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3Géosciences Montpellier, Université Montpellier 2, CC60, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France

Accepted 2011 April 21. Received 2011 April 21; in original form 2011 March 3

S U M M A R Y
Geodynamic models incorporating metamorphic phase transformations almost invariably as-
sume the validity of the Boussinesq approximation that violates conservation of mass. In such
models metamorphic density changes take place without volumetric effects. We assess the
impact of the Boussinesq approximation by comparing models of orogeny accompanied by
lower crustal eclogitization both with and without the approximation. Our results demonstrate
that the approximation may cause errors approaching 100 per cent in characteristic measures
of orogenic shape. Mass conservation errors in Boussinesq models amplify with model time.
Mass conservative models of metamorphism are therefore essential to understand long-term
tectonic evolution and to assess the importance of the different geodynamic processes.
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1 I N T RO D U C T I O N

Geodynamic models of the solid Earth simulate deformation (i.e.
collision in the lithosphere and convection in the mantle). They
may account for a number of processes that act as the driv-
ing forces for deformation, such as convergence and metamor-
phic phase changes. The models generally solve three constitutive
conservation equations: the momentum conservation law, the heat
equation and the continuity in mass of the system (e.g. Cserepes
et al. 1988). Each of these equations can be simplified according
to the specific features of the investigated physical problem. In
this study we focus on mass conservation, as its simplifications are
the most relevant in affecting deformation and in accounting for
metamorphism.

The mass-continuity equation requires that any change of mass
density ρ in time t must be compensated by a divergence in the flux
of mass:

∂ρ/∂t +∇(ρv) = 0, (1)

where v is velocity. Two approximations are commonly applied to
this equation. The first is the well-known Boussinesq approxima-
tion (Boussinesq 1897), which assumes that density differences are
sufficiently small to be neglected, except in the buoyancy term.
Therefore density – and hence volume – changes due to deforma-
tion are neglected (Figs 1a and b), and eq. (1) is simplified to the

incompressible flow formulation:

∇v = 0. (2)

This approximation is made in the overwhelming majority of numer-
ical geodynamic models (e.g. Burov et al. 2001 based on Poliakov
et al. 1993; Kaus et al. 2005; Arcay et al. 2007; Yamato et al. 2007;
Braun et al. 2008; Rey & Müller 2010). The second approximation
concerns the implementation of metamorphism. In simpler cases the
inherent variations in density due to varying pressure–temperature
(P–T) conditions are not taken into account (Fig. 1a). In more com-
plex models, density changes as a function of P and T , but the
induced deformation (volume change) is neglected (Fig. 1b). Phys-
ically, the first term ∂ρ/∂t of eq. (1) is respected, but the second
term ∇(ρv) = v·∇ρ + ρ·∇v is simplified to eq. (2) by neglecting
the density change driven volumetric variation v·∇ρ.

There are – to our knowledge – only three modelling tools using
the complete form of mass-continuity (Gerya & Yuen 2007; Warren
et al. 2008 and subsequent works; Afonso & Zlotnik 2011), but
differences with respect to previous (incompressible) models are
not discussed.

In this paper we advocate for a complete (compressible) solution
of the continuity equation that includes the full flow field induced
by density changes (Fig. 1c). We argue that the oft-used Boussi-
nesq approximation and metamorphic density changes (exceeding
15 per cent, e.g. Holmes 1965; Liu 1978) have significant
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Figure 1. Implementations of metamorphism and deformation into numerical models. Schematic finite elements show changes from the initial state through
deformation and varying pressure-temperature conditions (arrow). (a) The simplest models do not account for metamorphism and do not include density
variations, even when deformation affects the volume (S model). (b) In the Boussinesq formulation including metamorphism, densities vary as prescribed by
phase equilibria calculations, but volume changes are still driven by deformation (B model). Both of the above implementations violate mass-continuity in that
volume and density vary independently. (c) Volumetric changes are enforced following density changes according to mass-continuity (M model).

consequences for geodynamic models. Using a simple example, we
provide the first direct and quantitative assessment of the continuity-
equation formulation’s volumetric effects on lithospheric deforma-
tion pattern. We focus on this example to draw attention to the
potential problems caused by the Boussinesq approximation.

