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[1] Experimental studies indicate that crystal‐bearing magma exhibits non‐Newtonian behavior at high
strain rates and solid fractions. We use a zero‐dimensional (0‐D) inversion model to reevaluate rheological
parameters and shear heating effects from laboratory data on crystal‐bearing magma. The results indicate
non‐Newtonian behavior with power law coefficients of up to n = 13.5. It has been speculated that finite strain
effects, shear heating, power law melt rheology, or plasticity are responsible for this non‐Newtonian behav-
ior. We use 2‐D direct numerical crystal‐scale simulations to study the relative importance of these mechan-
isms. These simulations demonstrate that shear heating has little effect on aggregate (bulk) rheologies. Finite
strain effects result in both strain weakening and hardening, but the resulting power law coefficient is modest
(maximum n = 1.3). For simulations with spherical crystals the strain weakening and hardening behavior is
related to rearrangement of crystals rather than strain rate related weakening. Finite strain effects were insig-
nificant in a numerical simulation with naturally shaped crystals. Strain partitioning into the melt phase may
induce microscopic stresses that are adequate to provoke a nonlinear viscous response in the melt. Large dif-
ferential stresses and low effective stresses revealed by the simulations are sufficient to cause crystals to fail
plastically. Numerical experiments that account for plastic failure show large power law coefficients
(n ≈ 50 in some simulations). We conclude that this effect is the dominant cause of the strong nonlinear
viscous response of crystal‐bearing magmas observed in laboratory experiments.
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1. Introduction

[2] The rheology of crystal‐bearing magmas has
been the subject of laboratory experiments and
theoretical investigations (see e.g., Stickel and
Powell [2005] and Petford [2009] for reviews).
Pure, single‐phase silicate melts are typically
Newtonian, although they can be non‐Newtonian
at high strain rates [Webb and Dingwell, 1990a,
1990b]. However, the rheological behavior of
crystal‐bearing magmas, that is a suspension of
crystals in melt, is often non‐Newtonian and
most commonly characterized by shear thinning
behavior. Magmatic constitutive relations have been
quantified in several studies [e.g., Pinkerton and
Stevenson, 1992; Lejeune and Richet, 1995; Costa,
2005; Caricchi et al., 2007; Cordonnier et al.,
2009; Costa et al., 2009; Petford, 2009]. The
majority of these studies focus on the estimation of
macroscopic rheological parameters and provide
limited insight into the underlying physics. A
number of experimental studies have explored
the influence of particle fraction [Rutgers, 1962;
Arzi, 1978; Lejeune and Richet, 1995], and shape
[Cleary, 2008; Mueller et al., 2010]. Champallier
et al. [2008] demonstrated that crystal suspensions
in silicate melts may have a strongly nonlinear,
shear thinning, viscous rheology. Analogue experi-
ments also show nonlinear, shear thinning, rheology
[Mueller et al., 2010]; although in the analog exper-
iments the nonlinearity is weak and sometimes
manifest as a shear thickening effect. Non‐
Newtonian effects also occur in colloidal suspen-
sions but they are attributed to effects that have
been shown to be insignificant for silicate magmas
[Mueller et al., 2010]. The cause of the non‐
Newtonian rheology of magmas has not been
resolved [e.g., Cordonnier et al., 2009; Mueller
et al., 2010] and is the focus of this investigation.

[3] We employ a 0‐D model to fit the full stress‐
strain curves of published laboratory experiments.
This model allows us to extract the effective sus-
pension viscosity as a function of strain rate, and to
quantify the nonlinearity of the viscous component
of the rheology. To elucidate the underlying causes

for this nonlinearity we perform systematic 2‐D
numerical simulations, from which we extract
stress‐strain curves that are analyzed with the same
0‐D model. The 2‐D numerical simulations are
performed on the spatial scale of individual par-
ticles assuming visco‐elasto‐plastic rheology. This
method facilitates the analysis of microstructures as
well as local stress, strain and strain rate distribution
inside the crystal‐melt system with evolving time.
By controlling the melt and solid rheologies inde-
pendently we can test the relative importance of
shear heating, power law melt rheology, finite strain
effects (microstructural reordering of crystals) and
plasticity for the overall rheological behavior of the
crystal‐melt suspension. We also evaluate the effect
of crystal shape on suspension rheology.

2. Zero‐Dimensional Analysis
of Laboratory Experiments

[4] The laboratory experiments of Caricchi et al.
[2007] tested the strain rate dependence of rheol-
ogy by performing so‐called strain rate stepping
experiments. In these experiments samples are
deformed at a specified strain rate until the stress‐
strain rate curve flattens, at which point the strain
rate is increased (Figure 1a). The effective viscosity
(and hence the power law coefficient) can then be
computed a posteriori from the ‘flat’ part of the
stress‐strain rate curve, while the initial phase
reflects the influence of elastic rheology. Because
graphical identification of the viscous component is
subjective, we employ a 0‐D Maxwell viscoelastic
model to invert the entire stress‐strain curve for
the relevant rheological parameters This has the
advantage that we simultaneously establish the
effective elastic shear modulus and viscosity of
the sample, and that we are able to obtain accurate
viscosity estimates for experiments in which the
stress‐strain curves are not perfectly flat.

[5] Our 0‐D Maxwell viscoelastic model is based
on the same assumptions used in interpreting most
laboratory experiments, namely that the bulk strain
rate in the sample is homogeneous. Mathematically,
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this assumption implies [e.g.,Kaus and Podladchikov,
2006]

@�

@t
¼ 2G _"� G

�
�; ð1Þ

where G and m are the effective shear modulus and
viscosity, t is time, s is stress and _" strain rate.

[6] We also compute the shear heating effect by
assuming that the system is adiabatic (does not loose
heat) in which case

@T

@t
¼ �

�cp
_"� 1

2G

@�

@t

� �
; ð2Þ

where T is temperature, cp heat capacity, and r is
density. Equations (1) and (2) are coupled ordinary
differential equations that are solved forward in time
using the MATLAB ODE (ordinary differential
equation) toolbox, where each simulation yields a
stress‐strain and a temperature curve. The best fit
values of G and m for a given strain rate are deter-
mined in an automated manner with a simplex
search algorithm [Lagarias et al., 1998], fromwhich
we in turn can compute the power law coefficient
(see Figure 1 for two worked examples).

[7] It is instructive to study how the power law
coefficient varies in laboratory experiments. For this

purpose we reanalyzed the published experiments
with our 0‐D model. Results show a strong non‐
Newtonian behavior with power law coefficients of
up to n = 13.5 (Figure 2). This is an extremely large
value compared to most laboratory experiments
on natural samples, which typically have power law
exponents less than 5.

[8] There is nearly no correlation of n with crystal
fraction and initial temperature. Yet, some correla-
tion exists with maximum aggregate stress as well as
with adiabatic temperature increase (Figures 2c
and 2d), which suggests that shear heating or stress
might play a role. As these results are inconclusive,
we performed 2‐D numerical simulations and ana-
lyze the stress‐strain curves from these simulations
with the same 0‐D method.

