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Abstract. Isothermal or isobaric phase diagram sections 
as a function of fluid composition (X F) are widely used 
for interpreting the genetic history of metacarbonate 
rocks. This approach has the disadvantages that: (1) the 
influence of a key metamorphic variable, either pressure 
(P) or temperature (T), is obscured; (2) the diagrams 
are inappropriate for systems that are not fluid-satu- 
rated. These problems are avoided by constructing 
phase-diagram projections in which the volatile compo- 
sition of the system is projected onto a P -  Tcoordinate 
frame, i.e., a petrogenetic grid. The univariant curves of 
such P -  Tprojections trace the conditions of the invar- 
iant points of isothermal or isobaric phase-diagram sec- 
tions, thereby defining the absolute stability of high-vari- 
ance mineral assemblages, with and without a coexistent 
fluid phase. Petrogenetic grids for metacarbonate rocks 
are most useful for the study of regional metamorphism 
and for systems in which fluid composition has not been 
externally controlled. A calculated example of a P - T  
projection for the system C a O - M g O - S i O 2 - H 2 0  
- C O 2  suggests that many assemblages (e.g., calcite 
+ talc, enstatite + fluid, magnesite + tremolite, antigorite- 
+ diopside + dolomite, and calcite + forsterite + tremo- 
lite) in mixed-volatile systems have stability fields that 
make them useful as P - T  indicators. Consideration of 
the principles governing projection topology demon- 
strates that the univariant curves around a fluid present 
invariant point cannot be oriented independently with 
respect to the direction of compositional variation in 
the fluid phase. This has the interesting predictive impli- 
cation that if the direction of compositional variation 
along one univariant curve around an invariant point 
is known, then the direction of compositional variation 
along the remaining curves can be determined solely 
from topologic constraints. The same constraints can be 
applied to systems containing simple mineral solutions 
or melts in order to predict compositional variations. 

Introduction 

Phase diagrams and phase-diagram projections are a 
means by which the phase relations of a geologic system 
can be represented as a function of those properties of 
the system which cannot be directly measured. General- 
ly, these are environmental properties such as pressure 
and temperature, but for systems in which a mixed-vola- 
tile fluid is a possible phase the composition of the fluid 
is also such a critical property. The importance of fluid 
composition as a geologic variable has been recognized 
since the classic work of Wyllie (1962) and Greenwood 
(1962), which has led to the widespread use of T - - X  F 

phase-diagram sections 1 (see Table 1 for notation). Such 
T - X  v diagrams have proven valuable for many geolog- 
ic applications, but they have limitations. The most sig- 
nificant of these is that pressure (or temperature in P 
- X  v diagrams) is lost as an independent variable; thus, 
it is difficult to identify critical mineral assemblages in 
T - X  v representations. Further, T - - X  F diagrams only 
show fluid-saturated phase relations, but fluid may be 
absent during stages in the evolution of a geologic sys- 
tem. This paper discusses an alternative representation 
in which fluid phase components are treated as true ther- 
modynamic components (Connolly 1990) and the result- 
ing phase diagram is projected onto the P -  Tcoordinate 
frame. The projected diagram, which is a petrogenetic 
grid, has the advantage that it clearly the P - T  fields 
of mineral assemblages in mixed-volatile systems. In ad- 
dition, most of the compositional information shown in 
T - X  F diagrams is retained in P-Tproject ions .  

The construction and interpretation of phase-diagram 
projections for a system containing a fluid phase of vari- 
able composition requires only the principles originally 
formulated by Schreinemakers (1916, 1917, 1924; Zen 
1966). However, because some of the features in such 
projections may be unfamiliar, and the relation of these 

1 T _ X  v diagrams are actually projections of a phase-diagram sec- 
Offprint requests to: J.A.D. Connolly tion, for brevity they will be referred to here simply as sections. 
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Table 1. Notation 

Symbol Meaning 

C 
G 
P 
T 

Number of thermodynamic components 
Gibbs free-energy function 
Pressure, subscripted to indicate a particular condition 
Temperature, subscripted to indicate a particular con- 
dition 
Composition of phase i with respect to component j 
Reaction coefficient of phase i 
Absolute value of cq 
Composition vector of phase i 

Symbol Phase Chemical composition 

At Antigorite Mg,sSi340 85(0H)62 
C CO2-fluid C O  2 
Cc Calcite CaCO 3 
Di Diopside CaMgSi206 
Do Dolomite CaMg(CO 3)2 
E Enstatite MgSiO3 
Fo Forsterite Mg2SiO 4 
F Fluid, unspecified 

composition 
F(x)  H20-CO 2 fluid, 

x is the mol% CO2 
M Magnesite MgCO3 
Q Quartz SiOz 
Tc Talc Mg38i40 lo(0H)2 
Tr Tremolite CazMgsSisOzz(OH)2 
W HzO-fluid HaO 

features to the more conventional T - X  v projection may 
be unclear, the first part of this paper discusses a simple 
hypothetical system. The second part then presents a 
geologically relevant example. Although the utility of 
P -  Tprojections for mixed-volatile systems has been re- 
cognized for some time (Trommsdorff and Evans 1977 a; 
Evans and Guggenheim 1988), calculation of the projec- 
tions has been so tedious as to make them impractical. 
The appendix of this paper describes a method by which 
these calculations can be done efficiently by computer. 

D.M. Carmichael (accepted for publication) has writ- 
ten a paper which parallels and in many ways compli- 
ments this contribution. The present paper differs sub- 
stantially from Carmiehael's in computational approach 
and in that more attention is devoted here to the theoret- 
ical basis of P -  Tprojections. 

