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Paragraph 25: Second sentence: “and inference” should read “an inference”. Last 
sentence should read: In such settings, the probable effect of far-field stresses would 
be to flatten the channels into … 
 
Paragraph 37: The time-averaged excess flux, i.e., the fluid flux in excess of the 
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ω/λ·(F−1) and not ω·(F−1) as stated in the text. This error is propagated in Equations 
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[1] We propose that a mechanical flow channeling instability, which arises because of
rock weakening at high fluid pressure, facilitates segregation and transport of
asthenospheric melts. To characterize the weakening effect, the ratio of the matrix
viscosity during decompaction to that for compaction is treated as a free parameter R in the
range 1 to 10�6. Two-dimensional numerical simulations with this rheology reveal that
solitary, vertically elongated, porosity waves with spacing on the compaction length scale
d initiate from miniscule porosity perturbations. By analogy with viscous compaction
models we infer that in the absence of far-field stress, the three-dimensional expression of
the waves is as pipe-like structures of radius d

ffiffiffi
R

p
, a geometry that increases fluid fluxes by

a factor of �1/R. The waves grow by draining fluid from the background porosity but
leave a wake of elevated porosity that localizes subsequent flow. Wave amplitudes grow
linearly with time, increasing by a factor of R�3/8 in the time required to drain the porosity
a distance of �d. Dissipation of gravitational potential energy by the waves has the
capacity to enhance growth rates through melting. Maximum wave speeds are �40 times
the speed of fluid flow through the unperturbed matrix. Such waves may provoke the
elastic response necessary to nucleate, and localize the melt necessary to sustain, more
effective transport mechanisms. The formulation introduces no melting effects and is
applicable to fluid flow and localization problems in ductile porous media in general.

Citation: Connolly, J. A. D., and Y. Y. Podladchikov (2007), Decompaction weakening and channeling instability in ductile porous

media: Implications for asthenospheric melt segregation, J. Geophys. Res., 112, B10205, doi:10.1029/2005JB004213.

1. Introduction

[2] No satisfactory explanation has been offered for the
transition from pervasive to segregated melt transport in
ductile rocks. In the simplistic extreme, pervasive processes
exploit existing porosity, whereas segregated transport is a
mechanism in which the melt moves through a void space
that propagates or grows dynamically. Although the latter
mechanism may be realized as self-propagating melt-filled
cracks, the critical crack length is too long to permit the
cracks to initiate spontaneously from a matrix in which melt
is pervasively distributed [Rubin, 1998]. Thus an interme-
diate mechanism capable of bridging the extremes between
pervasive and segregated transport is required, at least, to
explain the initial stages of melt segregation. Porosity waves
are such a mechanism [Scott and Stevenson, 1984; Richter
and McKenzie, 1984], but the popularity of the porosity
wave model has declined because of the perception that
pervasive fluid transport is too inefficient to be significant
on the time and spatial scales relevant for melt segregation

and transport [Slater et al., 2001; McKenzie, 2000]. This
failing may in part be attributed to the rheological model
used to evaluate the relevance of the porosity wave mech-
anism. In previous work [Connolly and Podladchikov,
1998] we have shown that rheological asymmetry leads to
a mechanical flow channeling instability. Here we present a
numerical study undertaken to characterize the instability.
The results demonstrate that the instability can nucleate
from miniscule perturbations to an initially uniform porosity
and that it grows by drawing fluid from the surrounding
matrix. The instability offers a mechanism both for collecting
small amounts of melt and for disaggregation of the matrix
to form a magmatic suspension.
[3] In the present context, disaggregation is taken to

represent the transition from fluid flow through a coherent
matrix to one in which the matrix is fluidized so that it is no
longer possible to distinguish separate solid and fluid
pressure fields. In detail this transition is likely to be
complex and material-dependent, but theoretical and exper-
imental considerations suggest the transition occurs at
porosities of f � 20% [Arzi, 1978; Ashby, 1988; Auer et
al., 1981]. Our concern is the mechanism by which the melt
fractions necessary to provoke this transition are achieved,
rather than the transition itself. To this end, we adopt a small
porosity formulation (1 � f! 1) that allows us to study the
hydraulic character of flow instabilities without considering
the details of the matrix deformation. Scott [1988], and Scott
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and Stevenson [1986], also Schmeling [2000] isolated the
effect of matrix deformation and showed that it enhances
the growth rate and speed of porosity waves, but that it does
not fundamentally change the scales governing wave prop-
agation and stability for parameter ranges relevant to the
asthenosphere. More complex formulations that extend to
large porosity [Bercovici et al., 2001; Rabinowicz et al.,
2001] are capable of describing disaggregation, but contain
no features that would hinder the formation of waves with
porosities comparable to that at which disaggregation is
thought to occur. The formulation of Bercovici et al. [2001]
reduces to the formulation used here in the small porosity
limit provided surface tension is negligible. Although
surface tension is poorly quantified, it will be most
significant at small porosity and is therefore a potentially
important term that is neglected here.
[4] Reactive infiltration instability [Daines and Kohlstedt,

1994; Aharonov et al., 1995] and shear-enhanced melt
segregation [Holtzman et al., 2003] are mechanisms for
melt segregation that have recently received attention in the
context of melt flow beneath mid-ocean ridges. Although
quantitative modeling suggests that the reactive infiltration
instability leads to relatively weak amplification of back-
ground melt fluxes, and is therefore unlikely to cause

complete segregation, it provides a largely consistent model
for mid-ocean ridge melt chemistry [Spiegelman et al.,
2001]. The relevance of the reactive infiltration instability
to other geodynamic settings is less clear because it requires
that the stability of the melt increases in the transport
direction. Thus it is unlikely to operate in the vicinity of
the lithospheric transition and in the lower asthenosphere
where melting may be controlled by chemical heterogeneity
[Plank and Langmuir, 1992; Hirth and Kohlstedt, 1996;
Phipps Morgan and Morgan, 1999]. Shear-enhanced
segregation is not yet well understood on a theoretical basis,
but experimental and mathematical models suggest that large
strains may be required to achieve moderate amplifications
[Holtzman et al., 2003; Spiegelman, 2003; Rabinowicz
and Vigneresse, 2004; Phipps Morgan and Holtzman,
2005; Petford et al., 2005]. Thus a case can be made for
the necessity of a mechanism that is dependent only on the
inherent mechanical instability of an interconnected fluid in
a ductile matrix. Particularly in the lower asthenosphere,
such instabilities must grow rapidly in order to compete
with diffusive processes that reduce the stability of the melt
[Hofmann and Hart, 1978; Kogiso et al., 2004]; the
mechanical instability proposed here grows linearly with
time and therefore has the potential to meet this criterion.
Porosity waves initiate in response to a flow obstruction,
such that both the amplitude and speed of the waves
are proportional to the magnitude of the obstruction
[Spiegelman, 1993; Connolly and Podladchikov, 1998].
Since melt fractions produced by adiabatic upwelling of
mantle material are expected to be relatively homogeneous
[McKenzie, 1985; Scott and Stevenson, 1986], it can be
argued that the obstructions necessary to nucleate porosity
waves are small or entirely absent within the asthenosphere.
Thus an important issue to be addressed in the present
analysis is the magnitude of the heterogeneities necessary to
trigger porosity waves.
[5] Objections premised on the inefficiency of porosity

waves as a transport mechanism are based upon mechanical
and analogue models in which compaction and decompac-
tion are symmetrical processes. However, physical intuition
suggests that this is unlikely to be true for granular materials
such as porous rock [Connolly and Podladchikov, 1998;
Ricard and Bercovici, 2003]. In rocks, decompaction is
accomplished by viscous deformation of individual grains
and by opening grain boundaries, whereas compaction
occurs primarily by the former mechanism (Figure 1). The
observation that rocks possess macroscopic cohesive
strengths of O(10) MPa [Gueguen and Palciauskas, 1994]
suggests that individual grain boundaries must have finite
strength and therefore that decompaction occurs by a
mixture of plastic (i.e., rate-independent failure) and viscous
deformation. Provided these modes operate in parallel the
effective rheology is rate-dependent creep [Sonder et al.,
1986], but with an effective viscosity that is reduced
compared to the viscosity that controls compaction. This
model is designated hereafter as decompaction weakening.
Assuming the existence of such a rheology, we begin by
outlining a mathematical formulation of the problem and the
numerical techniques used to resolve it. Numerical models
are then used to develop an understanding of the instability
and to establish the nature of its temporal and spatial