3. Governing Equations, Numerical
Method, and Model Setup

3.1. Rheological Model
[9] We assume 2‐D incompressible Stokes flow
of either linear or nonlinear viscous rheology.
We further consider elastic and plastic deformation
as well as shear (viscous) heating. The governing

Figure 1. Two worked examples of fitting experimental data of a magma suspension containing crystals with a 0‐D
viscoelastic rheological model. (a) Laboratory‐derived and numerically computed stress‐strain curves for two different
experiments. (b) Maximum amount of temperature increase due to shear heating. (c) Suspension viscosity as a function
of strain rate on double logarithmic axes. The power law coefficients, computed from these curves, can reach large
values.
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equations, written using Einstein summation con-
vention, are as follows: conservation of mass

@vi
@xi

¼ 0; ð3Þ

where vi denotes velocity and xi are spatial coor-
dinates (i = 1, 2), and force balance

@�ij

@xj
¼ 0; ð4Þ

where sij are total stresses. Total stress and strain
rate are defined as

�ij ¼ �P�ij þ ~�ij; ð5Þ

_"ij ¼ 1

2

@vi
@xj

þ @vj
@xi

� �
; ð6Þ

where ~�ij denotes deviatoric stress, P pressure, dij
the Kronecker delta and _"ij strain rate.

[10] We use a Maxwell visco‐elasto‐plastic rheol-
ogy because it is the simplest rheology that is
capable of describing the entire measured stress‐
strain curves, and simultaneously capable of simu-
lating brittle failure. For this rheology, deviatoric
deformation is described by

_"ij ¼ _"visij þ _"elij þ _"plastij ¼ 1

2�eff
�ij þ 1

2G

D~�ij

Dt
þ _�

@Q

@�ij
; ð7Þ

where _"ij
vis, _"ij

el and _"ij
plast are the elastic, viscous and

plastic strain rates, respectively, G the elastic shear
modulus, meff viscosity, _� is a plastic multiplier and
Q is the plastic flow potential [Moresi et al., 2007;

Figure 2. Power law coefficient computed from fitting the 0‐Dmodel to the laboratory experiments of Caricchi et al.
[2007]. Results are plotted versus (a) crystal fraction, (b) initial sample temperature, (c) maximum obtained stress, and
(d) adiabatic temperature increase. The gray bar indicates the range of power law coefficients for solid rock experiments.
In some experiments, n increases with increasing strain rate (e.g., Figure 1c). In these cases we report n and themaximum
aggregate (bulk) stress at _" = 3 × 10−5 s−1.
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Kaus, 2010]. The Jaumann objective derivative of
the deviatoric stress tensor versus time is

D~�ij
Dt

¼ @~�ij

@t
þ vk

@~�ij

@xk
�Wik ~�kj þ ~�ikWkj; ð8Þ

whereWij = 1
2

@vi
@xj

� @vj
@xi

� �
is the vorticity. Laboratory

experiments indicate that brittle failure of crystals
may affect the rheology of the system [Lavallée
et al., 2007], which is approximated here by a
nonassociated Mohr‐Coulomb plasticity, where (in
2‐D) the yield condition F and the plastic flow
potential Q are given by

F ¼ ~�*� �* sin �ð Þ � C cos �ð Þ ð9Þ

Q ¼ ~�*; ð10Þ

where ~�* =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xx � �zzð Þ=2ð Þ2þ�2

xz

q
,s*=− 0.5(sxx+

szz), C denotes cohesion, � the friction angle, which
in our model is assumed to be zero (because the
magmatic fluid pressure is very large) so that plas-
ticity arises entirely due to the cohesion criterion.

[11] Plastic deformation occurs if stresses are locally
above the yield stress, i.e., if F > 0, in this case _� is
iteratively adjusted to satisfy the conditions

_� � 0;F � 0; _�F ¼ 0: ð11Þ

In addition to the mechanical equations we solve the
energy equation to account for shear heating (vis-
cous heating)

�cp
@T

@t
þ vi

@T

@xi

� �
¼ @

@xi
k
@T

@xi

� �
þ Hs; ð12Þ

Hs ¼ ~�ij _"ij � _"elij

� �
¼ ~�ij _"ij � 1

2G

D~�ij
Dt

� �
; ð13Þ

where k is thermal conductivity. Insulating thermal
boundary conditions are applied.

[12] Viscosity is defined here by

�eff ¼ �0
_"II
_"0

� �1
n�1

; ð14Þ

where _"II = (0.5 _"ij _"ij)
0.5 is the second invariant of

the strain rate tensor, m0 the characteristic viscosity,
n the power law coefficient and _"0 the characteristic
strain rate (note that in most experimentally derived
flow laws _"0 = 1). Equation (14) implies that a
shear thinning viscous rheology is characterized by
power law exponents greater than unity, as is
conventional in the geodynamics and solid rock
deformation literature; this formulation is the

inverse of the oft adopted convention in magmatic
rheology where n < 1 is indicative of shear thinning
(Appendix A). Problems involving nonlinear vis-
cous rheology are solved iteratively until the
change of resulting velocities is less than 0.1%. The
general viscosity description can be modified
according to the crystal or melt phase when tem-
perature changes are taken into account. The rele-
vant laws are given below.

3.2. Melt Rheology
[13] In order to perform simulations that can be
compared with laboratory experiments, we use an
empirically (phenomenologically) derived viscosity
model to predict viscosities of natural volatile‐
bearing silicate melts [Giordano et al., 2008, avail-
able from www.eos.ubc.ca/~krussell]. This model
depends on temperature and composition. For
present purposes we assume the melt composition
(2.88% H2O, 77.2% SiO2, 11.52% Al2O3, 3.78%
Na2O, 4.62% K2O in weight percent) from the
experiments of Caricchi et al. [2007] so that

log10 �gio
� � ¼ aþ b

T � c
; ð15Þ

where a = −4.5, b = 11249, and c = 35.302 are
composition‐dependent parameters, and T is the
temperature in Kelvin. We generalize this expres-
sion to account for nonlinear viscous behavior of
the melt as

�melt
eff ¼ f �gio _"II

_"0

� �1
n�1

: ð16Þ

If temperature is constant, we compute meff with
equation (14). The factor f is a viscosity multiplier,
which allows us to increase the viscosity to levels
at which it is possible to achieve the large stresses
observed in laboratory experiments.

