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Abstract

The near-surface compaction regime of most sedimentary basins is characterized by hydrostatic fluid pressures and
is therefore determined entirely by sediment matrix rheology. Within this regime, compaction is initially well described
by a pseudoelastic rheological model. With increasing depth, precipitation–dissolution processes lead to thermally
activated viscous deformation. The steady-state porosity profile of the viscous regime is a function of two length scales;
the viscous e-fold length, related to the compaction activation energy; and a scale determined by the remaining
parameters of the sedimentary process. Overpressure development is weakly dependent on the second scale for activation
energies >20 kJ/mol. Application of the steady-state model to Pannonian basin shales and sandstones indicates a
dominant role for viscous compaction in these lithologies at porosities below 10 and 25%, respectively. Activation
energies and shear viscosities derived from the profiles are 20–40 kJ/mol and 1020–1021 Pa-s at 3 km depth. The analytical
formulation of the compaction model provides a simple method of predicting both the depth at which permeability
limits compaction, resulting in top-seal formation, and the amount of fluid trapped beneath the top-seal. Fluid flow
during hydraulically limited compaction is unstable such that sedimentation rate perturbations or devolatilization cause
nucleation of porosity waves on the viscous e-fold length scale, ~0.5–1.5 km. The porosity waves are characterized by
fluid overpressure with a hydrostatic fluid pressure gradient and propagate through creation of secondary porosity in
response to the mean stress gradient. The waves are a mechanism of episodic fluid expulsion that can be significantly
more efficient than uniform Darcyian fluid flow, but upward wave propagation is constrained by the compaction front
so that the waves evolve into essentially static domains of high porosity following cessation of sedimentation. Yielding
mechanisms do not appreciably alter the time and length scale of episodic fluid flow, because fluid expulsion is ultimately
controlled by compaction. The flow instabilities inherent in viscous compaction are similar to, and a possible explanation
for, fluid compartments. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction (e.g. Hunt, 1990; Powley, 1990). The fluid pressure
gradient within these domains or ‘fluid compart-
ments’ is near to hydrostatic, and the domains areHigh-porosity domains of overpressured pore
bounded by relatively impermeable seals. Thefluid are a ubiquitous feature of sedimentary basins
detailed structure of a fluid compartment beneath
the uppermost ‘top seal’ is generally complex,* Corresponding author. Tel.: +41-1-632-7804;
typically consisting of a series of sub-compart-fax: +41-1-632-1088.
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approaches lithostatic pressure with increasing thermal activation (e.g. Sumita et al., 1996; Fowler
and Yang, 1999), an important limitation in thedepth. The geometry and scale of the compart-

ments are often entirely controlled by geologic context of low-temperature, near-surface environ-
ments. Accordingly, this paper begins with thestructure or lithologic heterogeneity. However, in

many basins, the top seal occurs at approximately presentation and parameterization of a steady-
state mathematical formulation to account forconstant depth and shows only local correlation

to structure and lithology (e.g. Hunt, 1990; thermally activated compaction that is then verified
by comparison to transient numerical calculationsAl-Shaieb et al., 1994; Surdam et al., 1994). In

these cases, the depth of onset for fluid overpres- and applied to a natural example.
Steady fluid flow through a viscous matrix issures is ~3 km and appears to show some relation

to the geothermal gradient. These observations unstable, such that perturbations that create an
obstruction to upward fluid flow induce fluid-filledsuggest that compartmentalization may be intrinsi-

cally related to sedimentary compaction and, in porosity waves (Richter and McKenzie, 1984;
Scott and Stevenson, 1984). Porosity waves areparticular, thermally activated features of compac-

tion, a hypothesis that is examined here with a self-propagating domains of overpressured poros-
ity. McKenzie (1987) briefly considered the devel-one-dimensional mathematical model of the com-

paction process. opment of porosity waves in the context of
sedimentary basins and argued that the rapidMost studies of compaction driven fluid flow in

sedimentary basins presume that porosity is a deposition of sediments onto a partially compacted
sediment layer would initiate waves. More thor-known function of distance from the sediment–

water interface, thus they model the consequences ough analysis shows that the waves are more likely
to initiate in response to a reduction in sedimenta-of compaction rather than the compaction process

itself. Sedimentary compaction at shallow depth is tion rate (Sumita et al., 1996). Regardless of this
detail, the observation that fluid compartments areby rotation and crushing of the sediment grains.

Although this mechanism results in a plastic rheol- common in rapidly accumulated sedimentary
sequences (e.g. Hunt, 1990) provides a compellingogy, if reasonable assumptions are made about the

deformation path, a pseudoelastic model can argument for the relevance of McKenzie’s model.
However, the assumption of constant matrix vis-describe the compaction process (e.g. Shi and

Wang, 1986; Audet and Fowler, 1992; Wangen, cosity creates a cosmetic flaw in that the waves
propagate upward rapidly. The waves are therefore1992). These models can explain overpressure

development in a pre-existing compartment in incapable of forming compartments that would
persist on the time scale of sedimentation, a charac-response to perturbations caused by processes such

as heating or devolatilization, but are usually teristic of sedimentary fluid compartments demon-
strated by the presence of mature hydrocarbons.inadequate to explain seal formation and compart-

mentalization ( Kooi, 1997). With increasing depth McKenzie’s model might be reconciled with the
observation that top seal formation is, at leastand temperature, compaction occurs largely

by dissolution–precipitation processes (e.g. sometimes, related to temperature, if thermally
activated mineral precipitation were capable ofLundegard, 1992; Qin and Ortoleva, 1994;

Bjørkum, 1995). Because the resulting deformation forming an obstruction to the upward propagation
of porosity waves (e.g. Hunt, 1990; Aharanovis time-dependent and irreversible, the rheology is

viscous. Dissolution–precipitation processes are et al., 1997). Equilibrium transport of saturated
solutes is inadequate to create obstructions becauseincompletely understood, but are generally thought

to result in thermally activated linear viscous rheol- of low solubility gradients (e.g. Connolly and
Thompson, 1989; Robinson and Gluyas, 1992).ogy (e.g. Angevine and Turcotte, 1983; Rutter,

1983; Schneider et al., 1996). Steady sedimentation Consequently, it is necessary to invoke disequilib-
rium phenomena to explain flow obstructions byof a matrix with thermally activated viscous rheol-

ogy was investigated numerically by Schneider mineral precipitation. Mechanisms of disequilib-
rium seal formation exploit local lithologic hetero-et al. (1996), but analytical treatments discount
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geneity (e.g. Birchwood and Turcotte, 1994; Qin where w is porosity, and subscripts f and s distin-
guish the velocities, v, of the fluid and sedimentand Ortoleva, 1994; Oelkers et al., 1996) but, on

a mesoscopic scale, are equivalent to viscous com- (see Table 1 for notation). The force balance
between the matrix and fluid is by Darcy’s law:paction as considered here. Under metamorphic

conditions, viscous compaction with temperature-
dependent rheology leads to the formation of

w(vf−vs)=−
k

m
Vp: , (3)

essentially static one-dimensional porosity waves
(Connolly, 1997; Connolly and Podladchikov,
1998). In the second part of this paper, we seek where: k is the matrix permeability; m is the fluid

viscosity, which, in view of the large variationto establish whether such waves are likely to form
on significant time and length scales in sedimentary possible in permeability, we consider constant; p:

is the fluid overpressure defined relative tobasins as a result of compaction or diagenetic
devolatilization. hydrostatic conditions such that p:=pf−rfgz, with

downward increasing depth coordinate, z; and rfPorosity waves are a mechanism of fluid flow
in which porosity dilation and compaction propa- is the fluid density. The sediment matrix rheology

is introduced through Terzaghi’s effective stressgates a domain of high porosity toward conditions
of lower mean stress, i.e. in most cases upward. In principle for a Maxwell viscoelastic bulk rheology:
prior studies of viscous compaction, it has been
assumed that matrix viscosity is independent of Vvs=−wApe

f
+b

dpe
dt B, (4)

the sign of the effective pressure. This assumption
implies that the negative effective pressure respon-
sible for pore dilation must be comparable in where pe is the effective pressure, b and f are the

coefficients of bulk matrix compressibility andmagnitude to the positive effective pressure that
induces compaction at depth. It is improbable that viscosity, and d/dt=(∂/∂t+vsV ) is the material

derivative of the sediment properties. The effectivesediments support large negative effective pressures
without yielding (e.g. Bjørlykke and Hoeg, 1997). pressure is the difference between the mean stress

and the fluid pressure, i.e. pe=s:−pf. The porosityWe implement a viscoplastic model in which pore
compaction and dilation are viscous and plastic, dependence of the rheological equation is necessi-

tated by the requirement that the matrix mustrespectively, to account for this possibility.
become incompressible as w�0. This dependence
follows directly from the first-order non-zero terms
of a Taylor series expansion of Vvs as a function2. Mathematical formulation and parameterization
of w, pe, and dpe/dt; thus, we refer to the simplest
rheology in which b and f are independent ofWe consider Darcyian flow of an incompressible
porosity as a linear viscoelastic rheology. Non-fluid through a viscoelastic sediment matrix com-
linear rheology results if b and f are dependent onposed of incompressible solid grains. Although the
porosity, a possibility that we explore subsequentlysolid and fluid components are incompressible, the
for the viscous term. The near-surface compactionsediment is compressible because fluid may be
of sediment is plastic, but if the sediment loadexpelled from the pore volume. Conservation of
increases monotonically, plastic and elastic formu-solid and fluid mass requires:
lations are mathematically equivalent (Audet and
Fowler, 1992; Wangen, 1992; Fowler and Yang,∂(1−w)

∂t
+V((1−w)vs)=0 (1) 1998). We therefore adopt Eq. (4) to describe

plastic compaction, which we designate as pseudo-
elastic to differentiate the physical process fromand
truly reversible elastic behavior. The coefficient, b,
is then the coefficient of the effective pore com-∂w

∂t
+V(wvf)=0, (2)

pressibility during monotonic loading, i.e. the
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Table 1
Common symbols and characteristic parameter valuesa

Symbol Meaning Units Typical value

De Local Deborah number, Eqs. (20) and (30)
k, kr Permeability, Eq. (21); reference value at wr m2 10−13–10−21
l Viscous e-fold length, Eq. (27) m 500–1500 m
m Bulk viscosity porosity exponent, Eq. (23) 0–1
n Permeability porosity exponent, Eq. (21) 3
pf, pe Fluid pressure; effective pressure, rs gz−pf Pa
p: Overpressure, pf−rfgz Pa
Q Creep activation energy, Eq. (25) kJ/mol 20–70
qs Sediment (sedimentation rate) flux m/My 101–103
Sf, S

w
Fluid and porosity source terms m3/m3-s Eq. (65)

T, Tr Temperature; reference value, Eq. (25) K 473
t Time s or My
vf, vs Fluid and sediment velocity m/My
v
w

Porosity phase velocity m/My
z, zr Depth; reference value for gr, Eq. (26) m 3000
zc Depth of top seal formation, Eq. (38) m 2000–4000
b Coefficient of pore compressibility Pa−1 10−8
k Hydraulic constant, Eq. (41) Fig. 5
lc Rheological constant, Eq. (32) m Fig. 5
w, wr Porosity; reference value for k, Eq. (21) 25%
wc, wss Top seal and fluidization porosity, Fig. 2 Eq. (40), Eq. (46)
w0, w1 Porosity at onset of compaction, Fig. 2
g, gr Sediment shear viscosity, Eq. (25); g at zr Pa-s 1020–1024
f Coefficient of sediment bulk viscosity Pa-s Eq. (23)
rf, rs, Dr Fluid density; sediment density; rs−rf kg/m3 900, 2600, 1700
m Fluid shear viscosity Pa-s 10−4
v Local hydraulic parameter, Eqs. (20) and (41)
^ As superscript, an estimator

a See Fig. 2 for additional notation.

inverse of the tangential bulk hardening modulus effective pressure, give:
in loading.