Figure 1. Schematic rheology with three modes of
microscopic deformation: mode I, viscous deformation of
solid grains; mode II, viscoplastic failure of coherent grain
boundaries; mode III, and opening of noncohesive grain
boundaries. We assume that modes II and III are less likely
to occur during compaction (pe > 0) and therefore that the
fluid-matrix aggregate is weaker in decompaction (pe < 0).
The simplest model for pure mode I deformation that
satisfies the physical requirement that the viscosity must be
infinite in the limit f ! 0 is z � ms/f, where hs is the solid
shear viscosity [Nye, 1953; Sumita et al., 1996]. In contrast,
mode III decompaction is limited by the rate at which fluid
is able to fill newly created porosity (i.e., viscous). At small
porosities the drag force resisting this flow will be
proportional to fluid shear viscosity (mf) and inversely
proportional to porosity; thus it is reasonable to expect that
for mode III, z � mf/f. Considering only these two modes
gives an admissible variation in effective bulk viscosity as
large as the difference between the fluid and matrix shear
viscosities. Mode II will be operative at effective stresses
comparable to cohesion and is likely to involve complex
viscoplastic interactions. To account for the combined
effects of all three modes, we parameterize the effective
viscosity for decompaction as z = Rms/f, where R < 1.
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scaling. We conclude with a discussion of its implications in
the context of asthenospheric melting.

2. Mathematical Formulation

[6] In essence, we follow the formulation of Scott and
Stevenson [1984, 1986] for Darcyian flow of an incom-
pressible fluid through a viscous matrix composed of
incompressible solid grains. Although the solid and fluid
components are incompressible, the matrix is compressible
because fluid may be expelled from the pore volume.
Conservation of solid and fluid mass then requires

@ 1� fð Þ
@t

þr 	 1� fð Þvs½ � ¼ 0 ð1Þ

and

@f
@t

þr 	 fvf
� �

¼ 0 ð2Þ

where f is porosity, and subscripts f and s distinguish the
velocities, v, of the fluid and matrix (see Table 1 for
notation). Equation (1) expands as

@f
@t

¼ 1� fð Þr 	 vs � vsrf ð3Þ

revealing that variation in porosity arises through both
dilation and advection of the matrix, i.e., the first and
second terms of equation (3). From Darcy’s law, the force
balance between the matrix and fluid is

f vf � vs
� �

¼ � k

mf

r�p ð4Þ

where k is the matrix permeability, which is assumed to be
scalar function of porosity; m is the fluid viscosity, a
constant; �p is the fluid overpressure defined relative to
hydrostatic conditions such that �p = pf +rfgz with upward
increasing depth coordinate z; and rf is the fluid density.
Approximating the mean stress �s as the vertical load

�s  �s0 �
Zz
0

1� fð Þrs þ frf
h i

gdz ð5Þ

equation (4) is written in terms of the effective pressure (pe =
�s � pf)

f vf � vs
� �

¼ k

mf

rpe þ 1� fð ÞDrguz½ � ð6Þ

Table 1. Common Symbols and Characteristic Values Adopted for Purposes of Dimensional Argumentationa

Symbol Meaning Value

A dimensionless amplitude (maximum porosity)
Cp isobaric heat capacity (pyrolite) 4 � 106 J K�1 m�3

f dimensionless porosity, f/f0

F dimensionless excess fluid volume, equation (28)
k permeability, equation (14)
k0 background permeability 10�7f0

n m2

L latent heat of melting 109 J m�3

m porosity exponent in bulk viscosity function, equation (12) 1
n porosity exponent in permeability function, equation (14) 3
p dimensionless fluid overpressure, �pe/(dDrg)
pe effective pressure, �s � pf
pf fluid pressure
R viscosity contrast
tc dimensionless time, time/t*
t* compaction timescale, d/c0 103 years
V dimensionless volume, volume/d3

vs solid velocity
vf fluid velocity
c0 magnitude of vf at pe = 0 and f = f0, k0Drg/mf 10�1, 1 m yr�1

z upward directed vertical coordinate
d compaction length scale,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0ms=f

m
0 =mf

p
103 m

Dr difference between solid and fluid density 500 kg m�3

ms solid shear viscosity 1018 Pa s
l dimensionless length scale for porosity
f porosity
f0 background porosity 10�3, 10�2

�s mean stress, equation (5)
mf fluid shear viscosity 10�1, 10 Pa s
w dimensionless wave speed c/c0
z aggregate bulk viscosity, equation (13)
aWhere two values are given, the first is the value adopted for the lower asthenosphere, where melting is presumed to be caused

by water-rich heterogeneities that result in the formation of low-viscosity melts, the viscosities expected of such melts vary from
O(100) Pa s for basaltic melt to O(10�1) Pa s for kimberlitic melt. The second value is for basaltic melts generated in the upper
asthenosphere (<�60 km depth) beneath mid-ocean ridges. In the lower asthenosphere, background porosities of O(10�3) are
necessary to explain chemical fractionation patterns [McKenzie, 1985; Khazan and Fialko, 2005]. Beneath mid-ocean ridges, melt
viscosities are of O(101) Pa s and geophysical and geochemical [Forsyth et al., 1998; Spiegelman and Reynolds, 1999] evidence is
consistent with background porosities of O(10�2). The compaction scales have been rounded to the nearest order of magnitude to
emphasize the approximate character of the scales.
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whereDr = rs � rf and uz is an upward directed unit vector.
The isostasy assumption implicit in equation (5) is equivalent
to the assumption that the shear viscosity of the matrix is
negligible in comparison to the bulk viscosity. Scott [1988]
and Scott and Stevenson [1986] evaluated the effect of
this assumption by both linear stability and numerical
analysis and discovered that finite shear viscosities influence
porosity wave properties, but do not effect the qualitative
behavior and scaling predicted from the compaction
equations.
[7] The divergence of the total volumetric flux of matter is

the sum of equations (1) and (2):

r 	 vs þ f vf � vs
� �� 	

¼ 0 ð7Þ

and substituting equation (6) into equation (7) gives

r 	 vs þ
k

mf

rpe þ 1� fð ÞDrguz½ �
 !

