a fluid phase, (2) oxygen fugacity is restricted to values consistent
with the magnetite-hematite phase equilibrium, (3) the total pressure is
2 kb, and (4) the system is closed with respect to FeO, Al,O;, and CaO.
Assuming the fluid phase is essentially a binary H,O-CO, mixture, the
natural variables for this system are {T, YEOQ, Xreor X Al203}’ where {X;.o,
X A1203} define the composition of the system, and the variables T, Yf;o?}
may be represented on the axes of a Schreinemakers diagram.

Figure 6 shows a Schreinemakers diagram for the aforementioned
system calculated with Vertex. Over the range of conditions considered,
two crystalline solutions are stable, garnet (Gr,,) and epidote (Zo,). Both
solutions are essentially binary isomorphous solutions between ferric
and aluminous endmembers and are represented by pseudocompounds
specified at 10 mol percent increments of the aluminous endmember, as
illustrated by the composition diagram in figure 7 and by the insets of
figure 6.

The Schreinemakers diagram shown in figure 6 furnishes informa-
tion on the stability of phase assemblages as a function of temperature
and fluid composition. For example, the positions of the univariant
curves corresponding to the phase equilibria {Gr,, Zo,,, Hm, Cc} and
{Gr,, Zo,,, An, Cc} span the divariant phase region iGrss, Zo,,, Cc}. If the
composition phase diagram for the system is known at any T-Yo,
condition in the diagram, the topology of the composition diagram can
be determined at all other conditions by the univariant curves. The
compositions of coexistent phases in univariant equilibrium can also be
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Fig. 6. Computer calculated T-Y%, Schreinemakers diagram for fluid and SiO,
saturated CaO-Al,04-S8i0,-FeO-H,;0-CO,-0, with u,, externally buffered by the
magnetite-hematite equilibrium (P = 2 kb). Univariant curves are labelled by phases of the
corresponding reaction; if the reaction has constant coefficients the curve is drawn by a
heavy line. Composition diagrams illustrate phase compatibilities in different portions of
the Schreinemakers net (invariant and divariant regions are open and filled, res ectively,
compare fig. 7). Invariant and pseudoinvariant assemblages are identified in table 1. Data
from Helgeson and others (1 9# 8) and Connolly and Bodnar (1983).

retrieved from knowledge of the pseudoinvariant assemblages. Thus,
between the pseudoinvariant points labelled 10 and 11 (fig. 6) it can be
deduced from the pseudoinvariant assemblages, {Grsg, Z0yy, Z0sg, An,
Cc} and {Gry,, Gry,, Zog, An, Cc} (table 1), that epidote of composition
about Zogs, in equilibrium with calcite, decomposes with Increasing
temperature to anorthite and garnet of composition about Grs.
Quantitative information about the equilibrium compositions of
coexisting phases in high variance assemblages is lost in the projection
shown in figure 6. Consequently, the constraints on the composition of
the system that are necessary to obtain a particular assemblage are also
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TABLE 1

Phase assemblages of invariant and pseudoinvariant fields in figures 6 and 8.
Assemblages marked by an asterisk are invariant in compositionally
degenerate subsystems

