| This file contains relict equipartion models that have been reformulated as solutions with | a simplicial composition space. The reformulation ensures that the models cannot generate | illegitimate site populations. The resulting restriction of the composition space reduces | the stability of the corresponding phase, particularly for Fe-rich compositions. This | formulation of the solution models: | Chl(HP), Chl(LWV), Sapp(HP), Sapp(KWP), T, GlTrTsPg, Amph(DHP), Amph(DPW), Atg(PN), | o-Amph, Ca-Amph(D), Na-Amph(D), and GlTrTsMb | was used in solution_model.dat between May 17, 2018 and Dec 6, 2018 (versions 6.8.2-6.8.4). | With the exception of T and Atg(PN), which are usually stable as Mg-rich phases, the | illegitimate versions of these models, used prior to 6.8.2, were restored to facilitate | the reproduction of phase relations computed with earlier versions of Perple_X. See the | May 17, 2018 and Mar 2, 2018 entries of the update file for additional details. | The original formulation (prismatic composition space) of the above models is preserved | equipartition_solution_models.dat Na-Amph(D) Chl(LWV) Chl(HP) Sapp(HP) Sapp(KWP) GlTrTsPg Amph(DHP) Amph(DPW) o-Amph Ca-Amph(D) GlTrTsMr Atg(PN) T -------------------------------------------------------- begin_model Talc, ideal. 1 2 M1 M2 T2 ______________________ Mutliplicity 2 1 2 ______________________ 1 en Mg Mg SiSi Species: 2 fs Fe Fe SiSi 3 mgts Mg Al AlSi ______________________ reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). JADC 5/10/2018 T | solution name abbreviation Tlc full_name talc 2 | model type: simplicial, equipartition relict 3 | number of independent endmembers ta fta tats | endmember names 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0.0 1. 0.1 0 | range and resolution for ta, imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | range and resolution for fta, imod = 0 -> cartesian subdivision ideal 3 | 3 site (M1, M2, T2) conigurational entropy model 2 2. | 2 species on M1, 2 sites per formula unit. z(m1,mg) = 1 ta + 1 tats 2 2. | 2 species on T2, 2 sites per formula unit. z(t2,al) = 1/2 tats 3 1. | 3 species on M2, 1 site per formula unit. z(m2,mg) = 1 ta z(fe,m2) = 1 fta end_of_model -------------------------------------------------------- begin_model Antigorite with Tschermak's substitution (Padrón-Navarta et al., 2013, Lithos) reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). JADC 5/10/2018 M0 M1 T1 ______________________ Mutliplicity 44 4 8 ______________________ 1 atg Mg Mg SiSi Species: 2 fatg Fe Fe SiSi 3 atgts Mg Al AlSi ______________________ This model requires the following make definition in the thermodynamic data file: atgts = 4 clin + 9/17 atg - 24/17 br -2e3. 46.1 0 Atg(PN) | solution name abbreviation Atg full_name serpentine 2 | model type: simplicial composition space, equipartition relict 3 | number of endmembers atg fatg atgts | endmember names, this order implies: 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0. 1. .1 0 | range and resolution for atg, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for ftag, imod = 0 -> cartesian subdivision ideal 3 | 3 site (M0, M1, T1) configurational entropy model 2 44. | 2 species on M0, 2 sites per formula unit. z(m1,mg) = 1 atg + 1 atgts 2 8. | 2 species on T1, 2 sites per formula unit. z(t2,al) = 1/2 atgts 3 4. | 3 species on M1, 1 site per formula unit. z(m2,mg) = 1 atg z(fe,m2) = 1 fatg reach_increment 0 end_of_model -------------------------------------------------------- begin_model Amphibole from Massonne & Willner (EJM, 2008) See notes for TrTsPg (above). reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). JADC 5/10/2018 GlTrTsMr abbreviation Amph full_name clinoamphibole 2 | model type: simplicial composition space, equipartion relict 5 | number of endmembers tr ftr mrie ts gl 0 0 0 0 0 | endmember flags. 