¼ 0 ð8Þ

[8] Rheology is introduced through Terzaghi’s effective
stress principle as

r 	 vs ¼ � pe

z
ð9Þ

where z, a function of porosity and effective pressure, is the
bulk viscosity of the system. Substitution of equation (9)
into equations (3) and (8) yields two equations in three
unknowns {f, pe, vs}:

@f
@t

¼ 1� fð Þ pe
z
� vsrf ð10Þ

pe

z
¼ 1

mf

r 	 k rpe þ 1� fð ÞDrguz½ �f g ð11Þ

that are usually closed by the introducing the matrix force
balance equation. However, we show next that for the small
porosity conditions of interest, dimensional considerations
indicate that the porosity advection term in equation (10) is
negligible in which case equations (12) and (13) reduce to a
closed system of equations in {f, pe}.

2.1. Constitutive Relations and Nondimensionalization

[9] Bulk viscosity is commonly approximated as

zc  ms=f
m ð12Þ

where m is an exponent between zero and one and ms is the
shear viscosity of the solid grains [Scott and Stevenson,
1984]. In contrast to most earlier studies that neglected the
porosity dependence of the bulk viscosity, i.e., by explicitly
or implicitly taking m = 0 in equation (12), we consider the
case m = 1. This choice is theoretically justified in the small
porosity limit [Nye, 1953; Sumita et al., 1996], is consistent
with both experimental [Ashby, 1988; Renner et al., 2003]
and natural [Connolly and Podladchikov, 2000] compaction
profiles, and precludes unrealistic behavior such as negative
porosity [Connolly and Podladchikov, 1998, 2000].

[10] To simulate the compaction-decompaction asymme-
try, we express effective bulk viscosity (Figure 1) as a step
function of effective pressure

z ¼ zc R� H peð Þ R� 1ð Þ½ � ð13Þ

where R is the ratio of bulk viscosity in decompaction (Rzc)
to that in compaction (zc, equation (12)) and H(pe) is the
Heaviside function. Permeability is expressed as

k ¼ k0
f
f0

� n
ð14Þ

where k0 and f0 are the background values of the
permeability and porosity, respectively, and the exponent n
is taken to be a constant. Although n = 3 is assumed
throughout this work, we retain the algebraic notation for
generality.
[11] Appropriate scales for nondimensionalization are the

background porosity, f0, the viscous compaction length

d 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0ms=f

m
0 =mf

q
ð15Þ

the characteristic compaction pressure

p* ¼ dDrg;

and the speed of Darcyian flow through the unperturbed
matrix

c0 ¼ k0Drg= mf f0

� �
ð16Þ

[12] Making use of these scales, the nondimensional
forms of equations (10) and (11) are

@f

@tc
¼ 1� f0fð Þf m p

1� H pð Þ 1� Rð Þ � v0srf ð17Þ

f m
p

1� H pð Þ 1� Rð Þ ¼ r 	 f n rp� 1� f0fð Þuz½ �f g ð18Þ

where f = f/f0 is the dimensionless porosity, p = �pe/p* is
the dimensionless fluid overpressure relative to lithostatic
conditions, v0s = vs/c0 is the dimensionless matrix velocity,
and tc = t/t* is the dimensionless time defined relative to the
characteristic compaction time

t* ¼ d=c0 ð19Þ

[13] A consequence of the asymmetric viscous rheology
is that decompaction occurs on scales dictated by the
effective viscosity for decompaction, rather than the viscos-
ity for compaction. The decompaction scales for length,
time, and pressure can be expressed as a function of R as

dd ¼ d
ffiffiffi
R

p

td* ¼ t*
ffiffiffi
R

p

pd* ¼ p*
ffiffiffi
R

p
ð20Þ
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[14] For dimensional argumentation we take the parame-
ter values listed in Table 1 as order of magnitude estimates
for the scales of asthenospheric melt flow. The influence of
the effective decompaction viscosity is explored via R,
which is taken as a free parameter in the range 100–10�6.
[15] To demonstrate that the porosity advection term

in equation (17) is negligible in the small porosity limit
(1 � f) ! 1, we consider one-dimensional compaction, a
simplification justified by the expectation gleaned from
symmetric viscous compaction models that in higher dimen-
sions the divergence of the matrix velocity is greatest in the
direction of fluid expulsion [Scott, 1988; Barcilon and
Lovera, 1989; Wiggins and Spiegelman, 1995]. For a
compacting region (i.e., p < 0), equation (17) is then

@f

@tc
¼ 1� f0 fð Þf mp� v0s

@f

@z0
ð21Þ

[16] Adopting a barycentric coordinate frame, equation (7)
gives the dimensionless matrix velocity v0s relative to that of
the fluid v0f = vf/c0 as

v0s ¼ �fv0f= 1=f0 � fð Þ ð22Þ

from which it is apparent that if all other factors are of O(1)
as expected by from the choice of scales, then in the small
porosity limit the porosity advection term will be of O(f0)
and can be neglected. If equations (17) and (18) are
reformulated in terms the length, time and pressure scales
for decompaction (equation (20)) the same result is obtained
for a decompacting region. Accordingly, we drop the
advective term from equation (17) and explicitly introduce
the small porosity approximation 1 � f  1 in
equations (17) and (18) to obtain

@f

@tc
¼ f m

p

1� H pð Þ 1� Rð Þ ð23Þ

f m
p

1� H pð Þ 1� Rð Þ ¼ r 	 f n rp� uzð Þ½ � ð24Þ

[17] Equations (23) and (24) then form a closed system
of equations in {f, p} that we solve numerically. A conse-
quence of the small porosity approximation is that
equations (23) and (24) are insensitive to the physical
constraint f < 1 with the further consequence that the
amplitudes of steady state porosity waves in a viscous
matrix are an increasing function of wave speed [Barcilon
and Lovera, 1989; Barcilon and Richter, 1986]. Thus there
is no question that there are solutions to equations (23) and
(24) for which the porosity would become large enough to
cause disaggregation, the issue to be addressed here is
whether transient effects may permit such solutions to
develop from small flow perturbations.
[18] To clarify the physical implications of our approxi-

mate formulation, we remark that equation (3) admits two
limiting modes of fluid transport [Scott and Stevenson,
1986]. If the advective term dominates, fluid movement
relative to the matrix is insignificant and fluid migration

occurs by diapiric upwelling due to the buoyancy of a
region of elevated porosity. This phenomenon has been
studied extensively without consideration of the dilational
term. These studies have shown that for asthenospheric
conditions, rates of diapiric upwelling [Weinberg and
Podladchikov, 1995; Hall and Kincaid, 2001] achieve
maximum velocities of O(10) m yr�1. Here we isolate the
alternative limiting mode of transport admitted by
equation (5), in which a pulse of porosity is propagated
through the matrix, i.e., the porosity wave end-member. In
this case the dilational term is essential to describing the
phenomenon, but the integrated effect of the advective term is
negligible for small porosity problems as the total displace-
ment of the matrix due to expulsion of the fluid is small.
Indeed, the advective term has minor influence on steady
state viscous compaction profiles with porosity variations as
large as 25% [e.g., Connolly and Podladchikov, 2000].

2.2. Relationship Between Wave Speed and Amplitude

[19] The relationship between the speed (c) and amplitude
of a porosity wave is essential to assessing waves as a
potential transport mechanism. In this regard, the porosity
dependence of the bulk viscosity (equation (12)) is critical
[Connolly and Podladchikov, 1998]. Analytical treatments
that assume no porosity dependence give a linear relation-
ship w = 2A + 1 (n = 3, m = 0) for one-dimensional solitary
waves [Barcilon and Richter, 1986], where w is the dimen-
sionless speed (c/c0) and the amplitude A is taken as
the maximum dimensionless porosity. Following the
approach outlined by Barcilon and Richter [1986], the
speed-amplitude relation derived for the present formulation
(n = 3, m = 1) is

w ¼ 3� 4� 9Aþ 5� 6 ln Að Þ½ �A3

1� Að Þ2 Aþ 2ð Þ
ð25Þ

[20] In the limit of large (A > 10) amplitude waves,
equation (25) simplifies to a logarithmic relationship between
speed and amplitude

w  6 lnA ð26Þ

which will be shown to be relevant here. This strong
dependence of amplitude on speed implies only a limited
range of transport speeds can be achieved without causing
the matrix to disaggregate to a magmatic suspension.

