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INTRODUCTION
It is widely accepted that dehydration of slab 

minerals and hydration of overlying rocks is one 
of the driving forces for melting  processes in the 
mantle wedge (Stern, 2002; van Keken et al., 
2002), and the phenomenon has been inves-
tigated from geophysical (Fluck et al., 2003; 
Zhao, 2001), numerical (Arcay et al., 2005; 
Gerya et al., 2006), analog (Poli and Schmidt, 
1995), and geochemical (Ito and Stern, 1986; 
Schiano et al., 2000) perspectives. Despite prog-
ress in understanding mantle wedge processes, 
dynamics of magma production and transport 
above the slab are not well understood. Of par-
ticular interest are mantle mixing processes (van 
Keken et al., 2002) in the asthenospheric wedge 
involving partially molten rocks, as evidenced 
by exhumed fragments of strongly layered 
wedge mantle composed of alternating mafi c 
and ultramafi c lithologies and possibly repre-
senting results of magmatic differentiation and 
mixing within a molten plume (Obata and Taka-
zawa, 2004). This hypothesis is consistent with 
numerical models of subduction predicting par-
tially molten thermal-chemical plumes above 
subducting slabs (e.g., Gerya et al., 2006, 2004; 
Gerya and Yuen, 2003b; Manea et al., 2005) 
that form as a consequence of slab dehydra-
tion and wedge melting. However, no detailed 
comparison of numerically modeled structures 
with natural cases has been made. To this end, 

we have developed an ultrahigh-resolution  
numerical model of subduction and the associ-
ated slab dehydration and melting  processes to 
resolve plume features on the scale of observa-
tion comparable to fi eld studies (~1 m). This 
approach permits studying the infl uence of 
large-scale subduction processes on small-scale 
mantle mixing processes. The high increase in 
model resolution allows for comparison of the 
results with an exposed ultramafi c complex, the 
 Horoman Complex, located in Japan.

We have performed high-resolution two-
dimensional experiments containing 10 × 109 
randomly distributed markers using the new 
parallel code I2OMP developed from the I2VIS 
(Gerya and Yuen, 2003a). Effective resolution 
(240,000 × 120,000 pixels) of the numerical 
lithological fi eld is ~2 m (one pixel corresponds 
to 1.663 × 1.663 m) (Fig. 1). The experiment 
performed with this technique is a part of the 
series of lower resolution (0.5–10 × 106 markers) 
 coupled petrological-thermomechanical numer-
ical simulations (described in detail in Gorczyk 
et al., 2006) investigating the behavior of molten 
material in the mantle wedge for intraoceanic 
subduction setting. Full descriptions of numeri-
cal approach, initial confi guration, and thermo-
mechanical and petrological techniques can be 
found in Gerya et al. (2006) and Gorczyk et al. 
(2006). The purpose of this paper is to present 
the detailed dynamic chemical evolution of 

partially molten upwelling rising from the slab 
(Gerya and Yuen, 2003b), especially mixing and 
layering processes between plume components.

DESCRIPTION OF THE PLUME 
GROWTH

In our numerical experiment, a large com-
posite partially molten plume (Figs. 1 and 2) 
grows at sublithospheric depth as the result of 
indi vidual diapiric upwellings rising from the 
slab. In accordance with our previous results 
(Gerya et al., 2006), there are two distinct 
types of upwellings: (1) lithologically unmixed 
(homogeneous) structures composed of mantle 
material only, and (2) lithologically mixed 
(hetero geneous) structures composed of both 
mantle and crustal material. We have chosen the 
starting time for our measurements as 11.2 m.y. 
(time from the onset of the simulation) to show 
the development of the homogeneous plume 
prior to the contribution of crustal material, 
which occurs 0.6 m.y. later. At 11.2 m.y. the 
plume head has a volume of 143 km2 (km3/km 
trench length). The subsequent period of 
2.2 m.y. (Fig. 2) is characterized by rapid growth 
of plume due to injections of molten peridotite 
(on an average ~97.13 km2/m.y.). The molten 
peridotite injections are not distributed evenly; 
rapid increase in volume of molten peridotite is 
triggered by attachment of smaller plumes to the 
major one. The next period of 4.1 m.y. is char-
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acterized by a slow rate of the plume’s growth 
(on an average 9.76 km2/m.y.). After this period 
we observe a slight increase in the growth rate 
due to the increasing contribution of molten 
sediments and molten gabbro. Crustal material 
is introduced at 11.8 m.y. The dominant compo-
nent of the plume is hydrated, partially molten 
mantle wedge; the crustal components mostly 
contribute to the plume composition by 12%, 
and upper oceanic crust is a dominating source 
for mafi c material (Fig. 2C).