Phase diagram projections for a system with an H 2 0  
- CO2 fluid 

To illustrate the features of P -  Tprojections for mixed- 
volatile systems consider the three component system 
A - H / O - C O 2  containing five phases as shown in 
Fig. 1 a. In this system, phases 3 and 4 are hydrocarbon- 
ate compounds, phases 1 and 2 are, respectively, hydrate 
and carbonate compounds, and the fifth phase, F, is an 
H 2 0 - C O 2  fluid. For  purposes of illustration it is as- 
sumed that all compositions of this fluid are always sta- 
ble. All five phases of the system can only be stable 

A 

a H20 fl f2 fi f3 f4 C02 

(F) 

(2) 
~ ,  / (3) 

..... . ..... - \  / / ' ; ~ q  
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23 .... " A" 
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Fig. l. a Chemographic relations among four compound phases 
(1-4) and an H 2 0 - C O  2 fluid in the hypothetical system A 
- H z O - C O  2 as discussed in the text. Fluid compositions fl-f5 
are singular compositions of the fluid which arise because of linear 
compositional degeneracies between the fluid and two compounds, 
as shown by the dashed lines, b Schreinemakers projection onto 
P -  T space of the univariant curves about an invariant condition 
at fluid compositionf, Univariant curves are labeled by the corre- 
sponding reaction equations and, in parentheses, by the phases 
present at the invariant condition, but absent from the univariant 
equilibrium. Stable and metastable curves are drawn by solid and 
dashed lines, respectively 

simultaneously at an invariant P - T  condition and at 
this condition the composition of the fluid coexisting 
with the other four phases is fixed, for example at compo- 
sition f~ in Fig. l a. Given this composition, the order 
of the five univariant curves (1), (F), (2), (3), and (4) 2 
about the invariant P - T  point can be deduced, by 
Schreinemakers method, to be that shown in Fig. l b 
(Zen 1966). The P - T  loci of each curve correspond to 
the equilibrium conditions of a chemical reaction defined 
by a mass-balance equation of the form: 

c + l  

0 = ~ ~, (,b/ (1) 
i=1  

where i indexes the phases in equilibrium, c is the number 
of thermodynamic components (Connolly 1990) for the 
system, ~b/is a vector describing the composition of the 
i th phase, and cq is the reaction coefficient of that phase. 
Following conventional usage, in the remainder of this 
paper the composition vector of any phase will be desig- 
nated by the name of the phase. 

Singular curves in P -  T projection 

Of the five univariant curves in Fig. l b, the reaction 
equation of (F) must have constant stoichiometric coeffi- 
cients because the composition vectors of phases 1-4 
are fixed. More generally, the composition of the fluid 
phase will vary continuously in each univariant equilibri- 
um as a function of pressure and temperature; thus, the 
stoichiometric coefficients in the reaction equations of 
(1), (2), (3), and (4) must also vary continuously. In the 

z Phase elements are identified here by listing in parentheses those 
phases which are possible in the system, but absent from the ele- 
ment, e.g., (1) denotes the phase element in which phases 2, 3, 
4 and F coexist (Zen 1966). 
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Fig. 2. Topology of singular points along univariant curves (2) 
(right) and (3) (left), for the system illustrated in Fig. l a, as the 
fluid in each equilibrium varies from CO2 to HzO. Singular curves 
are drawn thin, and dashed if metastable. Singular points are labeled 
by the fluid phase composition (see Fig. 1 a). The absolute stability 
of the non-degenerate curves is arbitrary, but the relative stabilities 
and topology of the curves are fixed, as discussed in the text. Note 
that if the univariant curves were drawn with different levels of 
stability, the (2, 3) singular curve would not close, except in connec- 
tion with enantiomorphic singular points 

course of such variation, the fluid may attain a composi- 
tion such that the coefficient of one phase vanishes, such 
a composition is known as a singular composition. From 
Figs. 1 a and 2, it can be seen that this occurs at fluid 
composition f4 in the reaction equations of both (2) and 
(3). At this singular composition, the reaction equation 
for both (2) and (3) becomes v 4 4 - v l  1 - v I 4 f 4 = 0  where 
vi = I c~l. The equilibrium of this reaction defines an addi- 
tional univariant curve, (2, 3), which degenerates with 
(2) and (3) when the composition of the fluid for these 
curves reaches f4. The conditions at which this occurs 
are called singular conditions or points, and the univar- 
iant curve (2, 3) is called a singular curve to distinguish 
it from a curve corresponding to a non-degenerate equi- 
librium (Schreinemakers 1924). The composition of the 
fluid is fixed along a singular curve, thus the reaction 
equation for the equilibrium has constant coefficients, 
unlike the reaction equations of the non-degenerate un- 
ivariant equilibria involving a fluid. For the phase com- 
positions illustrated in Fig. 1 a, there are three additional 
singular curves, (1, 4), (2, 4), and (1, 3), which occur at 
the fluid compositions, f1 ,f2, and f3. Assuming that fluid 
composition in non-degenerate univariant equilibria 
changes monotonically with pressure and temperature 3, 
each singular curve will be tangent to two univariant 
curves at singular points. On either side of these points, 
the reaction coefficient of the phase present in the non- 

3 This assumption implies that immiscibility does not occur in the 
fluid phase; therefore, the subsequent discussion applies strictly 
only in P -  Tregions that do not include a solvus for the fluid 

degenerate equilibrium, but absent from the singular ele- 
ment, must change sign. 

There are several constraints on the relationship of 
a singular and non-degenerate univariant curve which 
become tangent at a singular point, these can be summa- 
rized by four rules, which may be deduced from Schreine- 
makers' discus sion (1916): 

(i) A singular curve cannot cross a univariant curve that 
represents an equilibrium which includes all the phases 
of the singular equilibrium (e.g., singular curve (2, 3) can- 
not cross either (2) or (3) in Fig. 2). 

(ii) The stability of a non-degenerate univariant curve 
is not effected by a singular point. 

(iii) On one side of a singular point, the non-degenerate 
univariant curve divides P - T  space into regions in 
which an assemblage (or phase), that includes neither 
the fluid nor the phases absent from the singular curve, 
is relatively more and less stable (e.g., phase 4 for both 
(2) and (3) at the f4 singular points, Fig. 2). The singular 
equilibrium must occur in that region in which this as- 
semblage is less stable. 

(iv) The stability of the assemblage mentioned in (iii) is 
limited by the non-degenerate univariant curve on one 
side of the singular point. On the opposite side of the 
singular point, the singular curve must have the same 
level of stability as the non-degenerate univariant curve. 
The other extension of the singular curve must have a 
lower level of stability (e.g., in Fig. 2 the stability of 
phase 4 is limited by the reaction equations of both (2) 
and (3) on one side of the f4 singular points, and (2, 
3) is stable on the opposite side). 

The above rules determine the topology of the singu- 
lar and univariant curves about a singular point. A geo- 
logically relevant exception to rule 4, occurs when the 
singular fluid composition is extreme, i.e. pure H20 or 
CO2. In this case, the stability of the singular curve is 
not affected at the singular point, and on one side of 
the singular point both the univariant and singular 
curves coincide. At such a singular point, the singular 
curve may be relatively more stable than the univariant 
curve, but it cannot be less stable. 