Invariant Assemblages
13) Zoy, +Gr,; +Hm + An + Cc
Pseudoinvariant Assemblages

(1) Zog, +Zo, +Gr, +An + Cc
2) Zosy +Zogy, +Gr, +An + Cc
3 Zog, +Gry, +Gryy +An +Cc
@ Zog +Grgy +Gr,, +An + Cc
(5) Zogy +Zos, +Gr,, +An +Cc
(6) Zog, +Gryy +Gry +An +Cc
@) Zosy, +Gryy, +Gry,y +An +Cc
¢)) Zogy, +Zo, +Gry +An +Cc
)] Zo, +Gry, +Gr,, +An + Cc
(10) Zo, +Gr, +Gr,y +An +Cc
(11) Zoy +Zo0; +Gr;; +An + Cc
(12)  Zoyy +Gryy; +Gr,, +An +Cc
(14) Zoy, +Zo;, +An +Hm +Cc
(15) Zoy, +Zo,, +Gr,, +Hm + Cc
(16) Zo,, +GCr,y, +Gr; +Hm + Cc
(17y*  Zo,, +Z0y, +Gr, +An +Cc
(18) Zogy, +Zog, +Gr, +An + Cc
(19)  Zog, +Zogz, +Gry,, +An + Cc
20)*  Gryy +Gr,, +An +Wo  +Cc
21 Gryy, +Grg, +An + Wo +Cc
(22) Grgy +Gr,, +An + Wo + Cc
(23) Gry, +Grg, + An + Wo + Cc
(24) Zog, +Zo,, +Gr,, +Gr,, +Cc
(25) Zoy +Zoy, +Gr, +Gr,, +Cc
(26) Zogy +Zog, +Gry +Gr,, +Cc

unspecified. As discussed previously, this information can also be calcu-
lated and drawn in Schreinemakers projections, as illustrated in figure 8.
To simplify figure 8, only phase equilibria consistent with CaO satura-
tion are shown; in this restricted context the system retains one indepen-
dent compositional variable, X, or X ALo,- T'he diagram in figure 8 is
thus a projection of a three-dimensional section of a nine-dimensional
phase diagram, whereas the diagram in figure 6 is the projection of a
four-dimensional section. '

The calculated phase relations shown in figures 6, 7, and 8 are
dependent on the relative order in which saturation constraints are
applied. The diagrams in figures 6, 7, and 8 are for systems saturated
first with respect to fluid, second with respect to $iO,, and, in figure 8,
third with respect to CaO. Thus, the stable CaO-saturated phase is
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wollastonite (CaSiQO;) at high temperatures and H,O-rich conditions and
calcite (CaCO;) at low temperatures and CO,rich conditions (in
extremely water-rich fluids, portlandite, lime, or zonotolite could be
stable CaO saturated phases, but these phases were not considered in the
calculation).

T'o understand the utility of figure 8, it may be useful to examine
two-dimensional mixed-variable diagrams constructed by sectioning this
diagram parallel to the temperature axis (fig. 9). These sections reveal
that univariant curves in figure 8 correspond to eutectoidal and peritec-
toidal equilibria, and that pseudounivariant curves define the iron-
aluminum fractionation of the garnet and epidote solutions. For exam-
ple, the pseudounivariant curves extending from points 1 to 16, 18, 19,
and 24 to 26 (points 17-19 are unlabelled in fig. 8 but can be identified
with reference to fig. 6) approximately define the iron distribution
between coexistent garnet and epidote. It should be emphasized that a
pseudounivariant curve such as the curve which corresponds to the
equilibrium:

ZOso = ZO40 + Al'l

does not define the limiting stability conditions of epidote solutions of

Fig. 7. Comguter‘calculated and drafted composition diagram for the system of
figure 6at T = 875 K Yi,, = 0.
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Fig. 8. Schreinemakers diagram for system of figure 6 with the added constraint of
CaO saturation and showing the conditions of pseudounivariant equilibria. Unlabelled
invariant and pseudoinvariant fields can be identified by comparison with figure 6.

composition Zogg, rather it locates the approximate limit of stability of
epidote solutions of composition Zo,s. The uncertainty of this approxi-
mation depends on the number of pseudocompounds used to represent
a solution, the curvature of the thermodynamic surface of the solution,
and the number of solutions in equilibrium. It is thus difficult to make
strong statements about the accuracy of this method, but if an equilib-
rium involves only one solution phase, the stability field of the solution is
underestimated. In contrast, when more than one solution is stable, the
curvature of the thermodynamic surfaces tends to result in cancelling
errors.