3.3. Numerical Method
[14] The equations described above (equations (3)–
(16)) are solved using the finite element (FE) code
MILAMIN_VEP (see e.g., Kaus [2010] for details).
To obtain accurate solutions given the large vis-
cosity contrasts in a melt‐particle system, we use a
Lagrangian mesh with P2P−1 7 node Crouzeix‐
Raviart triangular elements [Cuvelier et al., 1986],
with quadratic shape functions for velocity and
linear, discontinuous shape functions for pressure.
The body‐fitting mesh (elements exactly follow
the crystal‐melt boundaries) is generated using
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TRIANGLE [Shewshuk, 1996]. If the elements
become too distorted, remeshing is applied.
Remeshing introduces errors, which are visible as
small offsets in the computed stress‐strain curves.
The magnitude of the offsets is reduced if the
number of elements in the simulation is increased,
but the overall stress‐strain curves remain similar,
which suggests that the results obtained here are
resolution independent. Typically 100′000–205′
000 elements were used for a simulation.

[15] The Lagrangian FE method yields accurate
results for our problem configuration [Deubelbeiss
and Kaus, 2008] and has been successfully
applied in an earlier study dealing with particle
suspensions [Deubelbeiss et al., 2010]. Tracers are
employed to track material properties. Material
properties are computed from the tracers by
computing the dominant phase at each integration
point, after which the integration point values are
averaged over the element.

3.4. Model Setup
[16] We use a 2‐D simple shear setup consisting of
suspending particles and interstitial melt. The initial
location of the particles is random. Simulations are
performed for spherical and elliptical particles as
well as for crystals with natural shapes (Figure 3).

Physical parameters vary depending on different
tests and are given in Table 1.

[17] Simple shear deformation is induced by apply-
ing a constant horizontal velocity at the top bound-
ary (with zero vertical velocity), while the bottom
boundary is fixed. To enable simulations with large
strains we impose periodic lateral boundaries.
Thermal boundary conditions are insulating, which
implies that we compute the maximum shear heating
effect.

[18] Stress‐strain curves are computed for the
numerical simulation by calculating the aggregate
(bulk or also average) values of the stresses as fol-
lows: for each element an average value is derived
by taking the mean of the values at the integration
points and multiplied by the area of the element. The
average of the total aggregate is then the sum of the
element‐wise averaged values divided by the sum of
the area of each element. The aggregate viscosities
are derived by the macroscopic stress‐strain rate
relationship that is the aggregate viscosity is

�agg ¼ ~�agg

2 _"agg
; ð17Þ

where ~�agg and _"agg are the deviatoric stresses and
the strain rates averaged over the elements. The
aggregate properties are determined every time step.

Figure 3. Model domain used for computations with randomly distributed spherical and elliptical particles and inter-
stitial melt. In some cases, natural crystal shapes are used, which are digitized from laboratory experiments. Simple shear
boundary conditions are applied. Numerical simulations are performed with body‐fitting meshes (lower left).
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For shear viscosities only shear components (~�xy
agg,

_"xy
agg) are used.

[19] For simplicity, shear aggregate viscosity (mxy
agg)

is called aggregate viscosity m throughout this paper
(the aggregate viscosity is sometimes referred to as
the apparent suspension viscosity in magma rheol-
ogy literature). In numerical context, where it is
clear, aggregate viscosity is only referred as vis-
cosity, while the melt viscosity is defined explicitly
as mmelt.

4. Effective Aggregate Rheology in 2‐D
Numerical Simulations

[20] We perform a series of finite strain forward
simulation in order to test the relative importance
of finite strain effects (microstructural reordering
of crystals), shear heating, power law melt rhe-
ology and plasticity on the aggregate rheology of
melt‐crystal suspensions. Systematic testing is for
the case of spherically particles, and is aug-
mented by simulations with elliptical and natural
particle shapes. Two kinds of tests are performed:
the strain rate is kept constant; or it is increased
in a stepwise manner after reaching for each step
a steady state stress. The first setup allows us
additionally to investigate finite strain effects of
the aggregate rheology with increasing strain,
while the second is mainly used to investigate
the dependence of aggregate rheology on strain
rates and to compare numerical with experimental
results.

4.1. Rheological Combinations
[21] We consider the following four rheological
models: (1) model A, Newtonian melt rheology,
which includes constant temperature and a linear
viscous melt rheology (equation (14) with n = 1),
(2) model B, non‐Newtonian melt rheology includ-
ing shear heating, which includes temperature‐
dependent viscosity according to Giordano et al.
[2008] (equation (16)), with n = 1), (3) model C,
non‐Newtonian melt rheology including power
law rheology, which includes nonlinear melt
rheology with a power law coefficient n > 1, and
(4) model D, non‐Newtonian melt rheology includ-
ing plasticity, which includes linear viscous melt
rheology including plastic deformation of either
crystal or melt phase for a given yield stress.

[22] The viscous component of the solid particle
rheology is chosen so that the irreversible time‐
dependent deformation of the particles is insignifi-
cant. However, in simulations with plasticity, crys-
tals fail plastically. Elasticity is employed in all
numerical simulations to reproduce the stress‐strain
response observed in laboratory experiments [e.g.,
Dingwell and Webb, 1990; Bagdassarov et al.,
1994].

4.2. Results for Spherical Particles

4.2.1. Newtonian Viscous Rheology (Model A)

[23] In typical simulations (Figure 4) with New-
tonian viscous melt rheology (model A) and spher-
ical particles at lower strains the particles with little

Table 1. Physical Parameters Used in the 2‐D Numerical Experiments

Physical Parameter Description Value Remark

W Width of domain 1885 mm a

H Height of domain 700 mm a

S Grain size 50–100 mm a

mmelt Initial viscosity of melt 3.3 × 108–2 × 1012 Pa s b

mcrystal Initial viscosity of crystal grains 106 × mmelt

rmelt Density of melt 2200 kg/m3

rcrystal Density of crystal grain 2800 kg/m3

_"BG Background strain rate 5 × 10−6 − 10−1 s−1 c

G Elastic shear modulus 109 − 1010 Pa d

cp Heat capacity 1300 J/kg/K
T0 Initial temperature 600°C
C Cohesion (in plasticity simulations) 15–30 MPa c

aTen times larger for spherical and elliptical particles.
bMostly 2.4 × 109 Pa s. The use of larger viscosity values compared with laboratory experiments are justified by the smaller aggregate viscosities

(and therefore stresses) that occur in 2‐D compared to 3‐D setups.
cVaried as indicated in the text.
dVaried in order to obtain similar viscoelastic relaxation times as in laboratory experiments.
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Figure 4. Stress distribution for different shear strains for a simulation with a solid fraction of 	s = 0.5 deformed
with _" = 7 × 10−5 s−1. (a) Relatively homogeneously distributed stresses. (b) A square packed crystal network
(which results in a minimum in the aggregate viscosity). (c) Crystals arrange in lines (30–45° to the applied strain
rate). (d) Rotation of chains from 45° facing north‐west to 45° facing north‐east allows individual crystals to move,
while simultaneously new chains are formed. At strains where stresses increase abruptly, crystals are arranged such
that it is difficult to change the relative position and stresses accumulate, which causes an increase in aggregate
viscosity.
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interference but at larger strains the particles align at
an angle of 30–45° related to the shear plane
(chains), which coincides with the orientation of
largest principle stress. At the same angle, inversely
oriented (direction of lowest principal stress) low‐
stress bands develop. With increasing shear defor-
mation the chains of aligned particles begin to rotate
and break up (Figure 4d).

