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ABSTRACT

Porosity waves are a mechanism by which fluid generated by devolatilization and melting, or trapped during sedimenta-
tion, may be expelled from ductile rocks. The waves correspond to a steady-state solution to the coupled hydraulic and
rheologic equations that govern the flow of the fluid through the matrix and matrix deformation. This chapter presents an
intuitive analytical formulation of this solution in one dimension that is general with respect to the constitutive relations
used to define the viscous matrix rheology and permeability. This generality allows for the effects of nonlinear viscous
matrix rheology and disaggregation. The solution combines the porosity dependence of the rheology and permeability
in a single hydromechanical potential as a function of material properties and wave velocity. With the ansatz that there
is a local balance between fluid production and transport, the solution permits the prediction of dynamic variations in
permeability and pressure necessary to accommodate fluid production. The solution is used to construct a phase diagram
that defines the conditions for smooth pervasive flow, wave-propagated flow, and matrix fluidization (disaggregation).
The viscous porosity wave mechanism requires negative effective pressure to open the porosity in the leading half of a
wave. In nature, negative effective pressure may induce hydrofracture, resulting in a viscoplastic compaction rheology.
The tube-like porosity waves that form in a matrix with this rheology channelize fluid expulsion and are predicted by
geometric argumentation from the one-dimensional viscous solitary wave solution.
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INTRODUCTION

Many geological processes involve the expulsion of per-

vasively distributed fluids, as in the case of fluids trapped

during sedimentation or fluids generated by partial melting

and metamorphic devolatilization. Given the high elastic

strength characteristic of rocks, efficient fluid expulsion

requires irreversible deformation by time-dependent (vis-

cous) or time-independent (plastic) mechanisms (Neuzil 2003;

Gueguen et al. 2004). Models for ductile plastic compaction

(cataclasis) reproduce the near-surface porosity profiles of sedi-

mentary basins (Shi &Wang 1986; Audet & Fowler 1992), but

creep is regarded as essential to deeper compaction processes

(McKenzie 1987; Birchwood & Turcotte 1994; Fowler & Yang

1999). For such processes, permeability is a dynamic property

that is determined by the interaction between rheology and

the inherent gravitational instability of the intermingling of

rock and fluids with different densities. This interaction may
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give rise to a hydrologic regime in which flow is accomplished

by self-propagating domains of fluid-filled porosity (Fowler

1984; Richter & McKenzie 1984; Scott & Stevenson 1984).

These domains, or porosity waves, correspond to steady-state

solutions, that is, solutions in which the waves propagate

with unchanging form, of the equations governing fluid flow

through a viscous matrix. The intent of this study is to develop

and explore an intuitive analytical solution for these waves that

is general with respect to the constitutive laws chosen to charac-

terize the viscous rheology and permeability of the rock matrix.

There are numerous formulations of the equations governing

compaction of a two-phase viscous system consisting of a porous

rock matrix saturated with a less viscous interstitial fluid in the

geological literature (McKenzie 1984; Scott & Stevenson 1984;

Bercovici et al. 2001). These formulations differ primarily in

the choices of constitutive relations and independent variables.

Analytical solutions for solitary waves that develop according
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to these formulations have been published (Barcilon & Richter

1986; Rabinowicz et al. 2002; Richard et al. 2012), but assume

linear viscous behavior. This limitation is potentially important

in the context of fluid flow in the lower crust because the viscous

response of crustal rocks is expected to be nonlinear (Kohlstedt

et al. 1995; Ranalli 1995). A nonlinear viscous formulation is

of broad interest because it defines the length scale on which

lower crustal fluid flow patterns may deviate from gravitation-

ally controlled flow. The compaction length is also important

in that it defines the spatial scale for porosity. Thus, although

porosity conjures up an image of grain-scale structures, it may

apply to substantially larger features, such as fractures, provided

these features are hydraulically connected and small in compar-

ison with the compaction length.

Shortly after the recognition of porosity waves as a potential

fluid transport mechanism in geologic systems, it was shown

that the planar, sill-like, waves predicted from one-dimensional

(1D) formulations of the governing equations were unsta-

ble with respect to spherical waves in two-dimensional (2D)

and three-dimensional (3D) space (Scott & Stevenson 1986;

Barcilon & Lovera 1989; Wiggins & Spiegelman 1995).

Despite this result, the present analysis is restricted to the

1D case because it provides a lower limit on the efficacy of

compaction-driven fluid expulsion and because the characteris-

tics of the 1D waves converge rapidly with those of 3D waves

for the geologically interesting case of large amplitude waves

(Connolly & Podladchikov 2007). With this restriction, there

are three compaction-driven flow regimes that may arise as a

consequence of a perturbation to the flux of an initial regime of

steady flow through a matrix with uniform porosity (Fig. 23.1).

If the perturbation is small, the steady-state solution is a peri-

odic wave that degrades to a uniform increased porosity once

the perturbation is eliminated. For larger perturbations, the

steady state is a solitary wave. Once nucleated, the solitary wave

is nondissipative and independent of its source. Thus, the soli-

tary wave solution defines a steady-state regime in which flow

is accomplished by self-propagating waves. Because the solitary

wave amplitude is proportional to the intensity of perturbation,

large perturbations may cause the matrix to disaggregate to

a fluidized suspension. The analytic solution outlined here is

used to define the conditions for these regimes.

The solitary wave regime is one where the fluid flows through

a coherent solid matrix, whereas in the fluidized regime the solid

is suspended within, and carried by, the fluid, as in a granitic

magma so that the suspension behaves as a single phase that is

transported through dikes or as diapirs (Vigneresse et al. 1996).

Although peripheral to the scope of this study, the generation

of granitic melts by partial melting of the lower crust is a promi-

nent example of fluidization in ductile rock. Unless melting is

so extensive that it forms a magmatic suspension directly, a seg-

regation mechanism is required to amplify melt fractions to the

level required for transport by dikes or diapirs. Given the com-

mon occurrence of oriented vein-like segregations (e.g., Brown

2010), attention in the compaction literature has focused on

the role of shear-enhanced melt segregation (Stevenson 1989;

Holtzman et al. 2003; Rabinowicz & Vigneresse 2004). While

melt segregation is not explored in this study, the mechanism of

fluidization discussed here is distinct in that low melt fractions

can be amplified to a suspension even under isostatic condi-

tions. Such a mechanism may be relevant in the formation of

large-scale diatexite migmatites, which record a wholesale evo-

lution from unmelted source rock to granitic magma (Sawyer

1998; Milord et al. 2001).

The mechanism responsible for porosity waves in a viscous

matrix is implicit in the conventional view of the mechanics

responsible for compaction profiles in active sedimentary basins

(Hunt 1990; Japsen et al. 2011) and the partially molten region

beneathmid-ocean ridges (Forsyth et al. 1998). In both of these

settings, which span the physical conditions of the lower crust,

compaction is thought to maintain near-eustatic porosity–depth

profiles in rocks that are moving relative to the Earth’s surface.

In the case of sedimentary basins, the rock matrix moves down-

ward relative to surface due to burial, whereas at mid-ocean

ridges, the rock matrix rises toward the surface as a consequence

of mantle upwelling. The distinction between these scenarios

and that of a porosity wave is no more than a matter of refer-

ence frame, in that in the former porosity is eustatic and the rock

matrix moves, while in the latter, the rock matrix is largely sta-

tionary and the porosity moves. Indeed, mechanical models that

explain eustatic porosity in sedimentary basins (Fowler & Yang

1999; Connolly & Podladchikov 2000) and at mid-ocean ridges

(Katz 2008) differ trivially from the simple viscous formulation

employed here. Specifically, for sedimentary basins a viscoplastic

rheology is introduced to account for near-surface compaction,

and for mid-ocean ridges, the model is modified to account for

fluid production. The existence of porosity waves in a viscous

matrix has also been demonstrated experimentally by mechani-

cal analog (Olson & Christensen 1986; Scott et al. 1986; Hel-

frich&Whitehead 1990). Thus, suggestions that porosity waves

act as agents for compartmentalization and fluid migration in

sedimentary basins (McKenzie 1987; Connolly & Podladchikov

2000; Appold & Nunn 2002) and the lower crust (Suetnova

et al. 1994; Connolly 1997; Gliko et al. 1999; Tian & Ague

2014) are less exotic than they might seem at first sight. We

make no attempt to make the case for the role of porosity waves

in the lower crust in this study; rather, the reader is referred to

the aforementioned works and recent reviews (Connolly & Pod-

ladchikov 2013; Ague 2014) that consider the relevance of the

model and the hydraulic properties of the crust in greater detail.

In addition to neglecting 3D effects, the viscous solitary wave

solution neglects the potential roles of plasticity (e.g., brittle

failure), elasticity (e.g., fluid compressibility and poroelasticity),

and thermal activation. To a first approximation, many of these

effects can be inferred from the 1D viscous model as addressed

in the “Discussion” Section of this chapter. Elastic effects are

the exception. The poroelastic limit, relevant to fluid flow in

the upper crust, admits a solitary porosity wave solution that

is manifest by fluid pressure surges (Rice 1992). This solitary



An analytical solution for solitary porosity waves 287

Viscous matrix

Viscoplastic matrix

Disaggregation porosity, ϕd/ϕ0
(fluidized suspension)

Initial perturbation

Initial perturbation

Solitary wave

Solitary wave

Periodic waves
(decay to uniform flow)

Periodic waves

5

4

3

P
or

os
ity

 (
ϕ

/ϕ
0)

2

1

0

1

0.5

–0.5

–1

0

1

0.5

–0.5

–1

0

200 150 100
Depth (z/δ)

(A)

(C)

(B)

(D)

50

5

4

3

P
or

os
ity

 (
ϕ

/ϕ
0)

Yield stress, σy/[δΔρg]

O
ve

rp
re

ss
ur

e 
(p

o
/[δ

Δ
ρg

])
O

ve
rp

re
ss

ur
e 

(p
o
/[δ

Δ
ρg

])

2

1

0
200 150 100

Depth (z/δ)
50

200 150 100
Depth (z/δ)

50

200 150 100
Depth (z/δ)

50

Fig. 23.1. Numerically simulated porosity wave evolution from a region of increased porosity within an otherwise uniform flow regime through viscous and viscoplastic
porous media. (A) Porosity versus depth for the viscous case. The first wave to initiate from the flow perturbation (i.e., the region of elevated porosity) is a solitary
wave that propagates above the background porosity in the same direction as fluid flow through the unperturbed matrix. The solitary wave is nondissipative in the
steady-state limit; thus, it propagates infinite distance with essentially unchanging form. Due to transient effects, a periodic wave train initiates behind the solitary
wave; the periodic wave train propagates both in and against the direction of fluid flow through the unperturbed matrix. The wave train corresponds to a periodic
steady state in which the porosity oscillates about the background level. Porosity wave velocities are proportional to amplitude; thus, with time the solitary wave
becomes isolated from the periodic wave train, which has no significant excess volume and degrades to the original uniform flow regime as it spreads. A narrow region
of increased porosity was chosen for the initial conditions to emphasize the periodic solution. This choice leads to solitary waves that have lower porosity than the
source region. Wider source regions tend to generate waves with porosities that are higher than in the source region; if these porosities exceed the disaggregation
porosity (indicated schematically), the matrix disaggregates to a fluidized suspension. This range of porosity wave behavior can also be induced by perturbing the
background fluid flux, as might occur as a consequence of devolatilization (melting). (B) Fluid overpressure (negative effective pressure) versus depth for the viscous
case, the porosity dependence of the matrix permeability causes fluid pressure anomalies that are responsible for dilating and compacting the porosity during the
passage of a wave. Although fluid flow from low to high overpressure may seem to contradict Darcy’s law, if the overpressures are converted to hydraulic head, it is
apparent that the direction of fluid flow in porosity waves is consistent with Darcy’s law. (C) Porosity and (D) overpressure profiles for a viscoplastic scenario in which
plasticity is manifest by hydrofracture when overpressure exceeds the brittle yield stress. This rheology affects wave symmetry, but does not fundamentally change
porosity wave behavior because the rate of fluid expulsion remains limited by viscous compaction. In the numerical simulation, the effect of the viscoplastic rheology
on the periodic waves with overpressures below the yield stress is an artifact of the reduced effective shear viscosity used to simulate brittle failure. Porosity (ϕ), depth
(z), overpressure (p0), and time are scaled relative to the background porosity (ϕ0), viscous compaction length (δ), characteristic pressure (δ|Δρg|), and the speed of
fluid flow through the unperturbed matrix ((|v0|) discussed later in the text. The 1D volume of the initial perturbation is the same (8.862 δϕ0) in both simulations,
and the transient profiles (blue curves) are for the same model time (50 δ/|v0|). The numerical simulations were obtained by finite difference methods for the small
porosity formulation (Appendix) with mσ =1, nϕ =3, and nσ =1. (See color plate section for the color representation of this figure.)

solution, which is consistent with a variety of upper crustal phe-

nomena (Revil & Cathles 2002; Miller et al. 2004; Joshi et al.

