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abstract

Simple polythermal extensions to two widely used isothermal equations of state, the Murnaghan 
and the Birch-Murnaghan, can lead to non-physical material behavior without proper parameterization: 
the thermal expansivity at high pressure can become negative. We show how this arises and propose 
a remedy using an approximation to the thermal relaxation of the bulk modulus. Using the revised 
equation of state for thermodynamic equilibrium calculations leads to low-pressure and -temperature 
behavior indistinguishable from the unmodified equation of state, yet extrapolates to high pressure 
and temperature without non-physical behavior.
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introduction

Phase equilibrium calculations are routine practice for 
metamorphic petrologists (e.g., Schumacher et al. 2008) and 
coming into vogue for the calculation of seismic wavespeeds in 
structural studies of the mantle and core (Sobolev and Babeyko 
1994; Connolly and Kerrick 2002; Helffrich and Kaneshima 
2004; Stixrude and Lithgow-Bertelloni 2005; Richard et al. 
2005). One reason for this is the development and packaging 
of efficient algorithms for phase equilibrium calculation that 
employ simply parameterized equations of state (Holland and 
Powell 1998). Phase equilibrium is typically calculated using 
the deviation of free energy, dG, from reference temperature T 
and pressure P conditions (Tr, Pr) via

G(P,T) = G(P ,T )+ V(p)dp S t dtr r
Pr

P

T

T

r

∫ ∫− ( )  (1)

where the first integral involving volume (V) is done isothermally 
and the second involving entropy (S), isobarically. Due to the 
wealth of 1 bar thermophysical property measurements, the T 
integral is usually done at Pr = 1 bar. This requires the P integral 
to be done at T. Consequently, there is a need for V(T) at 1 bar, as 
well as volume equation of state parameters usable at high T.

For fixed bulk composition, equilibrium calculations are 
based on the scalar function G(P,T). Once G is calculated, the 
stable phase assemblage may be found by minimizing G sub-
ject to the bulk composition constraint. At that point, both the 
constituent mineral properties and the system properties may 
be found from G using various thermodynamic identities. For 
example, because V is (∂G/∂P)T, numerical or analytic deriva-
tives of G yield the volumes. Of especial interest in this family 

of properties is the thermal expansivity, α = (1/V)(∂V/∂T)P, which 
may be obtained from phase or system properties via
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This represents the high-pressure and -temperature expansiv-
ity. Continuum theories of material behavior posit a positive-
definite strain energy function to define material mechanical 
stability. The strain tensor, Eij, includes a thermal component 
through α

E = T T
E

+ +
Eij kk ij ijα σ δ σ−( ) − ν





ν
0

1   (3)

(summation convention used)

and also depends on the material parameters Poisson’s ratio ν, 
Young’s modulus E, and stress tensor σij (δij is the Kronecker 
delta symbol). The work dW done by straining a material is 
(Malvern 1969)

dW = −PdEkk + σijdEij (summation convention used).       (4)

If α were negative at any pressure, thermal energy added to 
the substance would derive work from it. One could alternatively 
say that adiabatic compression of the material would cool it: 
planetary interiors could be colder than their surfaces in absent 
internal heat sources. This is non-geophysical behavior, though 
some substances exhibit negative α due to geometric peculiarities 
at low pressures and temperatures (Pryde et al. 1996).

We show that this form of non-physical behavior can arise if 
the thermal part of the volume equation of state is not integrated 
properly with the compression part of the equation of state. 
Examples and a straightforward remedy based on an observa-* E-mail: george@geology.bristol.ac.uk
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tionally justified approximation to simultaneous high-P and -T 
mineral behavior follow.

Problem statement

Typical choices for the volume equation of state (EOS) are 
the Murnaghan and Birch-Murnaghan (Poirier 1991). The two 
involve the bulk modulus,

K = V P
VS T/ − ∂

∂




  (5)

where S/T denotes either adiabatic or isothermal conditions as 
appropriate. This definition itself constitutes a simple, but not 
very good, volume EOS by integration assuming constant bulk 
modulus, K. The Murnaghan and Birch-Murnaghan EOSs are 
successive refinements to the constant bulk modulus approxi-
mation. The Murnaghan EOS adopts the reasonable physical 
assumption that squeezed material resists more squeezing due 
to increased repulsive forces between the atoms comprising a 
substance. Thus KT increases linearly with pressure with scale 
factor K′ = dKT/dP. The Birch-Murnaghan EOS elaborates on 
the same idea using finite strain to better account for high com-
pressions at high P.