[24] The numerical simulations with spherical par-
ticles show an initial decrease of the aggregate vis-
cosity (strain weakening) that is followed by an
increase (strain hardening) at larger strains
(Figure 5a). The initial drop in viscosity occurs
when the particles move from a hexagonal packing
into a square packing, which produces more hori-
zontal melt channels (Figures 4a and 4b). The
increase in viscosity coincides with the arrangement
of particles in lines (Figure 4c). The accumulation of
stress increases abruptly when particles are opti-
mally oriented along lines (chains), such that it is
difficult to change the relative position between the
particles. The total amount of strain weakening and
hardening depends on the solid fraction (Figure 5b)
and is insignificant at small solid fractions. With
increasing solid fraction mutual obstruction of the
particles becomesmore important so that more high‐

stress chains are formed. Our results are consistent
with previous models of heterogeneously sized solid
suspensions that reported similar force chains
[Morgan and Boettcher, 1999].

[25] Simulations using strain rate stepping for the
same set up show a nearly identical viscosity curve
with strain weakening and hardening (Figure 6).
This similarity indicates that the strain weakening
and hardening that occurs up to is caused by a
rearrangement of the crystals and not by an increase
of the strain rate. The slightly smaller viscosities for
_" = 3.5 × 10−3 s−1 are explained by the breakdown of
chains, that is a sudden increase to a higher strain
rate breaks some of the chains. However, with
increasing strain new chains are formed resulting in
higher stresses and therefore viscosities increase as
well, similar to the constant strain rate simulations.
Additional simulations with strain rate stepping at
different strains resulted in identical viscosity
curves, further supporting the conjecture that the
effect is caused by particle rearrangement.

[26] Themaximum power law coefficient for a strain
rate stepping test was n = 1.29. Simulations as a
function of crystal size suggest that crystal size is not
an important source of variability (Appendix B).

Figure 5. Simple shear simulation using Newtonian viscous rheology (model A). Simulations are performed at con-
stant strain rate and have melt viscosity mmelt = 3.3 × 108 Pa s and elastic shear module G = 109 Pa. (a) Aggregate stress
and viscosity computed for whole sample versus strain for the simulation of Figure 4. (b) Normalized viscosities versus
shear strain for different solid fractions. Strain weakening and strain hardening are related to a rearrangement of the
particles inside the system (see also Figure 4 and text for details). The small abrupt offsets in the curves are due to
remeshing. The minimum in viscosity around " = 0.2 occurs at a stage when the particles are approximately cubically
packed (Figure 4b).
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4.2.2. Shear Heating (Model B)

[27] Simulations at different strain rates and differ-
ent solid fractions were undertaken to test whether
shear heating is the cause of nonlinear viscous
magma rheology [e.g., Hess et al., 2008; Mueller
et al., 2010]. To test whether shear heating has an
effect on crystal‐melt systems we perform simula-
tions at different strain rates and different solid
fractions.

[28] Because viscous rheologies are thermally acti-
vated shear heating causes a reduction in viscosity
(Figure 7) that is manifest as shear thinning if the
temperature dependence of the rheology is explicitly
taken into account. Shear heating increases for
increasing strain rates. In our simulations, the
apparent power law coefficient of a linear viscous
material reaches a maximum of n = 3.15 (Figure 7b).

[29] Shear heating increases with solid fraction
probably because (1) the average stress in the
aggregate increases with solid fraction, and (2) at

high solid fractions, local strain rates are consider-
ably greater than the applied background strain rate
[Deubelbeiss et al., 2010]. Similar to simulations in
which strain rate is varied, viscosities decrease with
increasing strain (Figure 7c). The amount of vis-
cosity reduction increases with increasing solid
fraction (Figure 7d). These effects are not investi-
gated in detail because the effect of solid fraction on
aggregate viscosities have been addressed in a
number of experimental or theoretical studies
[Roscoe, 1952; Pinkerton and Stevenson, 1992;
Lejeune and Richet, 1995; Costa, 2005; Caricchi
et al., 2007; Cordonnier et al., 2009; Costa et al.,
2009; Petford, 2009; Deubelbeiss et al., 2010].

4.2.3. Shear Heating Analysis
With a 0‐D Model

[30] In order to determine how accurately our 0‐D
model predicts the adiabatic temperature increase of
real models, we compared 2‐D numerical results
with predictions from our 0‐Dmodel. Therefore, we

Figure 6. Viscosity versus strain for a simulation using constant strain rate (open circles) and one using strain rate step-
ping (solid line). Parameters are as in Figure 4. Inset shows viscosity versus strain rate extracted from the strain rate
stepping simulation, where the viscosity at the end of one strain rate step was picked. The maximum power law
coefficient is obtained in this simulation is n = 1.29.
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used numerically computed stress‐strain curves as
input for the 0‐D inversion algorithm. The 0‐D
model agrees well with the numerically calculated
temperature increase for changing strain rates and
changing solid fractions. Additionally, the 0‐D
model predictions are in good agreement with Hess
et al. [2008]. Temperature increases are only large
for strain rates above 10−2 s−1 (Table 2).

[31] Using the 0‐D model to extract the heat pro-
duction from experimentally derived stress‐strain
curves, we obtain an increase of no more thanDT =
2.8°C for parameters comparable with experiments
of [Caricchi et al., 2007] (	s = 0.5, _" = 10−4 s−1, " =
0.2,G = 1010 Pa, initial temperature of 600°C and an

aggregate viscosity of 2 × 1011 Pa s, which is high in
order to reach stresses of ≈40MPa (note that the high
viscosity values are justified by the smaller aggre-
gate viscosities that occur in 2‐D compared to 3‐D
simulations).