Two peculiar features in figures 8 and 9 deserve special mention.
The more obvious is the kink in the garnet-anorthite stability field
which occurs with increasing temperature (fig. 9B). This kink is the
result of a singularity in the CaO-saturation surface because of the phase
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. Fi%. 9. Computer calculated and drafted constant Y&o, sections of figure 8, (A)
Yio, = 0.04 mol, and (B) Y&, = 0.40 mol.

change from calcite to wollastonite. This has the interesting implication
that garnet-anorthite assemblages, which are stable in high temperature
H,O-rich environments, become unstable with decreasing temperature
only to restabilize at lower temperatures. The other, more subtle,
feature is observed along the univariant curve that determines the upper
thermal stability of epidote (points 1-13, fig. 8). From figure 9 it is
evident that the corresponding reaction is peritectoidal at high Y&, (fig.
9B) and in more H,O-rich conditions becomes congruent (fig. 9A). The
transition from peritectoid to congruent reaction should define a
singular point, at which the peritectoidal composition of epidote
becomes degenerate with that of coexistent garnet.’® This point must
also coincide with the equilibrium of a eutectoidal reaction that limits
the stability of garnets more aluminous than coexistent epidote. From
figure 6 or 8 (and table 1) it can be determined that the congruent
reaction:

204, = Gr
70 90

begins at point 1 {T = 812 K, Y&, = 0.068 mol CO,}, and from figure
8A it is evident that the eutectoidal decomposition of aluminous garnet
must degenerate at a second singular point in fluids more H,O-rich than
Y&o, = 0.04 mol CO,. However, consideration of the invariant assems-

"*This transition does not occur with an ordered model for epidote solutions, that is,
ordered epidote is always more aluminous than coexistent garnet. Although the ordered
epidote model is a more appropriate natural analog than the completely disordered
epidote model (Holdaway 1972; Bird and Helgeson 1981), the phase diagram for
disordered epidote was presented here to illustrate the complications associated with the
evaluation of singular points.
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blage at point 19 {T = 814 K, Y&o, = 0.058 mol CO,} leads to the
conclusions that the eutectoidal reaction is not represented in figures 6
and 8, and that the peritectoidal reaction that corresponds to the curve
connecting points 1 and 19 (point 19 is not labelled in fig. 8) is
inconsistent with the congruent epidote-garnet reaction. This kind of
error is an intrinsic flaw with the pseudocompound representation and
result because continuous variations are approximated by discrete
changes; consequently, caution must be applied in the interpretation of
singular conditions. It should be noted, however, that the error in
figures 6 and 8 is important only between T = 814-801K and Y{,, =
0.068-0.057 mol CO,. In fact, it can be determined that in the correct
topology of figures 6 and 8, point 19 should be a singular point which
would occur at temperatures below the congruent reaction.

Figure 9 shows another Schreinemakers.projection of the CaO-
Al1,04-Si0,-FeO-H,0-0, phase diagram, but in this case the isother-
mal-isobaric water saturated phase relations are shown as a function of
treo and po,. In the calculation of figures 6 to 9 pseudocompounds were
used to express the free energy of solutions as a function of composition.
In contrast, in the calculation of figure 10 pseudocompounds were used
to obtain an expression for the free energy as a function of ug.o and o,