The mass conservation constraint [Eq. (1)] can VAvs−
k

m
(Vs:−rfguz−Vpe)B=0 (7)

be rearranged to express the divergence of the
matrix velocity in terms of the material derivative where uz is the unit vector directed toward increas-
of the porosity: ing depth. Eqs. (1), (4), and (7) then form a

system of three equations in four unknown quanti-
ties {w, pe, vs, Vs:} that becomes closed if Vs: isVvs=

1

1−w

dw

dt
. (5)

specified as a function of depth.

Addition of Eqs. (1) and (2) gives the divergence 2.1. One-dimensional compaction
of the total volumetric flux of matter as:

Sedimentary compaction is primarily a process
V(vs+w(vf−vs))=0. (6) of sediment consolidation orthogonal to the

Earth’s gravitational field. We thus approximate
the process as one-dimensional. In this context,Eqs. (6) and (3), together with the definition of
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Eq. (7) may be integrated to express the sediment by the subsequent result that our formulation
provides an adequate description of the compac-velocity at depth
tion of near-surface poorly consolidated sediments,
where the greatest variations in bulk density occur.vs=qt+

k

m A∂s:
∂z

−rfg−
∂pe
∂z B, (8)

2.1.1. Steady-state compactionwhere qt is the total volumetric flux of matter
During uniform sedimentation, transient com-through the sedimentary column. Employing Eq.

paction evolves toward a steady-state limit; the(5) to express the divergence of the matrix velocity
time scale of this evolution increases strongly within terms of porosity, Eqs. (4) and (7) are
depth due to the reduction in permeability caused
by consolidation. Consequently, for the character-1

1−w

dw

dt
=−wApe

f
+b

dpe
dt B (9) istic sedimentation time, the near-surface regime

is expected to be in closer proximity to the steady-
state limit. We therefore begin by supposing the1

1−w

dw

dt
=

∂

∂z Ak

m A∂s:
∂z

−rfg−
∂pe
∂z BB, (10) existence of a stationary state extending from the

sediment–water interface to a depth, zss, such that
the porosity profile is independent of time, awhere, from Eq. (8), the material derivative is
situation often referred to as equilibrium compac-
tion. In the one-dimensional steady state, integ-d

dt
=

∂

∂t
+Aqt+

k

m A∂s:
∂z

−rfg−
∂pe
∂z BB ∂∂z

(11) ration of Eq. (1) gives

and ∂/∂z is the partial derivative in a reference vs=
vss(1−wss)

(1−w)
=

qs
(1−w)

(14)
frame defined relative to the sediment–water inter-
face. In truly isostatic compaction, the mean stress

where qs is the sediment flux v0(1−w0) at thegradient is well approximated by the gradient of
sediment–water interface, i.e. the sedimentationthe sediment load
rate, and subscripts ‘ss’ and ‘0’ denote values at
zss and at z=0. Material derivatives then expand∂s:

∂z
=((1−w)rs+wrf)g (12) as d/dt=qs/(1−w)∂/∂z. Eq. (9) requires that con-

nection of the steady-state porosity to the more
slowly compacting transient regime must occurwhere rs is the solid density. Eq. (12) introduces
at conditions such that the effective pressurearithmetic complexity into the compaction equa-
and its gradient are vanishingly small, i.e. astions (cf., Fowler and Yang, 1999) without
z�zss, pe�0 and ∂pe/∂z�0. These conditions,accounting for the potentially important contribu-
together with Eqs. (8) and (13), constrain thetion of deviatoric stresses into the force balance
total flux tofor consolidated sediments. Deviatoric stresses in

partially consolidated sediments are sensitive to
far-field stresses, basin fill history, topographic qt=vss−

kss
m

Drg (15)
slope and rheology. In light of these sources of
inaccuracy, we simplify Eq. (12) by taking the

with Dr=rs−rf. Using Eq. (14) to express themean stress gradient as a constant external param-
local sediment velocity, vs, in terms of vss, Eqs. (8)eter such that
and (9) form a closed system of two ordinary
differential equations in two unknown functions∂s:

∂z
=rsg, (13) {w, pe}

where rs becomes the effective density of the ∂pe
∂z

=DrgA1−
kss
k B−mvss

k

w−wss
1−w

(16)
sedimentary column. We justify this simplification
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flow instabilities during viscous compaction (e.g.∂w

∂z
=−w(1−w)A pe

fqs
(1−w)+b

∂pe
∂z B. (17) Barcilon and and Richter, 1986). Such a relation-

ship is represented by
Defining the dimensionless effective pressure and
depth as p∞=pe/p1 and z∞=z/L, with p1=LDrg and

k=Akr
wnr
B wn (21)L a measure of the compaction length scale, Eqs.

(16) and (17) can be expressed in non-dimensional
form as

where kr is the permeability at a reference porosity,
wr. From theory, permeability is expected to vary∂p∞

∂z∞
=1−

kss
k

−v
w−wss
1−w

#1−vw (18) as a quadratic or cubic function of the connected
porosity (e.g. Gueguen and Dienes, 1989), whereas
network modeling of natural pore distributions∂w

∂z∞
=−w(1−w)b∞A p∞

De
(1−w)+

∂p∞

∂z∞ B (19)
suggests porosity exponents near three (Zhu et al.,
1995). Permeability–porosity trends in clay-rich

in terms of three dimensionless parameters rocks (Neuzil, 1994; Schneider et al., 1996) are
also consistent with a cubic porosity–permeability

v=
mvss

kDrg
#

mqs
kDrg

, De=
qsbf

L
, b∞=bLDrg. relationship, and because such lithologies are likely

to limit the effective permeability of sedimentary
(20) basins, a cubic (n=3) porosity–permeability rela-

tionship is generally assumed here. ExperimentallyThe approximation in Eq. (18) holds when the
determined porosity–permeability relationshipspermeability and porosity of the steady-state
often have much higher porosity exponents (e.g.domain are much larger than in the subjacent
n>10, David et al., 1994) that may partially reflecttransient domain. Eq. (18) gives the effective pres-
transient phenomena that are unimportant on thesure gradient as a function of v such that when
compaction time scale (Connolly, 1997). In com-v%1 the effective pressure gradient is Drg, a
parison to empirical logarithmic porosity–perme-condition corresponding to a hydrostatic, i.e.
ability relationships (e.g. Bethke, 1985; Van Balennormal, fluid pressure gradient. The inverse rela-
and Cloetingh, 1994) used in basin modeling,tionship between sediment velocity and permeabil-
a cubic function provides for a conservativeity embodied in v is sometimes used to distinguish
model. Logarithmic relationships lead to moreregimes of slow v�0 and fast v�2 compaction
rapid reduction in permeability with compaction(Audet and Fowler, 1992; Wangen, 1992; Fowler
and depth, resulting in overpressuring andand Yang, 1998). The Deborah number, De
undercompaction at shallower depths and higher(Judges 5:5; Reiner, 1964), in Eq. (19) is a measure
porosity. Such relationships would amplify flowof the relative influence of the viscous and pseudoe-
instabilities that develop from compactionlastic mechanisms on the shape of the compaction
disequilibrium.profile, such that when De~1, both components

The permeability of sediment with 25% poros-are comparable, and De�0 and De�2 represent
ity, which is taken as wr, varies from 10−12 tothe viscous and pseudoelastic limits. Both v and
10−21 m2 (e.g. Gueguen and Palciauskas, 1994;De may be strongly dependent on the compaction
Neuzil, 1994; Schneider et al., 1996). Shales andprocess; therefore, to complete the formulation, it
clay-rich rocks define the lower five decades of thisis necessary to specify the relationships of perme-
spectrum, which grades continuously into valuesability and bulk viscosity to porosity and depth.
characteristic of sandstones. This spectrum is
broader than the ranges often assumed for basin2.2. Porosity–permeability
modeling (10−12–10−18 m2, e.g. Bethke, 1985; Van
Balen and Cloetingh, 1994), which may be consid-A non-linear porosity–permeability relationship

is a necessary condition for the development of ered more typical.
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2.3. Bulk matrix viscosity Ashby, 1988)

There is variation concerning the definition of f3
(1−w1/q)q

(1−w)
(24)

bulk viscosity and its dependence on porosity. In
distinction to works that equate the divergence of

where q is identical to the stress exponent in the
the matrix velocity to −pe/f (e.g. Birchwood and

constitutive equation for the effective shear viscos-
Turcotte, 1994; Schneider et al., 1996; Connolly,

ity. Compaction dictated by such rheologies does
1997; Connolly and Podladchikov, 1998), our for-

not differ in a fundamental way from that of
mulation gives the viscous compaction rate,

Newtonian shear rheology with q=1 (e.g.
obtained by rearrangement of Eq. (9), setting b

Connolly, 1997). Accordingly, we assume
equal to zero, as

Newtonian shear rheology and, unless otherwise
indicated, constant f in Eq. (23), i.e. m=1.1

w

dw

dt
=−

(1−w)

f
pe . (22) Grain-scale dissolution–precipitation processes

are sometimes referred to as ‘pressure solution
creep’ to distinguish them from ‘chemical compac-

With this formulation, in the limit of non-inter-
tion’ processes that involve diffusional mass trans-

acting pores (e.g. Nye, 1953), the proportionality
port on greater length scales (~0.01–1 m, e.g. Qin

coefficient, f, in Eq. (22) is comparable to the
and Ortoleva, 1994; Oelkers et al., 1996). Both

shear viscosity and independent of porosity. We
mechanisms are complex and incompletely under-

therefore identify this parameter as an analog to
stood. To avoid this complexity, the effective sedi-

the bulk viscosity. Constant f is frequently
ment shear viscosity is expressed

assumed in compaction modeling (e.g. Fowler,
1990; Birchwood and Turcotte, 1994; Sumita et al.,

g=gr expAQ(1−T/Tr)

RT B (25)1996). For materials with Newtonian shear viscos-
ity, more complex models of porosity reduction
indicate a weak dependence of f on porosity such where Q is the creep activation energy, gr is the

viscosity at temperature, Tr. This approach masksthat
potentially important mesoscopic effects caused by
lithologic heterogeneity, but captures the essence

f#
g

wm−1 (23)
of the thermally activated character of viscous
compaction. To obviate consideration of temper-
ature and activation energy as independent vari-with m between zero and unity (e.g. Scott and

Stevenson 1984; Ashby, 1988). Formulations of ables, an alternative expression for the shear
viscosity isthe compaction equations consistent with our for-

mulation when m=0 (e.g. McKenzie, 1984;
Schneider et al., 1996; Fowler and Yang, 1999) g=gr expAzr−z

l B (26)
may be appropriate for pressure solution creep at
porosities above 10% (Helle et al., 1985). However,

where gr is the viscosity at depth zr, and l is the
at small porosities, m<1 is inconsistent with the

‘viscous e-fold length’, the length scale over which
non-interacting pore limit and seems unrealistic

the shear viscosity changes by a factor equal to
because the compaction rate becomes infinite, in

the natural log base (e). For a linear geotherm,
conflict with intuition that compaction should

comparison of Eqs. (25) and (26) gives (Connolly
become increasingly difficult as porosity decreases;

and Podladchikov, 1998)
moreover, m≤0 permits the development of nega-
tive porosity. In non-Newtonian sediment such as

l=
RT2

QVT
. (27)carbonates and evaporites (e.g. Spiers and

Schutjens, 1990), at constant effective pressure, f
is a weakly decreasing function of porosity (e.g. Experimental data suggest that activation energies
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of 20–70 kJ/mol are appropriate for pressure solu- in porosity, from Eqs. (22) and (26), is
tion creep in sedimentary rocks (e.g. Shimizu,
1995; Schneider et al., 1996). For geothermal gradi- t=Ad ln w

dt B−1= (1−w)gr
wm−1zDrg

expAzr−z

l B. (28)
ents VT=25–150 K/km, these activation energies
give e-fold lengths of 500–3000 m at a depth of