2012), contrasts with the viscous case in that it is dissipative and

does not require supra-lithostatic fluid pressures. Viscoelastic

compaction formulations show that there is a continuum of

periodic wave solutions between the viscous and elastic solitary

wave limits (Connolly & Podladchikov 1998; Chauveau &

Kaminski 2008). However, in numerical simulations, thermal

activation of the viscous rheology leads to a rapid variation

between a lower crustal regime in which viscoelastic porosity

wave solutions show no appreciable elastic character (Connolly

1997) and an upper crustal regime lacking any significant vis-

cous character (Connolly & Podladchikov 1998). These results

are taken as justification for the neglect of elastic phenomena

in the present treatment of lower crustal fluid expulsion. In this

regard, it is important to distinguish fluid expulsion from fluid

flow as, particularly in the noncompacting limit, thermoelastic

expansivity of the fluid may create pressure gradients responsi-

ble for fluid circulation (Hanson 1997; Nabelek 2009; Staude

et al. 2009).
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MATHEMATICAL FORMULATION

Darcian flow of an incompressible fluid through a viscous matrix

composed of incompressible solid grains is considered here

largely following the formulation of Scott & Stevenson (1984).

Although the solid and fluid components are incompressible,

the matrix is compressible because fluid may be expelled from

the pore volume. Conservation of solid and fluid mass requires

𝜕(1 − ϕ)
𝜕t

+ ∇ ⋅ ((1 − ϕ)vs) = 0 (23.1)

and

𝜕ϕ
𝜕t

+ ∇ ⋅ (ϕvf ) = 0, (23.2)

where ϕ is porosity and subscripts f and s distinguish the veloc-
ities, v, of the fluid and solid (see Table 23.1 for notation).
From Darcy’s law, the force balance between the solid matrix

and fluid is

ϕ(vf − vs) = − k

ηf
(∇pf − ρf guz), (23.3)

where k is the hydraulic permeability of the solid matrix,

an unspecified function of porosity; ρf and ηf are the den-
sity and shear viscosity of the fluid, respectively; and uz is a

downward-directed unit vector. Identifying the mean stress σ
as the vertical load

σ = ∫
z

0

[(1 − ϕ)ρs + ϕρf ]guzdz. (23.4)

Thus, in terms of the fluid overpressure

po = pf − σ, (23.5)

(i.e., negative effective pressure) Eq. 23.3 is

ϕ(vf − vs) = − k

ηf
(∇po + (1 − ϕ)Δρguz), (23.6)

where Δρ=ρs−ρf. The divergence of the total volumetric flux
of matter is the sum of Eqs 23.1 and 23.2:

∇ ⋅ (vs + ϕ(vf − vs)) = 0, (23.7)

and substituting Eq. 23.6 into Eq. 23.7 gives

∇ ⋅
(
vs −

k

ηf
(∇po + (1 − ϕ)Δρguz)

)
= 0. (23.8)

It is assumed that the bulk viscosity of a pure phase is infi-

nite, an assumption necessary to assure that the individual

phases do not have time-dependent compressibility (Nye

Table 23.1 Frequently used symbols

Symbol Meaning

A; Aϕ Viscous flow coefficient, Eq. 23.9; wave amplitude, ϕmax/ϕ0
aϕ Permeability function geometric factor, Eq. 23.17
aσ Compaction rate function geometric factor, Eq. 23.19
bϕ Permeability function solidity exponent, Eq. 23. 17
fϕ Compaction rate function, Eq. 23.19
f1; f2 Hydraulic function, Eq. 23.36; rheological function porosity dependence, Eq. 23.37
H; ΔH Hydraulic potential, Eqs 23.39, 23.54, 23.62, and 23.76; H(ϕ) –H(ϕ0)
k; k0 Permeability, Eq. 23.17; background value
mσ Compaction rate function porosity exponent, Eq. 23.19
nϕ Permeability function porosity exponent, Eq. 23.17
nσ Viscous flow law stress exponent, Eq. 23.9
po; pf; p Fluid overpressure, pf − p; fluid pressure; total pressure (σ)
q; q0 Fluid flux; background value
qe; qs Time-averaged excess flux, Eq. 23.61; 1D fluid production rate
Q; Qp Fluid transport rate for a spherical viscous wave, Eq. 23.63; 3D fluid production rate
Qp Fluid transport rate for a 3D viscoplastic wave, Eq. 23.65
Ve 1D wave excess volume, Eq. 23.60
v0; vϕ 1D Darcy fluid velocity at ϕ=ϕ0, po =0, Eq. 23.20; 1D wave velocity, Eqs 23.55 and 23.57,
𝜈
crit
ϕ 1D solitary wave critical velocity, Eq. 23.43
v 3D velocity
z Depth coordinate, positive downward
δ Viscous compaction length scale, Eq. 23.51
Δρ; Δσ ρs −ρf; differential stress
ηs; ηf Solid shear viscosity; fluid shear viscosity
λ, λp Viscous wavelength; viscoplastic wavelength
ϕ; ϕ0; ϕd Hydraulically connected porosity; background value; value at disaggregation
ϕ1; ϕmax Focal point porosity, a real root of f1 =0; maximum wave porosity
ρs; ρf Solid density; fluid density
σ; σy Mean stress (p); failure stress
τ Compaction timescale, δ/|v0|
∇, ∇⋅ Gradient, divergence
f|x=x0 Value of a function f at x= x0
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1953); therefore, viscous compaction must be accomplished

by grain-scale shear deformation that eliminates porosity. For

solid grains that deform according to a power-law constitutive

relation,

ε̇ = A|Δσ|nσ−1Δσ, (23.9)

where ε̇ is the uniaxial strain rate in response to differential
stress Δσ, nσ is the stress exponent, and A is the coefficient

of viscous flow; matrix rheology is then introduced through

Terzaghi’s effective stress principle as

∇ ⋅ vs = fϕA|pnσ−1o |po. (23.10)

where fϕ includes an unspecified porosity dependence and

a geometric factor that relates the uniaxial strain rate of

the solid to the bulk strain rate of the matrix. In the limit

nσ →1, the shear viscosity of the solid is ηs =1/(3A), and
the bulk viscosity of the solid matrix is ηs/fϕ The diver-

gence of the solid velocity is identical to the bulk strain

rate of the matrix and related to the compaction rate

by

ϕ̇ ≡ −1
ϕ
dϕ
dt

= ∇ ⋅ vs
1 − ϕ
ϕ

. (23.11)

The power-law form of Eq. 23.9 precludes certain less com-

mon viscous constitutive relations; for example, the exponen-

tial form appropriate for low temperature plasticity (Kameyama

et al. 1999), a completely general derivation, follows if the term

A|pnσ−1o | in Eq. 23.10 is replaced by a generic function of the
magnitude of the overpressure.

Equations 23.1, 23.8, and 23.10 form a closed system of

equations in the unknown quantities (ϕ), po, and vs. To avoid
the unnecessary complication associated with the use of vector

notation for a 1D problem, in the remainder of this analysis vec-

tor quantities are represented by signed scalars and the gradient

and divergence operators are replaced by 𝜕/𝜕z.

The 1D steady state

For analytical purposes, the existence of a 1D solitary porosity

wave solution is assumed in which the wave propagates with

unchanging form and velocity through a matrix with an initial

fluid-filled porosity ϕ0 at zero overpressure. In a reference frame
that travels with the wave, integration of Eq. 23.1 gives the solid

velocity as

vs = v∞
1 − ϕ0
1 − ϕ

, (23.12)

where v∞(1 − ϕ0) is the solid flux at infinite distance from the

wave. After substitution of Eq. 23.12, the integrated form of

Eq. 23.8 can be rearranged to

𝜕po
𝜕z

=
(
qt − v∞

1 − ϕ0
1 − ϕ

) ηf
k

− (1 − ϕ)Δρg, (23.13)

where qt =ϕvf + (1−ϕ)vs is the constant, total, volumetric flux of
matter through the column, which evaluates in the limit ϕ→ϕ0
and po→0 as

qt = v∞ − (1 − ϕ0)
k0

ηf
Δρg, (23.14)

where k0 is the permeability at ϕ0. Using Eq. 23.14, Eq. 23.13
is rewritten

𝜕po
𝜕z

= v∞
ηf
k

ϕ − ϕ0
1 − ϕ

− Δρg
(
1 − ϕ − (1 − ϕ0)

k0

k

)
. (23.15)

Likewise, after substitution of Eq. 23.12, Eq. 23.10 can be rear-

ranged to

𝜕ϕ
𝜕z

=
(1 − ϕ)2

1 − ϕ0

fϕ

v∞
A|po|nσ−1po. (23.16)

For a given wave velocity, Eqs 23.15 and 23.16 form a closed

system of two partial differential equations in two unknown

functions (ϕ and po) of depth.

Constitutive relations and scales

Although general forms are retained where possible, to place

the analysis in context, it is useful to specify possible constitu-

tive relations for permeability and the porosity dependence, fϕ
of the rheological constitutive relation (Eq. 23.10). To describe

the variation in permeability due to compaction, the theoret-

ical Carman–Kozeny porosity–permeability relationship (Car-

man 1939) is generalized as

k = aϕ
ϕnϕ

(1 − ϕ)bϕ
, (23.17)

where aϕ is a grain-size-dependent material constant and the

formal values of bϕ and nϕ, 2 and 3, respectively, imply that the

first-order control on the porosity dependence of the perme-

ability at small porosity is determined by nϕ. From analysis of

in situ rock permeability, Neuzil (1994) shows that pore geom-

etry and grain size give rise to variations in permeability that

span eight orders of magnitude, but that porosity dependence

is approximately cubic. A cubic dependence is predicted from

theory irrespective of whether flow is intergranular or fracture

controlled (Norton & Knapp 1977; Gavrilenko & Gueguen

1993). Accordingly, a cubic dependence, that is, nϕ =3, is con-
sidered to be most relevant. Higher exponents are observed in

rocks where the degree of hydraulic connectivity varies strongly

with porosity (Zhu et al. 1995, 1999). The solidity (i.e., 1−ϕ)
exponent bϕ is constrained by considering the settling of a sin-

gle grain through a static fluid. In this case, both the effective

pressure and its gradient vanish, and substitution of Eq. 23.17

into Eq. 23.6 yields the settling velocity

vs =
aϕ

ηf
ϕnϕ−1

(1 − ϕ)bϕ−1
Δρg, (23.18)
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which is an increasing function for all allowed values of porosity

only if 1≤ bϕ <nϕ and finite at ϕ→1, as required by Stoke’s law,

only if bϕ =1.
The porosity dependence fϕ of the rheological equation (Eq.