2.3. Numerical Methods

[21] Equations (23) and (24) are solved by a second-order
alternating direction finite difference scheme. In the direc-
tion of implicit solution, equation (24) is used to compute p
at time level q + 1 from the estimated value of f at the same
time level. The estimate of f is then recomputed from its
value at time level q and equation (23). This procedure is
repeated until the relative change between successive esti-
mates of f is less than an arbitrary tolerance (10�12). The
horizontal boundary conditions are p = 0, and mirror
symmetry is applied for the vertical boundaries.
[22] Convergence tests and comparison of numerical

solutions with one- and two-dimensional analytical solu-
tions for viscous formulations indicate that a minimum of
eight nodes per compaction length is necessary to accurately
resolve flow instabilities. The differing length scales for
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compaction and decompaction creates practical difficulties
that we circumvent by two distinct strategies. To model
multiple flow instabilities simultaneously, we employ a grid
with lateral and vertical spacing proportional to dd and d,
respectively. This approach accurately resolves flow chan-
neling, but overestimates the velocity of channel propaga-
tion by as much as a factor of two because the vertical grid
spacing is inadequate to resolve the shape of overpressured
regions. To accurately resolve all features of an isolated
instability over long periods of model time, we employ a
variable spaced grid that is propagated vertically together
with the flow instability. In the vertical direction, the grid is
divided into three regions; in the uppermost and lowermost
regions the grid spacing is constant and proportional to d,
whereas in the central region the grid spacing is constant
and proportional to dd. The grid is propagated periodically
so that the point within the instability at which f is a
maximum remains near the lower boundary of the central
region. The propagation is done when the instability has
moved a distance corresponding to the nodal spacing of
the low-resolution region. The values of p for the solution

at the high-resolution nodes created by grid propagation are
obtained by linear interpolation, whereas f at the low-
resolution nodes created by grid propagation is adjusted to
conserve the porosity that was previously present within the
intervening high-resolution nodes.

3. Flow Channelization From a Large Source

[23] We begin by considering fluid expulsion from a large
(i.e., vertical and lateral extent �d) region of elevated
porosity obstructed from above by a region of low porosity
(t = 0, Figure 2). For this configuration, numerical simula-
tion demonstrates that the obstruction induces strongly
channeled fluid flow. The channels are propagated by
porosity waves of extraordinary amplitude and speed that
leave a trail of incompletely compacted porosity in their
wake. These trails act as preferential pathways for subse-
quent waves, and develop initially with spacing comparable
to d and width comparable to dd, a result suggesting that
these scales are appropriate for the channelization process.
The waves are propagated by a small region of overpressure

Figure 2. Two-dimensional numerical simulation of fluid flow through a matrix with decompaction
weakening (R = 10�3) as it evolves from a 60 d thick layer with elevated porosity bounded from above
and below by regions with an order of magnitude lower porosity. (top) Porosity in the uppermost portion
of the layer and in the overlying region; (bottom) corresponding distribution of fluid overpressure. Initial
waves (tc = 0.5) form with characteristic spacing identical to the viscous compaction length and leave a
trail of slightly elevated porosity, flanked by fluid depleted matrix. Depletion of the matrix reduces the
local compaction length scale for the initiation of subsequent waves (tc = 1). These waves collect within
the trails of the initial waves, so that at 30–40 d from the initial obstruction, flow is again channelized on
the length scale d. By analogy with the three-dimensional viscous case [Wiggins and Spiegelman, 1995],
it is presumed here that the three-dimensional expression of the channels would be pipe-like structures, a
presumption recently validated by three-dimensional numerical models (B. J. P. Kaus, personal
communication, 2006).
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that decompacts the matrix (Figure 2). A much large region
of under pressure beneath the overpressured region is
necessary for compaction to expel the fluid required to fill
the porosity created by decompaction. As compaction
occurs on the scale of d and decompaction on the scale of
dd, the passage of the waves causes a reduction of the
background porosity with the consequence that the waves
must gain fluid as they propagate. The reduction in porosity
caused by the passage of the initial wavefront reduces the
local compaction length for subsequent waves that nucleate
between the initial channels. This effect causes channeliza-
tion above the initial flow obstruction to occur on progres-
sively finer scales with time. However, the net effect of
interactions between waves developed on different length
scales is to focus the waves into the channels left by the
initial wavefront, so that by the time secondary waves have
propagated 30–40 d most flow is confined within the
primary channels.
[24] Because the volume carried by porosity waves may

be much less than that of the source region, it is to be
expected the area of a ‘‘large’’ source region has little
influence on the waves that form from it. Numerical experi-
ments conducted to quantify the spatial domain that quali-
fies as large with the decompaction weakening rheology
show that it is surprisingly small, �10–100 d2

ffiffiffi
R

p
. Thus a

numerical experiment for a configuration as just discussed
(Figure 2), but with a layer thickness of d/2, initially yields
essentially identical waves. However, because the initial
wavefront removes a large fraction of the source volume,
waves that nucleate later in the experiment are significantly
smaller.
[25] Three-dimensional models of compaction-driven fluid

flow show that porosity waves in a viscous matrix develop
with radial symmetry orthogonal to the direction of propa-
gation [Wiggins and Spiegelman, 1995]. As decompaction
weakening introduces no inherent asymmetry orthogonal
to the direction of flow, we infer that the channels in our
two-dimensional simulations develop with radial symmetry
in three dimensions, i.e., as pipe-like structures, and inference
validated by recent three-dimensional models (B. J. P. Kaus,
personal communication, 2006). Thus, in natural settings, the
channels would focus pervasive fluxes by a factor of�1/R. In
natural settings, the most probable effect of far-field tectonic
stresses would to flatten the channels into more dike-like
structures, in which case the focusing factor would approach
�1/

ffiffiffi
R

p
.

4. Wave Evolution From Small Sources: Return
of the Blob

[26] The dynamics of solitary wave nucleation are such
that even for the symmetric viscous case there is no simple
relation between the excess volume of the source and that of
waves which evolve from it, where excess volume is the
amount of porosity above the background level integrated
over the source region, i.e., fluid volume in excess of that
contained by the background porosity. There is, however, a
monotonic relationship between wave excess volume and
speed. While the details of this relationship vary depending
on geometry and constitutive relations [Barcilon and
Richter, 1986; Barcilon and Lovera, 1989; Wiggins and
Spiegelman, 1995; Connolly and Podladchikov, 1998],