Taking l as a measure of the length scale over3 km (Fig. 1a). Because the e-fold length is not a
which the time scale is relevant, with m=1, thestrong function of depth, the error introduced by
velocity that a particular level of porosity propa-assuming a constant e-fold length over a depth
gates upward by compaction under normally pres-interval of ~5l is minor, but generally leads to a
sured conditions is independent of the porositymore rapid decrease in viscosity above zr and a
and given by

less rapid decay at depth. The effect of varying
either the geothermal gradient or the activation

v̂
w
=−

l

t
=−

zlDrg

gr
expAz−zr

l B (29)energy can be assessed from calculations for
different e-fold lengths. Numerical calculations
here based upon Eq. (26) are for a geothermal where v̂

w
is used to distinguish the approximation

gradient of 50 K/km with Q equal to either 20 or from the true phase velocity, v
w
. Because −v̂

w
60 kJ/mol, which correspond to values of l equal increases rapidly with depth, during viscous com-
to 1500 and 500 m with zr=3000 m. paction, a stationary porosity profile can be

For normal fluid pressures, i.e. pe=Drgz, the expected to develop in which downward porosity
advection is compensated by compaction, suchlocal time scale, t, required for an e-fold decrease

Fig. 1. (a) Viscous e-fold length (l, Eq. (27)) as a function of depth, activation energy and geothermal gradient. (b) Approximate
viscous compaction velocity [v̂

w
, Eq. (29)] for hydrostatic fluid pressure as a function of z, l, and gr (with m=1 and parameters as

in Table 1). If v̂
w
<vs, then porosity is advected downward by burial; the maximum depth to which porosity can be advected without

the development of fluid overpressure is that at which −v̂
w
=vs. Maintenance of normal pressures to 3 km depth therefore requires

gr=1021–1023 Pa-s for sedimentation rates of 10–103 m/My. If sedimentation ceases, v̂
w

approximates the velocity of the compaction
front toward the surface; preservation of normally pressured sedimentary porosity profiles on a geological time scale therefore requires
short viscous e-fold lengths, i.e. a strong temperature dependence of viscous compaction.
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that the porosity at any depth remains constant, rapidly surfaceward than estimated for l=1500
(Fig. 1b), an observation that supports our thesisi.e. −v

w
=qs/(1−w). Incipient overpressuring at

3 km depth as a consequence of viscous compac- that viscous compaction in sedimentary basins is
thermally activated.tion therefore constrains gr to 1020–1024 Pa-s

(Fig. 1b) for plausible time-averaged sedimenta-
tion rates (10–3000 m/My; e.g. Audet, 1996; Kooi,
1997). Likewise, for normal fluid pressures, Eq. 3. Quasi-steady-state compaction
(26) gives the local Deborah number [Eq. (20)] as

Elementary consideration admits two limiting
De=

qsgrb

zwm−1 expAz−zr
l B, (30) compaction regimes (Fig. 2) dependent on the local

value of v [Eq. (20); Wangen, 1992; Audet and
Fowler, 1992; Fowler and Yang, 1998], which is awhich gives the maximum width of the transition

between pseudoelastic and viscous compaction as strong function of porosity through Eq. (21). If
v%1, then negligible deviations from hydrostatic~2l for m≤1. It follows that if the near-surface

compaction regime is pseudoelastic, overpressure fluid pressure are necessary to accommodate com-
paction-generated fluid fluxes, and compaction isdevelopment by viscous dominated compaction

at 3 km depth requires values of l<1500 m. dictated entirely by rheology [Eq. (9) or (17)].
Because normal fluid pressures imply a linearPreservation of sedimentary porosity profiles once

sedimentation ceases is difficult to explain if poros- increase in effective pressure with depth, the rheologi-
cally limited regime gives rise to an interval of rapidity phase velocities do not decay somewhat more

Fig. 2. Schematic sedimentary porosity (a) and effective pressure (b) depth profiles illustrating the quasi-steady-state compaction
model. (c) Strong variation in v and De [Eqs. (20), (21) and (30)] with depth and compaction is envisioned to divide the upper
portion of the profile into four steady-state regimes. The fluid flux necessary to support the steady state must be derived by transient
fluidized compaction at greater depth. Note that vt is the velocity of the transition between the essentially non-compacting fluidized
steady state and the compacting fluidized porosity measured relative to the sediment basement interface, i.e. −vt≤qs. (d) Schematic
of the inverse model parameter l̂ [Eq. (52)] obtained by fitting the gradient, curvature and porosity of a porosity profile with the
analytical solution for viscous compaction [Eq. (36)] for m≤1. Because the weakest, i.e. when l�±2, curvature of the viscous
compaction profile is generally stronger than the profiles characteristic of pseudoelastic and hydraulic compaction, and because finite
positive values of l increase the viscous profile curvature, l̂>0 is diagnostic of viscous compaction.
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porosity reduction, designated the compaction front depth. As these conditions characterize the hydrau-
lically limited regime, we seek a steady-state solu-(McKenzie, 1987). The compaction front is sub-

tended by a transitional regime, characterized by tion that extends into the hydraulically limited
compaction regime as a means of quantifying thev~1, in which fluid overpressure grows rapidly as

a consequence of consolidation. This regime is the steady sedimentary compaction process. Our
quasi-steady-state model thus consists of pseudoe-model analogy of the top-seal of an overpressured

sedimentary sequence. The transitional regime leads lastic (v%1, De&1), viscous (v%1, De%1), tran-
sitional (v~1, DeH1), and fluidized (vI1,to conditions such that v&1, whereupon fluid pres-

sure is limited by the sediment load, i.e. the sediment DeH1) steady-state domains, succeeded by a
domain of transient fluidized compaction. Weis fluidized, and compaction is controlled entirely by

drainage [Eq. (10) or (16)]. In this hydraulically follow the approach of Sumita et al. (1996), in
that we approximate the fluidized steady-statelimited regime, lithostatic pressures may not be

realized if fracturing occurs at sublithostatic fluid domain as non-compacting. Because our interest
is in the instability of the fluidized steady state, wepressure. However, if the yield condition that limits

the proximity of the fluid pressure to the lithostat is do not attempt to characterize the viscoelastic
transition (v%1, De~1) that occurs within thea linear function of depth, as appears to be true in

natural sedimentary environments (Mann and rheologically limited domain over a depth interval
~l [Eq. (30)].MacKenzie, 1990), our arguments remain applicable

with fluid pressure gradient limited by an appropri-
ately reduced mean stress gradient [Eqs. (9) and 3.1. Rheologically limited compaction
(10)].

Our treatment differs from earlier models of During rheologically limited compaction the
entirely pseudoelastic (Audet and Fowler, 1992; effective pressure is Drgz and, using Eqs. (23) and
Wangen, 1992; Fowler and Yang, 1998) and (26) to describe the bulk viscosity in Eq. (17), the
entirely viscous (Sumita et al. 1996; Fowler and variation in porosity with depth is
Yang, 1999) compaction in that we presume that
the exponential dependence of the Deborah

∂w

∂z
=−(1−w)wA(1−w)wm−1z ez/l

l2c
+bDrgB (31)

number [Eq. (30)] on depth leads to a transition
from near-surface pseudoelastic compaction to vis- with
cous compaction. Such a transition is only of
consequence if it occurs within the rheologically

lc=S qsgr ez
r
/l

Drg
. (32)dominated regime, which is therefore the case we

consider (Fig. 2d). Supposing the existence of a
The dependence of lc on l is artificial due to thesteady-state compaction regime at near-surface
specification of the reference viscosity, gr, at finiteconditions requires that the steady-state domain
depth, zr. Thus, Eq. (31) can be made, i.e. if zr ismust connect to a transient domain that produces
chosen as zero, to separate the temperature depen-exactly the fluid flux necessary to maintain the
dence of the compaction process from the remain-steady state. Such a connection is non-trivial
ing physical parameters of sedimentation (lc andbecause steady-state solutions of the viscous and
w0). Although there is no general solution for theviscoelastic compaction equations for arbitrary
viscoelastic steady state [Eq. (31)], analytical solu-boundary conditions have a periodic antithetic
tions exist for the viscous and pseudoelastic limits.variation of effective pressure and gradient (Sumita
We explore these solutions as a means of constrain-et al., 1996; Connolly and Podladchikov, 1998), a
ing the rheological parameters of compaction.periodicity that is unlikely to be mimicked by any

transient process. A near-surface steady state is
thus only possible if the viscous regime approaches 3.1.1. Pseudoelastic compaction

The steady-state compaction profile duringthe non-periodic solitary steady state, in which
both effective pressure and its gradient vanish at pseudoelastic compaction is given by the solution
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of Eq. (31) in the pseudoelastic limit (lc�2)

w=
w
0

w
0
+(1−w

0
) ebDrgz

. (33)

This solution, which gives the quantity (1/w −1)
as an exponential function of depth that is indepen-
dent of sedimentation rate, is functionally similar
to the simple exponential dependence originally
proposed by Athy (1930) to describe near-surface
sediment porosity

w=
w
0

ebDrgz
, (34)

a solution obtained for Eq. (31) if the 1−w term
is approximated as unity. Thus, both the exact
and Athy solutions are capable of reproducing
near-surface profiles if b is regarded as a free
parameter; and the Athy solution approaches the
exact solution as the initial sediment porosity
becomes small. In detail, the complete solution has
a weaker curvature that nears that of the Athy
distribution with increasing depth or decreasing
initial sediment porosity (Fig. 3a). The exact solu-
tion therefore explains overcompaction relative to
the Athy distribution as commonly observed in
the deeper sections of natural porosity profiles
(Biot and Ode, 1965) and demonstrated by the
profiles developed in intercalated shales and sand-
stones of the Pannonian Basin (Fig. 4, Szalay 1982,
cited in Dovenyi and Horvath, 1988). This expla-
nation has the virtue of simplicity in that it does
not resort to the complexities, such as irregular
variation in tectonic stress with depth, often
invoked in basin modeling.

Fig. 3. Relative porosity as a function of dimensionless depthThe coefficient of pore compressibility derived for pseudoelastic (a) and viscous (b) rheologically limited com-
by regressing data from the upper 1200 m of the paction. In the pseudoelastic limit, the exact solution [Eq. (33)]
Pannonian porosity profiles is (±ŝ) 8.4±1.4× to the compaction equation approaches the Athy solution [Eq.

(34)] as the initial sediment porosity becomes small. Heavy10−8 and 4.0±0.5×10−8 Pa−1 for the shales and
curves distinguish the exact viscous steady solution of Eq. (31)sandstones, respectively. Neglect of true poroelas-
from the approximate solutions [Eqs. (35) and (36)] shown bytic effects in Eq. (9) is therefore justified given that thin curves for different values of l/lc and the limiting cases

typical elastic coefficients are an order of magni- m=0 and m=1. In contrast to the pseudoelastic solution, the
tude lower than these values (Palciauskas and viscous solution is dependent on the sedimentation rate, as

reflected in the parameter lc. With the exception of the approxi-Domenico, 1989). The compressibility of water is
mate solution given by Eq. (35), the viscous steady state issomewhat larger ~10−8 Pa−1 at the conditions of
dependent on the value of w1, which was taken to be 25% andinterest, but the assumption of fluid incompress- identical to w0. The viscous profiles are bounded by the constant

ibility appears reasonable. Although the deviations viscosity solution (l�2, Eq. (37)], a reasonable approximation
from the pseudoelastic trend for the Pannonian for l/lc>1, which implies that thermal activation of viscous

compaction is insignificant under such conditions.
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unity. With this simplification, the general solution
of Eq. (31) is

w=A 1

wm−1
1

−(m−1)
l(l−z) ez/l−l2

l2c
B−1/(m−1)