23.10) must satisfy two physical constraints. In the limit ϕ→0,

fϕ must similarly vanish so that effective bulk viscosity becomes

infinite to assure that the pure solid does not compact; and in

the limit ϕ→ϕd, fϕ must be infinite to assure that the solid and
fluid pressure fields converge when the matrix has no cohesive

strength, that is, when the matrix is fluidized. In detail, this

transition is likely to be complex and material dependent, but

theoretical and experimental considerations suggest that the

transition occurs at ϕd ∼20% (Arzi 1978; Auer et al. 1981;
Ashby 1988; Vigneresse et al. 1996). To account for these

limits, the expressions of Wilkinson & Ashby (1975), derived

explicitly for compaction by dislocation creep, are generalized

here as

fϕ = aσϕmσ (1 − ϕ)∕(1 − ϕ1∕nσ )nσ (ϕd∕|ϕd − ϕ|)nσ−1∕2, (23.19)

where formally mσ =1 and, for spherical pores, aσ = n
−nσ
σ

(3∕2)nσ+1. For diffusion-controlled compaction, aσ is strongly
dependent on grain size and the exponent ma varies between

1/2 and 5/6 (Ashby 1988). In practice, the numerous com-

paction formulations in the geological literature differ primarily

in the choice of mσ. For simplicity, early studies neglected the

porosity dependence (mσ =0; McKenzie 1984; Barcilon &
Richter 1986), whereas most recent formulations (Sumita et al.

1996; Connolly 1997; Bercovici et al. 2001) take mσ =1.
Many of the material properties relevant to geological com-

paction vary over orders of magnitude and/or are extraordi-

narily uncertain (Neuzil 2003); for this reason, no attempt is

made to parameterize the relations used here. Rather, results are

given relative to the background porosity, Darcian fluid velocity

through the unperturbed matrix

v0 = −
k0

ηfϕ0
(1 − ϕ0)Δρg (23.20)

or its speed c0 = |v0|, and the compaction length scale
δ = nσ+1

√√√√(
2

3

)nσ+1 k0n
nσ
σ

Aηfϕ
mσ
0

|Δρg|1−nσ (23.21)

suggested by nondimensionalization of Eqs 23.15, 23.16 and

23.19 in the small porosity limit (Appendix), a limit that has the

consequence that the solutions are independent of the absolute

porosity. The scales for pressure, time, and fluid flux are then

po =δ|Δρg|, τ= δ/|v0|, and q0 =ϕ0v0, respectively. Parameter
ranges relevant to lower crustal fluid flow are reviewed else-

where (Connolly & Podladchikov 2013; Ague 2014).

For a linear viscous matrix with shear viscosity ηs =1/(3A),
Eq. 23.21 simplifies to

δ =

√
4

3

ηs
ϕmσ
0

k0

ηf
, (23.22)

which, accounting for differences in the formulation of the

bulk viscosity of the matrix, is identical to the viscous com-

paction length of McKenzie (1984). In the linear viscous case

with mσ =1, δ is the length scale over which the bulk strain
rate would change by a factor of e, the base of the natural

logarithm, for the characteristic overpressure gradient Δρg. It
is, therefore, the length scale over which compaction processes

would generate an e-fold variation in porosity. For the present

formulation, the analytical significance of δ is less clear, but it
emerges that δ remains a reasonable estimate of the length scale
for an e-fold variation in porosity.

ANALYTICAL SOLUTION FOR THE 1D STEADY
STATE

The steady-state wave solutions to the compaction Eqs 23.13

and 23.16 are best understood by analogy with the solutions

to the equations of motion of an initially stationary ball on a

frictionless 1D curved surface in response to gravitational accel-

eration. To exploit this analogy, the solution for an oscillating

ball (Fig. 23.2) is recapitulated here.

The oscillating ball

The equations of motion for the ball are its acceleration due to

gravity

𝜕v

𝜕t
= − 𝜕h

𝜕x
g, (23.23)

and the definition of velocity

𝜕x

𝜕t
= v, (23.24)

where x is the horizontal position of the ball, v is its velocity, and

h is a shape function that describes the height of the surface as

a function of x. Combining Eqs 23.23 and 23.24 to eliminate

time

𝜕v

𝜕x
= −

g

v

𝜕h

𝜕x
(23.25)

and rearranging Eq. 23.25 yields

0 = vdv + g 𝜕h
𝜕x
dx. (23.26)

The indefinite integral of Eq. 23.26 defines a property

u ≡ v2

2
+ gh, (23.27)

the energy per unit mass, which is conserved by the ball. The

solutions to Eqs 23.23 and 23.24 correspond to contours of

u as a function of v and x, where, through Eq. 23.27 at v=0,
the initial height of the ball (Fig. 23.2A) defines the contour of

interest for a particular problem (Fig. 23.2B). Closed contours

(e.g., the red contour in Fig. 23.2B) correspond to a wave solu-

tion in which the ball oscillates between its initial position, xi and
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Fig. 23.2. Analogy of porosity waves with the oscillatory movement of a ball on a frictionless surface of variable height with a local maximum (i.e., a saddle point).
In the analogy, the porosity wave properties H, ϕ, po, and z map to h, x, v, and t of the oscillating ball. If the ball is placed on the surface (e.g., the red ball in A) at a
height below and to the left of the local maximum, the ball oscillates between points of equal height. In this case, the velocity–position trajectory of the ball defines a
closed path around the focal point at x= v= 0 (e.g., the red curve in B) and its velocity–time (or position–time) trajectory defines a periodic wave train (e.g., the red
curve in C). The location of the focal point (x/x0 = 0) for the waves is dependent only on the shape of the surface, whereas the wave frequency is controlled by the
gravitational acceleration. The solitary wave solution for the oscillating ball corresponds to the case that a ball (i.e., the black ball in A) is placed on the surface at the
height of the saddle point. In this case, the ball would have no kinetic energy if it reached the saddle point; however, because the ball decelerates as it approaches the
saddle point, the wave solution has an infinite period. If the ball is released from a height above the saddle point (i.e., the blue ball in A), it rolls continuously away
from its initial position and there is no wave solution to the governing equations. The analogy of the oscillating ball to porosity wave solution is imperfect only in that
the shape of function, or hydraulic potential, H of the porosity wave is dependent on wave velocity (Fig. 23.3), which is related to the intensity of the perturbation
responsible for generating waves. For the velocity specified for H as illustrated in (D), the only wave solution capable of stably connecting the background porosity to
a region of increased porosity is the solitary wave (i.e., the black trajectories in E and F); the periodic solutions (e.g., the red trajectories E and F) correspond to waves
in which the porosity would oscillate about the focal point (ϕ/ϕ0 =2) between a porosity that is less than the maximum porosity of the solitary wave and greater
than the background porosity. The solitary wave shape function illustrated in (D) is from the small porosity formulation of the compaction equations (Appendix) with
mσ =0, nϕ =3, and vϕ/v0 =7. (See color plate section for the color representation of this figure.)
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a position of equal height at which its kinetic energy vanishes,

and open contours (e.g., the blue contour in Fig. 23.2B) cor-

respond to an aperiodic (i.e., non-wave) solution in which the

ball rolls indefinitely away from its initial position. Because u is

a monotonic function of v and is directly proportional to h, the

focus of any closed contour must lie along the v=0 axis and cor-
respond to an extremum in h, that is, a real root of 𝜕h∕𝜕x = 0.
From physical considerations, it is evident that the solution is

only stable if this root is a minimum, that is, 𝜕2h∕𝜕x2 > 0. A
well-known implication of this solution is that shape function

h entirely determines both the amplitude and stability of oscil-

lation, while the gravitational constant controls the velocity of

the ball and, therefore, the period of oscillation.

For a ball placed at position xi with vi =0, its velocity as it
accelerates from its initial position can be computed by rear-

ranging the definite integral of Eq. 23.26 as

v =
√

−2gΔh, (23.28)

where Δh= h – hi and hi is height of the ball at xi. The time
dependence of the solution is then recovered by substitution

of Eq. 23.28 into Eq. 23.24 and inverting the result to obtain

t = 1√
2g∫

x

xi

dx√
Δh
. (23.29)

For oscillatory solutions, Eq. 23.29 gives the time dependence

of the solution for half the period of the oscillation. Thus, the

oscillatory solution corresponds to a periodic wave (e.g., the

red curve in Fig. 23.2C) in position (or velocity) as a function

of time.

To quantify the preceding discussion, consider an arbitrarily

chosen shape function such that

𝜕h

𝜕x
= 6

x2
0

x(x0 − x), (23.30)

which integrates to h = x2(3x0 − 2x)∕x20 . The roots of Eq.
23.30 define the local extrema of h; thus, the surface has

extrema at the structural root x=0, at which h=0, and the
general root x= x0, at which h= h0 = x0. Restricting attention
to the case x0 <0, for which the general root is a maximum, the

structural root x=0 is the focus of all possible wave solutions
and the general root x0 defines the maximum value of xi for

which these solutions are possible (Fig. 23.2A). The minimum

value of xi, that is, −x0/2, at which a wave solution is possible
is obtained by solving h= h0 for xi < x0. The closed contour
of u as a function of position and velocity that demarcates

the boundary between periodic and aperiodic solutions corre-

sponds to a solitary solution. The existence of such a solution

requires that h has at least two extrema. In the present example,

the solution corresponds to the portion of the contour of u

that emanates from the saddle point located by the structural

root x0 at v=0 (the black contour in Fig. 23.2B at x/x0 <1).
In distinction to the periodic solutions, for the solitary wave

solution, after the ball is released it does not return to its

initial position, but rather comes to rest at the saddle point (at

x/x0 =1), where its height is identical to its initial height. The
physical reason for this behavior is that both the acceleration of

the ball and its kinetic energy vanish at the saddle point. This

trajectory (the black curve in Fig. 23.2C) is half the solitary

wave solution; the complete solution would be obtained if

the motion of the ball initiated from the saddle point. The

absence of both kinetic energy and acceleration at the saddle

point strictly precludes the occurrence of the complete solitary

solution; however, the negative curvature of the surface at the

saddle point has the consequence that a ball placed at the saddle

point would be unstable with respect to infinitesimally small

perturbations.

There are two types of solitary solution distinguished on the

basis of whether the period of the solution is finite or infinite.

The origin of these solutions can be understood by a thought

experiment in which the initial conditions are chosen to coincide

exactly with the conditions at which the trajectory of the solitary

solution crosses the v=0 axis, that is, in the present example at
x∕x0 = −1∕2 (Fig. 23.2A). As the ball has no kinetic energy
and is at height h= h0, the ball has exactly the energy necessary
to reach the saddle point x0, but because the acceleration of the

ball becomes vanishingly small as the saddle point is approached,

the time required for the ball to reach the saddle point may be

infinite. In the present example, it can be verified by the analytic

integration of Eq. 23.29 that the time required for the ball to

reach the saddle point is infinite; this result can be deducedmore

generally by observing that it is only necessary to consider the

motion of the ball in the immediate vicinity of the saddle point.