excess volume approaches zero monotonically as the di-
mensionless speed (w) drops below the porosity exponent n
in the permeability function [Connolly and Podladchikov,
1998]. Thus to provide a scale, albeit arbitrarily, to define
small excess volumes we observe that the excess volume of
the viscous solution for w = 3 is �103 (a result obtained by
taking the one-dimensional analytical solution as a proxy
for the three-dimensional case as described later). Thus a
large volume of fluid is necessary to nucleate a solitary
wave with a speed slightly above the minimum at which the
wave is stable, e.g., if the spatial extent of the source region
is d3, then the fluid fraction in this source region necessary
to nucleate a wave is �103 �0. While the observation that
the solitary waves in a viscous matrix do not lose mass as
they propagate was thought to make them an effective
transport mechanism [Scott and Stevenson, 1984; Richter
and McKenzie, 1984] the corollary that they cannot gain
mass in combination with the requirement of a large source
excess porosity suggests they are ineffective for extracting
small quantities of melt. In contrast, the depletion of
the background porosity observed with decompaction
weakening (Figure 2) suggests that the waves gain mass
as they propagate. Anticipating that this imbalance influences
transient dynamics so as to allow solitary waves to nucleate
from minute perturbations in a decompaction weakening
matrix we proceed to investigate this scenario.
[27] The magnitude of the source porosity relative to the

background level has important influence on wave generation,
such that low-amplitude sources generate low-amplitude
(speed) waves or may even hinder nucleation. However,
our concern is the extraction of melt generated by low
degrees of partial melting. In this context, small variations
in melt production are sufficient to generate large relative
porosities. Thus we focus on the constraint on the excess
volume for initial configurations with a maximum relative
porosity of two. To resolve wave evolution with decompac-
tion, weakening rheology a series of numerical experiments
were undertaken as a function of the parameter R in which
waves were nucleated from a circular region of elevated
porosity in otherwise uniform background porosity. The
initial radial porosity distribution within the circular region
was Gaussian with

f ¼ 1þ exp � r=lð Þ2
h i

ð27Þ

where the size parameter l and resulting excess volume
were specified as in Table 2. For this distribution, in both
two and three dimensions, essentially all the excess volume
of the source region occurs within a radius of <3l. Thus, if
the viscous compaction length is �1 km, then the initial
conditions correspond to a source region with a melt
fraction less than twice the background level and spatial
dimensions of 10–100 m. The experiments show that
decompaction weakening permits solitary waves to nucleate
from sources that are miniscule (�10�2–10�4 f0d

3, Table 2)
in comparison to that required for the viscous case (�103

f0d
3); but waves did not nucleate in all the experiments (5a

and 6a, Table 2). This observation indicates that uniform
compaction driven fluid flow through a matrix with
decompaction weakening is not inherently unstable. No
systematic effort was made to delimit the conditions at

B10205 CONNOLLY AND PODLADCHIKOV: ASTHENOSPHERIC MELT EXTRACTION

7 of 15

B10205

jamie
Cross-Out



which solitary waves do not nucleate since these conditions
must depend on the geometry, extent and amplitude of the
flow perturbation.
[28] In the numerical experiments wave evolution occurs

in two stages that are best understood from transverse
sections through the spatial domain of the models
(Figure 3). In the initial stage, the perturbation is propagated
upward as a porosity shock (tc < 2, Figure 3). During this
stage the divergence of the vertical fluid flux, due to lateral
compaction, required for growth of the shock can be
maintained by increasing the effective pressure with depth.
The maximum effective pressure gradient is limited by
hydrostatic fluid pressure, thus the shock becomes unstable
once such conditions are achieved. Thereafter a pressure
minimum propagates upward from the base of the initial
obstruction and the increase in pressure beneath this
minimum causes the lower portion of the shock to stagnate.
[29] Separation of the stagnant and dynamic portions of

the shock initiates the second stage of wave evolution,
whereby the dynamic portion of the shock (Figure 4) is
identified as the solitary traveling wave responsible for the
channeling instability (Figure 2) discussed previously. This
stage is reminiscent of the solitary waves known for the
viscous case in that the porosity created by decompaction in
the upper part of the wave is restored by compaction at
depth. In the viscous case, the pressure anomalies respon-
sible for decompaction and compaction are antisymmetric
(Figure 4b) and therefore it is not surprising that the waves
evolve toward a steady state in which the background
porosity is restored after the wave passage. In detail,
numerical simulations show that this restoration is imper-
fect, so that the waves leave trails of elevated porosity that
causes them to lose mass with time, albeit almost imper-
ceptibly. With decompaction weakening the wave wake has
a more complex structure (Figure 4a) consisting of a tail of
elevated porosity (i.e., f > 1), flanked by troughs formed by
drainage. Within the resolution of the numerical calculations
the effective pressure within the wake vanishes, so the wake
is a structure that persists on a long timescale.

4.1. Speed and Amplitude

[30] A remarkable feature of decompaction weakening
solitary wave solutions with is that they have virtually
identical speed-amplitude relationships, which are, in turn,
nearly identical to that of the symmetric viscous solution

(Figure 5a). Early work on solitary wave solutions in
viscous media emphasized distinctions between one-dimen-
sional and multidimensional solutions that are important for
the small amplitude waves that initiate in the viscous
scenario [Barcilon and Richter, 1986; Barcilon and Lovera,
1989]. The simulations here demonstrate that extraordinary
amplitudes may be achieved by waves in a decompaction
weakening matrix. For such large amplitude waves the
distinction between one-dimensional and multidimensional
solutions becomes insignificant [Barcilon and Lovera,
1989]. Thus the logarithmic speed-amplitude relationship
(equation (25)) predicted for the one-dimensional steady
state is essentially that which is observed in the numerical
simulations.

4.2. Rescaling to the Viscous Steady State

[31] The similarity in speed-amplitude relationships indi-
cates that the solitary waves that develop with decompac-
tion weakening correspond to a quasi-steady state that is
closely related to symmetric viscous steady state in which
the waves propagate with constant speed and unchanging
form. The origin of this similarity is that waves are
propagated by decompaction, which occurs on a much

Figure 3. Vertical profiles of porosity and pressure from a
two-dimensional model with a Gaussian initial porosity
distribution (equation (27), R = 6.4 � 10�3, model 1,
Table 2). Absolute profile coordinates are arbitrary; that is,
profiles are positioned so that the maximum pressure for
each profile approximately coincides. The porosity profile
time labels are positioned over the initial source region. At
tc = 0.1, the initial porosity profile has a small shoulder
corresponding to the nascent shock, and shock amplitude
initially decays as the front propagates away form its source
(tc = 0.5–1). At tc � 2 this trend reverses, and the shock
amplitude begins to grow coincidentally with separation of
a broad pressure minimum from the source region.
Separation of this minimum, coupled with the superjacent
pressure maximum, initiates the quasi-steady state phase of
the wave. Thereafter, the relationship between wave
amplitude and speed is essentially identical to that for the
symmetric viscous steady state (equation (25), Figure 5).
Increased porosity in the vertical profiles is generated by
compaction of the matrix orthogonal to the flow direction
(Figure 4).