(35)

and for the linear viscous case

w=w
1

expAl(l−z) ez/l−l2

l2c
B (36)

where w1 is the porosity at z=0, which is identical
to w0 if the viscous domain extends to the surface.
Comparison of these solutions with the exact solu-
tions (Fig. 3b) suggests that for porosities similar
to those at which viscous compaction commonly
becomes evident during burial (~25%, Lundegard,
1992), the 1−w term in Eq. (31) is of minor
consequence in view of the strong dependence ofFig. 4. Porosity trends of intercalated shale and sandstone

lithologies of the Pannonian Basin as synthesized from borehole the steady state on the ratio l/lc. The dependence
measurements in deep wells (Szalay, 1982 cited in Dovenyi and of the viscous steady state on l/lc indicates that
Horvath, 1988). Square and circular symbols represent averages the thermal activation is an essential feature of the
over 100 m depth intervals. Dashed and solid curves show the

compaction process when l/lc<1. The significanceAthy [Eq. (34)] and pseudoelastic [Eq. (33)] solutions regressed
of lc is apparent in the limit that temperatureto shallow (<1260 m) bore-hole data. In both cases, the exact

solution results in a significant improvement of the regression. dependence vanishes (l�±2), in which case, a
The relative quality of the Athy solution is better for the sand- Taylor expansion of Eq. (36) simplifies to the
stones, a behavior consistent with the result that the Athy solu- Gaussian function similar to the solutions obtained
tion is exact as 1−w�1 (Fig. 3). The exact solution explains

in previous studies (Sumita et al., 1996; Connollyovercompaction relative to the Athy profile as commonly
and Podladchikov, 1998; Fowler and Yang, 1999)observed in sedimentary sequences (Biot and Ode, 1965). The

irregular variation in porosity at depth in the Pannonian Basin
is due to hydrocarbon generation and devolatilization (Szalay,

w=w
1

expA− 1

2

z2

l2c
B (37)

1988; Clayton et al., 1990), mechanisms that are unlikely to
cause overcompaction. Dotted curves show the viscoelastic
solution of Eq. (31) with parameters discussed later in the text. such that the porosity falls to 1% of its initial

value w1 at z=3lc. For finite positive l, and m≤1,
Eqs. (35) and (36) define porosity–depth profiles
that have a stronger variation in porosity withBasin profiles are subtle, we show subsequently

that they are consistent with the existence of a depth than, and are bounded by, the corresponding
Gaussian profile (Fig. 3b). Thus, lc defines theviscous compaction mechanism.
upper limit on the length scale over which under-
pressured porosity can be maintained during3.1.2. Viscous compaction

With increasing depth, elevation of the effective steady sedimentation. For example, if porosity is
reduced by 87% of its initial value at depth z wherepressure in combination with reduced sediment

viscosity, increases the efficiency of the viscous the compaction process is arrested by the develop-
ment of fluid overpressure, then lc z/2. This logiccompaction exponentially (Fig. 1b) so that the

porosity profile must evolve toward a viscous is independent of whether other mechanisms com-
pete with viscous compaction, since the existencesteady state. To simplify the analytical solution for

the viscous limit (b�0), we approximate 1−w by of these mechanisms merely requires that lc is
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greater than would be inferred for viscous compac-
tion alone. Because lc is dependent on qs (Figs. 4
and 5b), viscous compaction profiles are influenced
by the sedimentation rate, in contrast to the
pseudoelastic case.

In the context of sedimentary compaction, the
pure viscous steady state described by Eqs. (35)
and (36) must apply at depth when De�0.
However, because pseudoelastic compaction
affects the near-surface porosity, the value of w1
from the viscous steady state must be less than the
true surface porosity. Consequently w1 becomes a
fitting parameter that approximates the porosity
at which viscous compaction becomes significant.

The maximum depth zc of the viscous rheologi-
cally limited regime, from Eqs. (35) and (36), is
given by the transcendental functions

(zc−l )ez
c
/l=

l2c
l Aw1−mc −w1−m

1 B−l m≠1 (38)

(zc−l )ez
c
/l=

l2c
l

lnAw
1
/wcB−l m=1 (39)

that can be expressed analytically in terms of the
Lambert function and where wc is the porosity at
the base of the rheologically limited regime. These
equations give a weak dependence of zc for
wc% w1, a result that suggests that porosity–depth
profiles formed by viscous compaction are dictated
primarily by l and lc. Since lc defines the maximum
extent of the compaction front and is a strong
function of gr and qs (Fig. 5a), top seal formation Fig. 5. (a) The rheological parameter lc [Eq. (32)] as a function
at 2–4 km depth implies that values of l relevant of sedimentation rate and reference shear viscosity; parameters

as in Table 1. (b) The hydraulic parameter k [Eq. (41)] as ato viscous compaction must be such that lc has
function of sedimentation rate and reference permeability. Inlittle influence on the depth of the compaction
the quasi-steady-state model, k is the square root of the porosityfront. Eq. (38) gives the ranges of lc consistent
at the depth of top-seal formation wc, and lc is the compaction

with these arguments as 1500–5000 and 5000– length scale in the limit of a constant viscosity matrix.
50 000 m for l=1500 and 500 m, respectively
(Fig. 6). The range of lc supported for l=1500
seems narrow in view of natural variability, sug-

weak dependence on the geothermal gradientgesting this value as an upper bound for viscous
(Fig. 1a), a behavior also consistent with top seale-fold lengths characteristic of sedimentary envi-
formation over a narrow depth range. As observedronments. The upper limits on lc increase roughly
effective pressure gradients are rarely <Drg/4threefold as m�0 (Fig. 6), an effect that does not
(Mann and MacKenzie, 1990), gr and vs are thesubstantially alter this conclusion. At 2–4 km
primary physical variables in lc. If time-averageddepth, l is strongly dependent on the activation

energy of the compaction process, with a relatively sedimentation rates are 10–1000 m/My, the range



150 J.A.D. Connolly, Yu.Yu. Podladchikov / Tectonophysics 324 (2000) 137–168

that of normal fluid pressures as

wc#
n−1Ek (40)

where k (Fig. 5b) represents the constant compo-
nent of the approximate form of v, i.e.

k=
v

wn
#

wnrmqs
krDrg

. (41)

Given the implausibility of values of m<1 at small
porosity, we assume hereafter that m=1 at z<zc.
To determine the asymptotic limit of the steady-
state porosity wss, (∂w/∂z) in Eq. (17) is expanded
as (∂w/∂pe)(∂pe/∂z), and Eq. (16) is used to define
(∂pe/∂z) in terms of the model parameters. The
resulting expression for (∂w/∂pe) then is integrated
from pe=zcDrg to pe=0 to obtain the change in
porosity across the transitional regime. For
1−w~1 and wc/wss>2, the result of exact integ-

Fig. 6. Depth of top-seal formation (zc, Eqs. (38) and (39)] ration is well approximated by
during steady sedimentation as a function of wc, w1, m, l, and
lc. For m=1, zc is dependent on wc/w1 but independent of the

wss#A 2kl2c
z2c ez
c
/ln(n−1)B1/(n−1) . (42)individual porosities. In this case, provided viscous compaction

causes a significant reduction in porosity, i.e. wc/w1<0.5, zc is
primarily a function of l and lc. In the general case, illustrated

We show below that conditions such that wss~wchere by the extreme choice, m=0, zc depends on both wc/w1 are not of interest because the steady state is thenand w1, which is taken as 25%. To attain a given value of zc
with m=0, lc/l increases by half an order of magnitude com- inherently unstable. Within the transitional regime,
pared to the linear viscous case, implying that for a given l and the effective pressure gradient is a strong function
zc, vsgr must increase by an order of magnitude. Thin dashed of depth, but to characterize the conditions, we
lines indicate the range of lc supported by l=500 and 1500 m,

introduce the proxy function, k(∂pe/∂z), whichwith m=1 and wc/w1=0.1, for top-seal formation at depths of
must reach a maximum within the regime. The2–4 km. For l=1500 m, lc=1500–5000 m, whereas for l=

500 m, lc=5000–50 000 m. A narrow range of top-seal depth characteristic porosity obtained by equating the
in nature, despite the likely variability of lc, therefore requires second derivative of the proxy to zero is n−1Ek/n.
values of l<zc. Substituting this porosity into Eq. (16), the charac-

teristic effective pressure gradient (∂pe/∂z)1 is
(1−n)Drg. The porosity within transitional regime

for gr from this analysis is 1019–1023 Pa-s with m= is then approximated by a second-order Taylor
1, and an order of magnitude higher for m=0. expansion of the solution to Eq. (17) about z=zc,

for the characteristic effective pressure gradient
3.2. Transitional compaction regime and the boundary conditions w=wc and

pe=Drgzc at zc, as
The transitional steady-state compaction regime

(Fig. 2a) is bounded by the conditions under which w#wc
the effective pressure gradient vanishes, so that the
porosities wc and wss are the roots of Eq. (16) at ×expAl

[(n−1)(z−1)+nzc] ez/l+[(n−1)l+zc] ez
c
/l

l2c
B.

its upper and lower limits. As wc is presumed large
compared to wss, the approximate form of Eq. (16) (43)
with Eq. (21) gives the transitional porosity at
which overpressure begins to deviate strongly from Because (∂pe/∂z)1 is ad hoc, Eq. (43) may reach a
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minimum at w>wss (Fig. 2a), in which case, the tion implies that the sedimentary column grows
profile in the transitional regime must be extrapo- less rapidly than the region of transient compac-
lated to the steady-state porosity by other means. tion, and therefore that steady-state compaction is

not possible. For likely parameter ranges (Fig. 6),
3.3. Transient compaction and stability of the l2c/(zcezc/l)<zc; thus, we conclude that the steady
steady state state is generally the appropriate model for the

compaction process during uniform sedimentation.
Maintenance of the steady-state porosity wss This conclusion implies that the formation of a

requires a constant fluid flux that, in the absence top seal is a natural consequence of sedimentary
of an external source, must be derived by transient compaction, but it does not preclude the develop-
fluidized compaction at a greater depth. For tran- ment of transient instabilities beneath the top seal
sient fluidized compaction, Eq. (10) with Eq. (21), in response to perturbations of the sedimentary
can be rearranged to process, a possibility that we treat subsequently.

The width, Dz, of the transitional regime estimated1

1−w

∂w

∂t
=−

∂w

∂z An

k
wn−1+vsB. (44) by equating a second-order Taylor expansion of

Eq. (43) to Eq. (46) is
Since the perturbation caused by fluidized compac-
tion on the sediment velocity is smaller than for Dz#

l2c
zc ez
c
/l

, (48)
steady-state compaction [Eq. (8)], we approximate
1−w by unity and assume that the fluidized region which, for parameters as above, gives top seal
grows upward from the sediment–basement inter-

thicknesses generally less than, or comparable to,face at which the porosity is zero. The solution to
the viscous e-fold length. From Eqs. (45) and (3),Eq. (44) obtained by the method of characteristics
the fluid velocity below zc isis then

vf=
z∞

t∞n
−vtA1−

1

nB (49)w=A− kvt
n B1/(n−1)A1+

z∞

vtt
B1/(n−1) 0≤−

z∞

vtt
≤1

giving a minimum, downward, fluid velocity of(45)
−2/3vt [i.e. −vt(1−1/n) for n=3] that increases

where vc is the velocity of the transition to fluidized with time and depth. This result is consistent with
compaction relative to the sediment basement, the expectation that once fluidization occurs, fluid-
z∞=z−zc−(vs+vt)t, and t=0 when the sediment- filled porosity is advected downward by burial
basement interface first reaches z=zc (Fig. 2a). with little compaction, a necessary condition for
Since the porosity at z∞=0 must be wss if the the steady state.
compaction equations have a steady-state solution,
Eq. (45) requires

3.4. Numerical verification and transient
calculations

wss=A−kvt
n B1/(n−1) . (46)

To assess the applicability of the quasi-steady-
Equating Eqs. (42) and (46) to solve for vc, with state model, we solve the transient compaction
vs#qs, gives equations numerically. Since the maximum tran-

sient deviations from the steady-state model mustvt
qs

=
−2l2c

z2c ez
c
/ln(n−1)

. (47) develop in the transitional regime, for numerical
simplicity, we consider viscous compaction with
an initial porosity of 25%. Under these conditions,If vt/vs<−1, then the steady state extends to a
the approximations that 1−w#1 and that thegrowing region of non-compacting fluidized poros-
sediment velocity is constant are justified, asity (Fig. 2a) that is truncated by the region of

fluidized compaction. The alternative to this condi- demonstrated earlier (Fig. 3b), and Eqs. (9) and
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(10) simplify to

∂w

∂t∞
=−

wm

lc
p∞−

∂w

∂z∞
(50)

∂w

∂t∞
=

1

k

∂

∂z∞ AwnA1−
1

lc

∂p∞

∂z∞ BB−∂w

∂z∞
(51)

where primes indicate the non-dimensional vari-
ables as defined for Eqs. (18)–(20), with L=lc,
and dimensionless time, t/t1, is defined relative to
the characteristic time, t1=L/qs; and lc and k are
as in Eqs. (32) and (41). The non-dimensional
form of the transient compaction equations show
that if gr is increased by an order of magnitude,
and kr and qs are decreased by an order of magni-
tude, the transient evolution is unaffected in non-
dimensional time, but that the dimensional time
scale increases by an order of magnitude.