Accordingly, taking the first non-zero term of a Taylor series

expansion of Eq. 23.28 about x0

v ≈ ±(x − x0)

√
−g 𝜕2h

𝜕x2

||||x=x0 . (23.31)

Equation 23.29 then evaluates as

t ≈ ln(X )√
−g 𝜕

2h

𝜕x2

||||x=x0
, (23.32)

where X= x – x0 is the distance from the saddle point and not-
ing that 𝜕2h∕𝜕x2|x=x0 < 0 is a necessary condition for x0 to be
a saddle point, it follows that t → ∞ as X → 0. Thus, solitary

solutions to Eqs 23.23 and 23.24 are of infinite period regard-

less of the details of the shape function. Rearranging Eq. 23.32

to express the distance of the ball from the saddle point as a

function of time

X ≈ et∕τ, (23.33)

where τ = 1
/√

−g𝜕2h∕𝜕x2|x=x0 provides a natural timescale for
the motion of the ball.
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Wave solutions to the compaction equations

To make the analogy between the wave solutions of the com-

paction equations and the oscillating ball apparent, Eqs 23.15

and 23.16 are abbreviated as

𝜕po
𝜕z

= f1 (23.34)

and

𝜕ϕ
𝜕z

= f2
A

vϕ
|po|nσ−1po, (23.35)

where vϕ =−v∞ is the velocity of a wave relative to a fixed point
in the unperturbed matrix and f1 and f2 are

f1 = −vϕ
ηf
k

ϕ − ϕ0
1 − ϕ

− Δρg
[
1 − ϕ − (1 − ϕ0)

k0

k

]
(23.36)

and

f2 =
(1 − ϕ)2

1 − ϕ0
fϕ. (23.37)

Combining Eqs 23.34 and 23.35 to eliminate z, and rearrang-

ing, yields

0 = |po|nσ−1podpo − vϕ

A

f1
f2
dϕ, (23.38)

which must be satisfied by the ϕ−pe trajectory of any

steady-state solution to Eqs 23.15 and 23.16. Defining a

function H such that

H ≡ −∫
f1
f2
dϕ (23.39)

or 𝜕H∕𝜕ϕ = −f1∕f2, Eq. 23.38 is rewritten as

0 = |po|nσ−1podpo + vϕ

A

𝜕H

𝜕ϕ
dϕ. (23.40)

Comparison of Eqs 23.40 and 23.26 reveals that wave solutions

to the compaction equations, at constant phase velocity, are a

mathematical analog to the equations of motion for the oscillat-

ing ball, wherein the compaction variables [ϕ, po, z] map to [x,
v, t]; the shape functionH can be thought of as a hydromechan-

ical potential that corresponds to the height h of the ball, and

the factor vϕ/A has the same role as the gravitational constant

g. Integration of Eq. 23.40 defines a property

U ≡ |po|nσ−1p2o
nσ + 1

+
vϕ

A
H (23.41)

akin to the mass normalized energy u for the oscillating ball,

which is conserved by porosity waves. Closed contours of

U define the wave solutions to the compaction equations

as a function of po and ϕ for a given velocity. As in the

case of the oscillating ball, closed contours define periodic

solutions where the porosity oscillates between two values,

characterized by equal H, at which po vanishes (e.g., the red

contour in Fig. 23.2E). The periodic solutions are bounded by

the contour that defines the solitary solution (black contour,

Fig. 23.2E). Similarly, analogous to the oscillating ball solution,

because U is directly proportional toH and increases with both

negative and positive overpressure, the focus of any closed

contour must lie along the po =0 axis and correspond to an
extremum in H, for example, the real root, ϕ1, of 𝜕H∕𝜕ϕ = 0.
The porosity dependence (f2) of the rheologic equation (Eq.

23.35) must be finite and positive if the matrix is coherent;

consequently, the roots of 𝜕H∕𝜕ϕ = 0 are independent of the
rheologic constitutive relationship and identical to the roots

of the hydraulic equation (Eq. 23.34), that is, the porosities

that satisfy f1 =0. Although the number of roots cannot be
determined without specifying the porosity–permeability rela-

tionship, the formulation of Eq. 23.15 is such that ϕo is always
a root, analogous to x0 in Eq. 23.30. Consequently, if

𝜕
2H

𝜕ϕ2
||||ϕ=ϕ0 = Δρg

f2|ϕ=ϕ0
(
1 − ϕ0
k0

𝜕k

𝜕ϕ
||||ϕ=ϕ0 − 1 +

vϕ

ϕ0v0

)
(23.42)

is greater than zero, then ϕ0 is a stable level of porosity and small
flow perturbations to a uniform flow regime will lead to periodic

oscillations in the porosity about ϕ0 (Fig. 23.3A). In contrast,
if H is a maximum at ϕ0, then ϕ0 is a saddle point and solitary
wave solutions are possible (Fig. 23.3B). Equating Eq. 23.42 to

zero and solving for vϕ yields the critical velocity at which the

background porosity ϕ0 switches from focal to saddle point

vcritϕ = v0ϕ0

(
1 −

(1 − ϕ0)
k0

𝜕k

𝜕ϕ
||||ϕ=ϕ0

)
(23.43)

such that ϕ0 is a saddle point for waves with vϕ∕v0 > vcritϕ ∕v0,
which is thus a necessary condition for the existence of the soli-

tary wave solution. Although Eq. 23.43 appears to admit the

possibility of solitary waves that propagate against the direction

of buoyancy-driven fluid flow through the unperturbed matrix,

substituting the explicit function for permeability given by Eq.

23.17 in Eq. 23.43 yields

vcritϕ ∕v0 = [nϕ(1 − ϕ0) + (bϕ − 1)ϕ0], (23.44)

which is positive for any plausible choice of nϕ and bϕ, as dis-

cussed earlier.

Provided a solitary wave solution exists, that is, vϕ∕v0 >
vcritϕ ∕v0 and H(ϕd)>H(ϕ0) (as in Fig. 23.3B), then solving
ΔH = H (ϕ) −H (ϕ0) = 0 yields the maximum porosity of the

wave ϕmax. As the overpressure vanishes at ϕmax, the depen-
dences of po and z on ϕ are obtained in exactly the same

manner as the dependence of v and t on x for the oscillating

ball (Eqs 23.28 and 23.29). Thus, from the definite integral of

Eq. 23.40

po = ± nσ+1

√
(nσ − 1)

vϕ

A
ΔH (23.45)
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Fig. 23.3. Shape functions, phase portraits, and porosity wave patterns as a function of phase velocity illustrating the periodic, solitary, and aperiodic (fluidized)
compaction-driven flow regimes. In general, phase velocity can be taken as a measure of the intensity of a flow perturbation. At low velocities (A, D, G), the
background porosity ϕ0 is the focal point of a periodic solution. At intermediate velocities (B, E, H), the focal point, that is, the minimum in H, shifts to ϕ1 >ϕ0; the
potential H recovers to H(ϕ0) at a porosity intermediate between ϕ1 and the disaggregation porosity ϕd; and the relevant solution is a solitary wave. At still higher
velocities (C, F), H(ϕd)<H(ϕ0) so there is no steady-state wave solution as there is no closed path in po −ϕ space connecting ϕ0 to an elevated level of porosity; and
the perturbation causes the matrix to disaggregate.

and inverting the result of substitution of Eq. 23.45 into

Eq. 23.35,

z = ± nσ+1

√
vϕ

A ∫
ϕ

ϕmax

dϕ
p
nσ
o f2

, (23.46)

where z is the depth relative to the wave center at which ϕ=ϕmax
and po =0. Any porosity of the solitary solution is associated
with both positive and negative values of po and z, correspond-

ing to the upper and lower halves of the wave. For this reason,

the sign of factors in expressions for po and z has no significance;

rather than explicitly indicating this with magnitude notation

in Eqs 23.45 and 23.46, and subsequent equations, it is to be

understood that any negative term is to be replaced by its abso-

lute value.

Nonlinear rheology creates a distinction between the solitary

solution of the compaction equations and that of the oscillating

ball in that it is possible to obtain a solitary porosity wave of

finite wavelength. This behavior is demonstrated by linearizing

Eq. 23.46 about ϕ0 to obtain

z ≈ ±

(
vϕ

Af2|ϕ=ϕ0
(
nσ + 1
2

𝜕f1
𝜕ϕ

||||ϕ=ϕ0
)−nσ) 1

nσ+1

∫
0

Φ
Φ− 2nσ

nσ+1 dΦ,

(23.47)
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where Φ=ϕ−ϕ0. The bifurcation between finite- and

infinite-wavelength solutions is determined entirely by the

stress exponent in Eq. 23.47, such that finite solutions can exist

only for nσ <1, and is independent of the details of the hydraulic

potential. As nσ ≥1 is characteristic of viscous behavior in rocks,
it is expected that solitary porosity waves only develop in vis-

cous rocks with finite initial porosity. Finite-wavelength solitary

waves propagate, by definition, through a matrix with no initial

porosity. It has been shown elsewhere that finite-wavelength

solutions exist for viscoelastic compaction rheology (Connolly

& Podladchikov 1998); the present analysis raises the possibility

that shear-thickening viscous mechanisms (nσ <1) could also

operate at the zero porosity limit in natural systems.

Just as the linearized equation for time in the oscillating ball

problem (Eq. 23.33) provides a natural timescale for the move-

ment of the ball near x0, the linearized equation for depth in the

solution of the compaction equations provides a characteristic

length scale for variations in porosity near ϕ0. By rewriting the
integral in Eq. 23.47 in terms of dlnΦ, and differentiating, this
length scale is

δ′ ∼ 𝜕z

𝜕 lnΦ
≈

(
Φ1−nσ

vϕ

Af2|ϕ=ϕ0
(
nσ + 1
2

𝜕f1
𝜕ϕ

||||ϕ=ϕ0
)−nσ) 1

nσ+1

,

(23.48)

the depth interval over which porosity decays from eϕ0 to ϕ0
within a solitary wave. The derivative on the right-hand side of

Eq. 23.48

𝜕f1
𝜕ϕ

||||ϕ=ϕ0 = Δρg
ϕ0

(
vcritϕ

v0
−
vϕ

v0

)
≈ −

Δρg
ϕ0

vϕ

v0
(23.49)

is zero at vϕ = vcritϕ , but decreases monotonically in vϕ; thus,

the approximate form is valid for large speeds. Adopting this

approximation, substituting Φ= (e−1) ϕ0 in Eq. 23.48, and
expanding f2 at ϕ0 as aσfϕ|ϕ=ϕ0 (1 − ϕ0) yields

δ′ = 𝜕z

𝜕 lnΦ
≈

(
𝜈ϕ[ϕ0(e − 1)]1−nσ

Aaσfϕ|ϕ=ϕ0 (1 − ϕ0)

[
nσ + 1
2

Δρg
ϕ0

𝜈ϕ

𝜈0

]−nσ) 1
nσ+1

,

(23.50)

effectively a lower bound on the wavelength of the solitary

solution. Using the constitutive relations and scales given by

Eqs 23.17, 23.19 and 23.20, and estimating wave speed as

the magnitude of vcritϕ (∼nϕ|v0|, Eq. 23.44), then in the small
porosity limit

δ′ = nσ+1

√
n
nσ
σ

(
2

3

)nσ+1 aϕϕ
nσ−mσ
0

Aηf
|Δρg|1−nσ

nσ+1

√(
2

nσ + 1

)nσ

(nϕ[e − 1])1−nσ , (23.51)

where the first factor is the scale δ obtained by dimensional anal-
ysis (Eq. 23.21) and the second factor is unity for the linear

viscous case and close to, but less than, one for the nonlinear

case with typical values of nϕ and nσ. This result confirms that

δ is a reasonable estimate of the compaction length scale and
suggests, unsurprisingly, that increasing the nonlinear character

of the viscous rheology generally leads to stronger spatial varia-

tions in porosity. In view of the minor difference between δ and
δ′, δ is preferred here because of its simplicity.