Arrangement of  singular points about an invariant point 

The relative stability of singular curves about a singular 
point is uniquely determined by Schreinemakers prinic- 
ples. This has the interesting implication that the direc- 
tion in which the fluid composition changes along each 
univariant curve emanating from an invariant point can- 
not be independently specified in most cases. In general, 
it is possible, if not necessary, to draw the univariant 
curves around an invariant point with indifferent cross- 
ings, this can affect both the arrangement and stability 
of the singular points. The degree to which such a topol- 
ogy is constrained is determined by the number of singu- 
lar equilibria that may occur in the system. This is a 
subject of considerable interest, but a digression in the 
context of this paper, and will be pursued further in 
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Fig. 3a-d. Choices for the location of the f# singular point around 
the invariant point illustrated in Fig. 1 b. Singular points are labeled 
by the fluid phase composition (see Fig. 1 a). On (3), thef 3 singular 
point must occur between the invariant point and f4, and on (2) 
the f2 singular point, which is not shown, must occur on the oppo- 

v site side of the invariant point from f4 : a Xco 2 increases on the 
stable and metastable portions of (2) and (3), respectively; b v Xcoz 
increases on the stable extensions of (2) and (3); c inverse of a; 
d inverse of b. With the univariant curves as drawn, the (2, 3) 
singular curve can connect the f4 singular points only for choice 
a; however, the (2, 3) curve can be made to connect the f4 singular 
points if (2) and (3) cross indifferently 

a subsequent paper (R. Abart, J.A.D. Connolly, V. 
Trommsdorff, submitted). Referring to the sYstem illus- 
trated by Fig. 1 a, there are only four singular equilibria, 
and thus several possible arrangements of the singular 
points. To limit discussion here to the construction of 
a unique arrangement, the arbitrary restriction that the 
topology involves no indifferent crossings of non-degen- 
erate univariant curves will be imposed. 

Given the aforementioned restriction, consider the lo- 
cation of the (2, 3) singular points at fluid composi t ion 
f# along curves (2) and (3) of the invariant-point topology 
in Fig. 1 b. Without topologic restrictions there are four 
choices, illustrated by the corresponding diagrams in 
Fig. 3: (a) X F increases along the stable and metastable CO2 
extensions of (2) and (3), respectively; (b) v Xco~ increases 
along both stable extensions; (c) the inverse of (a); and 
(d) the inverse of (b). For  choice (a) is it possible to 
connect the non-degenerate univariant curves by the (2, 
3) singular curve without violating Schreinemakers prin- 
ciples. Choice (c) is not possible under any circumstance, 
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Fig. 4. Topology of the Schreinemakers projection of univariant 
curves and singular points around the invariant P - T  condition 
of the three-component system illustrated in Fig. 1. The orientation 
of the topology with respect to the P -  T axes and shapes of the 
curves are arbitrary. Doubly-metastable singular curves are drawn 
dotted, other line patterns and labeling as in Fig. 2. Arrows locate 
the T -  XVo~ section of Fig. 5 

because it requires that the singular curve crosses itself, 
and choices (b) and (d) are only possible if (2) and (3) 
cross indifferently. Thus, the f4 singular points must oc- 
cur on the stable and metastable extensions of (2) and 
(3), respectively, if the invariant-point topology of Fig. 1 b 
is to be drawn without indifferent crossings. This, in turn, 
requires that the f2 singular point occurs on the metasta- 
ble extension of (2) and that the f3 singular point occurs 
on the the stable extension of (3). Such analysis can be 
used to demonstrate that the topology shown in Fig. 4, 
or its enantiomorph, are the only topologies without 
indifferent crossings possible for an invariant condition 
with XcFo~ between f2 a n d f  3. 

Relation of P - T a n d  T-XFo~ diagrams 

The relation between the P -  T projection of Fig. 4 and 
the more common T-X~o2 section is illustrated by 
Fig. 5, which shows an isobaric section of the fluid-satu- 
rated phase relations in the P - T p r o j e c t i o n  at pressure 
P1. This relationship can be understood if it is noted 
that c + 1 phase fluid-present univariant curves in P - T  
projection correspond to invariant points in an isobaric 
T - X ~ o  2 section, and that P - - T  singular curves locate 
thermal extrema, invariably maxima, in univariant T 

X F - co2 curves. Such extrema are designated here extre- 
mum points. 

The T -X ~o 2  section of Fig. 5 can be reconstructed 
by observing that with increasing temperature along the 
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Fig. 5. T--XFo2 section of the phase-diagram projection shown in 
Fig. 2 at pressure P1. Labeling as in Fig. 4. The temperature coordi- 
nates of the composition phase diagrams a--e in Fig. 6 are indicated 
along the right axis 

P~ isobar (Fig. 4), the first univariant curve intersected 
is the metastable portion of (3). The conditions of this 
intersection locate the metastable [3] invariant point in 
Fig. 5. The fluid composition for (3) at this intersection 
must lie at lower X r than the P - T  invariant point CO2 

composition f/(Fig. 1 a), but is otherwise unconstrained. 
With increasing temperature, the next curves intersected 
are the stable extension of (1) and the metastable exten- 
sion of (2), which locate the T--XFo~ invariant points 
[1] and [2]. In the T-X~o  ~ diagram, the X v coordi- CO2 
nate of stable invariant point [1] is constrained between 
fi and f3, and that of metastable invariant point [2] is 
constrained between f and f4. With an additional tem- 
perature increase, the P -  Tsingular curve (1, 3) is crossed 
next, which locates the stable extremum point [1, 3] 
at XVo2=f3 in the T-XVo: section, and corresponds 
to the maximum thermal stability of the T--XFo2 curve 
(1, 3). The next four curves along the PI isobar of Fig. 4 
locate the stable invariant point [-4] between f2 and f~, 
the stable extremum point [-2, 4] at f2, and the metastable 
extremum points [2, 3] at f4 and [1, 4] at f l .  Together, 
these points completely define the topology of the un- 
ivariant curves in the T--XFo~ projection illustrated by 
Fig. 5. It is noteworthy, that although some geometric 
features of the T-XFo~ projection cannot be determined 
from the P -  Tprojection, the locations of the extremum 
points provide quantitative constraints on many aspects 
of these features. 