4.2.4. Power Law Melt Rheology (Model C)

[32] It is not known if the interstitial melt of a sus-
pension exhibits non‐Newtonian viscous behavior.
It has been shown that single‐phase silicate melt
undergoes a transition from Newtonian to a non‐
Newtonian rheology at approximately 3 orders of
magnitude slower strain rates than that predicted by
Maxwell relaxation [Webb and Dingwell, 1990a,

Figure 7. Shear heating tests (model B) with initial melt viscosity mmelt = 2.4 × 109 and elastic shearmoduleG = 109 Pa s.
(a) Viscosity versus shear strain for different strain rates and a constant solid fraction 	s = 0.5. For comparison, a sim-
ulation without shear heating is also shown. (b) Viscosity versus strain rate curves indicate an increasing power law coef-
ficient with increasing strain rate with a maximum n = 3.15. (c) Viscosity versus shear strain for different solid fractions
and a constant strain rate _" = 7 × 10−4 s−1. (d) Viscosity decreases with decreasing solid fraction and increasing strain.
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1990b] For the parameters employed in our
numerical simulations the Maxwell relaxation time
trelax and the relaxation strain rate _
relax (according
to equation (1) in the work of Webb and Dingwell
[1990a]) is

�relax ¼ �s

G∞
¼ 2:4� 109Pas

1010Pa
¼ 0:24 s ð18Þ

_
relax ¼ ��1
relax ¼ 4:2 s�1; ð19Þ

where ms is the zero frequency Newtonian shear
viscosity which we take to be the melt viscosity and
G∞ is the infinite frequency elastic shear modulus of
the melt which is here the elastic shear modulus of
the numerical simulation. Using these equations, we
can estimate the resulting strain rate at which the
rheology might change from Newtonian to non‐
Newtonian to be ~4.2 × 10−3 s−1. With increasing
viscosity the relaxation strain rate decreases and
thus the transition takes place at smaller strain
rates (relations between viscosity and solid fraction
are given in the work by Deubelbeiss et al. [2010]).
Because strain rates are locally significantly larger
between crystals than the bulk strain rate of the
aggregate [Deubelbeiss et al., 2010], it may thus be
possible to trigger a transition in rheology on a local
scale. For this reason, we performed a few numerical
simulations to studywhat the influence of power law
melt rheology on crystal‐bearing melts is (model C).

[33] The resulting aggregate power law coefficients
reproduce exactly the original input power law
coefficient of the melt [Deubelbeiss, 2010]. In our
previous work, we already demonstrated that the
power law coefficient of the solid particles does not
influence the overall behavior of the aggregate,
predominantly because the particles effectively
behave rigid [Deubelbeiss et al., 2010]. Thus, in
order to explain aggregate power law coefficients of
up to 13, one needs a melt rheology with the same
n value.

4.2.5. Plasticity (Model D)

[34] Experiments of Caricchi et al. [2007] show a
reduction of grain size, most probably due to brittle
failure of individual crystals, which might addi-
tionally affect the aggregate rheology. To test the
influence of plastic failure on crystal‐melt systems,
we perform simulations with a plastic rheology for
the fluid and solid phase (model D) and a yield stress
of 15 MPa, which is justified as the fluid pressure is
large in the simulations and because we underesti-
mate viscosities (and hence stresses) in 2‐D com-
pared to 3‐D simulations.

[35] As the solid particles typically have the largest
differential stresses (Figure 4), they are the location
at which the first plastic failure occurs. With
increasing strain rate the aggregate viscosities
decrease (Figure 8a). The resulting viscosity versus
strain rate curve (Figure 8b) shows an increase of
power law coefficients with increasing strain rate
starting with n = 1.16 and reaching values of up
to n ≈ 50. Numerical results using comparable
parameters to experiments of Caricchi et al. [2007]
with resulting aggregate stresses of about 130 MPa,
still reach power law coefficients of n ≈ 5.

4.3. Results for Elliptical Particles
[36] Crystal aspect ratio is an additional parameter
that has a potential influence on aggregate rheology.
To study this, we performed simulations with ran-
domly distributed elliptical particles of variable
aspect ratio and size for a Newtonian viscous melt
rheology (model A). At small solid fraction, the
simulation with elliptical particles has a slightly
more time‐dependent behavior than the simulation
with spheres (Figure 9) for the same solid fraction.
The fluctuations in viscosity are correlated with the
rotation of particles and a minimum viscosity is
obtained once particles are optimally aligned with
the flow direction. The significant drop of viscosity
at " = 0.2 as observed in spherical particle simula-

Table 2. Temperature Increase Computed With the 0‐D Model at Straina

Physical
Parameter Description Values for 	 = 0.5 Values for 	 = 0.7

	 Solid fraction 0.5 0.5 0.5 0.7
Strain rate 7 × 10−2 s−1 7 × 10−3 s−1 7 × 10−4 s−1 7 × 10−4 s−1

DT Temperature increase predicted
with 0‐D model

65°C 9.5°C 0.98°C 3.2°C

DT Temperature increase measured in
2‐D simulations

44°C 9.2°C 1.2°C 3.5°C

aCompared with observed values in 2‐D numerical simulations that are the parameters of Figure 7 with initial temperature of T 0 = 600°C.
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tions does not occur due to more heterogeneously
distributed particles with different size and different
aspect ratios.

[37] We performed a strain rate stepping test for a
simulation with a larger solid fraction. Compared to
the simulation with smaller solid fraction, particles
rotate slower and are in some cases bent, which is
likely due to mutual obstruction of the particles
(Figure 10). The power law coefficient determined
from this experiment is rather small (n = 1.02),

which is also visible in the viscosity plot, which
shows only a minor decrease with increasing strain.

4.4. Naturally Shaped Crystals

4.4.1. Results

[38] So far, all results were obtained for a synthetic
setup with elliptical or spherical particles. As real
grains rarely have this shape, we also performed a
variety of simulations with more realistic particle

Figure 8. Effect of plastic failure (model D) for simulations with mmelt = 2.4 × 109 andG = 1010 Pa. (a) Viscosity versus
shear strain for different strain rates. For comparison we also show a simulation without plasticity. Plasticity results in
significantly smaller values of aggregate viscosity. (b) Viscosity versus strain rate curves indicate an increasing power
law coefficient with increasing strain rate up to maximum n ~ 50 measured at strain " = 0.2. This value occurs for a very
large applied strain rate of _" = 7 × 10−2 s−1, which results in aggregate stresses of more than 600MPa and plastic failure of
both melt and crystals. However, power law coefficients of up to n = 5 are obtained for more reasonable values of strain
rate ( _" = 7 × 10−3).

Figure 9. Numerical simulation using elliptically shaped crystals with Newtonian viscous rheology (model A,
with 	s = 0.1 mmelt = 3.3 × 108 Pa s, _"= 10−4 s−1). A simulation using spherically shaped crystals with the same solid
fraction is shown for comparison. Stresses in this simulation are smaller because the applied strain rate is slightly smaller
( _" = 7 × 10−5 s−1). Note that the viscosity with spherical particles reaches a steady state, whereas the one with elliptical
particles oscillates, which is caused by rotating particles (as indicated on the right by colored circles).
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shapes obtained from a digitized backscattered
electron image that was taken at a strain of " = 0.025
(note that g = 2/" = 0.05, g is usually used to define
strain in laboratory experiments) of a laboratory
experiments (Figure 11a). As our experiments are
two‐dimensional, they underestimate stresses com-

pared to 3‐D settings [Deubelbeiss et al., 2010]. In
order to obtain comparable average stresses as in
laboratory experiments (and therefore simulate
brittle failure in a more realistic manner), we
increased the melt viscosity.