Although the pseudoinvariant points are not labelled in figure 10,
the compositions of the stable solutions can be determined given that
the notations Al-Gt, Fe-Gt, and Al-Ep signify the pure aluminous and
iron endmembers of the garnet and epidote solutions. Thus, the
univariant curve labelled {Al-Gt, Fs, Ge, Wo} delimits the stability of
garnet (Gr o) with increasing pg.o at low pg, . As this curve is traced each
pseudoinvariant condition indicates a 10 mol percent shift in the iron
concentration, relative to aluminum, of the garnet. In this manner it can
be determined that garnet contains about 90 mol percent of the iron
endmember (Ad) in the invariant equilibrium {Lm, Fs, Ge, Wo, Gt}.
Along the univariant curves that define the limiting conditions of garnet
stability, two pseudounivariant curves extend from each pseudoinvar-
iant point. These curves are iron isopleths for garnets in five different
divariant phase fields which can be deduced by Schreinemakers’ rules.
The curves with lower dpug./dro, contour the divariant field {Gt, Wo,
Fs}, whereas the curves with higher dug.o/ dug, contour the fields {Gt, Ge
Fs}, {Gt, Ge, Lm}, {Gt, Wo, Lm}, and {Gt, Ge, Wo}. The change in slope
of the garnet field boundary has interesting implications for the stability
of garnet at constant py, as a function of pgo. For example, at uo, =
—750 kJ/mol and low ug aluminous garnet is stable; this garnet is
stable to ug.o = —246 k] /mol. As ug.o is increased beyond this condition
garnet becomes metastable with respect to the assemblage {Fs, Ge, Wo}.
If pgeo s increased still further to —230 kJ/mol (ferric) garnet is again
stabilized. With an additional increase in pg.g to a value of — 185 kJ/mol,
pure ferric garnet finally decomposes to the assemblage {Lm, Fs, Ge}.
Because figure 10 represents a projection of a four-dimensional dia-
gram, these phase relations would be virtually impossible to predict on




an algorithm based on generalized thermodynamics 707

| | | I |
—140 S tm Fe ;
—160 | .
N\
= —180Ff .
X
\/ —200} | -
O Lm Fs
i), Wo
L —220 F
—240 Fs Ge Wo
Al—Gt
— 260 F AFI_EG?eCo
Fs AR ]
| \‘“\“\&%Z\E‘:\ \‘\Q \ \

—900 —-800 —-700 -600 —500
fo (KJ)

FiE. 10. Computer calculated and drafted Schreinemakers diagram for the isobaric
(P = 2 kb)-isothermal (T = 875 K) water saturated system CaO-A]l,0-810,—FeO-H,0O-
O,. Univariant and pseudounivariant curves are drawn, respectively, by heavy solid lines
and light dashed lines. Pseudounivariant curves are drawn twice by the grap};ics device,
conse uent1¥ in some cases dashed line patterns appear continuous. Data from Helgeson
and others (1978) and Connolly and Bodnar (1983§

an a priori basis. For simplicity the aluminosilicates (andalusite) and
solution of ferrous garnet were not considered in the calculation of
figure 10.

High variance phase fields.—It is often useful to define a specific
phase field as a function of potentials. This information is contained in
Schreinemakers diagrams, but the extraction of the information is not
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always simple. As an alternative, the projection of high variance phase
fields may be calculated directly. In Vertex this is done by determining
the Q-X plane defined by the assemblage in question. The stability of the
assemblage can then be tested by condition (23) within a specified
two-dimensional potential coordinate frame. If the field is bounded
within the coordinate frame, the boundary can be associated with a
univariant or pseudounivariant equilibrium. Therefore, if one bound-
ing condition can be identified by an incremental search, then the
remaining conditions can be traced rapidly by the techniques employed
to establish Schreinemakers nets, as previously described. Optionally,
the compositions of coexistent phases in a high variance phase region
can be specified, in which case the program determines only the portion
of the equilibrium phase field consistent with the specified composi-
tions.

Figure 11 shows isobaric T—YEO2 sections in which the divariant
phase field {Gr, An, Cc} is outlined for the chemical system CaO-
Al,04—8i0,~-H,O-CO,. The calculations were done with two different
sources of thermochemical data (Helgeson and others, 1978; Robinson
and others, 1983) and reveal substantial discrepancies between the data
compilations. This example also demonstrates the utility of coupling

P=P;=4 Kb
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Fig. 11. Computer calculated and drafted projections of isobaric T-Yo, sections
showing the divariant phase field {Gr, An, Cc} in the chemical system CaO-Al Oy
810,-H,0-CO,. Invariant fields (indicated by square symbols) are defined by the assem-
blages {An, Gr, Cc, Q, Zo}, {An, Gr, Cc, (%, \zfo}, {An, Gr, Cc, Ge, Wo}, {An, Gr, Cc, Ge,
Col, and {An, Gr, Cc, Zo, Col, counterclockwise from lowest temperatures. Solid and

dashed curves were calculated with data from Helgeson and others (1978) and Robinson
and others (1983), respectively.
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phase diagram calculating programs with computer graphics to facilitate
the comparison of data and other computational options.