0. 1. .1 0 | range and resolution for tr 0. 1. .1 0 | range and resolution for ftr 0. 1. .1 0 | range and resolution for mrie 0. 1. .1 0 | range and resolution for gl begin_excess_function W(gl tr) 77d3 0. 0. W(gl ftr) 83d3 0. 0. W(ts tr) 20d3 0. 0. W(ts ftr) -38d3 0. 0. W(tr ftr) 10d3 0. 0. end_excess_function 4 | 4 site (M1, M2, M4, T1) entropu model 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 0 + 1 ts 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 0 + 1 tr + 1 ts + 1 mrie + 1 gl 3 2. | 3 species on M2, 2 sites pfu z(m2,mg) = 0 + 1 tr z(m2,fe) = 0 + 1 ftr 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 0 + 1 gl begin_dqf_corrections dqf(ts) 10000 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Dale et al, CMP 2000 140:353-362 amphibole model without Na, K, Ti or Mn solution. See Amph(DHP) or bAmph(DHP) for Na-Ca amphibole JADC 5/5/06. A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 2 _________________________________________ 1 tr Vac Mg Mg Ca Si_Si 2 ftr Vac Fe Fe Ca Si_Si 3 ts Vac Mg Al Ca Al_Si 5 parg Na Mg Mg_Al Ca Al_Si 9 mfets Vac Mg Fe3+ Ca Al_Si reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). JADC 5/10/2018 Ca-Amph(D) | solution name abbreviation Amph full_name clinoamphibole 2 | model type: simplicial composition space, relict equipartiion 5 | number of endmembers tr ftr parg ts mfets 0 0 0 0 0 | endmember flags. 0. 1. .1 0 | range and resolution for tr : imod = 0 -> cartesian 0. 1. .1 0 | range and resolution for ftr 0. 1. .1 0 | range and resolution for parg 0. 1. .1 0 | range and resolution for ts begin_excess_function W(parg tr) 29.3d3 0. 0. W(parg ts) 18.2d3 0. 0. W(parg ftr) 11.4d3 0. 0. W(ts tr) 20.8d3 0. 0. W(tr ftr) 11.4d3 0. 0. end_excess_function 4 | 4 site (A, M1, M2, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 1/2 ts + 1/2 parg + 1/2 mfets 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 mfets 4 2. | 4 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr z(m2,fe3+) = 1 mfets begin_dqf_corrections dqf(ts) 10000 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Ideal orthoamphibole, this model assumes Al is present on only two tetrahedral sites and all five M2 sites. I have no idea if this is correct! fgedr endmember stoichiometry corrected, T. Wagner 2/18/06. M1 M2 T ______________________ Mutliplicity 2 5 2 ______________________ 1 anth Mg Mg SiSi Species: 2 fanth Fe Fe SiSi 3 ged Mg Mg3Al2 AlAl ______________________ reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). JADC 5/10/2018 o-Amph | solution name abbreviation oAmph full_name orthoamphibole 2 | model type: simplex, equipartition relict 3 | number of endmembers anth fanth ged endmember names, this order implies: 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0. 1. .1 0 | range and resolution for anth 0. 1. .1 0 | range and resolution for fanth ideal 3 | 3 site (M1, M2, T) conigurational entropy model 2 2. | 2 species on M1, 2 sites per formula unit. z(m1,mg) = 1 anth + 1 ged 2 2. | 2 species on T, 2 sites per formula unit. z(t,al) = 1 ged 3 1. | 3 species on M2, 1 site per formula unit. z(m2,mg) = 1 anth + 3/5 ged z(m2,fe) = 1 fanth end_of_model -------------------------------------------------------- begin_model tr-ts-parg non-ideal model for holland and powell. assumes 2 M2 sites are coupled to 4 T1 sites. site multiplicity of the T1 site is