For parameters near the extremes pertinent to Fig. 7. Comparison of the analytical quasi-steady-state model
(solid curves) with numerical models (dashed curves) of thenatural environments, numerical solutions to Eqs.
transient evolution of porosity (a) and overpressure (b) during(50) and (51) (Fig. 7) show no significant time
sedimentation. The results have been made dimensional takingdependence of the porosity profile above the fluid-
qs=3000 m/My for wc=k1/2=5% [kr=1.2×10−18 m2, Eq. (46)]

ized compaction regime. The proximity of the with remaining parameters as in Table 1. Numerical results for
profiles to the analytical steady-state model con- constant viscosity (l=2, lc=500 m, gr=4.5×1019 Pa-s)

demonstrate the general result that within the compaction frontfirms the validity and accuracy of the analytical
(w>wss), transient effects are insignificant. For the finite viscousapproximation as a tool for the prediction of the
e-fold length calculations, lc has been chosen to give the transi-depth of top-seal formation and the amount of
tional compaction regime, i.e. top seal formation, at

fluid likely to be trapped beneath the top-seal. In zc=3000 m. In all models, the width of transitional regime is
detail, fluid overpressure within the compaction predicted well by Eq. (48). The discrepancy between the analyti-

cal and numerical steady state within the compaction front isfront hinders compaction in the rheological limited
due to overpressure that is not accounted for in the rheologicallyregime, resulting in profiles that are slightly
limited compaction regime. The maximum overpressureundercompacted relative to the analytical steady
increases as wc/w1 and is dissipated more rapidly in models with

state. Factors that increase the curvature of the low m or l.
compaction front, i.e. lower m or l, cause a more
rapid dissipation of this overpressure and a closer
approach to the conditions assumed for the analyt- rapidly evolve toward a common state that is

dictated largely by l and only weakly dependentical model [Eqs. (35 or 36)].
If sedimentation is interrupted, the upper por- on the initial sedimentation rate. Moreover,

because the initial difference between the velocitytion of the porosity profile remains pinned by the
surface boundary, where the effective pressure of the compaction front and subjacent fluid is

%−2/3qs [Eq. (49)], this evolution is independentvanishes, but the lower portion of the profile is
propagated upward with velocities that decay of sediment permeability. This state is not truly

stationary because the base of the compactionexponentially upward due to thermal activation
(Fig. 1a). It follows that although the porosity front has a finite velocity [approximated by Eq.

(29)], but it is none the less described well by Eqs.distribution within the compaction front may be
sensitive to sedimentation rate, after the cessation (35 or 36) if the sediment velocity is replaced by

an estimate of the velocity of the front (Fig. 8).of sedimentation, the compaction front must
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last 17.5 My (Royden and Horvath, 1988). The
basin stratigraphy can be simplified to a mixture
of shales and sandstones with different porosity
trends (Fig. 9, Szalay 1982, cited in Dovenyi and
Horvath, 1988).

The shape of porosity profiles formed by viscous
compaction is limited by a Gaussian function
(m≤1, Eqs. (35) and (36)], a shape consistent
with commonly observed deviations from the Athy
porosity–depth distribution in the deeper sections
of natural profiles (e.g. Biot and Ode, 1965;
Schneider et al., 1996). At z<lc, the curvature of
the Gaussian profile [Eq. (37)] is stronger than
both the exponential pseudoelastic distribution,
and the distribution attainable during hydrauli-
cally limited compaction [Eq. (43)]. Thermal acti-
vation in a normal geothermal gradient results in
positive values of l, which gives rise to a porosity
depth dependence that is even stronger than the
limiting Gaussian profile (Fig. 3b). It follows thatFig. 8. Numerically computed porosity and fluid overpressure

evolution and incipient flow instability following the cessation to fit the viscous steady-state solution [Eq. (36)]
of steady sedimentation at t=0. Calculations were made to a profile characteristic of hydraulic or pseudoe-
dimensional by choosing qs=3000 m/My at t<0, kr=1.2× lastic compaction, the fitted value of the viscous
10−18 m2, gr=2.8×1020 Pa-s with l=1500 m, lc=3424 m and

e-fold length, l̂, must be negative and approachEk=5%. The porosity phase velocity (at w=6.25%) compares
negative infinity as the curvature becomes increas-well with the phase velocity obtained by computing lc for the

stationary state [thin dotted curves, Eq. (36)] from the depth at ingly influenced by viscous compaction (Fig. 2d).
which w=6.25% in the transient profile; phase velocities esti- In contrast, if the equations are fit over a depth
mated from Eq. (29) are about three times those obtained numer- interval where viscous compaction is dominant,
ically. The compaction front propagates upward with an initial

l̂=l, but will deviate toward positive infinity if thevelocity #−qs, whereas the maximum fluid velocity beneath the
influence of hydraulic or pseudoelastic compactionfront is %−2/3qs [Eq. (49)]. Consequently, the porosity col-

lapses as the front propagates, creating an obstruction to fluid becomes significant. If an observed porosity trend
flow from beneath the front that causes supralithostatic fluid is fit by an arbitrary function, then equating this
pressure and secondary porosity generation. A high sedimenta- function to Eq. (36) (i.e. m=1) and its derivatives
tion rate is not a requirement for instability, e.g. if qs and kr are

gives a system of non-linear equations that can bedecreased by two orders of magnitude and gr increased by two
solved for the fitting variables:orders of magnitude, the evolution is unchanged except that the

time scale increases in direct proportion to gr.

l̂=
zww∞

zww◊−zw∞2−ww∞
(52)

3.5. Application to the Pannonian Basin

Direct application of the quasi-steady-state
l̂c=S−

zw

w∞
ez/l̂ (53)compaction model is not feasible because of the

uncertainty in the rheological parameters of the
model. As an alternative, we employ an inverse

ŵ
1
=w expAl̂2+l̂(z−l̂) ez/l̂

l̂2c
B, (54)model to constrain the parameters and porosity

dependence of natural compaction processes from
sedimentary porosity profiles as illustrated here by where l̂, l̂c and ŵ1 become identical to the model

parameters, l, lc, and w1, in the limit of pureapplication to the Pannonian Basin, which con-
tains 6–7 km of sediment accumulated over the viscous steady-state compaction, and w∞ and w◊ are
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Fig. 9. Porosity trends in shales (a) and sandstones (b) of the Pannonian Basin (see Fig. 4 for complete data and description). Dashed
curves show the near-surface pseudoelastic trend (Fig. 4). Dotted curves show the porosity trend (excluding sandstone data indicated
by shaded circles, Fig. 10). Deviations from the pseudoelastic trend are attributed to viscous compaction. Dash-dotted curves show
the viscous component of the compaction profile, as inferred from the inverse of the viscous steady-state solution (Fig. 10). The
rheologically limited compaction model becomes invalid as the porosity approaches wc for the shales (short-dashed curve). The thin
solid curve shows the viscoelastic solution of Eq. (31) obtained with w0 and bDrg from the pseudoelastic trend (Fig. 4) and lc and
l from the inverse viscous solution. The heavy solid curve shows the viscoelastic solution (see also Fig. 4) obtained when lc is varied
to fit the porosity at 2800 m depth. For both profiles, this procedure requires lc=10 300 m, corresponding to a two- to fivefold
increase in the inferred value of gr.

the first and second derivatives of the profile. Eqs. porosity and its derivatives with respect to depth
in Eqs. (52)–(54). The results are satisfying in(52)–(54) ideally lead to a solution in which there

is a broad local minimum at l̂=l, defining a depth that the depth of the transition to hydraulically
limited compaction is virtually identical (2790 vs.interval of viscous dominated compaction;

bounded by maxima representing the transitions 2822 m, Fig. 10a), as consistent with the expecta-
tion that the lithology with the lower effectiveto the pseudoelastic and hydraulic compaction

regimes (Fig. 2d). permeability dictates the development of overpres-
sure in both lithologies. In contrast, the transitionAs discussed earlier (Fig. 4), the near-surface

Pannonian porosity trends are consistent with from pseudoelastic to viscous compaction is likely
to be lithologically controlled, with pseudoelasticpseudoelastic compaction, but the trends deviate

markedly from this behavior at depth. In the case compaction operating at greater depths in clay-
rich sediment (e.g. Ashby, 1988), as also suggestedof the sandstones, the scatter of the data at 1300–

2200 m depth suggests two distinct populations: by the Pannonian profiles. Although these profiles
are nearly a realization of the ideal scenario, theone that follows the near-surface pseudoelastic

trend (open circles, Fig. 9), and another that local minima in l̂ are not broad (Fig. 10a). In the
context of the model, this indicates that hydraulicappears to be continuous with the overcompacted

trend at depth. Excluding the former data, each and pseudoelastic compaction are significant in the
viscous regime, with the result that the minima inprofile was fit with an arbitrary polynomial func-

tion (Fig. 10), which was then used to express the l̂ give upper limits on l. Because l̂ has almost
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perfectly sympathetic and antithetic relationships
to ŵ1 and l̂c, the analysis gives lower and upper
bounds on w1 and lc. These bounds are {l<671 m,
lc<6417 m, and w1>12.8%} and {l<1161 m,
lc<4572 m, and w1>27.0%} for the shales and
sandstones, respectively. For Pannonian geother-
mal gradient (~50 K/km, Dovenyi and Horvath,
1988), the bounds on l correspond to activation
energies of 19.3 and 40.6 kJ/mol [Eq. (27),
Fig. 10d]; the former value, for the sandstones, is
essentially the value of 20 kJ/mol commonly
quoted for pressure solution creep of quartz-rich
rocks (e.g. Angevine and Turcotte, 1983; Rutter,
1983; Shimizu, 1995; Schneider et al., 1996). For
the average sediment velocity at 2 km depth
(~350 m/My) and normal fluid pressures, the
limits on lc give gr>1020–1021 Pa-s [Eq. (39),
Fig. 10e], in agreement with independent estimates
of effective viscosity of near-surface sediments
from models of salt diapirism (Poliakov et al.,
1993b) and basin subsidence (Gratz, 1991).

The values of lc and l deduced from the inver-
sion of the viscous steady state combined with the
values of w0 and bDrg obtained by regression of
the pseudoelastic model to the near-surface poros-
ity (thin solid curves, Fig. 10) completely parame-
terize the rheologically limited viscoelastic steady
state [Eq. (31)]. The profile obtained by solving
Eq. (31) with the shale parameters is remarkably
similar to the observed profile. That the same
exercise for the sandstone parameters is less suc-
cessful is not surprising in view of the inconsisten-
cies in the sandstone data discussed previously.Fig. 10. Inverse solution to the viscous steady-state profile for
For both lithologies, the steady-state profiles arethe sandstone and shale porosity trends of the Pannonian basin
overcompacted relative to the data, a discrepancy(Fig. 9). (a–c) Inverse model parameters assuming m=1 [Eqs.