Frequently it is important to define the range of conditions a set of
minerals will have on certain prescribed equilibrium compositions. In
this case it is necessary to determine only the portion of a high variance
phase field consistent with the specified compositions. Calculations of
this type are familiar in the context of geothermobarometry, although
in geothermobarometry it is usually presumed that the observed assem-
blage is in stable equilibrium. This a priori assumption may be inconsis-
tent with the thermodynamic models being employed; in contrast
stability calculations with Vertex determine internally consistent condi-
tions. For such calculations it is necessary to associate an ‘“‘uncertainty”
with the composition of at least one phase; this uncertainty is then used
to define a set of pseudocompounds from which pseudodivariant assem-
blages can be generated. The stability of all possible assemblages
generated in this manner can then be determined. The “uncertainty” is
arbitrary and can be made to approach zero if desired. Figure 12
illustrates a calculation to solve a problem of this type for the mineral
assemblage {Mu94.2+/__8, Abg, . ,_5, Ql, in equilibrium with water, as a
function of pressure and temperature. This assemblage is part of the
trivariant muscovite-albite phase field in the silica and water saturated
chemical system Na,O-K,0-Al,O;-Si0y,—H,0. In this system the stable
conditions for {Mug,s,, s, Abg s, , 5 Q} are restricted to a band of
temperatures of about 30 K bounded by two dashed curves superim-
posed on the Schreinemakers diagram in figure 12A. These curves are
defined by the reaction (fig. 12B):

Abgs g + Mugyg = Abgg s + Mugg g
at low temperature, and, at high temperature by the reaction:
Abgy s + Mugs g = Abgg 4 + Mug, ;.

An interesting feature of figure 12 is that within this band there is a
wedge-shaped region, which tapers out at high pressure, of conditions
for which the specified assemblage is metastable with respect to musco-
vite-orthoclase assemblages. The existence of this wedge reflects the fact
that Na-solution increases with pressure more rapidly in the muscovite
phase than in the albite phase for the range of conditions shown.

For the calculation of figure 12 each solution was represented by
twenty compounds specified by a logarithmic subdivision scheme useful
for solutions that exhibit immiscibility (Connolly and Kerrick, 1987).
The muscovite-feldspar phase fields are poorly constrained by the
univariant phase fields in figure 12A; however, the projection of the
pseudounivariant fields for this problem involves 342 curves and is
virtually indecipherable. Calculation of the Na,O-Ky;O0-Al,04-SiOy—
H,O Schreinemakers diagram in figure 12 required a total of 15 sec of
CPU time. Comparison with the efforts required in previous calcula-
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Fig. 12(A) Computer calculated Schreinemakers projection of univariant phase
fields (solid curves) in water and silica saturated Nay,O—K,0-Al,03~Si0y—H,O systems.
Phase assemblages can be determined from invariant and pseudoinvariant points identi-
fied in table 2. Stable conditions for {Mug, s, ,_ 4, Abg, 5, ,_s, Q}, asdiscussed in the text, are
bounded by the dashed curves. (B)Detail showing pseudounivariant fields and schematic
chemographic relations. Data from Helgeson and others (1978), excess functions for mica
and feldspar from Chatterjee and Froese (1975) and Thompson and Waldbaum (1972),
respectively, and water properties from Kerrick and Jacobs (FQS 1).
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TABLE 2

Phase assemblages of invariant and pseudoinvariant fields in figures 11.
Assemblages marked by an asterisk are invariant in compositionally
degenerate subsystems