reduced to 2, this is suggested by HP98 to account for charge balance constraints. but doesn't make a lot of sense for the tr-parg mixing. assume Na on the A-site is coupled to Al on M2. JADC Nov, 98. HP Am Min 99, 84:1-14 Oli Jagoutz revised april 9, 2002 in contrast to the earlier version of TrTsPg this version assumes the A site is decoupled from M2 JADC 4/03. reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). JADC 5/10/2018 GlTrTsPg | solution name abbreviation Amph full_name clinoamphibole 2 | model type: simplicial composition space, equipartion relict 5 | number of endmembers tr ftr parg ts gl 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 0 | range and resolution for tr, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for ftr, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for pg, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for ts, imod = 0 -> cartesian subdivision begin_excess_function | interaction parameters from | White, Powell & Phillips (2003, JMG) | and Wei, Powell, & Zhang (2003, JMG) | compiled by D. Tinkham. JADC 11/03 W(parg gl) 80d3 0. 0. W(parg tr) 30d3 0. 0. W(parg ftr) 38d3 0. 0. W(gl tr) 77d3 0. 0. W(gl ftr) 83d3 0. 0. W(ts tr) 20d3 0. 0. W(ts ftr) -38d3 0. 0. W(tr ftr) 10d3 0. 0. | earlier versions used (provenance unknown) | W(ts parg) -25000. 0. 0. | W(tr parg) 20000. 0. 0. | W(tr ts) 38000. 0. 0. end_excess_function 5 | 5 site (A, M1, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 1/2 ts + 1/2 parg 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 gl 3 2. | 3 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 1 gl begin_dqf_corrections dqf(ts) 10000 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 2 _________________________________________ 1 tr Vac Mg Mg Ca Si_Si 2 ftr Vac Fe Fe Ca Si_Si 3 ts Vac Mg Al Ca Al_Si 4 fts Vac Fe Al Ca Al_Si 5 parg Na Mg Mg_Al Ca Al_Si 6 fparg Na Fe Fe_Al Ca Al_Si 7 gl Vac Mg Al Na Si_Si 8 fgl Vac Fe Al Na Si_Si 9 mfets Vac Mg Fe3+ Ca Al_Si 10 ffets Vac Fe Fe3+ Ca Al_Si Dale et al, CMP 2000 140:353-362 amphibole model without K, Ti or Mn solution. JADC 9/05. reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). JADC 5/10/2018 Amph(DHP) | solution name abbreviation Amph full_name clinoamphibole 2 | model type: simplex, equipartition relict 6 | number of endmembers tr ftr parg ts gl mfets 0 0 0 0 0 0 | endmember flags. 0. 1. 0.1 0 | range and resolution for tr, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for ftr, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for parg, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for ts, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for gl, imod = 0 -> cartesian subdivision begin_excess_function W(parg gl) 84.5d3 0. 0. W(parg tr) 29.3d3 0. 0. W(parg ts) 18.2d3 0. 0. W(parg ftr) 11.4d3 0. 0. W(gl tr) 35.3d3 0. 0. W(ts tr) 20.8d3 0. 0. W(tr ftr) 11.4d3 0. 0. W(gl ftr) 15d3 0. 0. W(gl ts) 15d3 0. 0. end_excess_function 5 | 5 site (A, M1, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 1/2 ts + 1/2 parg + 1/2 mfets 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 gl + 1 mfets 4 2. | 4 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr z(m2,fe3+) = 1 mfets 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 1 gl begin_dqf_corrections dqf(ts) 10000 end_dqf_corrections reach_increment 1 end_of_model -------------------------------------------------------- begin_model Dale et al, JMG 2005 23:771-791 amphibole model. JADC, 11/05. excess parameters corrected from W(gl ftr) 393d3 0. 0. W(gl mfets) 459d3 0. 0. W(ftr mfets) 125d3 0. 