Both EOSs are typically isothermal. From Poirier (1991) 
Equation 4.7,

V(P) =V + K
K
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Adding the thermal component to Vr and KT and neglecting 
the effect of temperature on K′, which is small (Anderson and 
Isaak 1993), yields

V(P,T) = V(T) +
K

K (T)
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An obvious parameterization of KT(T) is to assume it declines 
linearly, with constant dKT/dT, as theory and laboratory observa-
tions suggest (Born and Huang 1954; Isaak et al. 1998), and as 
many compilations employ (Fei and Saxena 1990; Sobolev and 
Babeyko 1994; Gerya et al. 2004; Mattern et al. 2005). Taking 
the high-pressure temperature derivative of Equation 6′ as speci-
fied by Equation 2,
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We seek a zero to this expression to show that, at some point, 
the EOS leads to negative α. Setting the left-hand side to zero, 
noting that V(T) is strictly positive and that
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is also strictly positive when KT (T) > 0, this simplifies to
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Solving for the pressure Pz when α is zero (going negative) 

P = K

K
dK
dT

+ K
z

T

T

T '

−α

α1 . (9)

For insight into the severity of the problem, take α to be a 
constant α0. (dKT)/(dT) will be strictly negative, so the require-
ment that P be positive leads to

dK
dT

< K KT
T

'−α0 . (10)

For α0K′ ≈ 10−4 K−1, KT ≈ 106 bars, a negative α is virtually 
guaranteed for typical (dKT)/(dT) values, which are usually a few 
hundred bars/K (Holland and Powell 1998).

A similar treatment may be applied to the Birch-Murnaghan 
equation, but with more algebraic work and less insight. The iso-
thermal Birch-Murnaghan equation is (Poirier 1991, Eq. 4.41)

P = 3KT f(1 + 2 f)5/2(1 + φ f). (11) 

The finite strain f = 1/2[(Vr /V)2/3 − 1] and φ = 3(K′ − 4)/4. 
Adding polythermal behavior explicitly,

P = 3 KT(T)f(1 + 2 f)5/2(1 + φ f)  (11′) 

with f now denoting finite strain relative to V(T). Evaluating the 
desired derivative by chain rule yields

∂
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∂
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which requires only an expression for dP/dT. Using the results 
(not derived for brevity) that df/dV = −(1 + 2f)/(3V) and df/dT = 
(df/dV)(dV/dT) = 2α(1 + 2f)/3, we write
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Substituting Equation 13 into Equation 12 yields the desired 
expression

dV
dT

PV
K

dK
dT

V f

f f f
T

T= − − + ×

+ + +

2

5 2

2 1 2

1 2 1 5 1

α

φ

( )

( ) ( ) (/ ++ + + + φ φf f f f)( ) ( ) ./ /1 2 1 23 2 5 2

 
   

(14)

Setting the left-hand side to zero and solving for Pz, and 
dividing out the always positive V yields the pressure at which 
the thermal expansivity becomes zero: 

P K
dK
dT
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for mantle strains, where f ≤ 0.1. For dKT/dT ≈ −2 × 102 bars/K, 
α ≈ 3 × 10−5 K−1 and KT ≈ 106 bars, α becomes zero at about 30 
GPa, a planetary pressure range plausibly encountered in phase 
equilibrium calculations.

alternative Parameterization

The negative α arises due to the constant negative dKT/dT. 
An alternative bulk modulus thermal dependence comes from 
the Anderson-Grüneisen parameter, defined as

δ
αT

T

T

P
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− ∂
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 (16)

and is approximately a constant (Anderson and Isaak 1993). For 
a quasiharmonic parameter q = 1, Anderson and Isaak (1993) find 
that δT = K, and that δ has no dependence on compression. This 
approximation may be usefully combined with the Murnaghan 
equation for a simple equation of state good for pressures to 
mid-Earth conditions when strains exceed the Murnaghan equa-
tion’s applicability. Rather than KT(T) = KT0 + (dKT/dT)(T − Tr), 
use Equation 16 to infer that

K T K t dtT T T
T
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showing that KT decays exponentially with T at a rate proportional 
to the volumetric expansion of the mineral with T. This in turn 
suggests that the instantaneous dKT/dT is always negative but 
approaches zero at high T. Also of service is another relation that 
follows from the definition of δΤ,

dK
dT

KT
T T= −αδ . (18)

Proceeding as before to examine the possibility of α(P,T) becom-
ing negative, form an expression for ∂V/∂T at high pressure:
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We seek a zero to this expression to show that at some point 
the EOS leads to negative α. Setting the left-hand side to zero, 
noting that V(T) and zero pressure α are strictly positive, and 
also noting that
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Solving for Pz where α(P,T) equals zero, 
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which rearranges as

P K T K K T
Kz

T

T T

T

T

'
= −







=
−

−
( ) ( )

'δ δ δ
1

1

. (22)

If δΤ = K′ as initially assumed, at no finite pressure will α(P,T) be 
zero. For brevity, we call this the modified Murnaghan EOS.