Figure 10. Numerical simulation using elliptically shaped crystals with larger solid fraction (model A with 	s = 0.3).
The power law coefficient determined from this experiment is n = 1.02. Note that some particles are bend during ongoing
deformation (colored circles).

Figure 11. (a) Back scattered electron image of a laboratory experiment of Caricchi et al. [2007] with solid
fraction 	s = 0.5 after a strain of 0.025. (b) Stress‐strain curve of the numerical experiment, in whichwe employedmmelt =
2 × 1012 Pa s, G = 1.5 × 109 Pa, and _" = 4 × 10−6 s−1. (c) Spatial stress distribution of the numerical simulation after a
strain of 0.043 (indicated by a red dot in Figure 11b). High stresses occur at 45° angles to the flow direction. Also note the
high‐stress band that develops within the melt at very low angle. These bands are present in the digitized image. (d) A
histogram of stress versus area shows that two peaks occur: one at 32MPa (corresponding to the stresses within the melt)
and another one around 100 MPa, which corresponds to stresses within the crystal. The maximum stress is ≈1000 MPa,
even though the average sample stress is only around 60 MPa (see Figure 11b).
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[39] Results for a purely Newtonian rheology
(model A) show that high‐stress bands occur in
crystals at roughly 45° to the shear direction. Within
the melt, the maximum stresses occur along low‐
angle bands, in which more small crystals are pres-
ent (Figure 11c). The quantitative analysis of the
stress distribution of this snap shot shows that two
peaks occur: one is related to the stress distribution
within the melt and one to the stress within crystals
(Figure 11d). The maximum stresses occur within
crystals and can be more than 15 times larger than
the sample‐averaged stresses. Combined with a
relatively large fluid (melt) pressure, it is likely that
such large stresses would induce brittle failure of
crystals.

4.4.2. Influence of Finite Strain, Shear Heating,
and Plasticity

[40] In order to study the effect of finite strain on
natural crystal‐melt systems, we performed a sim-
ulation at constant strain rate. The results did not

show a strain weakening effect such as the one that
was observed in the corresponding simulation with
spherical particles (Figure 5). We attribute this to the
fact that the crystal simulation has a more hetero-
geneous crystal shape and size distribution. More-
over, the starting geometry was taken from a
laboratory experiment that was already slightly
deformed.

[41] Next, we analyze the effect of shear heating and
plasticity by performing strain rate stepping tests.
Results show that the inclusion of shear heating re-
sults in only a minor drop in viscosity compared to a
simulation without shear heating (Figure 12).
Stresses obtained in the numerical simulation are
comparable to those measured in the laboratory
experiments, suggesting that the amount of shear
heating is comparable as well. Note that the shear
heating simulation shows a minor reduction in
maximum viscosity versus strain. This should not
be interpreted as a true shear thinning effect, as
the simulations with larger strain rate did not yet

Figure 12. Stress/viscosity versus strain for various simulations with crystals, in which the effect of shear heating and
plasticity was tested and compared to a purely Newtonian simulation (model A). Parameters are the same as in Figure 11.
Shear heating results in a small reduction of viscosity compared to a purely Newtonian simulation. The effect of
plasticity (brittle failure of crystals) has a larger effect.
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reach a steady state stress before the strain rate was
increased. Our 0‐D algorithm is capable of extract-
ing the true viscosity in these cases.

[42] Plasticity, on the other hand, does result in a
significant reduction of viscosity (Figure 12), par-
ticularly in locations where the stresses are higher
than the given yield stress. For very large strain
rates, stresses within the melt exceed the yield stress
and fail in a brittle manner as well. In these simu-
lations a true shear thinning effect occurs, which is
larger for smaller values of cohesion.

[43] The power law coefficients measured for these
experiments, show that the effect of shear heating is
rather minor and results in n = 1.2 compared to
n = 1.04 for a nonshear heating experiment.
Plasticity, on the other hand, results in lager coef-
ficients of n = 3 and n = 5.6 (Figure 13).

5. Discussion

[44] We investigated potential causes for the non‐
Newtonian viscous rheology of crystal‐bearing

magmas. Often cited explanations for the non‐
Newtonian viscous rheology are shear heating [e.g.,
Lavallée et al., 2007, 2008; Mueller et al., 2010],
reordering of crystals [Völtz et al., 2002; Caricchi
et al., 2007; Cordonnier et al., 2009] and fractur-
ing of crystals [e.g., Lavallée et al., 2008]. We used
numerical simulations to explore the relative
importance of shear heating, power law melt rheol-
ogy, finite strain effects (reordering) and plastic
failure of individual crystals on the aggregate rhe-
ology of crystal‐bearing magmas using spherically,
elliptically and naturally shaped crystals. Here, we
will discuss our results in the context of previous
laboratory experiments.

5.1. Shear Heating
[45] Our numerical simulations with spherical par-
ticles showed that large strain rates are required to
generate significant temperature increases. For
strain rates closer to the ones employed in laboratory
experiments we obtained temperature increases of
only a few degrees. The resulting power law coef-
ficient obtained in our simulations was n = 1.3,

Figure 13. Power law coefficients computed from the numerical simulations shown in Figure 12.
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which is far below the values observed in labo-
ratory experiments (see Figure 2). Simulations
using crystals with parameters adjusted to reach
stresses similar to those of laboratory experiments
(≈60 MPa) result in a temperature increase of ≈4°C
at strains comparable to those of laboratory experi-
ments. The resulting power law coefficient was only
about n = 1.2.

[46] A comparison of the 2‐D simulations with a
0‐D model shows that the 0‐D model does a good
job in predicting the to‐be‐expected increase in
temperature due to shear heating. This means that
the laboratory experiments of Caricchi et al. [2007]
should not have had more than several degrees of
temperature increase.

[47] Our simulations should be considered as an
upper bound, as we employed adiabatic temperature
boundary conditions (which means that all thermal
energy generated in the sample remains there). The
boundaries in a laboratory experiment are probably
closer to isothermal. In this case, thermal energy can
escape the system. For typical sample sizes of a few
millimeters and a thermal diffusivity of ≈10−6 m2/s,
the characteristic diffusion timescale is around 1 s.
Since typical experiments last a few hours, thermal
diffusion will almost certainly have equilibrated the
sample temperature.

[48] The amount of shear heating could locally be
much larger if crystals are forcefully ‘jammed’
together, as it might occur at large solid fractions. In
this case a local, sharp, increase of temperature could
occur, but in order for this to have an effect on the
bulk rheology, crystals should realign faster than the
thermal diffusion timescale.