(52)–(54)]; under this assumption, l̂>0 is diagnostic of viscous consistent with the influence of pseudoelastic
compaction, and the minimum value of l̂ must approach l mechanisms and incipient overpressuring at the
(Fig. 2d). Estimators for Q (d) and gr (e) from the inverse depths at which the viscous parameters weresolution, assuming a geothermal gradient of 50 K/km and an

inferred. The porosity at the depth of incipientaverage sedimentation rate of 350 m/My. (f ) If the assumption
fluidization in both lithologies is fit withm=1 is relaxed, m̂ [Eq. (55)] estimates m. Values of m̂ for which

l̂<0 [from Eq. (56)], indicated by thin dotted portions of the lc=10 300 m (heavy solid curves, Fig. 9). If the
curves, are not physically meaningful. The exponent, m, is remaining variables that comprise lc are held con-
expected to have values between zero and unity (shaded region). stant, then this value would correspond to a two-For the solution, observed porosities (Fig. 9) were fit to w=

to fivefold increase in the value of gr inferred bya+bz+cz2+dz3+ez4+fz5 in the range z=1000–3500 m,
the inverse method.giving (±ŝ): {a=0.62406 ±0.02, b=−1.4422±0.4×10−3,

c=−4.4919±0.4×10−6, d=3.7647±0.2×10−8, e=−1.1784± The Pannonian shales are three orders of magni-
1.1×10−13, f=−1.3323 ±0.1×10−17} and {a=0.80973±0.01, tude less permeable than the sandstones (Szalay,
b=−1.2780±0.08×10−3, c=1.1809±0.01×10−6, d=−5.3875± 1982, cited in Van Balen and Cloetingh, 1994) and0.005×10−8, e=1.1309±0.1×10−12, f=−8.8023±1.0×10−18}
for shales and sandstones, respectively.
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therefore determine the effective permeability of Numerical calculations using k, lc and l deduced
from the analytical solution show that thethe hydraulic regime (Qin and Ortoleva, 1994).

The increase in the porosity of the shales at depths Pannonian basin overpressures are at least partially
explicable as a consequence of the transition to>3 km is due to secondary porosity generation

thought to be caused by overpressures resulting hydraulically controlled compaction. If the cal-
culations are made dimensional by takingfrom compaction, hydrocarbon maturation, and

decarbonation reactions (Szalay, 1988; Clayton qs=350 m/My, and parameters as in Table 1, the
reference permeability (kr=2×10−19 m2) requiredet al., 1990). The irregular porosity profile of the

sandstones at depth is understandable as sandstone for the numerical calculation to match the mini-
mum porosity compares with the permeabilityporosities would be dictated by the fluid flux

supported by the shales. For the depth of the kr~10−19.5 m2 from empirical functions fit to
Pannonian sediment data (Van Balen andtransition to hydraulically controlled compaction

indicated by both Pannonian porosity profiles Cloetingh, 1994). The numerical calculations in
which sediment viscosity was computed as an(zc=2800 m, Fig. 10), Eqs. (38) and (40) give

wc=k1/2=1.3% with parameters from the viscous explicit function of temperature [Eq. (25)], show
that the approximation that l does not vary withsteady-state solution for the shales. This range

compares to the minimum porosity (1.36% at z= depth is justified (Fig. 11). Because the effective
pressure gradient is large within the compaction3200 m) of the shale profile and the empirical

trend, for which w=1.3% at 2800 m. front (Szalay, 1988), the value of lc deduced from

Fig. 11. Porosity (a) and pressure (b) profiles for Pannonian shales made dimensional with qs=350 m/My and viscous model parame-
ters inferred from the inverse model (Fig. 10) compared with Pannonian trends (porosities from Szalay, 1982 cited in Dovenyi and
Horvath, 1988, overpressures from Clayton et al., 1990). The permeability used for the calculations, kr=2×10−19 m2, chosen to
reproduce the observed porosity at 2820 m depth is an order of magnitude lower than estimated from the inverse model, but agrees
well with shale permeability measurements (kr~10−19.5 m2, Szalay, 1982 cited in Van Balen and Cloetingh, 1994). A comparison of
numerical calculations made with a constant viscous e-fold length (671 m) with those made with constant activation energy (Q=
40.5 kJ/mol, VT=0.05 K/m), shows that the assumption of constant l has minor influence on the computational results.
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the profiles is largely independent of the overpres- rheologically limited regime to a stationary state
demonstrates that the upper portion of the profilesure, as demonstrated by the similarity of the

numerical and analytical solutions. responds rapidly to perturbations of the sedi-
mentary process, i.e. on a time scale of ~lv

w
The general form of the viscous steady state

[Eq. (35)] can, in principle, be used to deduce the (Fig. 1b). In contrast, beneath the compaction
front, the porosity profile is essentially static in aporosity dependence of the bulk viscosity as well

as the remaining parameters of viscous compac- reference frame that moves with the sediments.
Consequently, if the sedimentation rate changes,tion. For the general form
the porosity at the base of the compaction front
will evolve toward a new value that is largelym̂=−

w2(w+w∞+w◊2+w∞2z−2)

w∞2(w◊w−w∞2)
(55)

independent of processes at greater depth. This
porosity varies as qn−1s [Eq. (46)], and as the depth
of this value of the porosity is proportional to thel̂=

zww∞

zww◊−m̂zw∞2−ww∞
(56)

sedimentation rate through lc, a reduction in sedi-
mentation rate creates a low-porosity obstruction
to fluid flow from beneath the compaction frontl̂c=S−

zwm̂

w∞
ez/l̂ (57)

(Fig. 8). It is well established that a flow obstruc-
tion will cause nucleation of flow instabilities mani-
fest as porosity waves (e.g. Barcilon and andŵ

1
=A 1

wm̂−1 +
(m̂−1) l̂((l̂−z) ez/l̂−l̂)

l̂2c
B−1/(m̂−1). Richter, 1986). In contrast, an increase in sedi-

mentation rate does not generate flow instabilities(58)
because it causes the compaction front to develop

The values of m̂ from the Pannonian porosity higher porosities at a greater depth than the initial
profiles (Fig. 10f ) are of doubtful significance quasi-steady state.
because of the error in assessing the third derivative
of the profile, but the local extrema in l̂, l̂c and 4.1. Porosity waves in a viscous matrix
ŵ1 when m=1 is assumed correspond to the depth
at which m̂ =1 when m is not constrained. The The numerical calculation depicted by the heavy
minimum value of m̂ at which the remaining solid curves in Fig. 12 provides a basis for under-
parameters have meaningful values from the shale standing the evolution of porosity waves during a
profile is 0.5 at z=2466 m {l<2, lc<2376 m, sedimentary hiatus (commencing at t=0). Because
w1>23.4%, Q>0, gr<1.1×1022 Pa-s}, whereas for the velocity of the compaction front grows expo-
the sandstone profile, m̂ spans the entire theoretical nentially with depth (Fig. 1a), the front forms a
range, with m̂=0 at z=1799 m {l<2312 m, lc significant obstruction to fluid flow shortly after
<6740 m, w1>27.5%, Q>9.5 kJ/mol, gr<3.1× the cessation of sedimentation. The fluid pressure
1021 Pa-s}. Values of m>1 weaken the depth then increases beneath the obstruction, but because
dependence of the curvature of the steady-state the obstruction has a finite permeability, the pres-
profile. Therefore, large m̂ values for the sure diffuses into the obstruction creating a domain
Pannonian profiles at depth are interpreted as an of negative effective pressure about the initial
indication of hydraulically limited compaction. depth of the compaction front (i.e. supralithostatic

pressures, at t=1.2 My and z=2.5–3.2 km,
Fig. 12b). Within this domain, pore dilation
increases the permeability, but the fluid flux within4. Compaction-generated flow instabilities
the dilated region must be less than in the deeper
undeformed rocks. From Darcy’s law, the fluidCompaction gives rise to a quasi-steady-state

porosity–depth profile in which two distinct com- flux is proportional to the product of the overpres-
sure gradient and the permeability, thus thepaction regimes are connected by a narrow transi-

tional zone. The proximity of the upper, fluid pressure gradient within the domain relaxes
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toward a hydrostatic gradient (at t=3.7 My and
z=1.5–2.8 km, Fig. 12b). The domain broadens,
and the fluid overpressures increase with time as
fluid is supplied from below and hydraulic diffu-
sion and pore dilation propagate the domain
upward into the obstruction. The increase in pore
pressure leads to conditions such that the rate of
pore dilation, integrated over the depth interval
where supralithostatic pressures maintain, exceeds
the volumetric fluid flux from below, whereupon
effective pressures at the base of the domain
become positive and cause the porosity to collapse
(at t=3.7 My and z=2.1–3.3 km, Fig. 12b). When
the porosity collapses to values comparable to the
porosity of the obstruction, the fluid fluxes into
and out of the porous domain balance each other,
and the domain ceases to grow. Thereafter, the
effect of pore dilation at the top of the domain,
together with pore compaction at a greater depth,
is to propagate the region of dilated porosity
upward as a wave of anomalous porosity. The
collapsed porosity beneath the initial wave forms
an obstruction to compaction-driven fluid expul-
sion at greater depth, causing the nucleation of a
second wave. This mechanism effectively propa-
gates the initial obstruction downward against the
direction of fluid flow and results in the formation

Fig. 12. Numerically calculated porosity (a) and overpressure of a wave train that extends over the entire depth
(b) profiles for viscous sediment at approximately exponentially

interval of hydraulically limited compaction. Theincreasing time intervals after the cessation of steady sedimenta-
ultimate effect of this process is to form a seriestion (qs=3000 m/My, w1=25%). The calculations were made
of sill-like fluid compartments within which thefor constant Q (20 or 60 kJ/mol ) with VT=50 K/km, and the

respective values of Q give l values to equal 500 and 1500 m at fluid is overpressured, but the fluid pressure gradi-
3 km depth. For gr=2.28×1012 Pa-s (l=1500 m) and ent is hydrostatic.
kr=1.17×10−18 m2: l=4300 m, zc=3 km, wc=5%, tc= The amplitude of porosity waves, the analogy0.088 My. For gr=1020 Pa-s (l=500 m) and kr=1.17×

of secondary porosity in sedimentary fluid com-10−18 m2: lc=17 700 m, zc=3 km, wc=5%, tc=0.014 My.
partments, is proportional to the differenceDecreasing kr raises wc, thereby increasing zc and tc [Eq. (28)].

The local viscous compaction length, d, is determined by lc between the porosity of the flow obstruction and
during the initial phase of sedimentation. Thus, a comparison the unobstructed porosity at a greater depth (e.g.
of models for different lc values illustrates that the porosity Richter and McKenzie, 1984). Large-amplitudewavelength has little dependence on d, but is dependent on l.

porosity waves would therefore be favored byThe shorter time scale of the l=500 m models causes the models
rapid burial of low-permeability sediments, i.e.to evolve toward a quasi-stationary state, with the compaction

front at a greater depth, more rapidly than the l=1500 m large wss, followed by a sedimentary hiatus. The
models. Because the fluid pressure gradient is more nearly porosity of the obstruction formed by the compac-
hydrostatic in large waves than it is in small waves, large-ampli-

tion front is largely independent of permeability,tude wave trains propagate more rapidly. However, the wave
unlike the porosity at a greater depth, thereforetrains propagate more slowly than the associated compaction
both the absolute and relative amplitude of thefront, with the exception of low-permeability, long viscous

e-fold length model in which the wave front is constrained by waves increases as sediment permeability is
the compaction front. decreased. The porosity beneath the compaction
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front is a non-linear function of the ratio of burial gradient necessary to sustain a fluid flux varies
inversely with permeability and therefore wn, therate to initial sediment permeability [Eq. (46)].
stipulation of large amplitude waves permits theConsequently, a relatively small increase in sedi-
assumption that Vpe=Drg over a large fraction ofment permeability leads to a substantial reduction
the wave. For example, if the maximum porosityin amplitude (Fig. 12a).
(wmax) is four times the minimum (wmin), then VpeThe length scale, L, over which an effective
is 0.98Drg at wmax and 0.88Drg at 0.5wmax if n=3.pressure gradient can be maintained in viscously
Expanding the substantial derivative of porositycompacting sediment determines the flow instabil-
in Eq. (9) and taking the partial time derivativeity wavelength. For thermally activated compac-
of porosity as zero, in conjunction with Eq. (23)tion, L has been shown (Connolly and
(with m=1), the steady state is a Gaussian solitaryPodladchikov, 1998) to be either l or the local
waveviscous compaction length (d, e.g. McKenzie,