Relation of P -  Tand composition diagrams 

For further clarification of Fig. 4, a series of composition 
phase diagrams constructed for conditions along the P~ 
isobar of Figs. 4 and 5 is shown in Fig. 6. The tempera- 

a) 

H20 h f2 fa f4 COa 

H2Oh f2 f3 f4c% 

e) 1 " ~ ~  

' 2:==: !==i L 

i~i~i! I!ll~::lINliili/:. 

b) 

H20 fl f2 f3 f4 C O2 

H2Ofl f2 f3 f4 CO2 

H20 fl f2 f3 f4 0 %  

Fig. 6 a-e. Isobaric-isothermal composition phase diagrams for the 
system illustrated in Figs. 1, 4, 5. The phase diagrams are con- 
structed at pressure P1 (Fig. 4), and at temperatures shown along 
the right axis of Fig. 5. Two-phase regions are indicated by shading 

ture for each composition phase diagram has been cho- 
sen, as indicated on Fig. 5, so that every diagram repre- 
sents a different region of Fig. 4. Each three-phase field 
involving fluid in these chemographies corresponds to 
a point on one of the stable univariant curves in the 
T-XVo2 section of Fig. 5. For example, the assemblage 
2 + 4  in Fig. 6b may coexist with a fluid with one of 
two compositions, these two compositions are the XFo2 
ordinates of the univariant curve (1, 3) at T b (reaction 
2 = 4 in Fig. 5). If the chemography of Fig. 6 b were red- 
rawn at a higher temperature, but below Tn,3] , the two 
fluids that may coexist with the assemblage 2 + 4 would 
approach f3, finally degenerating completely at the [-1, 
3] extremum point; above this temperature the phase 
4 becomes metastable (Fig. 6c). Figure 6 also shows that 
there are two fluid-absent assemblages, 1 + 2 + 3  and 
2 + 3 + 4, which are possible for the system, but which 
cannot appear in the isobaric T--XFo2 section. These 
assemblages are important, because their existence pre- 
cludes the stability of any assemblages involving both 
phases 1 and 4 in T - X  ~ sections at pressures below CO2 
that of the invariant condition of Fig. 4. This inference 
would be impossible to make from a T-XVco2 section 
alone, but is clear from the fluid-absent curve (F) of the 
P - T  projection (Fig. 4), and demonstrates the impor- 
tance of fluid-absent reactions in determining petrogen- 
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etic grids of mixed-volatile systems (Skippen and 
Trommsdorff 1975). 

Effect of degenerate fluid compositions 

The singular compositions of the fluid in the P -  T pro- 
jection shown in Fig. 4 are non-degenerate (i.e. two-com- 
ponent) because the phases which decompose by the sin- 
gular reactions release both components of the fluid. The 
singular equilibria therefore locate maxima in isobaric 
T--XcFo2 sections at 0 < XcFo2 < 1. However, frequently 
a phase or assemblage contains only one component 
of the fluid phase, i.e., as in the decomposition of hydrate 
or carbonate compounds. In this case, the singular P -  T 
curves locate extrema in the univariant curves of T 

V F X v 1. To illustrate -Xco~ sections at Xco~=0 or co~= 
this, a P - T  projection for another hypothetical A 
- H 2 0 - C O 2  system is shown in Fig. 7. In this system, 
phase 1 consists of pure A; phases 2, 3, and 4, are, respec- 
tively, hydrate, carbonate, and hydrocarbonate com- 
pounds; and the fluid phase has the composition f~ at 
the invariant P -  Tcondition, as shown by the chemogra- 
phy in the inset of Fig. 7. For this chemography, there 
are five singular fluid compositions, of which f l  and fs 
correspond to pure H20 and CO2. There are three not- 
able differences in the phase relations of this system as 
compared to those of the system shown in Figs. 1 and 
4: (i) the singular curves (2, 4) and (3, 4) must always 
be stable, and therefore are stable on both sides of the 
fl  and f5 singular conditions; (ii) the univariant curves 
(2), (3), and (4) all degenerate into singular curves; (iii) 
the phase chemography requires a minimum of one indif- 
ferent crossing of the non-degenerate univariant curves. 

General implications of P -  Tprojections 

The phase diagram projections shown in Figs. 4 and 7 
have been oriented with respect to the P - T c o o r d i n a t e  
frame by the rationale that, in general, fluid is liberated 
by chemical reactions with increasing temperature. As 
exceptions to this generality are possible, the orientation 
of the projection is arbitrary, though reasonable. In alter- 
native orientations, such as when the axes are inter- 
changed, the singular curves could represent minima in 
the thermal stability of phases. Another consequence of 
altering the P - T  orientation of the projection is that 
it might then be possible to construct an isobaric section 
such that the same univariant curve is intersected twice. 
As such intersections define invariant points in T-XFo2 
sections, a double intersection requires that an invariant 
point is duplicated. Conversely, duplication of invariant 
points in isobaric T--XcFo~projections (Skippen 1971; 
Trommsdorff 1972) implies that the Clapeyron slope of 
a mixed-volatile univariant curve varies through zero. 

Inspection of the stability curves depicted in Fig. 4 
demonstrates the utility of P -Tpro jec t ions  for mixed- 
volatile systems. For example, the stability field of the 
assemblage 2 + 3 is bounded by the curves (F), (4), and 
(1, 4), but in the presence of fluid, 2+ 3 can exist only 
within the region bounded by the curves (1), (4), and 
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Fig. 7. An alternative chemography for the system A-I-[20- C O  2 

(inset), and the resulting topology of the Schreinemakers projection 
of univariant curves and singular points around the invariant con- 
dition. Labeling and notation as in Figs. 1 and 4. Note: the singular 
point labeled f2 on curve (3) should be labeled f3 

(1, 4). Another interesting aspect of the projections is 
that they define the absolute stability of any phase whose 
composition can be expressed as a positive linear combi- 
nation of the possible compositions of other phases in 
the system, i.e. phases 3 and 4 in Fig. 4, and phases 2, 
3, and 4 in Fig. 7. Most importantly, every geometric 
element of the P -  T projections can be mapped in the 
field�9 This is not always the case for isobaric T -  F X c o 2  
sections as discussed by Skippen (1974), who observed 
that in general only the unique points of T--XFo2 sec- 
tions can be bracketed unambiguously by field mapping. 
All the points listed by Skippen are shown by P -  Tpro- 
jections with the exception of T -  F Xco2 indifferent cross- 
ings which are useful if different lithologies can be com- 
pared. 