MIXING AND LAYERING PROCESSES
We have analyzed model results from eight 

time steps for the frequency of appearance of 
specifi c thicknesses of various rock layers com-
posing the plume head (Fig. 3). Measurements 
were taken every 50th column of pixels, taking 
into account the local layer orientation. Test cal-
culations made at higher resolution verifi ed that 
the results are representative. Our measurements 
(Fig. 3) suggest that the frequency of crustal lay-
ers is always at least one order of magnitude less 
than that of mantle layers of the same thickness. 
Moreover, the frequency distribution of all rock 
layers, dry mantle excepted, becomes steeper 
with time: the amount of thick (>1000 m) layers 
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Figure 1. Plume at time of 15.733 m.y. shown 
at different scales. At this time plume head 
reaches its mature stage, and expresses 
complexity of structure. 1—dry mantle; 2—
oceanic crust; 3—sediments; 4—hydrated 
mantle; 5—molten oceanic crust; 6—molten 
sediments; 7—molten peridotite.
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Figure 2. A: Dynamic volume change of 
plume’s components. B: Dynamic changes 
of plume components in time; vertical 
lines indicate time when smaller plumes 
have contributed to major plume head. C: 
Relative percent contribution of plume’s 
components.
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decreases by two orders of magnitude with time, 
while that of thin (<10 m) layers increases by 
one order of magnitude. This increase is caused 
by plume mixing and subsequent layer stretch-
ing and duplication. At the later stages of plume 
growth, new material injections are composed 
of intensely mixed thin layers of both crustal 
and mantle rocks representing tectonic mélange 
derived from the hydrated subduction channel 
(Gerya et al., 2002). This mixing is refl ected, 
for example, by changes in frequency of gab-
broic and sedimentary rocks: as the amount of 
these rocks increases (Fig. 2C), a rapid increase 
in the proportion of thinnest layers is obtained 
(Fig. 3). The uneven growth of the plume head 
and intensive mixing within the plume lead to 
dry hot asthenospheric mantle wedge rocks 
entering the plume structure. Dry mantle wedge 
rocks become surrounded by molten mate-
rial and are included in mixing and layering 
 processes. This process verifi es the marble cake 
theory (Allegre and Turcotte, 1986), and sug-
gests that the hot asthenospheric mantle wedge 
has a heterogeneous strongly layered lithologi-
cally mixed (marble cake) structure. Due to dif-
ferent processes responsible for introducing dry 
and partially molten components into the plume, 
the frequency patterns for these components is 
also notably different (Fig. 3).

DISCUSSION AND CONCLUSIONS
The plume structure obtained in high-

resolution  numerical models is similar in geom-
etry and lithology to the Horoman ultramafi c 
complex (Japan) (Fig. 4), an upper mantle 
peridotite characterized by prominent layering, 
and host peridotite is interlayered by mafi c lay-
ers that are parallel to the whole rock foliation 
(Niida, 1974; Obata and Nagahara, 1987; Frey 
et al., 1991).Whole-rock composition consists 
of lherzolite, plagioclase-lherzolite, harzburgite, 
dunite, and mafi c rocks with abrupt discontinui-
ties between lithologies in which layering ranges 
from several millimeters to hundreds of meters 
(Takazawa et al., 1999, 2000). In the numeri-
cal model, these lithologies correspond to dry 
mantle, molten peridotite, hydrated  mantle, and 
molten crustal components. Three main  models 
have been proposed to explain the layered struc-
ture of the Horoman Complex. Two of them 
require partial melting and segregation of par-
tial melt (Obata and Nagahara, 1987; Obata and 
Takazawa, 2004), and the third invokes stream-
lined mixing of partial melt (Toramaru et al., 
2001). Toramaru et al. (2001) explained the 
structure by mechanical chaotic mixing (Ottino, 
1990) of plume material that also infl uences 
layer stretching and duplication processes.

For comparison, we have digitalized the geo-
logical map in Takazawa et al. (1996) to  measure 
the frequency of layers of variable thickness (the 
thickness of layers presented in the Horoman 

map is relative). The same trends are observed 
on diagrams depicting the Horoman Com-
plex (Figs. 4D, 4F) and plume material (Figs. 
4C, 4E): (1) one order of magnitude difference 
in frequency of thin (<10 m) mantle and crustal 
layers, and (2) three orders of magnitude differ-
ence between frequencies of thin (<10 m) and 
thick (>1000 m) mantle layers. There are some 
discrepancies between the model and the geo-
logic data: (1) no layers with the composition 

possibly corresponding to molten sediments 
have been identifi ed in the Horoman Complex; 
(2) our model does not take into account magma 
segregation and extraction that can be essen-
tial for layering (e.g., according to Sawaguchi, 
2004; Takahashi, 1992). Despite these discrep-
ancies we conclude that the Horoman Complex 
may represent part of a partially molten, strongly 
mixed upwelling generated above a subducting 
slab. Our experiment suggests that the complex 
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layered structure of the plume is not a direct 
effect of segregation and extraction of magma, 
but an effect of uneven injections and mechani-
cal mixing of slab and wedge materials. This 
complex mixing process causes abrupt changes 
between lithologies and irregular distribution of 
plume components; thus the lack of sediments 
in the Horoman Complex does not exclude the 
concept of a slab upwelling origin.

In addition to the Horoman Complex, other 
ultramafi c complexes may represent exhumed 
plume material, notably the Ronda (Spain) 
perido tite or Beni Bousera (Morocco) perido-
tite, which consists of lherzolite and harzburgite 
with subordinate amounts of dunite and <5% 
mafi c layers that are intercalated concordantly 
in the peridotite (Crespo et al., 2006).
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