1984), with the shorter tending to dominate. For
the formulation adopted here, the local viscous w∞=expA− 1

2 Az−z
0

l B2B with l=S −v
w
g

Drgcompaction length is (Connolly and Podladchikov,
1998)

(61)

where pe=0 at the wave center (at z=z0) and
d=S kf

mw
. (59)

w∞=w/wmax. If the wavelength l is comparable to
the viscous compaction length d [Eq. (59)], then

Substituting Eqs. (21) and (23) into Eq. (59), and the velocity required by Eq. (61) is approximately
taking wss as characteristic of the fluidized porosity
yields:

v
w
=−

kDrg

mw
(62)

d=
lc
zc
An(n−1) expAz+zc

l BB−1/2 (60)
identical to the velocity necessary for fluidization
at the maximum porosity (wmax) of the wave. Wave

Thus, the counterintuitive result that wavelength trains formed by an obstruction to a region
is a weak function of kr (Fig. 12) is explicable of uniform porosity cannot become attenuated
because d is only weakly dependent on permeabil- with time (Spiegelman, 1993; Connolly and
ity through zc. The decay of d with depth increases Podladchikov, 1998), which implies that Eq. (62)
its influence, resulting in a reduction in wavelength is an upper limit for waves formed in response to
that is more pronounced for short l. a sedimentary hiatus. The assumption that the

Unlike the compaction front, which forms pressure gradient is equal to Drg maximizes the
under the influence of the surface boundary condi- deformation rate within the wave and therefore
tions, subjacent porosity waves are effectively iso- also gives Eq. (62) as an upper limit on the velocity
lated from the surface boundary by the compaction of smaller waves. Because the pressure gradient at
front. Therefore, there is no reason for the waves the wave center varies as (wmax/wmin)n, low sediment
to evolve to a stationary steady state, although permeabilities, which result in a large flow obstruc-
such a state does exist for the case that the waves tions, lead to more rapidly propagating waves, an
propagate with a velocity identical in magnitude effect demonstrated by the numerical models
but opposite to that of the matrix. Excepting this (Fig. 12).
case, the matrix viscosity varies as a wave changes The stationary state of porosity waves in a
its position relative to the surface precluding the matrix with finite l, is conveniently described in
attainment of a true steady state. Despite this terms of dimensionless depth z∞=(z−z0)/l relative
effect, insight into wave propagation is gained by to the wave center at z0considering the steady-state solution for large-
amplitude waves in a matrix without depth-depen- w∞=expA(1−z∞)ez∞−1

l∞2 B (63)
dent shear viscosity, i.e. l=2. As the fluid pressure



160 J.A.D. Connolly, Yu.Yu. Podladchikov / Tectonophysics 324 (2000) 137–168

where l∞=l/l with l as in Eq. (61), which is propagate in the direction in which the asymmetry
identical to the steady-state wavelength of the is pronounced. Thus, transient wave shapes are
compaction front at z0=zc and varies with depth determined primarily by the compaction of the
as relatively weak sediment below the wave center

and are reasonably approximated by the constant
viscosity solution. Since the width of the compact-l=lc expAzc−z

2l B.
ing region varies as (l/l )1/2 (Fig. 13), but transient
velocities decay exponentially (Fig. 12), waveThe stationary states (Fig. 13) show that the
velocities are reasonably estimated from Eq. (62)constant viscosity solution [Eq. (61)], whereby
by assuming l=ll~d, is appropriate if l/l<0.1. However, large

values of l/l induce strong asymmetry. That this
asymmetry is not well developed in the transient v

w
=−

l2Drg

gr
expAz−zr

l B. (64)
models (Fig. 12, where l/l=2–6 for l=1500 m and
l/l=8–80 for l=500 m) reflects that the waves

In distinction to the constant viscosity limit, this
approximation indicates that wave velocities are
independent of permeability and a strong function
of depth and l, a limit realized in the numerical
models. This result suggests that rheology, rather
than hydrology, dominates the growth and propa-
gation of the flow instabilities. Neglecting the weak
dependence of the pressure gradient on amplitude
in large waves, the effective pressure responsible
for wave propagation is only a function of depth
relative to the wave center because of the effective
isolation of the fluid within the wave from the
surface boundary. In contrast, within the compac-
tion front, the effective pressure is a function of
the absolute depth. From Eqs. (29) and (64), this
difference causes the compaction front to propa-
gate with a velocity ~z/l times that of a porosity
wave at the same depth. This behavior is manifest
in models where wave trains that initiate at a depth
z/l>1 (i.e. the dashed and thin solid curves,
Fig. 12) initially propagate slower than the com-

Fig. 13. Stationary states for large (wmax/wmin>~2) porosity paction front, leading to an initial broadening ofwaves as a function of l/l for m=1. The depth coordinate is
the flow obstruction formed in the wake of thechosen so that pe=0 at z=0. If l/l<~0.1, then waves develop

on a scale that is short compared to the viscous e-fold length. compaction front.
Consequently, the variation in viscosity is small over the wave Numerical and mathematical studies of porosity
length scale, and the Gaussian stationary state of the constant waves have shown that in a constant viscosity
shear viscosity model is realized. Attainment of the stationary

matrix, the one-dimensional sill-like wavesstate for finite l, requires that the phase velocity of the wave is
obtained here are unstable and decompose intoexactly opposite the sediment velocity. This condition is unlikely

to be met, but results in a weak porosity depth dependence spherical waves (Scott and Stevenson, 1986;
above the wave center at z=0. Upward propagation of transient Wiggins and Spiegelman, 1995). However, in ther-
waves tends to suppress the development of this asymmetry, mally activated compaction, upward strengtheningleading to the formation of Gaussian waves at large l/l, as

stabilizes the one-dimensional wave geometry pro-illustrated by the numerical results (Fig. 12), for which l/l=
35.4 (l=500 m) and l/l=1.67 (l=1500 m). vided d/l<1 (Connolly and Podladchikov, 1998),
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the case that appears relevant to sedimentary
compaction.

4.2. Porosity waves in a yielding viscous matrix

Negative effective pressures (~−lDrg/2) are an
inescapable result of flow instability and porosity
wave nucleation in viscously compacting sediment.
Although, the existence of ‘secondary’ porosity
induced by hydrocarbon migration (e.g. Szalay,
1988) is evidence that negative effective pressures
are possible, it is improbable that sediments sup-
port large negative effective pressures without fail-
ing by hydrofracturing or other yielding
mechanisms. To account for yielding in numerical
calculations, the shear matrix viscosity was reduced
by three orders of magnitude at effective pressures
below the yield threshold, taken as zero effective
pressure. The factor is arbitrary, but does not
sensibly influence results provided the matrix vis-
cosity during decompaction is at least an order of
magnitude lower than the viscosity during
compaction.

The porosity waves generated in a yielding
matrix (Fig. 14) differ fundamentally from the
simple viscous case only in that the mean fluid
pressure within the waves is sublithostatic. This

Fig. 14. Numerically calculated porosity (a) and overpressure
has the effect of producing a step-like fluid pressure (b) profiles, for viscous sediment with yielding at zero effective
distribution with depth, a feature characteristic of pressure, at approximately exponentially increasing time

intervals after the cessation of steady sedimentation, with thecompartmentalized sedimentary sequences (e.g.
same parameters as in Fig. 12. In a yielding matrix, porosityHunt, 1990). In detail, plastic yielding reduces the
waves that initiate in response to the cessation of sedimentationsymmetry and size of the waves, and accelerates
propagate faster and have wavelengths roughly half that of

the drainage of fluid trapped beneath the compac- waves in the simple viscous case. Yielding reduces the overpres-
tion front, but does not fundamentally alter the sure necessary for wave propagation, resulting in step-like fluid

pressure profiles similar to those of compartmentalized sedi-development or scaling of flow instabilities. That
mentary sequences. Porosity waves that propagate in a vis-yielding does not cause waves to dissipate may be
coplastic matrix without losing fluid volume are characterizedcounterintuitive, but is explicable in the context of
by a shock front, below which the porosity decreases with depth,

the conceptual model discussed earlier for viscous as in viscous waves. In the latter part of the model evolution,
waves. For the case of true plastic yielding (f=0) the waves lose fluid across the compaction front and decay in

both amplitude and wavelength.at zero effective pressure, any occlusion of the
porosity underlying the compaction front would
be propagated upward, producing a profile charac- compaction front (heavy solid curve for t=1.2 My

at z=2.8 km, Fig. 14a). Fluid fluxes in this regionteristic of fluidized compaction. However, if the
sediment has a finite resistance to yielding at zero are greater than in the underlying porosity, which

must eventually collapse by viscous compactioneffective pressure, then the occlusion in the poros-
ity formed consequent to a sedimentary hiatus (t=3.7 My at z=1.5–3 km Fig. 14a), creating a

wave of porosity in a manner exactly analogousmust cause a small increase in the maximum
porosity within the fluidized region beneath the to the simple viscous model (Fig. 12). In a yielding
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matrix, wave propagation is limited only by the below the compaction front. Devolatilization reac-
rate at which viscous compaction can drive fluid tions offer a mechanism of producing both fluid
flow to the wave front and, because dilation is and porosity below the compaction front without
more rapid than compaction, this front is sharper requiring extraordinary permeabilities or sedi-
than in the viscous case. The maxima in fluid mentation rates. Moreover, devolatilization is
pressure and porosity are thus more nearly coinci- capable of producing a depth interval of finite
dent in a viscoplastic wave and, provided the porosity bounded by fully compacted sediments
condition for plastic yielding is near zero effective on a time scale that is limited only by reaction
pressure, must be smaller and propagate more kinetics. Such a scenario is analogous to the gener-
rapidly than waves in a viscous matrix. A conse- ation of a flow obstruction with infinite relative
quence of this acceleration is that the numerical amplitude purely by viscoplastic compaction, but
models for the viscoplastic case illustrate a more without the restrictive time scale. In terms of the
advanced evolution in which the waves have begun depth interval of interest here, the dehydration of
to decay as a result of interaction with the compac- clay minerals (smectite and kaolinite), diagenetic
tion front. Decay occurs when the wave train decarbonation, and kerogen decomposition that
impinges on the compaction front and raises the occur at T~423–573 K are potentially important
intervening porosity to a value large enough to fluid sources (e.g. Clayton et al., 1990; Bjørlykke,
accommodate the fluid flux from beneath the com- 1993). To account for the effects of such reactions
paction front. Thereafter, wave propagation in a numerical model, the right-hand sides of the
cannot occur without loss of fluid mass. In the dimensional forms of Eqs. (50) and (51) were
viscoplastic case, viscous compaction caused by modified by the addition of source terms for the
the loss of fluid mass is slow compared to the volumetric production of fluid (Sf) and porosity
propagation of the wave by plastic dilation so that (S

w
). At the low confining pressures characteristic

the maximum in porosity is displaced behind the of sedimentary basins, devolatilization generally
wave front, resulting in wave forms that are super- occurs such that S

w
<Sf. Under poorly drained

ficially similar to the viscous case. The decay is conditions, incipient diagenetic devolatilization
asymptotic with time, and, even with accelerated therefore tends to generate overpressures (e.g.
drainage caused by yielding, porosity waves may Hubbert and Rubey, 1959; Wong et al., 1997), a
be retained on a 100 My time scale. potentially important effect in sedimentary envi-

Similar results are obtained if yielding is ronments (e.g. Szalay, 1988; Clayton et al., 1990;
accounted for by the pseudoelastic term in the Hunt, 1990). In a viscous matrix, such overpres-
compaction equation [Eq. (9)], provided De>1, sures affect local deformation, but the ratio S

w
/Sf(Connolly and Podladchikov, 1998). Step-like and the dependence of reaction kinetics on fluid

pressure–depth profiles can also be obtained from pressure are of minor consequence to the develop-
viscous models if compaction becomes less efficient ment of flow instabilities that ultimately modulate
with decreasing porosity, as observed for non- the overpressure on the compaction length scale
Newtonian rheologies [Eq. (24)], Ashby, 1988).