2 M E T H O D S

We focus on the physical effect of the continuity equation formula-
tion and metamorphism by consistently adjusting volume related to
mass-continuity when density changes are present (Fig. 1c). Sub-
sequently, we compare the results with those from approximated
formulations to assess the consequences on the deformation field.

To account for metamorphic density changes in the P–T space
we introduce a ‘metamorphic’ strain tensor that modifies the total
strain field of the entire modelled geodynamic system (i.e. applies to
all deforming elements, not only those undergoing phase change).

εsys = εsys − εmetam. (3)

Assuming isotropic deformation the metamorphic strain is de-
rived directly from the required density change to respect mass
conservation at the element scale:

εmetam
i i = 1/3·�v/v = −1/3·�ρ/ρ (i = 1, 3), (4)

where �ρ is the density change prescribed by phase equilib-
ria calculations. This approach is implemented into a thermo-
mechanical finite element modelling tool Cast3M (Verpeaux et al.
1988; http://www-cast3m.cea.fr/). This tool features a 2-D geody-
namic toolbox that simulates different rheological behaviours, ero-
sion processes and re-meshing. For full details, including resolution
scheme, numerical tests, comparisons with other geodynamic mod-
elling tools as well as applications, we refer to Godard et al. (2006,
2009) and references therein. An alternative method of accounting
for metamorphic density changes would be to express the equation
of state as a function of entropy and volume (Connolly 2009). The
virtue of this method is that it eliminates singularities in the P–T
space related to low-order phase transformations. The method is
not investigated here because it requires a non-standard numerical
formulation, the implementation of which is beyond the scope of
this paper.

Our implementation of metamorphic effects follows eqs (3) and
(4) with two adaptations for Cast3M: (1) the metamorphic strain
is converted to an elastic metamorphic stress because in our im-
plementation stress is the global variable governing the system’s
deformation; (2) the metamorphic stress is damped to avoid large
perturbations in the system – the element’s density (volume) will

not reach the prescribed value instantaneously, but over a few or few
tens of time steps. Because the numerical model involves a large
number (∼105–106) of time steps we expect and verify that this con-
vergence takes place. Our approach using eq. (3) is straightforward,
and does not require major modifications in the numerical resolu-
tion scheme of the code. Further details on the implementation are
given in Appendix S1 (see Supporting Information).

The three modelling studies mentioned previously that solved
the complete form of mass-continuity all used different implemen-
tations. Gerya & Yuen (2007) apply a plastic flow rule to express
and introduce volumetric changes in terms of dilatant plastic de-
formation rate. Warren et al. (2008) first solve the incompressible
formulation (eq. 2) and then add a correcting term in the form of nor-
mal forces changing the size of elements, but only during time steps
when phase changes take place (therefore this approach does not
enforce mass conservation of deforming regions remaining in the
same phase). Afonso & Zlotnik (2011) also assume an incompress-
ible media, and apply a local velocity field in the lithosphere that
compresses/expands the material undergoing phase change. None
of the three models discusses the effect of introducing volumetric
changes in their models; therefore a comparison to our procedure
and results is infeasible.

3 M O D E L S E T U P

Our setup simulates intracontinental mountain building following
the approach of Avouac & Burov (1996), with, in addition, lower
crustal eclogitization. The temporal evolution of a 2-D viscoelastic
lithospheric model composed of three layers is analysed, starting
with an initial topography and crustal root (Fig. 2). The model im-
poses horizontal convergence, and accounts for gravitational forces,
basal heat flow from the underlying mantle and radiogenic heat pro-
duction in the crust. The initial temperature field is calculated in
steady state at the first time step and is shown in Fig. 2. We simulate
surface processes as linear diffusion (e.g. Avouac & Burov 1996),
which is a voluntarily simplified but a mass-conserving scheme.
Description and quantification of these parameters are shown in
Fig. 2 and detailed in Appendix S1.