Invariant Assemblages
(1a) And + Ky + Sil + Mu,,
(1b) And + Ky + Sil + Pa_,

(6)  Pay,, +Aby, +Muy,, +And  +Sil
(13)  Mu,,, +Aby,, +Or,, +And  +8il

Pseudoinvariant Assemblages

(2)* Pa,, +Aby, + Aby, +And + Sil
3 Pay,, + Pag, , +Abg s  + Muyg,; +And
4) Pag,, + Abgyg 5 + Abg, +Mug,; +And
&) Pa,, + Pay, , + Abg, +Mug,, +And
¢)) Pag,, + Abgg o + Abg s +Mug,, +Sil
(8) Pay, , +Pag, +Aby, s  +Mug,; +Sil
9) Pag, + Aby; 4 +Mug,;, +Muy,, +Sil
(10) Pagg, + Aby,, +Aby,;  +Muy,, +Sil
(11 Pag,, + Pag, + Abg.,.3 +Mu,, +8il
(12) Muy,, + Abg, + Abg,  +Org, + And
(14) Muy,, + Abg, + Orye 5 + Orgy 4 + Sil
(15) Muy,, +Abg, +Abgs +0r,, +Si
(16)* Muy,, + Ory00 + Oryg + And + Sil

tions of this diagram (Thompson, 1974; Chatterjee and Froese, 1975)
gives ample justification for the development of completely automated
procedures.

DETAILS OF THE PROGRAM

Vertex has been coded as a FORTRAN computer program. To
make calculations with Vertex the user must specify the compositional
variables, potential variables, constraints, and a data source. The pro-
gram then sorts through the data source to identify possible phases,
determines the appropriate state function, subdivides solution phases
into pseudocompounds, and does the requested calculation. A number
of thermodynamic data bases have been formatted for use with Vertex,
these include Helgeson and others, (1978), Haas, Robinson, and Hem-
ingway (1981), Robinson and others (1983), Powell and Holland (1985, _
updated in 1989), and Berman (1988). Although detailed documenta-
tion of the options supported with Vertex is not warranted here, some
aspects of the data and physical requirements relevant to the assessment
of the capabilities of Vertex and are addressed.

Vertex is currently structured for calculations with up to seven
thermodynamic components, three saturated or constrained compo-
nents, four potential variables, and one saturated phase. In this configu-
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ration, with dimensioning for 1000 pseudocompounds, the complete
program requires a region of memory of 855 kbytes, of which 625
kbytes are required for array storage. However, the program can be
overlaid, with little loss of computational efficiency, in which case
memory requirements are reduced to 275 kbytes. The program has
been compiled and run successfully on Sun, IBM, DEC, CDC, and
MaclIntosh (PC) computers. Graphics programs have been written for
the following commercial software packages: Precision Visuals (DI-
3000), SunCore, SunPhigs, and Evans and Sutherland (MPS).

Thermodynamic Input

In theory it should be possible to make the procedures in Vertex
completely symmetric with respect to the choice of compositional and
potential variables selected for a given calculation. This would require
that the state functions specified in the input to the program be
expressed completely as a function of compositional or extensive vari-
ables, for example S = f(U, V, n;, . . ., n,). However, this is impractical
because the vast majority of calculations are done with the Gibbs energy
or derivatives of it obtained by interchanging extensities with potentials.
State functions are, therefore, invariably tabulated as a function of the
natural variables of the Gibbs energy P, T,n, ..., n, }. Consequently,
to facilitate the use of Vertex, input is structured around the conven-
tional functional form of the Gibbs energy.

Thermodynamic data is read from two separate files, one of these
files contains data on chemical compounds, and the other contains other
data on chemical solutions. Data for phases from more than one source
may be stored in a file; this allows rapid comparison of the different data
sources during a single execution of the program.