(e.g. Connolly, 1997). We therefore discount these
effects and assume equilibrium devolatilization
with S

w
=Sf. For simplicity, burial is isothermal,4.3. A numerical model of devolatilization-induced

and there are no pressure effects on the temper-flow instability
ature of devolatilization so that devolatilization
occurs across eustatic reaction fronts. The sourceTwo potential difficulties in relating the vis-
term, Sf, is then expressed in terms of the sedimentcoplastic porosity wave model to basin processes
velocity and reaction front width (w)are posed by the time required to generate a flow

obstruction following a perturbation to steady
sedimentation, and by the large value of k (i.e. Sf=f

vs
w

(65)
low k or high qs) required to retain sufficient fluid
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where f is the volume of fluid generated per unit
volume of rock. The values f of employed here
(2.9–5.8%, i.e. 1–2 wt%) are plausible, given that
diagenetic volatile budgets in sedimentary basins
may exceed 20 vol% (e.g. Bjørlykke, 1993).
Because a narrow reaction front generates a large
relative flow obstruction that amplifies flow insta-
bility, the front width is a potentially important
factor if it is significantly less than the compaction
length scale. To provide conservative models for
the generation of porosity waves by devolatiliza-
tion, the reaction front is taken to be relatively
wide, i.e. 500 m. Broad reaction fronts are also
consistent with the high thermodynamic variance
of low-temperature devolatilization processes (e.g.
Connolly, 1997). Heterogeneity in fluid production
on the porosity wavelength scale has little impact,
but to simulate larger-scale heterogeneity, the
numerical models are configured with two sources
separated by a 1 km depth interval. There is evi-
dence that hydrocarbons currently trapped in
secondary porosity at ~3 km depth in the
Pannonian Basin have migrated from depths of
~6 km (Clayton et al., 1990), but hydrocarbon
generation typically commences at somewhat shal-
lower depths. Although the depth of the upper
model source (5.5 km) is perhaps excessive, it is
chosen to illustrate the dynamics of the flow insta- Fig. 15. Porosity (a) and overpressure (b) profiles for models

of devolatilization in a viscoplastic sediment matrix, as a func-bilities. Models with shallower sources give similar
tion of time following the onset of devolatilization. The calcula-results, but wave interactions obscure the factors
tions were made for constant Q (20 or 60 kJ/mol ) with VT=controlling the evolution of the instabilities. 50 K/km and other parameters as indicated or in Table 1.

The numerical models (Fig. 15) demonstrate Reaction fronts are indicated by thin dotted horizontal lines,
that devolatilization in conjunction with viscoplas- upper and lower reactions release 1 and 2 wt% water respec-

tively, and devolatilization ceases with the end of sedimentationtic compaction is capable of producing a com-
at t=6.7 My. The shaded gray field at t=2.5 My shows thepartmentalized sedimentary sequence from homo-
distribution of porosity that would be generated by the reactionsgeneous initial conditions with plausible sedi- if compaction did not occur. The models assume isochoric

mentary parameters. In distinction to the previous devolatilization. Pressure effects normally associated with diage-
models of waves induced entirely by compaction, netic devolatilization would enhance development of porosity

waves. In distinction to flow instabilities that develop entirelyin which the sediment velocity during wave initia-
from compaction processes (Figs. 12 and 14), initiation oftion was zero, in the devolatilization models, the
porosity waves by devolatilization occurs on a short time scale

waves must propagate against the downward and does not require extraordinary sediment velocities or per-
movement of the matrix during sedimentation. meability. The profiles at t=30 and 70 My demonstrate that
Consequently, a requisite for wave nucleation is porosity waves are capable of forming fluid compartments that

would persist in inactive basins.that waves propagate upward more rapidly than
the rate at which the sediment is buried. Two
factors favor wave nucleation and detachment in velocities [Eq. (64)]; and (2) less reaction is

required to generate the porosity of the relativelythe short viscous e-fold length model: (1) lower
sediment viscosity at depth increases the wave small waves. Indeed, in the long e-fold length
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model, the waves only become large enough to mentary basins is explicable if the viscous e-fold
length is small in comparison to the normallypropagate beyond the reaction front at a model

time almost coincidental with the cessation of pressured depth interval. To quantify this behavior
we have explored steady state solutions to thesedimentation. Thus, high sedimentation rates may

suppress the wave nucleation, but even in such viscoelastic compaction equations. The solution
for the viscous limit can be inverted to identifycases, devolatilization results in a domain of

occluded porosity from which waves nucleate once porosity profiles consistent with the viscous model
and to constrain its parameters. The approach isthe sedimentation rate decreases. Although the

models were not constructed to simulate the distinct from typical fitting procedures in that it
exploits the peculiar curvature of viscous compac-Pannonian basin, the wave velocities of the short

e-fold length model are consistent with the rates tion profiles. The linear viscoelastic model is
remarkably successful in reproducing the porosityof vertical fluid migration (~250–500 m/My)

inferred from geochemical evidence (Clayton et al., profiles observed in the Pannonian basin with three
parameters: the viscous e-fold length; lc, the length1990) and the development of secondary porosity

(Szalay, 1988). Heterogeneous fluid production on scale of the viscous compaction front in the limit
of no thermal activation; and the pseudoelastica length scale >l can lead to more complex

interactions between waves than is the case for pore compressibility. For both the pelitic and
psammitic Pannonian lithologies, the activationcoherent waves generated from a single obstruction

such as the compaction front. The short viscous energies are similar to those inferred for pressure
solution creep in quartzites (Angevine ande-fold length numerical model (Fig. 15) provides

an example of such interactions when the large Turcotte, 1983; Rutter, 1983; Shimizu, 1995;
Schneider et al., 1996). Effective sediment viscosi-amplitude wave from the deeper source gains fluid

at the expense of the smaller and more slowly ties from the inverse model are consistent with
estimates derived from geodynamic considerationspropagating waves that it overtakes. This mecha-

nism causes fluid generated by isolated sources to of subsidence and diapirism (Gratz, 1991; Poliakov
et al., 1993a). Although success is not proof ofbe swept into larger porosity waves that accumu-

late beneath the compaction front. Thus, multiple validity, the ability of the viscoelastic model to
reproduce natural trends with physically meaning-fluid sources at depth have the same ultimate effect

as a homogeneous source in that they produce a ful parameters lends the model credence. However,
deviations from near surface porosity trends cansequence of porosity waves that diminish with

depth. As in the case of wave trains generated be explained in the context of pseudoelastic models
by a non-linear increase in the mean stress withentirely by compaction, the wave trains generated

by devolatilization slow and decay asymptotically depth, due to sediment induration and tectonic
stresses (e.g. Shi and Wang, 1986). Such modelsas they approach the compaction front and are

therefore features that could be retained in inactive have been applied to describe the fluid pressure
evolution of the Pannonian Basin (Van Balen andbasins on a time scale in excess of 100 My.
Cloetingh, 1994). It is noteworthy that the porosity
profile of the Pannonian basin Hod-I borehole
(Szalay, 1988) shows no significant deviation from5. Discussion and conclusion
the normal pseudoelastic trend. This difference
may be attributed to the effects of overpressuringThermal activation of precipitation–dissolution

processes in sedimentary basins can cause fluid as a result of hydrocarbon generation, but there is
little reason to expect that effective viscous proper-overpressure to develop over a narrow depth

interval comparable to the viscous e-fold length. ties deduced from a single profile should be valid
in general. It is therefore premature to ascribe aThis interval is marked by a rapid decrease in

sediment porosity . The observation that, despite general significance to the viscous parameters
inferred here.sources of natural variability, overpressure devel-

opment occurs at the same depth in many sedi- Although non-Newtonian viscous behavior is
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tractable by the methods employed here, our ana- the viscous limit. Elsewhere (Connolly and
Podladchikov, 1998), we have shown that forlytical formulation assumes a linear stress depen-

dence. While there is evidence that pressure small, but finite, De, the viscoelastic stationary
state is characterized by wave-like oscillations insolution creep is Newtonian (e.g. Rutter, 1983),

the stress dependence of macroscopic precipita- porosity and effective pressure that decay with
depth. Should such values of the Deborah numbertion–dissolution compaction mechanisms (Qin and

Ortoleva, 1994; Bjørkum, 1995) is not necessarily be relevant at the depth of the transitional regime,
compartmentalization would be an intrinsic featurelinear, and some lithologies are known to compact

with a non-linear stress dependence (e.g. carbon- of the steady state.
For plausible sedimentary parameters, theates and evaporites, Spiers and Schutjens, 1990;

De Meer and Spiers, 1995). Non-linear viscous length scale of the porosity waves, i.e. compart-
ments, is determined largely by the viscous e-foldcompaction would generally strengthen porosity

variation with depth and would be in many length (~0.5–1.5 km), but wavelength is also
weakly dependent on local sediment viscosity,respects indistinguishable from the effect of ther-

mal activation. A potentially important exception which decays downward. Wave amplitude is pro-
portional to the reduction in the sedimentationwould be a non-linear viscous rheology with a

negative stress exponent. Such a rheology has been rate that initiates flow instability, such that rapid
sedimentation followed by a sedimentary hiatusproposed as an explanation for the weak stress

dependence of sedimentary compaction by precipi- is the optimal scenario for compaction-induced
compartmentalization. Although porosity wavestation dissolution (B. Den Brok, pers. commun.

1999) and would produce an opposite effect to propagate upward with velocities that are an expo-
nential function of depth, the waves are con-that of thermal activation.

The characterization of sediment by effective strained by the compaction front. Thus, waves
that form at depth tend to coalesce into larger,properties is a simplification that obscures natural

complexity. Indisputably, lithological hetero- essentially eustatic, waves immediately beneath the
compaction front. A discrepancy between the vis-geneity must play a role in basin compaction and

compartmentalization, but these effects are super- cous porosity wave model and natural fluid com-
partments is that the mean fluid pressure withinimposed upon the patterns that result from the

compaction process. Our goal here was to quantify porosity waves is almost lithostatic, whereas in
natural compartments, fluid pressures approachthese patterns. Rheologically controlled compac-

tion leads to a reduction in permeability that lithostatic. This type of fluid pressure distribution
is produced by porosity waves if yielding is incor-causes a transition, that is analogous to the top

seal of an overpressured sedimentary sequence, to porated into the rheological model. The yield
mechanism has little influence on the time anda hydraulically limited compaction regime charac-

terized by fluid pressures comparable to the sedi- length scales of compartmentalization because
fluid expulsion remains limited by the viscousment load. Perturbations to a regime of steady

sedimentation that result in a reduction in sedi- compaction. In one-dimensional compaction, the
effect of yielding on the porosity–permeabilitymentation rate cause the compaction front to

propagate upward, forming an interval of lowered relationship is immaterial because the direction of
fluid flow is fixed. More generally, the yieldporosity that acts as an obstruction to fluid flow.

This obstruction initiates flow instability that is mechanism may influence porosity wave geometry.
Thus, the one-dimensional geometric model inmanifest by porosity waves that propagate infor-

mation about the obstruction downward against which flow instabilities take the form of horizontal
sill-like structures might be justified by fracturingthe direction of fluid flow, resulting in compart-

mentalization of the hydraulically limited compac- at sublithostatic fluid pressure (Simpson, 2000),
whereas ideal plastic yielding promotes channelingtion regime. The quasi-steady-state model is

simplified in that we assume that the transition instabilities and creates more complex structures
(Connolly and Podladchikov, 1998). Viscous rhe-to hydraulically limited compaction occurs in
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ology is not a necessary condition for the develop- implications for fluid migration in sedimentary
basins because it would cause buoyant fluids to bement of flow instabilities during hydraulically

limited compaction. However, the flow instabilities driven downward by compaction processes, but
would not otherwise affect flow mechanisms. Thethat would develop in an elastic or pseudoelastic

sediment matrix have no intrinsic length scale understanding of the interactions between compac-
tion and tectonic processes is therefore a goal(Rice, 1992; Connolly and Podladchikov, 1998).

The viscous model is therefore more satisfying in worthy of pursuit.
that the formation of both a top-seal and subjacent
fluid compartments is explicable as an inherent
feature of the compaction process. Acknowledgements
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