Table 2. Initial Conditions for Numerical Models of Wave

Evolution From a Small Source as a Function of Ra

Model R l F2D F3D Wave

1 6.4 � 10�3 0.16 1.7 � 10�1 7.1 � 10�2 yes
2 1.6 � 10�3 8.2 � 10�1 4.3 � 10�2 8.8 � 10�3 yes
3 4.0 � 10�4 4.1 � 10�2 1.1 � 10�2 1.1 � 10�3 yes
4 1.0 � 10�4 2.1 � 10�2 2.7 � 10�3 1.4 � 10�4 yes
5a 2.5 � 10�5 1.0 � 10�2 6.7 � 10�4 1.7 � 10�5 no
5 2.5 � 10�5 4.1 � 10�2 1.1 � 10�2 1.1 � 10�3 yes
6a 6.3 � 10�6 5.2 � 10�3 1.7 � 10�4 2.2 � 10�6 no
6 6.3 � 10�6 2.1 � 10�2 2.7 � 10�3 1.4 � 10�4 yes
aThe spatial extent of the source region is measured by l (equation (27));

F2D (equation (29)) is the two-dimensional excess volume of the source
region; and F3D (equation (28)) is the corresponding three-dimensional
excess volume, the last column indicates whether a traveling wave
nucleated from the source.
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shorter timescale than compaction if R � 1. Thus the
decompacting region evolves toward a steady state that is
essentially independent of the compaction process at greater
depth and therefore identical to the upper hemisphere of the
symmetric viscous stationary solution with z = zcR and
length scale dd = d

ffiffiffi
R

p
(Figure 6). In contrast, in the

compacting region the operative length scale is d; thus
porosity generated by decompaction is restored on this
longer length scale. The increased length scale for compac-
tion causes the restoration to be stretched in the direction of
propagation resulting in a semiellipse of elevated porosity
beneath the decompacting region. This argumentation sug-
gests that the porosity distribution in the compacting region

can be transformed to that of the viscous solution by scaling
the vertical coordinate by

ffiffiffi
R

p
. Application of this transfor-

mation to the numerical results does indeed recover a close
approximation of the radially symmetric porosity distribu-
tion of the viscous steady state (Figure 4c). For R � 1, the
excess volume in the decompacting portion of the wave is
insignificant; thus the transformation implies F/

ffiffiffi
R

p
must be

approximately half the excess volume of the viscous steady
state, as is demonstrably the case in the numerical models
(Figure 5b).
[32] The stretching transformation cannot recover the

dipolar pressure field of the symmetric viscous steady state
because fluid underpressure associated with compaction

Figure 4. Two-dimensional (a) (log10) porosity and (b) pressure distributions (with different lateral
scales) associated with a solitary porosity wave in a matrix with decompaction weakening (R = 10�3, tc =
9.5). Depletion of the porosity on either side of the wave tail is caused by the imbalance in fluid
circulation resulting from the asymmetric pressure distribution. (c) The radially symmetric porosity
distribution of the viscous solitary wave solution is recovered from the porosity distribution by stretching
the compacting region by a factor of

ffiffiffi
R

p
(the lateral asymmetry in this image due to the graphics

rendering program and not present in the primary data). (d) Application of the same transformation to the
pressure distribution shows that while the absolute value of the transformed pressure minimum is
essentially identical to that of the pressure maximum, the pressure distribution is distorted from the
antisymmetric dipolar field characteristic of the viscous solution [Scott and Stevenson, 1986; Barcilon
and Lovera, 1989]. (e) Detail of pressure (in the range 0 to �0.1) above the equator of the transformed
porosity distribution which shows that the decompacting region is enveloped by the compactive pressure
field induced by fluid drainage at greater depth.
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develops around the compacting region on the scale d
(Figure 4d). The underpressure induces compaction and
drainage of portions of the matrix that have not been
perturbed by decompaction (Figures 4a and 6), a pattern
that results in the imbalance in fluid circulation responsible
for wave growth. In detail, the greater length scale for fluid
underpressure causes the decompacting region to be envel-
oped by underpressure induced by compaction at depth
(Figures 4e and 6). This phenomenon has the peculiar
consequence that the matrix may compact in advance of
the dilational portion of the waves and explains the slight
differences in the speed-amplitude relations, in that as R
decreases, larger amplitudes are required to achieve a given
speed.

[33] The size of solitary wave is equivocal because the
steady state porosity distribution asymptotically approaches
the background porosity. However, because the distribution
is nearly Gaussian, >99% of porosity occurs within twice
the second moment of the porosity distribution lf.
Unfortunately, lf was not recovered from the numerical
calculations; therefore we use the distance between the
porosity and pressure maxima lp as a measure of wave size
in the vertical direction; one-dimensional analytical solu-
tions for lf and lp indicate that these measures differ by
less than a factor of two (Figure 5c). For large waves in a
decompaction weakening matrix lp converges to the one-
dimensional viscous steady state, but for small waves there
is a marked dependence of lp on R. This dependence is

Figure 5. Wave properties as a function of R (dark blue, 6.4 � 10�3; red, 1.6 � 10�3; green, 4.0 �
10�4; light blue, 1.0 � 10�4; magenta, 2.5 � 10�5; yellow, 6.3 � 10�6) compared to properties derived
from the analytical one-dimensional solitary wave solution (black curves) for the symmetric viscous case.
(a) Logarithmic relationship between amplitude and speed obtained for the present formulation (equation (26))
which has implications for melt transport because it allows only a limited range of wave speeds as
compared to the linear relation derived in studies that neglect the porosity dependence of the bulk
viscosity. (b) Three-dimensional excess volume scaled by R as a function of amplitude. Three-
dimensional volumes are obtained from two- and one-dimensional numerical and analytical solutions as
discussed in the text. (c) Wavelength, measured by the distance from the porosity maximum to the
pressure minimum, as a function of speed, >98% of the excess volume associated with a wave occurs
over this interval. The dashed curve is twice the second moment of the porosity distribution obtained for
the one-dimensional analytical solution. (d) Pressure gradient at the porosity maximum as a function of
speed. That numerical results deviate from the analytical solution most strongly at low speeds is expected
in that at low speeds both wave size and pressure gradient vary, whereas at higher speeds the variation in
pressure gradient becomes insignificant.
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attributed to the fact that in small waves the pressure
gradient varies as a function of amplitude, whereas in large
waves the pressure gradient is effectively constant.
[34] To estimate the three-dimensional excess volumes

that correspond to our two-dimensional numerical solutions,
we observe that radial porosity distribution for the two-
dimensional viscous steady state [Barcilon and Lovera,
1989] differs insignificantly from the one-dimensional
steady state [Barcilon and Richter, 1986]. Under the as-
sumption that the three-dimensional porosity distribution is
likewise the spherically symmetric equivalent of the two-
dimensional case [cf. Wiggins and Spiegelman, 1995], the
excess volume of the viscous steady state

F ¼ �

Z1
0

2rð Þd�1
f � 1ð Þdr ð28Þ

where d is the dimension of the solution, is approximated by
substituting the one-dimensional porosity distribution (n = 3,
m = 1) for f. Comparison of this integration yields an

empirical function relating the volume of the three-
dimensional viscous steady state to that of the two-
dimensional case

F3D ¼
X3
i¼1

biF
i
2D ð29Þ

for F2D = 0! 3.4 � 105 with {b1 = 13.1, b2 = 1.70 � 10�5,
b2 = �2.53 � 10�11}. Given that the stretching transforma-
tion (i.e., z0 = z

ffiffiffi
R

p
) of the compacting region for waves

developed under decompaction weakening recovers the
radial symmetry of the symmetric viscous solution
(Figures 4b and 5c), it follows that the three-dimensional
excess volumes for the decompaction weakening rheology
can be expressed from equation (29) as

F ¼ R
X3
i¼1

bi F2D=
ffiffiffi
R

p� �i
ð30Þ

[35] Making use of lp as a measure of wave size, the
volume of matrix affected by a solitary wave is

V  2

3
pl3

pR ð31Þ

and the average excess porosity within a wave is

favg ¼
F

V
ð32Þ

Figure 6. Illustration of the scaling arguments used to
relate the solitary wave solution in (a) the symmetric
viscous case to (b) the solitary waves that develop in a
matrix with decompaction weakening. Yellow indicates
background values of pressure and porosity, red indicates
elevated values, and light and dark blue indicate weakly and
strongly depressed, respectively, values. In the symmetric
viscous case, the pressure distribution associated with a
porosity wave is an antisymmetric dipole so that fluid
circulation is perfectly balanced and the wave has no
tendency to gain or lose mass. With decompaction
weakening, fluid underpressures and compaction develop
on the length scale d as in the symmetric viscous case,
whereas decompaction and overpressure develop on the
shorter length scale d

ffiffiffi
R

p
. Thus decompaction generates an

elevated region of porosity and pressure analogous to the
upper hemisphere of the symmetric viscous case but on this
shorter length scale. Restoration of this elevated porosity
occurs on the length scale d, which causes the compacting
portion of the wave to develop a semiellipsoidal geometry.
Fluid underpressure in the compacting region relaxes on the
length scale d, causing compaction of the matrix in advance
of the wave as well as in laterally adjacent portions of the
matrix that have not been perturbed by decompaction.