The foregoing discussion has been intended to illus- 
trate the relationship between P - T a n d  T -  v Xco2 dia- 
grams, but it has also shown that the topologic con- 
straints on singular points provide information about 
the possible compositional variations of phases. This in- 
formation is potentially useful for phase-diagram prob- 
lems. For example, given an initial T-XFo2 multisystem 
topology these constraints can be used to predict the 
new multisystem topologies which could arise through 
changes in pressure�9 This paper has focused on the rela- 
tions among the geologically important variables P, T, 
and X F However, the same analysis could be made C02 " 
for any choice of solution phase, potentials, or composi- 
tional variables. Although not demonstrated here expli- 
citly, the analysis of singular-point topology can, in gen- 
eral, be used to determine one compositonal variation 
of phase within each of the univariant equilibria related 
to an invariant condition. For systems containing multi- 
component solutions, or more than one solution phase, 
each independent compositional variation of a phase in- 
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curves define the conditions of pseudoinvariant points as discussed 
in the Appendix. The approximate fluid compositions (mol% COz) 
at the invariant and singular points are: 11 = 1.0, 12 = 86.4, 13 =91.2, 
I4=5.6, Is=2.3, $1-$5=50.0, $6=90.0, Sv=83.3, Ss=83.3, $9 
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equation, when the label is written on one side of the curve the 
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sign. Note that reaction equations of the univariant curves (i.e., 
products or reactants) change at the singular points. The singular 
curves which extend from $5 (Q-absent, see inset Fig. 10a), $6 (E- 
absent, see inset Fig. 10e), $7 (Fo-absent), S 8 (Fo-absent), and $9 
(Tc-absent) cannot be seen because they extend to low pressure 
and essentially overlap with other univariant curves 

troduces at least one degree of freedom in the analysis. 
In such cases, empirical information is necessary to select 
the relevant topology. 

A P - T  projection for the sys tem C a O - M g O - - S i O  2 

- H 2 0  - CO2 

The system C a O - M g O - S I O 2 - H 2 0 - C O 2  is critical 
for understanding the phase relations of many carbon- 
ate-bearing rocks and will be used here to demonstrate 
the geologic application of P -  Tprojections for a mixed- 
volatile system. The P - T  projection for this system, 
shown in Fig. 8, was calculated considering the phases 
At, Cc, Do, Di, En, M, Q, Tc, Tr, and fluid (see Table 1 
for notation) with the data of Berman (1988), Kerrick 
and Jacobs (1981), and J.A.D. Connolly V. Trommsdorff, 
R. Philipp (in revision). With regard to the geologic sig- 
nificance of this projection, it should be observed that: 

(i) some of the high-temperature phase relations are me- 
tastable with respect to amphibole assemblages; (ii) 
phase relations involving wollastonite, periclase, and 
brucite are not shown; and (iii) the high-pressure stability 
field of talc may be larger than that predicted from the 
thermodynamic data. 

In Fig. 8 thick, intermediate, and thin solid curves 
represent, respectively, fluid-absent, fluid-present, and 
mixed-volatile singular univariant equilibria; and the 
thin dashed curves correspond to dehydration or decar- 
bonation singular equilibria. It is noteworthy that mag- 
nesite occurs along three fluid-absent univariant curves 
with distinct Clapeyron slopes in Fig. 8; this accounts 
for the extreme sensitivity of C a O - M g O - S i O 2 - T  
- X  v diagram topologies to the thermodynamic prop- CO2 
erties of magnesite as discussed by Trommsdorff  and 
Connolly (1990). 

The most striking feature of the phase-diagram pro- 
jection shown in Fig. 8 is that the variation in Clapeyron 
slopes, both along individual univariant curves and 
among different curves, is much stronger than in fixed- 
fluid composition projections. The projections are there- 
fore useful as petrogenetic grids because the univariant 
curves dissect P - T  space into relatively restricted re- 
gions. To demonstrate this, the stability fields of individ- 
ual phase assemblages within the P - T  projection of 
Fig. 8 are shown in Fig. 9 and discussed in the following 
paragraphs. In Fig. 9 the approximate composition of 
the fluid in univariant assemblages is indicated at inter- 
vals along each curve, fluid compositions are not shown 
in Fig. 8 to avoid cluttering the diagram. 

Comparison of the P - T  diagrams of Figs. 8 and 9 
with the T--XFo2 and P-X~o~ sections shown in Fig. 10 
reveals small discrepancies in the P-T--XFo~ coordi- 
nates of the phase elements. These discrepancies occur 
because the P - T  diagrams have been calculated using 
an approximation discussed in the appendix, whereas 
the calculations of the T-X~o~ and P-XVo~ sections 
were numerically exact. 

Cc + Tc assemblage 

The stability field of the assemblage Cc + Tc, limited by 
the univariant curve Cc + Do + Q + Tc + Tr  + F, is pre- 
sented in Fig. 9a. In isobaric T-X~o2 section the Cc 
+ Do + Q + Tc + Tr + F curve corresponds to an invar- 
iant point which defines the upper T--XFo2 limits of 
the Cc + Tc stability field as shown by Fig. 10a. The pres- 
sure dependence of this T-XcVo2 stability field has been 
the subject of some dispute (Skippen 1974; cf. Slaughter 
et al. 1975) and the backbending character of the 
Cc + Do + Q + Tc + Tr + F curve in Fig. 9 a suggests a 
diplomatic solution, at least in P - T s p a c e ;  namely that 
the thermal stability of Cc + Tc increases with pressure 
reaching a maximum at about  5 kbar, thereafter it de- 
creases with pressure (see also Evans and Guggenheim 
1988). From the fluid composition along the 
Cc + Do + Q + Tc + Tr + F curve it can be determined 
that the range of fluid compositions over which the as- 
semblage Cc + Tc is stable decreases continuously with 
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E is limited by two different eutectoidal reactions at P > Psi- For 
fluids with XFo2 > 50 mol% the limiting reaction is M + Q + Tc = E, 
and for H20-rich fluids the reaction is M + Fo + Tc = E. The (heavy 
solid) curves corresponding to these reactions are connected by 
the singular (thin solid) curve for the Q+Fo-absent reaction 
M+Tc=E+F(50) in P-Tspace,  and separated by this reaction 
in X~o2 space (see Fig. 10a) 

pressure. At pressures below $5 (XF=0.5), the Q-absent  
singular point, the Cc + Do + Q + Tc + Tr + F curve no 
longer limits the stability of assemblage Cc + Tc, which 
is instead limited by the singular curve for the equilibri- 
um C c + T c = D o + T r + F  (XcFo2=0.5) (inset Fig. 9a). 
This implies that in T -  X~o2 sections at P < Ps~ the max- 
imum thermal stability of Cc + Tc assemblages is limited 
by an extremum point rather than an invariant point. 