Compound phases.—The data for chemical compounds consists of
isobaric heat capacity and volumetric functions, standard state parame-
ters, and molar stoichiometric coefficients. The analytic forms of the
heat capacity and volumetric functions currently in use are:

CP=a+bT +c/T*+ dT? + /T2 4+ £/T + gT? (29)

and
V™ =h +iT + jT? + k [exp(T/c;)] + 1P + mP? + n[exp(P/cy)] (30)
where {a, ..., n}are parameters for each compound, and ¢, and ¢, are

constants (compare, Robinson and others, 198 3). These functions are
integrated with the standard state parameters, by the program, to obtain
a null reference state expression of the form: ‘

G" =g + g T +gP +gTInT + gT*
+g6/T + g, T + gg T+ ggIn'T
+ g0/ T2 + g PT + g exp (T/¢;) + g1P?
+ graexp (P/cy) + gisP® + giPT? (31)

where {gl - glﬁ} are parameters for each compound.
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Temperature dependent ordering and lambda transitions are
treated by the methods described by Helgeson and others (1978) and
Berman and Brown (1985; also Berman, 1988) which are adequate for
most oxides. The more complex functions used to describe ordering in
metallic elements and alloys (Hillert 1985b) are not currently supported,
but appropriate modifications could easily be made to allow them.

Solution phases.—The data for chemical solutions describe the
analytic form of the excess Gibbs energy function for each phase, the
parameters for this function, and codes that indicate the nature of the
scheme to be used to subdivide the chemical solutions into pseudocom-
pounds. In current versions of Vertex, chemical solutions must be
identified by name in the input to the program. For Vertex it is assumed
that chemical solutions can be defined in terms of stoichiometric
endmembers. The Gibbs energy of each solution can, thus, be written:

Gsol = Gmix - TSideal + Gexcess' (32)

In eq (32), Sgear is the ideal configurational entropy consistent with a
simple (single site) or multisite model for the solution; for simple models,
Gmix 1s the Gibbs energy of a mechanical mixture of the endmember
compounds with the same chemical composition as the solution, and in
multisite models G, is computed by the Bragg-Williams summation for
nearest neighbor interactions (Wood and Nicholls, 1978); and G, is
computed by the polynomial expansion:

s t
Gexcess = Z Wk(III Zk(m)) ’ (83)
k=] M=

where k indexes the s terms in the expansion, and Z,m TEpTresents atomic
or molecular site fractions. The site fractions {Z,,,, ..., Z.,} which
appear in each of the s terms in eq (33) are specified for each sofution in
the input to Vertex. The only restriction on eq (33) is that the functional
dependence of the parameters, W, = f(P, T), must have the same form as
eq (31). The reason for this requirement is that after chemical solutions
have been subdivided into pseudocompounds, the Gibbs energy of the
pseudocompounds can be expressed by eq (31), regardless of the actual
models used to express the excess properties of solutions. By mathemati-
cal manipulation, it is possible to accommodate a wide variety of solution
models with egs (31) and (33).

After the Gibbs energy functions have been determined for each
chemical pseudocompound, the free energy function, Q, appropriate for
the requested calculation is then derived by Legendre transformation.
Transformations of the form n; — u; are trivial because a compound in

{n;, ..., n,} space will be a compound in any subspace. In contrast,
transformations of the form T — S will transform a compound in {nl,
., n,} space into a solution in {S, n,, . . ., n,} space, because S = f(P, T)

by eq (29). It is, therefore, necessary to subdivide each solution gener-
ated by such a transformation into pseudocompounds. It is noteworthy
that n; — u; transformations may transform a chemical solution into a
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compound. To express n; = f(;) in such cases, a single true compound
may be represented by a number of pseudocompounds. The number of
compounds generated by subdivision may become very large for com-
plex solutions, and this is the primary limitation of the applicability of
Vertex. Computations have been done for quaternary thermodynamlc
solutions with accuracy comparable to the calculations shown in figures
5 to 9 with no deterioration in computational efficiency (<20s CPU
time). However, higher order solutions may begin to tax the computa-
tional resources available to most users.