Figure 7. Wave amplitude as a function (a) of time and
(b) of the rescaled time variable tcR

�3/8. Colors indicate the
value of R as in Figure 5. Porosity evolution prior to
initiation of quasi-steady state (Figure 3) is dependent on
the geometry of the initial perturbation, which varied in the
numerical experiments. Because wave amplitude varies
little in this initial phase, the curves appear to intercept the
time axis at tc > 1. In the limit that wave growth is truly
self-similar in time, with scaling as tcR

�3/8, the rescaled
curves should have the identical slopes as a function of
amplitude after achievement of the quasi-steady state.
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which evaluates to �0.2 A for A = 100–1000.

4.3. Growth

[36] The growth rate of quasi-steady state solitary waves
varies as a strong function of R (Figure 7a), but to the extent
that the steady state is a valid approximation it is to be
expected that transient wave evolution is self-similar. In this
case it should be possible to scale time by a function of R to
obtain a universal growth rate function. For this purpose we
assume a power function Rx, so that scaled time variable
becomes tcR

x, and solve for the unknown exponent x by
equating the scaled growth rates for excess volume,
(R�x/F)(@F/@tc), for numerical simulations at different R
values (Figure 8). This exercise give values for x between
�1/2 and �1/4, suggesting that compared to the compaction
timescale (x = 0), the timescale for decompaction (x = �1/2)
dominates growth rates. To a first approximation, scaling
with x = �3/8 is adequate to represent the numerical results
(Figure 7b), implying that wave amplitude can be expressed

as a linear function of time for 10�2 > R > 10�6. Using this

function, a first-order accurate parameterization of the
numerical results for A > 10 yields

A  tc=R
3=8 ð33Þ

w  6 lnA� 4 ð34Þ

F  1850AR ð35Þ

lp  w=2 ð36Þ

[37] This parameterization provides a number of useful
results, among these are that waves propagate a distance
comparable to their own wavelength in a dimensional time
of t*/2 (equation (36)) and that the time required for a wave
to disaggregate the matrix (i.e., A = fd/f0) is t*R3/8 fd/f0

(equation (33)). The discrepancy between the velocity of a
solitary wave and that of the background fluid flux gives
rise to a net flux through the solitary wave with the result
that the fluid generally travels more slowly than the porosity
[Richter and McKenzie, 1984; Scott and Stevenson, 1986].
Thus while the volume carried by the wave is of magnitude
wF, the excess fluid flux is of magnitude w(F � 1), a
distinction that is insignificant for large amplitude waves.

4.4. Dissipation

[38] Porosity waves must dissipate gravitational potential
energy as heat. In dimensional form, the volumetrically
averaged buoyancy force acting on the wave is f0 favgDrg,
thus the power per unit volume generated by dissipation is

P ¼ f0favgDrgwc0 ð37Þ

which is independent of R, but varies as �5A from
equations (32) and (34)–(36). If neither melting nor
freezing occurs and heating is confined to the wave channel
of radius dlp

ffiffiffi
R

p
, the temperature increase in the channel

caused by the passage of the wave is

DT ¼ d
c0

P

Cp

ð38Þ

[39] Making use of equations (31), (33), and (35), with
A = 0.2/f0 as an upper limit on amplitude and the
parameter ranges in Table 1, equation (38) indicates the
temperature change caused by the passage of a large wave
is 1–10 K. Such a thermal effects might weaken the
matrix and thereby generate a positive feedback that
further enhances channelized flow. An alternative limiting
scenario is that the matrix is at eutectic conditions, in
which case the power generated by dissipation is con-
sumed by melting. The dimensional melting rate is then

Gmelting ¼ 1

f0favg

P

L
ð39Þ

where L is the latent heat of melting. To assess the potential
importance of dissipation induced melting, Gmelting can be

Figure 8. Value of the scaling exponent as a function of
wave amplitude obtained by equating the wave growth rates
for the numerical simulation with R = 6.4 � 10�3 to those
obtained for R = 1.6 � 10�3 (red), R = 4.0 � 10�4 (green),
R = 10�4 (light blue), R = 2.5 � 10�5 (magenta), and R =
6.3 � 10�6 (yellow). A value of �1/2, as observed in the
initial stages of wave growth, indicates the compaction
timescale is determined entirely by the effective bulk
viscosity in decompaction. At larger amplitudes, the scaling
exponent varies by ±0.05 around the value of �3/8 taken
here to obtain a growth function (equation (36)). Although
there is no distinct break in the dependence of the scaling
exponent on amplitude, the weaker dependence observed
for large amplitudes does correlate with the conditions at
which the maximum pressure gradient within the waves
ceases to vary significantly (w � 20, A � 100, Figures 5a
and 5d).

B10205 CONNOLLY AND PODLADCHIKOV: ASTHENOSPHERIC MELT EXTRACTION

12 of 15

B10205



compared to wave growth rates (1/F (@F/@tc), from equation
(35)) due solely to decompaction weakening

Gmech ¼ c0

d
1

AR3=8
ð40Þ

[40] The rates Gmelting and Gmech correlate inversely with
amplitude, thus wave growth due to dissipation induced
melting becomes more important in large amplitude waves.
For asthenospheric parameter ranges (Table 1) and A =
0.2/f0, the two rates are equal at values of R between 10�2

and 10�4. A result suggesting that dissipative heating has
the potential to significantly enhance growth rates.

5. Prediction of Wave Properties From a Large
Source

[41] Porosity waves are a mechanism by which a fluid
flux in excess of the flux that can pass through the
unperturbed background porosity is accommodated in de-
formable porous media. While there is no strict relation
between the flux carried by waves and that of a source,
numerical models of fluid expulsion from large volume
sources [Spiegelman, 1993; Connolly and Podladchikov,
1998], or equivalently a source of high fluid flux, i.e., a
fluid producing chemical reaction [Connolly, 1997], show
that the flux carried by waves is comparable to the source
flux. Taking proximity to such a steady state as an ansatz,
equation (36) provides a basis for predicting the properties
of waves that nucleate from a large source. Making use of
the observation that such waves form with spacing �d, if
the magnitude of the integrated excess flux within the
source region is (q � q0)  q, then the flux channeled into
a wave must be of magnitude qpd2/4. Equating this flux
magnitude to that of the flux carried by a wave
(c0f0d

3wF), with equations (32) and (36), yields

q ¼ 14800Rk0fmax

pmf0

3 ln
fmax

f0

� 2

� 
ð41Þ

where fmax is the maximum porosity of a wave generated
from the source. Equation (41) can be rewritten in terms of
the source region porosity fsource, under the assumption that
the source region is initially noncompacting (i.e., q = kDrg/m),
as

fsource ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14800R

p
fmaxf

2
0 3 ln

fmax

f0

� 2

� s
ð42Þ

[42] An implication of equation (42) is that the source
porosity required to achieve a given maximum porosity is
strongly dependent on f0, e.g., to obtain fmax = 0.2 with R =
10�3, fsource/f0 varies from 9 to 58 as f0 varies from 10�2 to
10�4. This result depends on 3

ffiffiffi
R

p
, thus decreasing R by 3

orders of magnitude, lowers fsource/f0 by only an order of
magnitude. Porosity contrasts of greater than 2 orders of
magnitude are easily within the range generated by low
variance melting and devolatilization reactions [Connolly,
1997; Connolly et al., 1997]; thus even weak manifestations

of decompaction weakening in high-grade metamorphic
settings may be adequate to cause disaggregation.