Cc + Fo + Tr and A t  + Di + Do assemblages 

The fact that the Clapeyron slopes of many fluid-absent 
reactions are near zero causes the stability of many  min- 
eral assemblages to be limited by P -  Tinvariant  points. 
The fluid-absent curve A t +  C c + D i +  D o +  Fo + T r  

which emanates from invariant point 11 (Fig. 8) provides 
a geologically important  example of this. This curve dis- 
sects P -  Tspace into two regions which limit the stabili- 
ty of Cc + Fo + Tr  and At + Di + Do assemblages to, re- 
spectively, low and high pressures. Although these as- 
semblages may coexist stably along the entire length of 
the At + Cc + Di + Do + Fo + Tr  curve, they only may 
coexist together with a fluid phase at invariant point 
11 . Invariant  point I t thus defines the minimum and 
max imum pressure for stability of the fluid-saturated as- 
semblages as shown by Fig. 9b. The mutually exclusive 
pressure stability fields for C c + F o + T r  and A t + D i -  
+ D o  assemblages is consistent with: (i) the common  
occurrence of Cc + Fo + Tr assemblages in contact aur- 
eoles (Moore and Kerrick 1975; Rice 1977) and its rela- 
tive rarity in regionally metamorphosed rocks (Tromms- 
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dorff 1972); (ii) the restriction of A t + D i + D o  to high- 
pressure ophicarbonate rocks (Trommsdorff and Evans 
1977b). 

Invariant points in P - T p r o j e c t i o n s  may also define 
thermal extrema in the stability of a mixed-volatile as- 
semblage. For  example, 11 (Fig. 8) defines the maximum 
and minimum thermal stability, respectively, of the as- 
semblages At + Cc + Tr  and Di + Do + Fo + F. 

A point of academic interest in Fig. 8 is that many 
of the univariant phase curves have Clapeyron slopes 
that vary through infinity. As a result the duplication 
of invariant points in P-XcVo2 sections is relatively com- 
monplace. An example of this is provided by the univar- 
iant curve F o + T r + C c + D i + D o + F  (see also Fig. 9b), 
which appears as two invariant points limiting the stabil- 
ity of F o + T r + C c  in the p - X V o 2  section of Fig. 10b. 
There is no univariant curve in Fig. 8 for which the Cla- 
peyron slope changes sign through zero, consequently 
duplication of invariant points does not occur in any 
isobaric T-XcVo2 section through the P -  Tprojection. 

M + Tr assemblage 

The assemblage M + Tr  + F is an example of an assem- 
blage with two very distinct stability fields depending 
on fluid composition (Fig. 9c). At high pressures, above 
14, assemblage M + Tr is stable with HzO-rich fluids (this 
is borne out by its occurrence in sagvandites: Schreyer 

et al. 1972; Pfeifer 1979; Evans and Trommsdorff  1983; 
Bucher-Nurminen 1988), whereas at low pressure, below 
I3, the assemblage may form in CO2-rich fluids. It is 
noteworthy that because the fluid-absent equilibrium 
M + Tr = E + Do + Tc is compositionally degenerate it 
may occur in the presence of a fluid at pressures above 
14 and below 13. 

E + F assemblage 

The fluid-saturated stability field of enstatite (Fig. 9d) 
is delimited by five univariant curves some of which in- 
tersect at indifferent crossings. This may at first seem 
to contradict Schreinemakers rules, but is a common 
feature of projections for systems with phases of variable 
composition (Schreinemakers 1917). The explanation for 
this behavior is that the low-temperature limit of any 
phase, or phase assemblage, is defined by either a eutec- 
toid or singular reaction. If a phase in an assemblage 
has variable composition then there may be several dif- 
ferent eutectoids and singular reactions depending on 
the composition of this phase. The equilibrium condi- 
tions for each of these reactions define a univariant 
curve in P -  Tprojection, but as only one of these reac- 
tions is possible for a system with fixed bulk composition 
these curves cross only at indifferent conditions. Each 
eutectoid must be separated from the other eutectoids 
in composition space by singular reactions; thus, in the 
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case of E+ F at pressures above the Q + Fo-absent $3 
singular point in Fig. 9d, the eutectoidal reactions 4 E 
+ F = M + Q + Tc and E + F = M + Fo + Tc (heavy solid 
curves) are separated in composition space by the singu- 
lar reaction E + F ( 5 0 ) = M + T c  (thin solid curve), and 
flanked by the singular reactions E + CO2 = M + Q and 
E + H 2 0 = F o + T c  (dashed curves), this can be seen 
clearly in Fig. 10a. At singular point $3 (Fig. 9d), the 
reaction equation of the M + Fo + Tc + E + F curve be- 
comes peritectoidal (i.e., M + Tc = E + Fo + F) and no 
longer limits the stability of E + F. Extrapolation of the 
M + Q + Tc + E + F univariant curve and the 
E + F ( 5 0 ) = M + T c  singular curve to higher tempera- 
tures suggests that the E + F = M + Q + Tc eutectoid ter- 
minates at a singular point at a pressure of about 
14 kbar. Likewise extrapolation of the pure-fluid singu- 
lar curves indicates that in the limiting cases of extremely 
low and high pressure, the E + F eutectoids occur, re- 
spectively, in pure H20 and CO2 fluids. The points at 
which these singular curves become eutectoids would 
be analogous to the singular points fl  andfs in Fig. 7. 