Solitary wave properties in the small porosity limit

To illustrate the features of solitary waves explicitly, the solu-

tion is considered in conjunction with the constitutive relations

given by Eqs 23.17 and 23.19 in the small porosity limit

(1 –ϕ→1, ϕd –ϕ→ϕd). Equations 23.34 and 23.35 are then

𝜕po
𝜕z

= Δρg
(
vϕ

v0

[(ϕ∕ϕ0) − 1] + 1
[ϕ∕ϕ0]nϕ

− 1
)

(23.52)

and

𝜕ϕ
𝜕z

= Aaσ
ϕmσ

vϕ
|po|nσ−1po, (23.53)

respectively. Using these forms, the wave hydraulic potential H

can be arranged as the sum of two integrals

H =
Δρg
ϕmσ
0
aσ

∫
(ϕ0

ϕ

)mσ

−
(ϕ0

ϕ

)nϕ+mσ

dϕ

+
Δρg
ϕmσ
0
aσ

vϕ

v0 ∫
(ϕ0

ϕ

)nϕ+mσ

−
(ϕ0

ϕ

)nϕ+mσ−1

dϕ, (23.54)

where both integrands are zero at ϕ=ϕ0, and for ϕ>ϕ0,
nϕ >1, andmσ ≥0, the first integrand is positive and the second
integrand negative. Furthermore, for conditions at which the

solitary solution is possible, that is, vϕ∕v0 > vcritϕ ∕v0, H is a

maximum at ϕ=ϕ0, and H must have a minimum at the ϕ1,
the focal point where 𝜕po∕𝜕z (Eq. 23.52) vanishes and the
magnitude of the overpressure is a maximum (Fig. 23.3B).

At ϕ>ϕ1, H recovers to the background value H(ϕ0) at the
maximum porosity of the wave ϕmax. It follows from the form

of Eq. 23.54 that for a fixed choice of exponents, the rate at

which H recovers to the background value H(ϕ0) at ϕ>ϕ1
decreases with wave speed. Thus, wave amplitude must increase

with wave speed (Fig. 23.4A). For specified vϕ the leading term

of the first integrand will dominate the rate at whichH recovers

to H(ϕ0) at ϕ>ϕ1. Consequently, increasing ma increases

amplitude (cf. solid black and cyan curves, Fig. 23.4A); this

result is intuitive because increasing the nonlinearity of the

effective bulk viscosity leads to a weakening of the matrix with

increasing porosity. A less intuitive consequence of Eq. 23.54

is that increasing the nonlinearity of the porosity–permeability

relationship, that is, increasing nϕ decreases wave amplitude

(cf. orange and black curves, Fig. 23.4A). This occurs because

at ϕ>ϕ1 the rate at which the sum of the integrands decays

with porosity increases with nϕ.
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Fig. 23.4. Porosity wave properties in the small porosity limit (ϕ≪ϕd) as a function of relative wave velocity for choices of the porosity exponents in the constitutive
relations as indicated by color coding. Typical values for the exponents characterizing the porosity dependences of the permeability and effective bulk viscosity are
nϕ =3 and mσ ≤1; a stress exponent nσ = 3 is characteristic of dislocation creep, the viscous deformation mechanism commonly assumed for the lower crust (Ranalli
1995). The minimum relative velocity considered for each choice of exponents is vϕ/v0 = nϕ +0.2, slightly above the critical value vϕ/v0 =nϕ, for the existence
of the solitary solution (Eq. 23.44). Continuous curves drawn in different colors indicate that the properties are identical for the corresponding exponent choices.
Focal point porosity (A) and amplitude (B). Focal point porosity, ϕ1, is dependent only on nϕ, and the divergence of amplitude from ϕ1 shows that the effect of
increasing the nonlinearity (i.e.,mσ) of the effective bulk viscosity is to increase amplitude. In contrast, increasing nonlinearity of the porosity–permeability relationship
decreases amplitude, which is independent of nσ. (C) Wavelength, λ, is the distance separating the overpressure extrema within a wave (Fig. 23.3H). (D) Maximum
fluid overpressure, the maximum underpressure (i.e., effective stress) is −pmax

o , both extrema occur at ϕ1 (Fig. 23.3E). (E) Excess volume (Eq. 23.60) correlates with
amplitude except at low wave speed, whereupon it decreases with speed in solutions for high nσ/nϕ. That the excess volume for the nonlinear viscous cases (nσ =3)
becomes larger than that for the linear viscous case (nσ =1) at low speeds (vϕ/v0 ∼6) indicates a shifting of the porosity toward the tails of the nonlinear viscous
solution. (F) Fraction of the volume that occurs within ±λ/2 of ϕmax. (G) Maximum −p0 gradient, which occurs at ϕmax, unity corresponds to a hydrostatic fluid
pressure gradient. (H) Average excess fluid flux associated with wave passage. (See color plate section for the color representation of this figure.)
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The relationship between wave velocity and amplitude

(Aϕ =ϕmax/ϕ0) for mσ ≠1 obtained by solving ΔH=0 is

vϕ = v0
nϕ +mσ − 2
1 −mσ

([mσ − 1][A
−nϕ
ϕ − 1] − nϕ)A

1−mσ
ϕ + nϕ

A
1−nϕ−mσ
ϕ ([nϕ +mσ − 1][Aϕ − 1] + 1) − 1

,

(23.55)

which for the specific case nϕ =3 and ma =0 reduces to the lin-
ear relationship vϕ = v0(2Aϕ + 1) obtained by Scott & Steven-

son (1984, Barcilon & Richter 1986). The integrated form of

Eq. 23.54 for general values ofma is singular atma =1, the value
typically assumed in compaction literature. For this less general,

but more widely used, case

H =
Δρg
aσ

(
1 − vϕ∕v0
nϕ(ϕ∕ϕ0)nϕ

+
vϕ∕v0(ϕ∕ϕ0)1−nϕ

nϕ − 1
+ ln(ϕ∕ϕ0)

)
,

(23.56)

vϕ = v0(nϕ − 1)
A
nϕ
ϕ (lnAnϕ

ϕ + 1) − 1

1 + (Aϕ − 1)nϕ −A
nϕ
ϕ

, (23.57)

which similarly reduces to Scott & Stevenson’s (1984) result

for nϕ =3. Although Eq. 23.57 cannot be solved analytically for
amplitude, it is apparent that in the small porosity limit, ampli-

tude is not a function of nσ. Evaluation of the integral in Eq.

23.46 gives the two values of pressure at any porosity within a

solitary wave (Fig. 23.3E) as

po = ±δΔρg(nσ + 1)

(
1

2nσnϕ

vϕ

v0

) 1
nσ+1

⎛⎜⎜⎜⎜⎝
vϕ∕v0−1
(ϕ∕ϕ0)nϕ

−ln (ϕ∕ϕ0)nϕ +1−
vϕ

v0

(
1−

nϕ

(ϕ∕ϕ0)nϕ − 1

)
nϕ − 1

⎞⎟⎟⎟⎟⎠

1
nσ+1

.

(23.58)

The corresponding integral for depth

z = ±δ
(
nϕ

2

) nσ
nσ+1

(
vϕ

v0

) 1
nσ+1

∫
ϕ

ϕmax

1

ϕ

⎛⎜⎜⎜⎝
[
1 −

vϕ

v0

] [ϕ0
ϕ

]nϕ
+ ln

ϕ
ϕ0

− 1 −
vϕ

v0

[
1 −

(
ϕ0
ϕ

)]nϕ−1
nϕ − 1

⎞⎟⎟⎟⎠
− nσ
nσ+1

dϕ

(23.59)

must, in general, be evaluated numerically (a Fortran computer

program for this purpose is available from the author).

Because the matrix recovers to the background porosity

asymptotically in a steady-state solitary wave (for nσ ≥1), the
true wavelength is infinite (cf. Eq. 23.47). For practical pur-

poses, it is desirable to define an effective wavelength, which

defines the extent of the wave that includes the bulk of the

anomalous porosity. To this end, the wavelength λ is taken to
be the interval between the points of minimum and maximum

overpressure (Figs 23.3H and 23.4C). The ratio of the excess

volume, that is, the total volume of fluid associated with the

passage of a wave (Fig. 23.4E),

Ve = ∫
∞

−∞
(ϕ − ϕ0)dz (23.60)

to that obtained by integrating over ±λ/2 shows that even at
low speeds, >80% of the porosity of a wave occurs within the

interval ±λ/2 about the center of wave (Fig. 23.4F).
The effect of nonlinear viscous rheology is best understood

in terms of the overpressure at the focal point porosity ϕ1
(Fig. 23.4D). The magnitude of the overpressure gradient is

limited by the hydrostatic pressure gradient for the fluid phase,

a limit that is approached rapidly with increasing velocity at

the center of a porosity wave (black–green curve, Fig. 23.4G);

thus, at the velocity at which the maximum pressures of the

linear and nonlinear viscous solutions are equal (∼5.9 v0, black
and green curves, Fig. 23.4D), the dilational strain rate must

fall more rapidly in the nonlinear case between ϕ1 and ϕmax,
and as both ϕ1 and ϕmax are independent of nσ, this must
lead to a relatively flat-topped porosity distribution in which

a greater proportion of the porosity lies within the interval

±λ/2 about ϕmax. Conversely, as speeds fall below that at which
the overpressures at the focal point porosities of the solutions

are equal, a greater proportion of the porosity shifts to the

tails of the porosity distribution for the nonlinear case, leading

to broad, poorly defined waves. This behavior is confirmed

by linearization of the integral for the second moment of the

solitary wave porosity distribution, which shows that in the

limit Aϕ →1 or, equivalently, vϕ → vcritϕ , the moment becomes

infinite if nσ ≥ 3 and explains the minima in Ve as a function
of velocity for nonlinear viscous matrix rheology (black and

cyan curves, Fig. 23.4E). The existence of the minima is of

little practical consequence, because it occurs at velocities at

which wavelengths are so long that the solitary waves would

be indistinguishable from uniform fluid flow. Increasing nϕ
counters this effect so that for nσ =3 and nϕ =4, waves are
well formed at all velocities (orange curve, Fig. 23.4E). The

instantaneous excess fluid flux, that is, the flux in excess of the

background value q0 = v0ϕ0 within a wave is qe = vϕ(ϕ − ϕ0),
and time-averaged fluid flux associated with wave passage

(Fig. 23.4H) is estimated as

qe =
vϕ

λ
Ve. (23.61)

In the limit vϕ → vcritϕ , λ → ∞; therefore, qe∕q0 must fall mono-
tonically to zero with velocity, implying that there is a solitary

wave solution for any value of qe∕q0 > 0.

Dynamic permeability in response to external forcing

There is no fundamental principle that dictates a bal-

ance between fluid production and transport in geological

jamie
Inserted Text
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environments, but for the range of conditions investigated by

numerical simulations of metamorphic compaction-driven fluid

flow, this balance does develop locally (Connolly 1997, 2010).

Assuming such a balance in conjunction with the solitary poros-

ity wave solution provides a means of predicting the dynamic

variations in permeability that develop from an initially steady

hydrologic regime in response to metamorphic fluid production

(Connolly & Podladchikov 2013). This model amounts to no

more than assuming that the time-averaged permeability of a

compacting system is that necessary to accommodate fluid flux

associated with an external forcing (Ingebritsen & Manning

1999). The information gained by implementing the solitary

wave solution in this context is insight into the instantaneous

variations in porosity and pressure that develop in response to

the forcing.

In a 1D compacting system, a requirement for a balance

between wave-propagated fluid transport and fluid production

is that the magnitude of the time-averaged flux associated with

the passage of a wave (Eq. 23.61) must be greater than or

equal to the vertically integrated production qs, because a wave

with |qe| < qs would be unable to separate from its source. If|qe| > qs, then the waves must be separated by a depth interval
of Δz = λ(|qe∕qs| − 1). In numerical simulations, the transient

dynamics of wave separation are such that |qe∕qs| is typically
<1 (Connolly 1997). This result suggests that the properties of

waves expected in metamorphic environments can be predicted

by equating qe to qs and exploiting the monotonic relationship

between qe and vϕ (Figs 23.4H and 23.5). In earlier works

(Connolly & Podladchikov 2013), it was asserted incorrectly

that solitary wave solutions do not exist for qe/q0 >2; in fact,

solitary solutions exist for all qe/q0 >0, but, as remarked previ-

ously, waves that develop at small excess flux magnitudes have

such long wavelengths that it is unlikely they would be distin-

guishable from uniform fluid flow in natural environments.