6. Discussion

[43] The quantitative features of the results presented here
are specific to the formulation, but the model does depict a
fundamental consequence of asymmetry in compaction and
decompaction. Specifically, it demonstrates that the asym-
metry in the pressure field associated with flow instabilities
induces unbalanced fluid circulation that causes the insta-
bilities to grow with time. The implications for melt
transport are that porosity waves may nucleate from much
smaller perturbations, and may grow to much larger ampli-
tudes, than expected on the basis of symmetric viscous
compaction models. Thus we conclude that porosity waves
are a mechanism capable of bridging the gap between
pervasive and segregated melt flow.
[44] The relationship between wave amplitude and speed

is critical to evaluating the efficacy of fluid transport by
porosity waves and is particularly sensitive to the constitu-
tive law chosen to define the bulk viscosity, z. Theory [Nye,
1953; Sumita et al., 1996] and both field [Connolly
and Podladchikov, 2000] and experimental [Ashby, 1988;
Renner et al., 2003] observations support the contention that
z / 1/f, yielding a logarithmic relationship between
amplitude and speed (equation (26)). Given the astheno-
spheric compaction timescale (t*(y) � 6

ffiffiffi
m

p
/f0, Table 1),

melt extraction at porosities <10�4 is unlikely to be of
geological importance; the upper limit O(10�1) on the
porosities of interest here occurs when the matrix disaggre-
gates to a magmatic suspension [Arzi, 1978; Auer et al.,
1981; Ashby, 1988]. Thus, for asthenospheric melt transport,
relevant porosity wave amplitudes are <1000, implying that
porosity waves have the potential to increase melt transport
speeds by a factor of <100 over background flow rates.
Adopting parameters appropriate for asthenospheric melting
processes (Table 1), these speeds are �10–100 m yr�1.
[45] The foregoing speed constraints are derived by

exploiting the numerical observation that decompaction
weakening does not significantly affect the relationship
between wave amplitude and speed. However, wave growth
and therefore the time required to achieve a given speed are
critically dependent on decompaction weakening, charac-
terized here by the parameter R. In the absence of quanti-
tative experimental or theoretical models, field evidence of
asthenospheric melt channelization can be used to infer the
R values necessary to explain channelization as a conse-
quence of decompaction weakening. Such evidence in the
Kohistan Arc indicates that melts [Jagoutz et al., 2006] have
been focused into pipe-like channels of �500 m radius with
spacing of �10 km, requiring R � 10�2. Taking this value
for the sake of illustration, consider the segregation of
kimberlitic melt (m = 10�1 Pa s) initially present at a melt
fraction f0 = 10�3 such as often considered necessary to
explain kimberlite geochemistry [Khazan and Fialko,
2005]. For this scenario, from equation (32), a flow insta-
bility would accumulate 10 km3 of melt in 6000 years,
during which time the instability would propagate 67 km
and achieve a speed of 20 m yr�1 and a maximum melt
fraction of 0.02. Provided that two-dimensional dike models
generalize to three dimensions as disk-like structures, this
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melt volume is more than adequate to satisfy the geometric
constraints imposed by elastic theory for self-propagating
dikes [Fialko and Rubin, 1999]. Thus we posit that porosity
waves are a mechanism of generating the melt reservoir
essential to the nucleation of lithospheric dikes. Addition-
ally, because porosity wave propagation causes elevated
strain rates, they may provoke the elastic response required
to initiate dikes or other high Deborah number transport
mechanisms [Rubin, 1998; Phipps Morgan and Holtzman,
2005].
[46] There is broad agreement that actinide isotopic

secular disequilibria observed in mid-ocean ridge (MOR)
volcanic rocks require both a pervasive and a localized,
more rapid, melt transport mechanism in the subjacent
asthenosphere [McKenzie, 1985]. In this regard, the reactive
infiltration model does not predict transport velocities that
are adequate to preserve 226Ra, if this isotope is derived by
melting at the base of the asthenosphere. Accordingly,
proponents of reactive infiltration argue that 226Ra in MOR
volcanics derives from near surface processes [Kelemen et
al., 1997; Spiegelman et al., 2001; Jull et al., 2002].
Defense of this argument has been complicated by recent
measurements that suggest the fractionations of 226Ra and,
its even shorter lived daughter, 210Pb relative to 230Th in
MOR basalts are inconsistent with the trends expected from
shallow processes and therefore are most easily explained as
the signature of incipient melting [Rubin et al., 2005;
Elliott, 2005], implying transport speeds of �103 m yr�1.
Thus, although decompaction weakening extends the range
of transport speeds attainable by porous flow, speeds of this
scale exclude porosity waves as the primary mechanism for
rapid melt transport beneath mid ocean ridges thereby
lending credence to the earlier hypothesis that dikes fulfill
this role [Nicolas, 1986].
[47] Reactive infiltration and mechanical flow instabilities

are mutually reinforcing [Spiegelman et al., 2001], but
specific asthenospheric settings may enhance or subdue
the role of either mechanism. In this regard it is pertinent
to observe that the upper asthenosphere is itself a porosity
wave that remains stationary with respect to the earth’s
surface as the mantle upwells beneath mid-ocean ridges.
The uniformity of MOR melt production attests to the
existence of a stable mechanical steady state that is likely
to limit development of smaller-scale mechanical instabil-
ities such as those discussed here [Scott and Stevenson,
1986] but would have little effect on chemical instabilities.
In contrast, because the reactive infiltration instability is
caused by dissolution of the matrix in the direction of flow it
may not operate in the lowermost portion of the astheno-
sphere where melting is controlled by chemical heteroge-
neity [Plank and Langmuir, 1992; Hirth and Kohlstedt,
1996; Phipps Morgan and Morgan, 1999]. Likewise, reac-
tive infiltration cannot promote melt flow in hostile environ-
ments where transport is hindered by crystallization, notably
the upper portion of the mantle wedge, where there is
evidence for channelized melt flow with transport speeds
of �100 m yr�1 [Turner, 2002]. Porosity waves generate
heat by viscous dissipation (equation (38)) a phenomenon
that may favor mechanical instabilities in such settings.
[48] The rheological manifestation of plasticity is favored

by falling temperature [Nicolas and Poirier, 1976] an effect
that should enhance decompaction weakening. A related

thermal effect causes the local viscous compaction length
to increase upward [Connolly and Podladchikov, 1998;
Connolly and Podladchikov, 2004]. These effects are not
incorporated in the numerical models presented here, but we
speculate that they cause channelized flows to anastomose
upward.
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