Because a good approximation to δΤ is already available in 
thermodynamic compilations, either through explicit tabulation 
(Fei and Saxena 1990; Sobolev and Babeyko 1990; Gerya et 
al. 2004; Helffrich and Kaneshima 2004; Mattern et al. 2005) 
or assuming that for all substances K′ ≈ 4 (Holland and Powell 
1998), whence δΤ ≈ 4, one can employ the modified Murnaghan 
EOS without change to existing mineral thermophysical property 
compilations. If δΤ is available and exceeds KT, the difference 
is unlikely to exceed unity (Anderson et al. 1992). Thus Pz will 
be on the order of KT, ~106 bars, a pressure that invalidates 
Murnaghan EOS use.

As a concrete example, Figure 1 shows phase equilibria for 
the system K2O-Al2O3-SiO2 at high pressures calculated using the 
Murnaghan and the modified Murnaghan EOS. Yong et al. (2006) 
refined the thermodynamic data for the phases K-hollandite and 
Si-wadeite that we show calculated with the Perple_X program 
(Connolly 2005). Thermophysical data relevant to phase volu-
metric properties are listed in Table 1.

With the exception of hollandite and wadeite, the differences 
calculated by either EOS are small (Fig. 1). Using Equation 9 
and the wadeite data in Table 1, the negative α(P,T) onset at 
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fiGure 1. Plot of calculated stability fields for minerals in the K2O-
Al2O3-SiO2 system using alternative equation of state formulations. Solid 
lines show stability fields calculated using the polythermal Murnaghan 
EOS (Eq. 6); dashed lines show them using the modified Murnaghan EOS. 
notable differences occur in reactions involving wadeite, a phase that 
exhibits non-physical negative thermal expansivity due to the unmodified 
Murnaghan EOS. Most curves superimpose one another, indicating the 
equivalence of the two formulations at low pressures. Mineral name/
abbreviations used: corundum/crn, stishovite/stv, coesite/coe, kyanite/ky, 
hollandite/holl, wadeite/wade, sanidine/sa, leucite/lct, quartz/qtz.
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1300 K is 8.1 GPa, the range of significant divergence shown in 
the figure. In the Holland and Powell (1998) database, we found 
that anomalies arise for pressures <10 GPa and temperatures 
<2000 K for about 10% of the end-member phases. Of interest is 
that all SiO2 polymorphs, except stishovite, suffer from negative 
high-pressure thermal expansivity.

discussion

Simple to calculate equations of state are efficient for phase 
equilibrium calculations. We showed that two commonly used 
equations of state, the Murnaghan and the Birch-Murnaghan, are 
prone to non-physical behavior if their polythermal behavior is 
not properly parameterized. We focused on the positivity of ther-
mal expansivity due to its role in defining the adiabatic gradient 
in planets (dT/dz = αgT/CP; g is gravitational acceleration and CP 
is heat capacity) and its role in calculating seismic wavespeeds 
[e.g., ρV 2

P = KT(1 + Tαγ) + 4/3µ; γ is the Grüneisen parameter, 
~1 for most substances, ρ the density, and µ is the shear modu-
lus]. We showed how a straightforward change to the thermal 
component of the equation of state can remedy this flaw. The 
virtue is that at low pressures and temperatures, the calculated 
results using either parameterization are indistinguishable and the 
method advocated here does not lead to non-physical behavior 
under any circumstances. This is potentially of benefit in any 
phase equilibrium calculation implementation.
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Table 1. Thermophysical data for selected phases
             α(T) = a0 + a1T–1/2 
Name Vr (J/bar) K0 × 10–5/bar –dK/dT (bar/K) a0 × 105/K–1 a1 × 104/K–1/2

leucite KAlSi2O6  8.828 6.58 94.5 3.67 3.67
sanidine KAlSi3O8  10.9 6.00 86.1 3.35 3.35
hollandite KAlSi3O8  7.128 18 237.6 3.3 0
wadeite K2Si4O9  10.844  9 237.6 2.95 0
quartz SiO2  2.2688  7.84 112.5 0.65 0.65
coesite SiO2  2.064 10.45 150 1.8 1.8
stishovite SiO2 1.4014 33.01 474 2.5 2.5
kyanite Al2SiO5  4.414 16.61 238.5 4.04 4.04
corundum Al2O3  2.558 26.33 378 4.19 4.19
Notes: K' = 4 for all phases. Source: Holland and Powell (1998) except for hollandite and wadeite (Yong et al. 2006).