Narrow divariant fields 

A number of divariant and higher-variance assemblages 
in the C a O -  M g O -  SiO2- H 2 0 -  CO2 phase diagram 
have such narrow P - T  stability fields that for practical 
purposes the assemblages behave as univariant P - T  

V --Xco ~ indicators. Perhaps the best example of this in 
Fig. 8 is the stability field of Do + E + Fo + Tc + F which 
is bounded by the univariant curves E + Fo + M + Tc + F 
and Do + E + Fo + Tc + Tr + F between 12 F (Xco 2 = 91.2) 
and I ,  (XFo2 = 5.6). The occurrence of this assemblage, 
together with an independent constraint on either P, T, 

V (assuming fluid-saturation), could be used to or Xco2 
estimate the remaining metamorphic variables. Other ex- 
amples of narrow high-variance phase fields in Fig. 8 
are: (i) D o + E + Q + T c + F ,  P>P~3 ;(ii) M + Q + T r + F ,  
P < P~3 ; (iii) M + Tr + Fo + F, P < Px~ (this field is too nar- 
row to be seen clearly in Fig. 8, the assemblage also 
has a high-pressure stability field at P>P~4); (iv) At 
+ D o + F o + T c + F ,  P < P ~ ;  (v) A t + F o + M + T r + F ,  
P>Pt~. 

Discussion 

The objective of this paper has been to draw attention 
to the utility of P - T  projections in the petrogenetic 
analysis of mixed-volatile systems. The fundamental ad- 
vantage of such projections, over conventional T - X  F 
or P - - X  v sections, is that the influence of both pressure 
and temperature is shown simultaneously. The cost of 
this information is that it is not practical also to show 
explicitly the composition of the fluid in equilibrium with 
high-variance mineral assemblages. This is a potential 
limitation in applications of P -  Tprojections to geologic 

4 Strictly these reactions are only eutectoidal for fluid-saturated 
systems. 

systems which have been open to a fluid with externally 
controlled composition. However, many geologic sys- 
tems are capable of controlling (i.e., buffering) the com- 
position of fluids, and in such cases the univariant and 
singular curves of P-Tprojec t ions  are the only mapp- 
able phase-diagram features. More generally, P - T p r o -  
jections are always preferable to T--XFo2 sections for 
situations, such as those common in regional metamor- 
phic studies, in which pressure cannot be estimated inde- 
pendently of phase equilibria. A drawback to using P -  T 
projections to represent phase relations for mixed-vola- 
tile systems has been that they are difficult to calculate. 
This paper also has been intended to demonstrate that 
existing computational methods (Connolly 1990) easily 
can be adapted to make feasible the calculation of P -  T 
projections from thermodynamic data. 

The principles governing the topology of phase-dia- 
gram projections are usually presented without consider- 
ation of the arrangement of singular points. This is of 
no consequence in applications to systems in which 
phases have no compositional degrees of freedom (i.e., 
the phases are all compounds); but, in a system where 
one or more phases have variable composition (e.g., a 
mixed-volatile fluid), singular-point topology can pro- 
vide useful constraints. In the case of a geologic system 
containing minerals of fixed composition and a binary 
H 2 0 - C O 2  fluid, such constraints can be used to deter- 
mine the direction of variation in fluid composition 
along the univariaht equilibria emanating from an invar- 
iant condition. The topologic constraints are not based 
on thermodynamic data and are therefore useful for pre- 
dicting phase-diagram topologies or testing the con- 
sistency of T-X~o2 or P-XcVo~ multisystem topologies. 
The same analysis can be used to predict the behavior 
of any system containing one or more solution phases. 

Appendix: calculation of P -  T projections for mixed-vola- 
tile systems 

Calculations of P - T  projections for a system with a 
mixed volatile of variable composition are considerably 
more complicated than those for systems with phases 
without compositional degrees of freedom. The compli- 
cation arises because it is not only necessary to determine 
the P -  Tconditions of equilibria, but also the equilibri- 
um compositions of the fluid, which, for practical pur- 
poses, can only be accomplished by computerized nu- 
merical free-energy minimization 5. Unfortunately, the 
only procedure which couples numerically exact energy 
minimization with an algorithm for the calculation of 
P-Tprojec t ions  (Holland and Powell 1990) cannot at 
present be used for non-ideal solution models such as 
those commonly used to describe fluids. As an alterna- 
tive to numerically exact minimization procedures, the 

5 Trommsdorff and Evans (1977 b) and Carmichael (1991) have cal- 
culated univariant P -  Tequilibria by iteratively locating the corre- 
sponding isobaric T--XFo2 invariant points. This approach is time 
consuming and difficult to integrate into a strategy for phase-dia- 
gram calculation; moreover, it is unsuitable for systems in which 
phases other than the fluid have variable composition. 
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Fig. 11. Schematic free energy(G)-composition diagram illustrating 
the compositions of the pseudocompounds used to represent the 
fluid phase in Figs. 8 and 9. The logarithmic spacing of the pseudo- 
compounds provides better resolution of fluid composition near 
the extremes of XCFO~ 

calculations for this study were done using the "pseudo- 
compound approximation" of Connolly and Kerrick 
(1987) which is implemented in the Vertex computer pro- 
gram (Connolly 1990). The purpose of this appendix is 
to provide the reader with a basis for understanding 
the output from Vertex which consists of diagrams and 
lists of the stable phase equilibria defined in terms of 
pseudocompounds. An advantage of Vertex is that it 
can be used to calculate equilibria in systems with miner- 
al solutions as well as a fluid. 

With the pseudocompound approximation a set of 
arbitrarily defined compounds, i.e., pseudocompounds, are 
used to represent the possible compositions of the fluid. 
A simple linear optimization procedure can then be used 
to determine the stability of the pseudocompounds and 
thereby the approximate equilibrium composition of the 
solution represented by them. As a result of this approxi- 
mation the continuous compositional variation of a solu- 
tion phase is represented by a series of discrete steps. 
For example, in the phase-diagram calculations pre- 
sented here, H 2 0 - C O  2 fluids were represented by 23 
pseudocompounds with a logarithmic compositional 
spacing that is symmetrical about XcVo~ = 0.5 as illustrat- 
ed by Fig. 11. It is to be noted that the shape of the 
G - X  curves used by Vertex is not prescribed; thus, the 
program can be used for fluids which have solvii. 