5.2. Finite Strain Effects
[49] Reordering of spherical particles result in a
strain‐dependent aggregate viscosity due to reorder-
ing of particles. The maximum effect is obtained in
simulations with nearly equal particle size, and the
effect is larger for spherical particles (n = 1.3) then
for elliptical particles of variable size (n = 1.02). In
the two latter cases, the crystals are strongly het-
erogeneously distributed both in size, shape and
aspect ratio. In both cases, the effective viscosity
oscillates with increasing strain and both shear
thinning and shear thickening is observed. Physi-
cally the effect seems to be related the optimal
packing configuration (for spherical particles) as
well as due to a rotation of elliptical particles in the
flow direction (which lowers the viscosity). The
larger the solid fraction, the more difficult it is for

elliptical particles to rotate and the effect is thus less
pronounced. An oscillating behavior of viscosity
versus strain is also observed in analog experiments
[Mueller et al., 2010].

[50] Our simulations with crystals do not have such
finite strain effects. Most likely this is because the
digitized image was taken from the end of a labo-
ratory experiment, at a stage when some of the
crystals seem to have already broken into smaller
crystals and high aspect ratio crystals are aligned in
the direction of applied shear stress. They are thus
probably already in a close‐to‐optimal arrangement
and increasing strain is not further changing the
viscosity significantly. It is very likely that a pre-
ferred arrangement of the crystals occurs during
preparation of the sample, while it is possible to
produce synthetic numerical models with mathe-
matically random distribution, which was the case
for spherical and elliptical particles.

[51] It is important to note that in all cases we
observe a clear finite strain effect of the viscosity. If
a strain rate stepping test is performed during an
oscillating cycle, this finite strain effect might
indeed give the impression that the material has a
strain rate‐dependent rheology (rather than a strain‐
dependent rheology). Yet, the obtained power law
coefficients are rather small (maximum n = 1.3).
Moreover, it is quite straightforward to test this in
laboratory experiments, by performing experiments
up to much larger strains. Caricchi et al. [2007]
performed such tests and found no evidence for a
strain‐dependent weakening of the rheology. On the
basis of our experiments, it thus seems unlikely that
the large power law coefficients observed in some
experiments are caused by finite strain or crystal
reordering alone.

5.3. Power Law Melt Rheology
[52] Laboratory experimentalists typically use
aggregate strain rates to estimate whether the melt
can be expected to exhibit non‐Newtonian viscous
behavior or not [Caricchi et al., 2007]. The bulk
strain rate is then adjusted to assure that the melt is in
the linear regime. The fallacy of this logic is that in a
rigid particle suspension, strain is localized within
the melt and therefore local strain rates within the
melt may be orders of magnitude greater than the
bulk strain rate [Deubelbeiss, 2010]. Thus, non‐
Newtonian melt behavior cannot be precluded a
priori on the basis of bulk strain rates. For this rea-
son, we performed simulations in which the melt has
a power law rheology. Results show that the non‐
Newtonian response of the aggregate system is
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characterized by the same power law coefficient as
the one of the melt, meaning that a resulting aggre-
gate power law coefficient of n = 13 requires a power
law coefficient of n = 13 for the melt as well.

[53] Experiments performed on pure silicate melts
indicate that the melt has a power law rheology if a
critical strain rate is exceeded before it fails in a
brittle manner [Webb and Dingwell, 1990a, 1990b].
We estimated power law coefficients from pub-
lished viscosity‐strain rate plots and found that there
is a large variability which ranges from n ≈ 2 [Webb
and Dingwell, 1990a, Figure 4, Crater lake andesite]
up to n ≈ 7.5 [Webb and Dingwell, 1990a, Figure 3]
or n ≈ 5 [Webb and Dingwell, 1990a, Figure 4,
nephelinite].

[54] However, since high strain rates only occur
locally, the melt will only be non‐Newtonian in
certain locations. The overall effect of this on the
aggregate rheology will thus be smaller than the
power law coefficients of a pure non‐Newtonian
melt. Generally, it is thus plausible that a change to
non‐Newtonian rheology with moderate power law
coefficients (2 < n < 5) is due to locally enhanced
strain rates. Yet, it is unlikely that aggregate power
law coefficients of n = 13 can be explained by this
effect alone.

5.4. Plasticity
[55] Our simulations have shown that the maximum
obtainable stresses are significantly larger than the
aggregate stresses, particularly, if the crystal fraction
increases. This, combined with high fluid pressures,
makes it likely that crystals fail in a brittle (plastic)
manner. Experiments of Caricchi et al. [2007] show
a reduction of grain size, possibly due to cracking of
individual crystals. In experiments on natural crys-
tal‐melt systems it has been demonstrated that at
high applied stresses (>10 MPa), cracking of large
phenocrystals and an alignment of the fragments
produces flow bands, which ease the flow of a sus-
pension and lower the viscosity [Lavallée et al., 2007;
Lavallée et al., 2008; Cordonnier et al., 2009]. For
plausible geological parameters we showed that we
can reach power law coefficients of up to n = 50
in simulations with spherical particles. This value
might appear surprising at first, as it is significantly
larger than typical laboratory‐derived power law
exponents. Yet, a perfectly plastic material theo-
retically has a power law exponent of n = ∞,
which is thus consistent with our numerical experi-
ments (in which only part of the sample deforms in a
plastic manner).

[56] Numerical simulations using crystals with
parameters adjusted to reach similar stresses as in
laboratory experiments, reach power law coeffi-
cients of up to n = 5.6 despite the fact that the initial
geometry already had a strong reduction in crystal
size in some parts of the sample. Generally, stresses
inside a system using natural crystals are larger, due
to strongly angled crystals. This favors a potential
failure of crystals inside crystal‐melt systems.
Plasticity, therefore, is the most plausible expla-
nation for the high power law coefficients, of up to
n = 13.5, observed in laboratory experiments of
Caricchi et al. [2007].

[57] In our simulations, plastic failure does not result
in a physical breaking of the crystals (mainly
because of technical limitations). Yet, the general
behavior of the aggregate viscosity (decreasing
viscosity due to local decrease of stress) is similar. In
laboratory experiments stresses accumulate inside
crystals, thereby producing localized microshear
zones, which allow crystals to break. This reduces the
aggregate viscosity, whereas in numerical simula-
tions this is achieved by a local lowering of the
viscosity.

[58] In some numerical simulations the melt also
exceeds the yield stress and fails in a plastic manner,
which affects the aggregate viscosity. Magma frac-
turing is an effect that is plausible to occur and was
experimentally tested for vesicular magma by
decompression [Webb andDingwell, 1990a;Kameda
et al., 2008]. The onset of fracturing depends on the
yield stress and expansion time scale, which is
comparable to the yield stress in our models and the
strain rate at which our aggregate deforms. The
relevant criteria in relation to our simulations is
given by

�melt _"

G
> 1: ð20Þ

For the parameters of our simulation (mmelt = 2 ×
1012 Pa s, G = 1.5 × 109 Pa), we thus need a strain
rate of at least _" = 5 × 10−4 s−1. For viscosities
normally used in laboratory experiments the strain
rate at which failure occurs is larger, e.g., for mmelt =
2 × 109 Pa s, it requires a strain rate of 5 × 10−1 s−1.
These parameters are in a realistic range and it is thus
possible that plastic failure of the melt occurs in
laboratory experiments.