Metamorphic density changes are anticipated to be the greatest
in the lower crust (eclogitization); therefore, for the sake of sim-
plicity and numerical efficiency, we assume constant density for the
other layers. In the lower crust, the petrogenetic P–T–ρ grid is pre-
calculated using Perple_X (Connolly 2005) using an average lower
crustal composition and the procedure proposed in Hetényi et al.
(2007) (see Fig. A2 in Appendix S1). We implement the three formu-
lations of the continuity-equation detailed earlier (Figs 1a–c), and
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Figure 2. General setup, geometry and the initial temperature field of the model. Modelled geodynamic processes include erosion at surface and metamorphism
in the lower crust. These processes as well as boundary conditions are described in the text and in Appendix S1, the resolution of the model is shown in Fig.
A1 in Appendix S1.

compare the deformation pattern after a time period of ∼3 Myr. This
comparison starts after an initial time of 0.6 Myr during which the
main processes (convergence, erosion and metamorphism) are in-
troduced gradually to avoid perturbations at start-up (Appendix S1).

4 R E S U LT S

We characterize the deformation pattern by focusing on the shape
of the topography and of the densifying crustal root. Their evolu-
tion in time is visualized through a few characteristic parameters
representative of their shape (Fig. 3a). We compare the evolution of
these parameters over ∼3 Myr after the initiation time (Figs 3b–g)
in the three main models:

(1) the S model with the Boussinesq approximation and without
metamorphism (Fig. 1a);

(2) the B model with the Boussinesq approximation and with
independent metamorphism (Fig. 1b), which is currently the most
widely used type of geodynamic model;

(3) the M model with mass-conservation and with linked meta-
morphism (Fig. 1c).

The comparison of the deformation patterns’ evolution with our
simulation settings can be summarized as follows (Figs 3b–g, see
density profiles on Fig. A3).

The formulation of metamorphism has no apparent effect on the
width of the topography at its base. However, all three models are
wider than the initial geometry due to the lateral distribution of
material dictated by the diffusive erosion formulation we use.

The mass-conserving formulation creates a similar but slightly
(∼3 per cent in 3.2 Myr) higher relief compared with the simple
model. Accounting for density variations in the Boussinesq approx-
imated model produces a significantly (∼25 per cent) lower relief
and misleadingly suggests greater negative buoyancy associated
with metamorphism. This is due to the artificially increased mass
of the lower crust as it undergoes eclogitization (higher density, but
no decrease of volume). The increasing trend with time is due to
continuing horizontal convergence.

The evolution of the foreland basin depth shows large differences:
while adding density variations to the S model causes a shallower
(∼19 per cent in 3.2 Myr) basin (B model), correcting for the
volumetric effects results in a significantly (approximately a factor
of 2) deeper basin (M model). The latter effect is related to the
more localized downward traction of the densifying crustal root
that enhances lateral advection of material from the shoulder area
towards the centre of the model. The deeper foreland basin largely
contributes to the higher relief (Fig. 3b). In the B model the neglect

of the volumetric changes hampers deformation localization and
the overall deformation pattern is laterally more distributed.

The base width of the crustal root appears to be controlled by the
volumetric effect. When this is correctly implemented, the active
orogen has a narrower underlying root due to the increasing density
and decreasing volume. The M model’s narrowing is greater by
67 per cent relative to the S and B models (with our model settings,
at 3.2 Myr). In the incompressible cases (S and B model), in which
volume changes are neglected, localization is not enhanced, and
this is irrespective of density changes. The general decreasing trend
with time is due to the continuing horizontal convergence.

The maximum deepening of the Moho root compared to its initial
position shows a faster trend in the case where mass conservation
is respected. The B model initially exaggerates the deepening of
mass-continuity respecting model due to the artificially increased
mass of the crustal root.

The average slope of the crustal root derives from the two pre-
vious pictures: a steeper deepening when both mass-continuity and
metamorphic density changes are respected. The B model’s slope
(accidentally) falls near the complete solution by its wider base-
width and exaggerated deepening.

Our results suggest that – in addition to convergence, the assumed
rheology and surface processes – the implementation of the continu-
ity equation also has important consequences for the evolution and
localization of deformation. The principal physical development of
the model we propose compared to the previous generations is that
it includes both density and strictly bound volume changes that
shape the geometry at depth and at surface. In our setup, the density
change drives a faster deepening of the lower crustal root relative to
models without metamorphism; the volume change avoids the artifi-
cial mass generation of the Boussinesq approximation and creates a
horizontally narrower, more localized root. Both effects combined
make that the horizontal convergence is more efficiently accom-
modated and converted into vertical mass movement in the orogen,
into the deeper root and the higher relief. Hence metamorphic phase
changes in combination with the more rigorous implementation of
continuity produce a distinctly different deformation pattern and
evolution trend than obtained with the various approximations.