A P -  Tunivariant curve, calculated by Vertex, is then 
defined by a series of segments along each of which one 
fluid pseudocompound is stable and the reaction equa- 
tion has constant coefficients. These segments may inter- 
sect at two different types of points: (i) true invariant 
points at which c + 1 minerals and one fluid pseudocom- 
pound coexist; (ii) pseudoinvariant points at which c min- 
erals and two fluid pseudocompounds coexist. Pseudoin- 
variant points are the conditions at which one fluid pseu- 
docompound becomes metastable with respect to an- 
other; such a condition thus approximates the continu- 
ous variation of fluid composition by a discrete step 
along the univariant P -  Tcurve. The magnitude of these 
steps, and thereby the compositional resolution of calcu- 
lations, is dictated by the compositional spacing of the 
pseudocompounds specified by the user of Vertex. The 

logarithmic subdivision scheme illustrated in Fig. 11 re- 
sults in resolution on the order of _+ 0.5% at the extremes 
of  F Xco2, and of +_9% at X~o2=50.0 mol% CO2. In 
Figs. 8 and 9 the small dots along the univariant curves 
locate pseudounivariant conditions, and in Fig. 9 the 
fluid compositions have been estimated by averaging the 
composition of the coexisting pseudocompounds. 

As the number of pseudocompounds plus compounds 
must be c + 2 at any pseudoinvariant point, c + 2 univar- 
iant curves must emanate from each pseudoinvariant 
point. Of these, two must define equilibria involving c 
minerals and one fluid pseudocompound and correspond 
to a real univariant c + 1-phase equilibrium. The remain- 
ing c univariant curves, designated pseudounivariant 
curves, define equilibria involving c-1 minerals and two 
fluid pseudocompounds. These pseudounivariant curves 
are, in essence, fluid isopleths of the divariant phase fields 
around each univariant curve for which the fluid compo- 
sition is the average of that of the pseudocompounds. 

Pseudounivariant assemblages can be recognized by 
Vertex, but were not computed for Figs. 8 and 9 to avoid 
complicating the diagrams. However, by showing pseu- 
dounivariant equilibria in P -  Tprojections it is possible 
to present all the information shown by conventional 
T--XFo2 or P--XcVo2 diagrams. As an example, Fig. 12a 
shows the pseudounivariant curves that radiate from the 
pseudoinvariant points (P~-Ps) around the I1 invariant 
point of Figs. 8 and 9 b at which the assemblage At + Cc- 
+ Di + Do + Tr + F(1.0) is stable. The (solid) univariant 
curve C c + D i + D o + F o + T r + F ( 1 . 0 )  is stable from 11 
to pseudoinvariant point P2 at which the assemblage 
C c + D i + D o + F o + T r + F ( 1 . 0 ) + F ( 1 . 5 )  is stable. Point 
Pz thus represents a condition at which the true fluid 
composition is XcVo2=l.25 tool% CO2. The stability 
of five divariant assemblages Cc + Di + Do + Fo + F, 
C c + D i + D o + T r + F ,  C c + D i + F o + T r + F ,  C c + D o  
+ Fo + Tr + F, and Di + Do + Fo + Tr is limited by the 
univariant curve, and each of these assemblages repre- 
sented by a pseudounivariant curve around P2 involving 
the F(1.0) and F(1.5). Each pseudounivariant curve 
therefore defines the P -  Tconditions for which the fluid 
composition is buffered at ca. 1.25 tool% CO2 for the 
relevant divariant assemblage. As a divariant P -  Tfield 
corresponds to a univariant curve in T-X~o2 and P 
-XcVo2 sections, the pseudounivariant P - T  curves can 
be used to locate univariant curves in either section as 
can be verified by comparison of Fig. 12 with 10. 

In interpreting P -  Tprojections calculated with Ver- 
tex it is important to remember that the nominal fluid 
compositions for invariant and univariant equilibria in- 
volving both fluid components are always approximate. 
For example, the stability of the F(1.0) pseudocom- 
pounds at I1 must be interpreted in light of the fact 
that the compositions considered in a calculation are 
predefined (Fig. 11). For the 11 invariant point this 
means that the F(1.0) pseudocompound is stable with 
respect to the compositionally adjacent pseudocom- 
pounds, F(0) and F(1.5), but the true stable composition 
of the fluid could be at any intermediate value. Likewise, 
at pressures above those of the P1 and P4 pseudoinvariant 
points, the stability of the F(0) (i.e., H20) pseudocom- 
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point is between pure H~O and Xco~V = 1.0 mol%. The five pseu- 
dounivariant curves which emanate from this point are isopleths 
for the fluid composition in the five divariant fields which meet 
along the univariant curve. Note that although the pseudocom- 
pound in the univariant assemblage At + Cc + Di + Do + Tr + F (0) 
is pure H~O, this does not mean the equilibrium is stable in pure 
H~O fluids, but rather it implies that the equilibrium is not stable 
in a fluid with the composition of the next most H20-rich pseudo- 
compound (F(1.0)) 

I 

Fig. 12a, b. Details of Fig. 8 showing phase relations around: a 

the I i invariant point (see also Fig. 9b); b the S s singular point 
(see also Fig. 9d). Univariant, singular, and pseudounivariant equi- 
libria are represented by, respectively, solid, thin solid, and thin 
dashed curves. For simplicity only pseudoinvariant curves which 
emanate from the pseudoinvariant points within the coordinate 
frames of the diagrams are shown. The pseudocompound assem- 
blages can be used to estimate fluid composition. For example, 
in a at pseudoinvariant point P~, pseudocompounds F (0) and F (1.0) 
coexist, which implies the true composition of the fluid at this 

pound is deceptive and should not be taken to imply 
that either of the relevant equilibria are stable in pure 
H20. Rather, the stability of the F(0) compound indi- 
cates that the next most H20-rich pseudocompound, 
F(1.0), is metastable. 

A weakness of the pseudocompound approximation 
is that any singular curve will join a non-degenerate un- 
ivariant curve along a finite segment of the univariant 
curve rather than at a true singular point. An example 
of this is the M + T c = E + F ( 5 0 )  singular curve which 
intersects the M + Tc + E + Fo + F univariant curve of 
Fig. 8 at S 3. In Fig. 12b it can be seen that the singular 
and univariant curves overlap between pseudoinvariant 
points P1 and P2. The location of the Ss singular point, 
has been taken somewhat arbitrarily as being between 
the pseudoinvariant points defining the tangent portion 
of the singular and univariant curves. A second draw- 
back of the pseudocompound approximation is that sin- 
gular equilibria will not be found directly unless a pseu- 
docompound with the singular composition is defined 
(examples of this are the S s - S I  1 singular curves of Fig. 8 
which were calculated after the initial phase-diagram cal- 
culation). Although some singular curves may not be 
calculated by Vertex, the location of singular points al- 
ways can be determined from the change in sign of a 
reaction coefficient along a univariant curve. 
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