While the scenario outlined here seems the most relevant

to fluid flow in ductile portions of the Earth’s crust, it is

conceivable that fluid production may occur so rapidly, that is,

on a timescale ≪δ/|v0|, that compaction mechanisms cannot
accommodate fluid production. The effect of such an imbalance

may be to produce a region of increased porosity bounded by

unreacted and, presumably, compacted rocks. In this scenario,

the response of the system is dependent on the vertical extent,

Δz, of the region of increased porosity. If the extent is small
(Δz∼δ), then a single solitary wave will evolve from the source
region in such a way to carry the excess volume of the source

region (as in Fig. 23.1A). The minimum in excess volume as
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a function of velocity for strongly nonlinear viscous rheology

gives rise to potential ambiguity for such initial conditions,

because the same excess volume may be accommodated in a

wave with either low or high velocity. It is speculated here

that the high-velocity solution dominates. If the extent of the

reacted porosity is large (Δz≫ δ), then the multiple waves that
evolve from the region can be expected to carry the excess flux

qe ≈ q2 − q0 where q2 is the flux through the increased porosity
ϕ2 at po =0. Spiegelman (1993) demonstrated that waves

that nucleate at the boundary between an infinite source and

unreacted rocks are periodic waves in which porosity oscillates

about the focal point ϕ1 of the solitary solution (e.g., the red
curve in Fig. 23.2E,F). However, for large porosity contrasts,

that is, ϕ1≫ϕ0, the distinction is unimportant.

Example #1: 1D VISCOUS WAVE

To illustrate the application of the 1D viscous solitary wave solution,
consider an initial state characterized by δ ∼100m, ϕ0 ∼10−4, Δρg
∼103 kgm−3, v0 ∼−10−9 m s−1 (q0 = v0ϕ0 =−10−13 m s−1), as might
be appropriate for dehydration in the lower crust at amphibolite facies
conditions (i.e., temperatures of 773–923K, Connolly & Podladchikov
2013). Taking nσ = nϕ =3 and mσ = 1 as the most probable values for
the constitutive exponents, a fluid production rate of qs =10−11 m s−1

will generate solitary waves with (black curves, Fig. 23.5) ϕmax =10.0
ϕ0 =1.0×10−3, λ= 6.3 δ = 630m, pmax

o =2.4 δΔρg= 0.24MPa, and a
period of 1.0 δ/|v0|= 1.6×103 years. From the period (0.50 λ/|v0|), or
the relationship between flux and velocity (Fig. 23.4H), vϕ =−λ/period
=−0.39myear−1 (12.2 v0) and the maximum overpressure gradient is
∇po =−0.84 Δρg (Fig. 23.4E), that is, the fluid pressure gradient within
the wave is nearly hydrostatic (cf. Eq. 23.5). Holding all other parameters
constant, the effect of changing from power-law viscous (nσ =3) to linear
viscous (nσ = 1, green curves in Figs 23.4 and 23.5) matrix rheology
is to double the speed, amplitude, and maximum overpressure of the
waves. This effect reflects that at vϕ/v0 > 5.9 (the crossing of the green
and black curves in Fig. 23.4E), the nonlinear wave has a greater excess
volume; thus, slow waves in the nonlinear viscous case are capable of
accommodating the same flux as faster waves in the linear viscous case.

Disaggregation and the compaction-driven flow regimes

Wave amplitude grows monotonically with speed in the small

porosity approximation because the 1 –ϕ and ϕd –ϕ terms in
Eqs 23.15–23.17 and 23.19 that limit the possible values of

the porosity are neglected; thus, the formulation has no upper

bound on porosity. Given that a granular matrix is expected to

disaggregate at ϕd ∼20% (Arzi 1978; Auer et al. 1981; Ashby
1988; Vigneresse et al. 1996), the ϕd –ϕ term is likely to dom-
inate wave behavior before the dampening effects of the 1 –ϕ
terms become significant. Elsewhere, it has been shown that for

constitutive relations that do not account for disaggregation,

the 1 –ϕ terms are unimportant at absolute porosities of ∼25%
for typical choices of the exponents nσ, nϕ, bϕ, and mσ (Con-

nolly & Podladchikov 2000; a Fortran computer program that

solves the large porosity formulation is available upon request).

Accordingly, the effect of disaggregation is assessed here by an

intermediate porosity approximation in which the ϕd –ϕ term
of Eq. 23.19 is retained, but porosity terms of order 1 (i.e., 1 –ϕ
and 1 –ϕ1∕nσ) are dropped to obtain

H =
Δρg
ϕmσ
0
cσ

∫

[(ϕ0
ϕ

)mσ

−
(ϕ0
ϕ

)nϕ+mσ

+
vϕ

v0

([ϕ0
ϕ

]nϕ+mσ

−
[ϕ0
ϕ

]nϕ+mσ−1
)]

[ ϕd|ϕd − ϕ|
]nσ−1∕2 dϕ

(23.62)

for the properties of waves with porosities approaching ϕd. As
the denominator of the integrand in Eq. 23.62 becomes infinite

at ϕ=ϕd, H must have a maximum at ϕd and if H(ϕd)<H(ϕ0)
(Fig. 23.3C), then there is no closed contour of the function

U that connects the background porosity to an increased level

of porosity (Eq. 23.41, Fig. 23.3F) and no solitary solution

is possible. Because the integrand of Eq. 23.62 is simply the

combined integrands of Eq. 23.54, scaled by the disaggrega-

tion term, the effects of varying the exponents nϕ, nσ, and

mσ are readily separated. Specifically, lowering nσ or raising

nϕ or mσ increases H(ϕd) relative to H(ϕ0), extending the
range of solitary wave velocities that the matrix can sustain

without disaggregating (Fig. 23.6A). In contrast to the small

porosity limit where H, and therefore wave amplitude, is inde-

pendent of the stress exponent nσ, in the intermediate porosity

limit, although the focal point porosity ϕ1, and therefore pmaxo

(Fig. 23.6C), remains independent of nσ, the relation between

amplitude and velocity is dependent on nσ. For nσ =nϕ =3,
this dependence is prominent for ϕ/ϕd >0.1 (black curves,
Fig. 23.6A) and is even more pronounced with increasing

nonlinearity in the porosity–permeability relationship (orange

curves, Fig. 23.6A). Because the effect of the disaggregation

term is to weaken the matrix with increasing porosity, its effect

is to sharpen the porosity distribution within solitary waves,

akin to the result of increasing mσ, leading to an increase in

excess volume compared with models that do not account

for disaggregation.

By solving for the solitary wave velocity at which H(ϕd)=
H(ϕ0) and computing the corresponding value of qe (Eq.
23.61), it is possible to estimate the range of fluid production

rates that can be sustained without causing the solid matrix to

become fluidized. For example, taking nϕ =3 and ϕd/ϕ0 =100,
fluid production rates of 700–900 |q0| are adequate to induce

fluidization (Fig. 23.7); for comparison, to cause fluidization

by, albeit unstable, uniform flow, the required fluid production

rates are |q0|(ϕd∕ϕ0)nϕ , that is, 106 |q0|. Thus, porosity waves
have the potential to strongly enhance weak flow perturbations.

In terms of fluxes, the lower limit of the solitary wave regime

corresponds to qe = 0; thus, the periodic regime can only be
induced by a negative vertically integrated fluid production

rate such as would result from the consumption of fluids by

retrograde hydration reactions. Alternatively, for waves induced
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increasing nσ. Properties for these solutions are shown as a function of qe in Figure 23.5. (See color plate section for the color representation of this figure.)

by a perturbation defined in terms of an excess volume (e.g.,

Fig. 23.1), the periodic solution requires negative excess vol-

ume, that is, an obstruction (Spiegelman 1993) to a region of

uniform flow. The appearance of periodic waves in numerical

simulations (e.g., Fig. 23.1A or Connolly 1997) reflects the

dynamics of solitary wave separation, in which over-compaction

of the matrix obstructs the background flow.

DISCUSSION

This study has explored the behavior of the solitary porosity

wave solution to the compaction equations in 1D viscous

media. The solution provides a simple means of estimating the

scales of pressure and porosity (or permeability) variations as

a function of fluid production rates and constitutive relations.

Although porosity waves have been posited as a mechanism for

fluid flow in the lower crust (Suetnova et al. 1994; Connolly

1997; Gliko et al. 1999; Ague 2014; Tian & Ague 2014),

their expression in nature would be complicated by a number

of factors. These factors, which include geometry, lithologi-

cal heterogeneity, tectonic stress, and rheological variations,

have been reviewed elsewhere (Connolly & Podladchikov

2004, 2013). Here, some aspects of this earlier review, which

are particularly relevant to potential applications of the 1D

solitary wave solution, are recapitulated in the context of a

conceptual model for compaction-driven fluid flow in the lower

crust (Fig. 23.8).

Linear or nonlinear viscous rheology?

Even if the viscous deformation mechanism is nonlinear, in

rocks undergoing simultaneous compaction and shear defor-

mation, it does not necessarily follow that effective viscous

rheology for the compaction process is nonlinear. Both com-

paction and macroscopic shear deformation are accomplished

by microscopic shear. Thus, if a rock is simultaneously subject

to both modes of deformation, then they must be accommo-

dated by the same microscopic mechanism. This mechanism is

determined by the largest of the stresses responsible for defor-

mation, |Δσ| or |po|, with the result that if the stresses are of
different magnitude, the viscous response to the inferior stress

is approximately linear and determined by effective viscosity

resulting from the deformation induced by the superior stress.

Regardless of magnitude, far-field tectonic stress facilitates

compaction by lowering the effective viscosity of the solid

matrix (Tumarkina et al. 2011).



An analytical solution for solitary porosity waves 301

nσ = 3, nϕ = 3

Fluidized regime

Solitary wave regime

Periodic wave regime

20 40

Disaggregation porosity (ϕd/ϕ0)
60 80 100

1400

1200

1000

800

600

400

200

0

–1200

nσ = 1, nϕ = 3
nσ = 3,  3, nϕ = 4

T
im

e-
in

te
gr

at
ed

 e
xc

es
s 

flu
x 

(q
e
/q

0)

Fig. 23.7. Phase diagram depicting the hydrologic regimes predicted by the inter-
mediate porosity limit solitary wave solution as a function of the disaggregation
porosity and excess flux. The regime that develops in response to fluid produc-
tion can be predicted by equating the magnitude of the excess flux carried by the
waves to the vertically integrated fluid production qs. The boundary between the
solitary wave and fluidized regime is dependent on the exponentsmσ, nσ, and nϕ;
it is shown for mϕ =1, with other exponents as indicated by the inset and color
coding. Solitary waves become progressively more diffuse and indistinguishable
from uniform flow as qe∕q0 → 0. Periodic wave trains develop in response to
negative fluid production, for example, the consumption of fluids by hydration
reactions, or an obstruction to the background porosity (Spiegelman 1993). In
nature, such periodic wave trains would decay to uniform flow. (See color plate
section for the color representation of this figure.)

3D geometry and nonviscous rheology

As remarked earlier, the 1D solitary wave solution is unstable

with respect to spherical solitary waves in three dimensions

(Wiggins & Spiegelman 1995). However, as wave speeds

increase, the overpressure gradient in solitary waves rapidly

approaches the limit (i.e., −[1−ϕ]Δρg) imposed by the fluid
hydrostat (Fig. 23.4G). At this condition, the velocity and

porosity distribution along the vertical axis of the 1D and

3D waves are essentially identical, and the excess volume of

the 3D wave can be estimated by applying spherical sym-

metry to porosity distribution of the 1D wave (Connolly &

Podladchikov 2007). Transient models of multidimensional

waves suggest that they collect fluid from a source region of

area ∼πλ2 (Wiggins & Spiegelman 1995). Thus, the properties

of the 3D waves that would initiate in response to fluid pro-

duction can be predicted by equating the product of vertically

integrated fluid production rate and the source area, Qs = πλ2qs
with the volumetric transport rate

Q =
vϕ

λ ∫
∞

0

4πr2(ϕ − ϕ0)dr, (23.63)

where the integral is the 3D excess fluid volume associated

with the wave and is approximated by using the 1D solitary

wave solution for the radial porosity distribution. In practice,

because λ varies as a function of qs, solving Qs = Q , is an
iterative problem.