5.5. Numerical Simulations and Future
Laboratory Experiments
[59] Our numerical simulations give important
indications on the dynamics of deformation of par-

Geochemistry
Geophysics
Geosystems G3G3 DEUBELBEISS ET AL.: CRYSTAL‐BEARING MAGMA RHEOLOGY 10.1029/2010GC003485

18 of 22



ticle suspensions. Yet, there are some discrepancies
between numerical models and laboratory experi-
ments. The comparison of the results obtained by
numerical simulations and laboratory experiments
may help improving numerical codes and drive the
future experimental effort. The numerical simula-
tions highlight strain‐related effects that have not
been described in laboratory experiments performed
on particle‐bearing silicate melts.

[60] A number of reasons could account for such
differences. The precision of experimental mea-
surements is limited in comparison to the numerical
simulations and consequently the stress oscillations
recorded during the numerical simulation are
unlikely to be visible in laboratory experiments. The
accuracy of the load cell in the Paterson‐type
apparatus used during simple shear experiments by
is ≈1 Nm, which translates in uncertainties of a shear
stress of about 1MPa [Paterson and Olgaard, 2000].
Figure 5 shows that the stress oscillations are about
an order of magnitude smaller than the sensitivity of
the load cell used in the experiments. Additionally,
the laboratory experiments were performed to a total
strain that was relatively small with respect to
numerical simulations. Experiments performed to
higher total strain could help characterizing more
accurately the effect of strain on the rheology of
particle suspensions (see e.g., Champallier et al.
[2008] for a few examples on experiments in simi-
lar systems that were performed up to gamma = 21,
yet apparently without a major effect of strain
weakening).

[61] In numerical simulations there is always vis-
cous fluid present around the particles. In laboratory
experiments due to 3‐D effects, it is possible that
some particles are in direct contact, particularly once
a critical solid fraction is exceeded [Saar et al.,
2001]. This could make particle clusters that form
during deformation more stable with increasing
strain. A similar effect is observed in numerical
simulations with spherical particles in which chains
remain stable with increasing strain. Particles in
contact (clusters) thus might have an effect on the
effective aggregate rheology with increasing strain.
One way to test this is to use 3‐D numerical simu-
lations and perform a detailed 3‐D analysis of
deformed laboratory samples.

[62] The numerical models highlighted the impor-
tance of crystal fracturing on the power law
coefficient of laboratory experiments. Similar
nonlinearities will occur if the melt fractures. The
local stresses and strain rates measured during the
experiments between crystals are sufficiently large

to induce fracturing of the melt phase and this
would have profound implications for the rheo-
logical behavior of crystal‐bearing magmas.
Moreover, it is feasible that locally enhanced
strain rates induce a transition to a power law melt
rheology. In order to distinguish this effect from
nonlinearities caused by crystal fracturing, it would
be interesting to perform laboratory experiments in
which the crystals have a significantly larger yield
stress (e.g., by using corundum as a crystal phase).
There have been a number of recent experiments in
which evidence was found that crystals fracture
during deformation [Arbaret et al., 2007;Champallier
et al., 2008], although the consequences of this on
the rheology of the suspension were not extensively
studied.

6. Conclusions

[63] We developed a 0‐D technique to determine the
effective viscosity of a crystal‐melt assemblage that
employs the full stress‐strain curve. Applying this
method to recently published laboratory experi-
ments confirms earlier findings that adding crystals
to magma causes the rheology to be strongly strain
rate dependent, with power law coefficients as large
as n = 13.

[64] Several processes have recently been suggested
to be responsible for this nonlinearity, which
includes finite strain effects (reordering of crystals),
shear heating, power law melt (nonlinear viscous
melt) rheology and plastic failure of crystals. In
order to assess the relative importance of each of
these effectswe have performed 2‐Ddirect numerical
simulations on both synthetic setups (with elliptical
or spherical particles) as well as with a setup that was
digitized from a laboratory experiment.

[65] Numerical simulations using parameters char-
acteristic for laboratory experiments of Caricchi
et al. [2007] indicate that shear heating as well
crystal rearrangements have a minor effect. If the
melt has a non‐Newtonian rheology, the power law
coefficient of the aggregate will exactly reflect that
of the melt. This can thus potentially contribute to
the nonlinear rheology of the assemblage, but it
seems unlikely that it is the sole cause for the very
large power law coefficients.

[66] The simulations also showed that stresses
within a sample can locally be more then 15 times
larger then average sample stresses recorded by
stress‐strain curves. Therefore, it is quite feasible
that brittle (plastic) failure of crystals occurs during
ongoing deformation. Our simulations indicated that
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this has a pronounced effect on the power law
coefficient of the aggregate (which results in values
as large as n = 50 in some cases). We thus conclude
that plasticity is the dominant effect responsible for
the strongly non‐Newtonian behavior of crystal‐
melt systems that is observed in some laboratory
experiments.

Appendix A: Definition of the Power
Law Coefficient

[67] The rheological creep behavior of solid rocks on
geological time scales can generally be described
with an equation of the form

�n ¼ A _"; ðA1Þ

where s is stress, _" strain rate, A amaterial parameter
and n the power law coefficient [e.g., Ranalli, 1995].
In most quantitative geodynamic models, a different
form of this expression is used:

� ¼ A
1
n _"

1
n ¼ �eff _"; ðA2Þ

where meff = A
1
n _"

1
n�1 is the effective viscosity [e.g.,

Gerya, 2010]. If solid rocks deform in the diffusion
creep regime, n = 1 and the effective viscosity is
independent of the applied strain rate, which is also
known as linear or Newtonian viscous creep. In the
dislocation creep regime, n > 1 (typically n ≈ 3–4)

and the viscosity decreases with increasing strain
rate, which is a non‐Newtonian behavior.

[68] For the analysis presented in this paper we
consistently use the form given in equation (A2)
and the power law coefficient n in the text is always
referring to the n as given in the equation.

Appendix B: Influence of Particle Size

[69] The influence of particle size is tested by two
forward simulations with different particle sizes but
the same solid fraction of 	s = 0.5. Sizes of 700 mm
and 400mmare employedwhich correspond to 3.5%
and 2% of the total domain width W = 19 mm
(Figure B1). The resulting aggregate stresses of both
crystal sizes show very similar distributions below
strains for strains smaller then 0.5, but behave
slightly different for larger strains (Figure B1c).
However, this discrepancy is most likely due to the
fact that strain rate steps were performed at slightly
different strains (Figure B1d).
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Figure B1. Stress distribution of simulations using Newtonian viscous rheology (model A) for (a) large crystals with
diameter 700 mm and (b) 400 mm. (c) Stress distribution at e = 0.6 for the two different grain sizes. (d) Viscosity versus
shear strain indicating strain rate steps and strain at which the stress distributions are shown.
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