Saturated phases.— The thermodynamic equations of state for satu-
rated phases of variable composition must be defined within a subpro-
gram. At present, subprograms are supplied for the evaluation of fluid
mixtures by the equations of state described by Holloway (1977),
Kerrick and Jacobs (1981), and Saxena and Fei (1988); additionally,
several hybrid equations of state, evaluated as described by Connolly
and Bodnar (1983), are included. Bottinga and Richet’s (1981) equation
of state for pure CO, is also available. Given the set of parameters {Y‘
8ci15 0,09, . - -}, where Y} defines the composmon of the saturated phase
with respect to two extensive quantities {ybl s 1//2} the subprogram returns
the potentials {9, 02} It is of course possible to hold Y] constant during a
calculation. Calculations can be done as a function of only one composi-
tional variable of a saturated phase at a time, although there is no limit to
the total number of components in the phase.

DISCUSSION AND SUMMARY

Thermodynamics has a canonical form, and therefore phase dia-
grams, which are the geometric realizations of thermodynamic proper-
ties, also have a canonical basis. This leads to the conclusion that phase
diagram calculations with different potentials or compositional variables
are minor variations on a major computational theme. The generalized
concepts of components and composition were introduced to draw
attention to these basic similarities and to provide an efficient and, it is
hoped, unambiguous means of describing phase diagram calculations.
For this purpose, it is sufficient to associate a component with each
independent extensive computational variable. No physicochemical
significance for this association is ascribed with reference to phase
diagrams. However, from a theoretical perspective components are
associated with those attributes of a physicochemical system indepen-
dent of both internal and environmental processes. The recognition of
this association simplifies both the selection and interpretation of phase
diagram representations.

The Vertex program has been designed to take advantage of the
canonical nature of phase diagram calculations. The result is that the
program is relatively compact and requires only the parameterlzatlon of
one thermodynamlc state function as input (G' = {(P, T, nl, S A
l, ..., 7)), yet it can be used to calculate a wide variety of phase
diagrams. The strategy of the program avoids the practical limits
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encountered with brute force combinatorial algorithms. As a result
Vertex is unique in that it provides a means for completely automated
calculation of multivariable phase diagrams for systems with up to seven
components as a function of both composition and two potentials. The
information in such multidimensional diagrams can be extracted by
sectioning and with Schreinemakers projections. Schreinemakers dia-
grams conventionally show only univariant and invariant phase fields;
accordingly, previous strategies for calculating such diagrams have been
designed solely for the definition of these fields. However, in many cases
the characteristics of high variance fields are important, and because
Vertex may be used to calculate these fields it is possible to obtain a
virtually complete phase diagram representation with Schreinemakers
projections. This is accomplished by projecting the loci of conditions at
which the phases of a high variance equilibrium have prespecified
compositions.

For multivariable calculations it is to be expected that effective
strategies will compromise between the need for efficiency and the
sophistication that can be achieved for an individual equilibrium calcu-
lation. The feasibility of the strategy of Vertex results from such a
compromise, which is the approximate representation of solution phases
by pseudocompounds. Although such an approximation might at first
appear simplistic, it is particularly well suited for computer automation
and results in a robust and efficient program. With this approximation,
accuracy comparable to that of numerically exact techniques, but at a
fraction of the cost, can be achieved for systems with binary and ternary
solutions. The utility of the pseudocompound approximation deterio-
rates for higher order solutions because of practical limitations. For this
reason Vertex is not intended to supplant numerically exact procedures;
rather, it is expected that in some cases Vertex will provide initial
refinements for more sophisticated and time consuming calculations.
The approximation used in Vertex for solution phases is not an inherent
limitation of the strategy, and this strategy could be coupled with the
numerically exact techniques described by Hillert (1981a,b) and Lukas
and others (1982). However, for many purposes, particularly in oxide
systems, the approximation is quite accurate and offers the advantage of
certain representations that would be otherwise impractical. The
approximation of solutions by pseudocompounds is certainly not new,
and such an approximation could serve within other programs. The
success of Vertex is therefore not the direct result of the approximation;
but instead, it is the result of the development of an efficient strategy for
calculating composition diagrams with the approximation.
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