Example #2: 3D VISCOUS WAVE

To illustrate the consequences of 3D geometry, consider the same
parameters as in Example #1. Taking the 1D wavelength, λ=6.3 δ, as
an initial estimate for the 3D solution, the required fluid transport rate
is Q/|q0δ

2|=qsπλ
2/|q0δ

2|=100 π 6.32 = 1.25×104. For this value of Q,
vϕ/v0 =29 (black curve, Fig. 23.10) and λ/δ=9.1 (black curve, Fig. 23.4C).
Using this revised estimate of wavelength, Q/|q0δ

2|=2.6×104, which
in turn yields new velocity and wavelength estimates of vϕ/v0 =37.6
and λ/δ= 11.0. After three iterations, successive refinement of the
estimates for fluid transport rate, velocity, and wavelength by this
method yields Q=37.9×10−5 m3 s−1, λ= 11.0 δ= 1100m, vϕ =41.4
v0 =−1.31myear−1, pmax

o =5.35 δΔρg=5.35MPa, and ϕmax = 1390
ϕ0 =0.139 for the 3D wave. This result demonstrates that increased
spatial focusing of fluid flow caused by 3D effects has the capacity to
generate both the large porosities necessary to cause disaggregation
and/or the overpressures necessary to induce brittle (plastic) failure.

Thermal activation

Thermal activation will, generally, lead to an upward increase

in the effective shear viscosity of the lower crust on a length

scale lA that is dependent on the activation energy of the

viscous mechanism and the geothermal gradient, but typically

∼1 km (Connolly & Podladchikov 2013). Consequently, all

other factors being equal, the compaction length scale δ will
increase upward through the crust as nσ+1

√
exp(z∕lA), that is, by

a factor of ∼10 over a vertical interval distance of 6–8 lA. This
variation has consequences for the relevance of the steady-state

solution, which assumes a constant effective shear viscosity.

Provided δ< lA, the variation in shear viscosity due to thermal
activation is weak on the porosity wave length-scale. In this

case, quasi-steady-state waves that closely approximate the

steady-state solution can be expected to develop. The evolution

of such quasi-steady-state waves can be anticipated from the

steady-state solution given that the waves are likely to conserve

excess volume (Fig. 23.4E, Connolly & Podladchikov 2013).

As δ becomes comparable to lA, multidimensional waves flatten
to sill-like structures. Although these structures superficially

resemble the 1D steady-state solitary wave solution, their

vertical dimension is dictated by lA and they slow exponen-

tially as they propagate upward (Connolly 1997; Connolly &

Podladchikov 1998). This behavior suggests that if porosity

waves develop on a geologically relevant length scale at depth

within the crust, then, in the absence of other deformation

mechanisms, they will tend to stagnate below the brittle–ductile

transition (Fig. 23.8).
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Fig. 23.8. Conceptual model of the hydrologic regimes that would result from superimposing thermally activated compaction on crustal column with heterogeneous
permeability (Connolly & Podladchikov 2013). In the upper crustal regime, faulting maintains such high permeabilities that negligible deviation from hydrostatic fluid
pressure is adequate to drive fluid circulation (Zoback & Townend 2001). This regime is limited at depth by the conditions at which localized compaction becomes an
effective mechanism for sealing fault-generated permeability (Gratier et al. 2003; Tenthorey & Cox 2006). At greater depth, pervasive compaction and/or metamorphic
fluid production may generate transient fluid overpressure that is periodically relieved by faulting (Sibson 1992). At the brittle–ductile transition (i.e., the base of the
seismogenic zone), it is improbable that pervasive compaction can keep pace with metamorphic fluid production; thus, the transitional hydrologic regime is likely to
persist over an interval that extends ∼10 lA below the brittle–ductile transition, where lA is the characteristic length scale for variation in the ductile rheology (typically
∼1 km, Connolly & Podladchikov 2013). Beneath the transitional regime, pervasive compaction is capable of generating hydraulic seals, and fluid, if present, is at
near-lithostatic pressure. Within this lowermost regime, fluid flow is truly compaction driven. In the absence of fluid production, the tendency of both time and depth
is to decrease the wavelength of the fluid pressure compartments, resulting in a near-steady state. Barring the possibility of a subcrustal fluid source, the flux in this
near-steady regime must decrease with depth. Thus, the magnitude of the perturbation caused by fluid production to the lower crustal regime is dependent on its
depth. In the deepest portion of the crust, the rheology is viscous as assumed in the formulation presented here. Upward strengthening of the viscous rheology
would cause porosity waves to provoke elastic and plastic deformation mechanisms at shallower levels. Because viscous porosity waves are associated with negative
effective pressure anomalies, ∼λΔρg/2, the first deviation from viscous behavior is likely to be viscoplastic. Viscoplastic rheology causes fluid flow to be focused into
tube-like channels (Connolly & Podladchikov 2007; Connolly 2010). At still shallower depths, viscous compaction becomes entirely ineffective, leading to a viscoelastic
transition. In numerical models, such a viscoelastic transition causes lower crustal solitary porosity waves to dissipate as porosity–pressure surges in the upper crust
(Connolly & Podladchikov 1998). (See color plate section for the color representation of this figure.)

Example #3: THERMAL ACTIVATION

Consider a 1D solitary porosity wave with initial properties δi ∼ 100m,
λ=630m, pmax

o =0.24MPa, and vϕ =12.2 v0, as in Example #1, which
propagates upward through a cooling, but otherwise uniform crust, char-
acterized by lA ∼1 km. The initial dimensionless excess volume (Ve/δi/ϕ0)
of the wave is 41.4 (black curve, Fig. 23.4H). After the wave rises 5 km, the

local compaction length increases to δ = δi
nσ+1

√
exp(Δz∕lA) =350m. If the

wave conserves its dimensional excess volume (ve), then the dimensionless
excess volume Ve/δ/ϕ0 must decrease to 11.9. For this new dimensionless
excess volume, the wave velocity is vϕ/v0 =5.6 (Fig. 23.4H), and its
wavelength and maximum overpressure increase to 2200m (Fig. 23.4C)
and 0.40MPa (Fig. 23.4D), respectively. As this wavelength is greater
than lA, the steady-state solution most likely overestimates both velocity
and wavelength (Connolly & Podladchikov 1998).

Viscoplastic rheology

In the viscous limit, a solitary wave is associated with a max-

imum fluid overpressure of ∼λΔρg/2 that grows as the wave
propagates upward into cooler rocks. As rocks have little tensile

strength (e.g., Gueguen et al. 2004), it is probable that such

fluid overpressures would induce hydrofracture and/or other

plastic dilational mechanisms. Brittle deformation associated

with active metamorphism (Etheridge et al. 1984; Simpson

1998) is broadly consistent with the notions that embrittlement

occurs at high fluid pressure and on spatial scales ≪δ. In this
scenario, the effect of plastic weakening can be simulated by

reducing the coefficient of viscous flow by a factor of Rnσ+1

for po >0. The ad hoc factor R can be adjusted to match the

presumed yield stress, σy, of the plastic mechanism. In 1D
numerical models that use this approximation, asymmetrical,

steady-state solitary waves develop in which a small overpres-

sured region is fed by a much larger underpressured region

(Fig. 23.1C–D). In the small porosity limit, such solutions

are permitted because the hydraulic potential H (Eq. 23.54),

which determines the shape of the viscous solitary wave, is

independent of A and nσ. Thus, both the upper and lower

portions of the viscoplastic solitary wave are given by the

viscous solitary wave solution with the sole modification that

the compaction length scale in the overpressured region is

δp = δR. (23.64)
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Fig. 23.9. Two-dimensional numerical simulation of a solitary porosity wave in a viscoplastic matrix. (A) Porosity; (B) fluid overpressure. The axial porosity and
overpressure profiles of the wave are identical to the 1D case (Fig. 23.1C,D), but in the 2D case, the asymmetric overpressure distribution causes compaction of
the background porosity on either side of the wave, leaving a tube-like channel that localizes subsequent fluid flow; the logarithmic scale for porosity emphasizes
this effect. Numerical simulations (B. J. P. Kaus, personal communication 2005) have confirmed that 3D solitary waves in a viscoplastic matrix have radial symmetry
orthogonal to the direction of propagation as in the viscous limit (Wiggins & Spiegelman 1995); thus, the 2D wave shown here corresponds to the axial section of a
3D wave. (See color plate section for the color representation of this figure.)

As the effect of weakening is to reduce the timescale during

decompaction to τp = δR∕|v0|, it is unsurprising that in three
dimensions the overpressured region develops the spherical

porosity distribution of the viscous solution on the length scale

δp, which then recovers in the underpressured region to ϕ0 on
the length scale δ, giving rise to a wave shape similar to that of
a cigar aligned in the direction of flow with the lit end upward

(Connolly & Podladchikov 2007). In contrast to the 1D case,

the asymmetry of the pressure distribution for such a wave

obviates a true steady state. Specifically, numerical simulations

(Fig. 23.9) show that the underpressured lower portion of

the wave drains more fluid from surrounding matrix than is

expelled into the matrix by the overpressured upper portion

with the result that viscoplastic solitary waves grow with time.

The imbalance in fluxes has the consequence that waves leave a

tube-like channel, with porosities slightly ϕ0, in their wake. This
channel localizes subsequent fluid flow because it is surrounded

by an interval of compacted matrix radius δ.
Although the 3D viscoplastic solitary wave solution is not

steady state, at any point in time its properties are well repre-

sented by a geometric transformation of the viscous steady-state

solution. Neglecting the small fraction of the excess volume

associated with the overpressured portion of the wave, the

porosity distribution of the viscoplastic wave approximates the

lower half of a prolate ellipsoid with semi-major axis λp =λ/2
and semi-minor axis of Rλ/2, where λ is the wavelength of
a viscous wave with the same velocity as the viscoplastic wave

(Fig. 23.4C). As the velocity–amplitude relation (Fig. 23.4B)

is, for vϕ/v0 >∼2nϕ, essentially independent of the dimension
of the solution, the fluid transport rate for the viscoplastic

case is

Q p =
Q

2
R2, (23.65)

where Q is the transport rate for the spherical viscous solitary

wave (Eq. 23.63). In contrast to the 3D viscous case, where

fluid is collected from an area proportional to λ, in the vis-
coplastic case, the horizontal radius of the wave is small in

comparison with δ (Connolly & Podladchikov 2007; Connolly
2010). Thus, 3D viscoplastic waves collect fluid from a source

area of ∼π(δ/2)2 regardless of the vertically integrated fluid
production rate qs. Consequently, for a given qs, the initial

velocity of a viscoplastic wave can be estimated by equating the

fluid production likely to be collected by the wave, qsπ(δ/2)2,
with Q p. Using Eq. 23.65, the fluid transport rate of the

viscous solution with the same velocity–amplitude relation as
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Fig. 23.10. Wave velocity as a function of volumetric fluid transport rate (Q)
by spherically symmetrical 3D porosity waves (Wiggins & Spiegelman 1995) for
exponent choices as indicated by the legend. For velocities at which the fluid
pressure gradient (Fig. 23.4G) is nearly hydrostatic, the properties of the 1D and
3D solution are essentially identical; thus, at these conditions, the velocity can be
used to predict 3D wave properties from the 1D solution (Fig. 23.4, and Examples
#2 and #3). Where velocity is not a monotonic function of Q, it is probable that
the high-velocity (short-wavelength) solution dominates. (See color plate section
for the color representation of this figure.)

the viscoplastic wave is then

Q = π
2
qs

( δ
R

)2
. (23.66)

From this value of Q the relation between Q and vϕ for the

3D viscous solution (Fig. 23.10) yields the velocity of the

viscoplastic wave. The remaining properties of the wave are

then recovered from the 1D viscous solution as a function of

this velocity with the modifications: λp =λ/2, pmino = −pmaxo ,

and the maximum overpressure, ostensibly σy, is −Rpmino .