To demonstrate the robustness of our approach, the evolution
of the total mass of the system with time shows how accurately
mass conservation is respected (Fig. 4). While the models lacking a
proper implementation of mass-continuity are in constantly increas-
ing error, the model with a consistent implementation continuously
respects mass conservation (its deviation from the initial mass is
less than the mass of the smallest element, and can be related to
numerical noise). At the end of the simulation the total mass in the
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Figure 3. (a) Definition of the parameters describing the shape of the topography high (or, inversely, of the Moho root). The mean altitude of the peak is
averaged over 100 km horizontal distance. (b)–(g) Deformation of the model in the three different setups: evolution of the shape parameters describing the
geometry of the topography (b–d) and Moho root (e–g). Horizontal thin lines (b, c and g) correspond to the initial level of the values. See text for discussion.

Figure 4. Total mass of the system and the evolution of error for the three
models. Relative error is shown at 3.2 Myr. Time is the effective simulation
time after the initiation time.

M model records a relative change of 10−5. This is about 2.5 or-
ders of magnitude more accurate than in models with approximated
effects of deformation and metamorphism.

5 I M P L I C AT I O N S A N D C O N C LU S I O N S

We showed that the correct implementation of the mass-continuity
equation has potentially important consequences on models of litho-
spheric deformation including metamorphism. To illustrate the ef-
fects on the deformation pattern, we built a simple orogenic model,
which demonstrates that metamorphism has a key role in shaping

the lithospheric structure. Our model also illustrates that the widely
used incompressible formulation (Boussinesq approximation) may
introduce inaccuracies in mass-continuity and exhibit misleading
trends in deformation, in particular when used in conjunction with
metamorphic phase changes.

The implications of modelling metamorphism in a physically
correct manner are manifold. For instance:

(1) Numerical simulations aiming to reproduce the evolution of
exhumation, surface uplift or foreland basin development may be
in error when using approximated formulations of mass-continuity.
The error is model dependent, but may exceed a factor of 2 for some
model parameters as demonstrated by our results on the foreland
basin depth. Errors of this magnitude are such that a revision of the
previously inferred rates may be necessary to match the same data.

(2) Geologically fast density (and corresponding volume)
changes are likely to generate stresses large enough to create frac-
tures or trigger fracturing at depth. The induced stresses can easily
exceed the order of a few bars, which is comparable to the stress-
drop deduced for earthquakes (Hanks 1977; Scholz 1990). A cur-
rently active field example can be the eclogitization of the Indian
lower crust beneath Tibet, which spatially coincides with a zone of
microseismic activity (Hetényi et al. 2007; Whittlinger et al. 2009).
The accurate resolution of these stresses in geodynamic models
requires rigorous solution of the continuity equation.

(3) Metamorphism is shown to influence the shape of the crustal
root. In studies where the flexural geometry of a plate is used to
estimate lithospheric rheology (e.g. Cattin et al. 2001; Hetényi et al.
2006; and references therein), a revision of the numerical model may
modify the assessed mantle viscosities and lithospheric effective
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elastic thickness. The volumetric effects similarly determine the
mass distribution and the pressure field within the crustal root and
have implications for HP-UHP exhumation processes (e.g. Yamato
et al. 2007).

(4) If densification and the downward drag of the crustal root
are accompanied with rheological softening, the root may become
unstable during the long-term evolution of the orogen and enhance
decoupling or break-off. The timing of such event will depend on the
weight of the crustal root. Incorrect mass estimates resulting from
the Boussinesq approximation are likely to lead to false assessment
of the timing of decoupling or break-off scenarios and lead to biased
conclusions.

Correct modelling of metamorphism that complies with mass
conservation is therefore essential to understand long-term tectonic
evolution and to assess the respective importance of the different
geodynamic processes involved.
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Additional Supporting Information may be found in the online ver-
sion of this article:

Appendix S1. This appendix includes details on: the model setup
and input parameters (Section A1); time and timing of processes
(A2); the implementation of metamorphism (A3) and numerical
limitations (A4) including the corresponding figures.
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functionality of any supporting materials supplied by the authors.
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