It is possible to derive rigorous expressions for the effective

viscosity resulting from various types of plastic yielding and the

corresponding 1D solitary wave solutions (Yarushina 2009),

but the viscoplastic solution for brittle yielding is well repre-

sented by the simple model presented here (Eq. 23.65) if the

parameter R is adjusted to match σy. In particular, that vis-
coplastic matrix rheology causes solitary waves to grow with

time and channelize fluid flow is likely to be a robust predic-

tion. Unfortunately, the nonsteady character of the 3D solution

simulated by the simple model creates an unrealistic situation

in which the implied brittle yield strength grows with time.

Although a multidimensional transient model with true brittle

yielding remains to be investigated, in such a model pmaxo is con-

strained by σy, while the volume of the overpressured portion

at σy can be expected to increase with time. Such effects could
substantially alter the results of the geometric model (i.e., Eq.

23.65) used to estimate the fluid transport rate here.

Example #4: 3D VISCOPLASTIC WAVE

To quantitatively illustrate the consequences of the foregoing model
for viscoplastic waves, consider parameters as in Example #1, but
with R=0.1. The fluid transport rate of the corresponding 3D vis-
cous wave (Eq. 23.66) is Q/|q0δ

2|= (qs/|q0|)π/(2R
2)=1.57×104.

From the relationship between Q and vϕ (Fig. 23.10), vϕ =25.3
v0 =−0.79myear−1, and for this velocity (Fig. 23.4), ϕmax =94.5
ϕ0 =9.45×10−3, λp =λ/2=4.24 δ=424vm, and pmin

o = −pmax
o =−3.99

δΔρg=−3.99MPa. From the model geometry, the actual fluid transport
rate (Eq. 23.65) Qp = 1.57×104 (R2/2) |q0δ

2|= 2.48m3 year−1; the
maximum fluid overpressure σy =−Rpmin

o =0.399MPa; the radius of
the wave and the channel left in its wake is λp =λ/2=4.24 δ=424m;
and the channels would have a spacing ∼δ=100m.

Viscoelastic rheology

The omnipresent elastic response of the rock matrix (or pore

fluid) becomes significant as the effective bulk viscosity of the

matrix increases. Such an increase is to be expected as the crust

strengthens upward toward the brittle–ductile transition and

also locally in response to decreases in porosity. In general,

steady-state solutions for Maxwell viscoelastic porous media

take the form of heteroclinic shock waves that connect two

distinct levels (ϕ0 and ϕ1 in the present formulation) of porosity
(Rice 1992; Connolly & Podladchikov 1998). These can be

understood in terms of the oscillating ball analogy to viscous

solution (Fig. 23.2) in that elasticity acts similarly to friction

on the motion of the ball, which dampens the oscillations of

the ball so that it comes to rest at the focal point. Fluid com-

pressibility and poroelasticity have opposite effects (Connolly

& Podladchikov 1998): in a system composed of a viscous,

inelastic, matrix and a compressible fluid the focal point poros-

ity ϕ1 is at the leading edge of the shock and the background
porosity ϕ0 is in its wake, whereas in a system composed of a

viscoelastic matrix and a incompressible fluid the background

porosity ϕ0 is at the leading edge of the shock and the focal
point porosity ϕ1 is in its wake. Thus, the relative magnitude of
the fluid and matrix elastic compressibilities controls whether

the elevated porosity ϕ1 is at the leading edge or in the wake
of the viscoelastic. Most applications of elastic and viscoelastic

porosity wave solutions in the geological literature (Rice 1992;

Revil & Cathles 2002; Miller et al. 2004; Chaveau & Kaminski

2008; Joshi et al. 2012) assume negligible fluid compressibility.

The heteroclinic character of viscoelastic solutions has the

peculiar implication that the nondissipative elastic rheology

leads to dissipative porosity shock waves. In transient models,

a viscoelastic transition caused by upward strengthening pro-

vokes a rapid transition from lower crustal solitary waves, which

are well approximated by the viscous limit, to porosity fluid

pressure surges in the upper crust (Connolly & Podladchikov
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1998). Even if both solid and fluid constituents are considered

to be incompressible, surface tension as incorporated in the

formulation of Bercovici et al. (2001) has the effect of generat-

ing a Kelvin viscoelastic compaction rheology. The Kelvin limit

may be of relevance at the small porosities thought to be char-

acteristic of the lower crust (Connolly & Podladchikov 2013;

Ague 2014) at which surface tension may inhibit compaction.

CONCLUDING REMARKS

There is no smoking gun as evidence for the existence of

porosity waves as a mechanism for fluid flow in the lower crust.

The porosity wave model is the mathematical consequence

of a set of physical assumptions that are generally thought to

apply to lower crustal processes. Most prominent among these

assumptions are that lower crustal rocks compact by viscous

creep and that fluid flow is described by Darcy’s law. The virtue

of the porosity wave model is that it represents a physically con-

sistent steady state and provides a simple means of anticipating

the hydrodynamic response of the lower crust to perturbations

such as fluid production. The formulation developed here

has small (ϕ≪ϕd) and intermediate (ϕd≪1 –ϕ) porosity
approximations that are dependent only on relative porosity

(ϕ/ϕ0); material properties or, alternatively, scales (ϕ0, |v0|, and
δ); two exponents (mσ and nϕ) that characterize the porosity

dependence of the effective bulk viscosity and permeability of

the rock matrix; and an exponent (nσ) that characterizes the

stress dependence of effect shear viscosity of the rock matrix.

In particular, the role of the stress exponent nσ has not been

considered in previous studies. The most surprising feature

resulting from this nonlinearity is that it appears to admit a

finite-wavelength solitary solution for shear-thickening (nσ <1)

viscous mechanisms. Finite-wavelength solitary porosity waves

are of interest because they permit deformation-propagated

fluid flow through an initially impermeable matrix (Connolly

& Podladchikov 1998). For the shear-thinning (nσ >1) viscous

mechanisms thought to be characteristic of the lower crust

(Kohlstedt et al. 1995; Ranalli 1995), the stress exponent does

not fundamentally change the behavior described for the linear

viscous case (Fowler 1984; Richter & McKenzie 1984; Scott

& Stevenson 1984). However, somewhat counterintuitively,

at low velocities (vϕ/v0 <∼6) nonlinearity results in poorly
defined waves in which a greater proportion of the porosity lies

in the tails of the waves compared to the porosity distribution of

the linear viscous case. At higher velocities, this trend reverses

so that a greater proportion of the fluid occurs near the center

of mass of a wave in the nonlinear case. Disaggregation effects

and increasing the nonlinearity of the effective bulk viscosity

also lead to more sharply defined porosity distributions.

The ansatz that porosity waves evolve to accommodate the

vertically integrated fluid production rate qs in natural systems

has the trivial consequence that in the 1D limit the effective

permeability resulting from the porosity wave mechanism,

keffective ≈ k0qe∕q0, is ∼k0qs/|q0|, where k0 and q0 are the

background permeability and fluid flux, respectively, and qe
is time-averaged flux carried by a wave (Fig. 23.4H). Local

variations in permeability are significantly larger, for example, in

the 1D quantitative example considered here (Example #1), the

maximum local permeability k0[ϕmax∕ϕ0]nϕ is an order of mag-
nitude greater than the effective permeability and three orders

of magnitude greater than k0. Spatial effects associated with 3D

porosity waves lead to substantially higher effective permeabil-

ity. In the quantitative example of the 3D viscous case (Example

#2), keffective ≈ k0Q/|q0π(λ/2)2|=3990 k0, and for the viscoplas-
tic case (Example #4), keffective ≈ k0Q p/|q0π(Rλp)2|=139k0.
These results are dependent on highly uncertain, but plausi-

ble, values for qs and the scales ϕ0, |v0|, and δ (Connolly &
Podladchikov 2013). In general, qs can be estimated from the

knowledge of the lithology of interest and the geodynamic

scenario responsible for fluid production. The background

porosity ϕ0 and fluid velocity v0 are roughly constrained

from relatively well-known physical properties and theoretical

considerations, leaving the compaction length scale δ as the
greatest source of uncertainty in that it combines the hydraulic

and rheological properties of the combined fluid–rock system.

At present, it seems that the spatial scales of compaction-driven

flow phenomena offer the most accurate means of estimating

the compaction length in natural environments.
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APPENDIX: NONDIMENSIONALIZATION

For typical constitutive relations, the compaction equations

admit a dimensionless form in the small porosity limit

(1 –ϕ→1, ϕd –ϕ→ϕd) that is independent of the abso-

lute porosity (Scott & Stevenson 1984). In this limit, the

constitutive relations given by Eqs 23.17 and 23.19 are

k = aϕϕnϕ (23.67)

fϕ = n−nσ
σ (3∕2)nσ+1ϕmσ . (23.68)

Using these relations, and substituting vϕ =−v∞, the dimen-
sional forms of Eqs 23.15 and 23.16 simplify to

𝜕po
𝜕z

= −vϕ
ηf
k
(ϕ − ϕ0) − Δρg

(
1 −

[ϕ0
ϕ

]nϕ)
(23.69)
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and

𝜕ϕ
𝜕z

= −
(
3

2

)nσ+1 ϕmσ

n
nσ
σ vϕ

A|po|nσ−1po. (23.70)

Taking the small porosity limit for the Darcy velocity through

the unperturbed matrix

v0 = −
aϕϕ

nϕ−1
0

ηf
Δρg, (23.71)

ϕ0, |Δρg|, and δ as characteristic scales for velocity, porosity,
pressure gradient, and length, respectively, the nondimensional

wave velocity, porosity, overpressure, hydraulic potential,

and depth are v′ϕ = vϕ∕v0, ϕ′ = ϕ∕ϕ0, p′o = po∕(δ|Δρg|),
H ′ = Hϕmσ−1

0
∕|Δρg|, and z′ = z∕δ. Inverting these rela-

tions to express the dimensional variables in terms of the scales

and nondimensional variables, the nondimensional forms of

Eqs 23.69 and 23.70 are

𝜕p′o
𝜕z′

= [1 + v′ϕ(ϕ
′ − 1)]∕ϕ′nϕ − 1 (23.72)

and

𝜕ϕ′

𝜕z′
=
(
3

2
δ
)nσ+1 aϕϕ

nϕ−mσ
0

n
nσ
σ |Δρg|nσ−1Aϕ′mσ |p′o|nσ−1p′o

v′ϕ
. (23.73)

Defining the compaction length scale as

δ ≡ nσ+1

√√√√ n
nσ
σ aϕϕ

nϕ−mσ
0

Aηf |Δρg|nσ−1
(
2

3

)nσ+1

, (23.74)

Eq 23.73 reduces to

𝜕ϕ′

𝜕z′
=

ϕ′mσ |p′o|nσ−1p′o
v′ϕ

. (23.75)

The dimensionless hydraulic potential is then

H ′ = ∫
1 − [1 + v′ϕ(ϕ

′ − 1)]∕ϕ′nϕ

ϕ′mσ
dϕ′. (23.76)

The hydraulic potential and solitary wave solution in

Figure 23.2D–F are computed from Eqs 23.72, 23.75 and

23.76 with mσ =0, nϕ =3, and v′ϕ =7.
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