0. to current values. M. Racek, 2/10/06. reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). JADC 5/10/2018 A M13 M2 M4 T1* _________________________________________ Mutliplicity 1 3 2 2 4(1) _________________________________________ 1 tr Vac Mg Mg Ca Si_Si 2 ftr Vac Fe Fe Ca Si_Si 3 ts Vac Mg Al Ca Al_Si 5 parg Na Mg Mg_Al Ca Al_Si 7 gl Vac Mg Al Na Si_Si 9 mfets Vac Mg Fe3+ Ca Al_Si *Dale et al compute amphibole T1 site fractions assuming a site multiplicity of 4, but compute activities for a T1 site multiplicity of 1. In previous models H&P computed activities for a T1 site multiplicity of 2. Amph(DPW) | solution name abbreviation Amph full_name clinoamphibole 2 | model type: simplicial composition space, equipartition relict 6 | number of endmembers tr ftr parg ts gl mfets 0 0 0 0 0 0 | endmember flags. 0. 1. 0.1 0 | range and resolution for tr, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for ftr, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for parg, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for ts, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for gl, imod = 0 -> cartesian subdivision begin_excess_function W(tr ts) 20d3 0. 0. W(tr parg) 33d3 0. 0. W(tr gl) 65d3 0. 0. W(tr ftr) 10d3 0. 0. W(tr mfets) 20d3 0. 0. W(ts parg) -385d2 0. 0. W(ts gl) 25d3 0. 0. W(ts ftr) 125d2 0. 0. W(parg gl) 50d3 0. 0. W(parg ftr) -19d2 0. 0. W(parg mfets) -385d2 0. 0. W(gl ftr) 393d2 0. 0. W(gl mfets) 459d2 0. 0. W(ftr mfets) 125d2 0. 0. end_excess_function 5 | 5 site (A, M13, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 1. | 2 species on T1, fake site multiplicity of 1. z(T1,Al) = 1/2 ts + 1/2 parg + 1/2 mfets 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 gl + 1 mfets 4 2. | 4 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr z(m2,fe3+) = 1 mfets 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 1 gl begin_van_laar_sizes alpha(tr) 1.0 0. 0. alpha(ts) 1.5 0. 0. alpha(parg) 1.7 0. 0. alpha(gl) 0.8 0. 0. alpha(ftr) 1.0 0. 0. alpha(mfets) 1.5 0. 0. end_van_laar_sizes begin_dqf_corrections dqf(gl) 5d3 0 0 dqf(ts) 1d4 0 0 dqf(parg) 15d3 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Sapphirine, ideal, holland and powell '98 config entropy corrected, P Goncalves/JADC, 10/1/03 the corrected model assumes (after the text on TJBH's saphhirine web page www.esc.cam.ac.uk/astaff/holland/ds5/sapphirines/spr.html) that: 1) a 14 cation unit formula 2) Si occupies T2, Al occupies T5, Si and Al mix on remaining 4 sites T1 T3 T4 T6 (the T site below) 3) Al occupies M7; only Fe and Mg may occupy sites M4, M5, M6 (Site MB below); Al, Mg, and Fe may occupy sites M1, M2, M3 and M8 (Site MA below) N.B. This model seems to differ from the Thermocalc format version on TJBH's web page in that it accounts for the configurational entropy arising from mixing on MB (i.e., the Thermocalc model looks like it was written for Fe-free sapphirine). Eliminate site MB to reproduce the TJBH web page Thermocalc model. reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). JADC, 10/5/2018 1 2 3 MA MB T _________________ Mutliplicity 4 3 4 _________________ 1 spr7 MgAl7 Mg SiAl7 Species: 2 fspr FeAl7 Fe SiAl7 3 spr4 MgAl3 Mg SiAl3 Sapp(HP) abbreviation Sap full_name sapphirine 2 | model type: simplicial composition space, equipartition relict 3 | number of endmembers spr7 fspr spr4 0 0 0 endmember flags 0. 1. 0.1 0 | range and resolution for spr7, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for fspr, imod = 0 -> cartesian subdivision ideal 3 | 3 site (MA, MB, T) configurational entropy model 2 3. | 2 species on MB, 3 sites per formula unit z(mb,mg) = 1 spr4 + 1 spr7 3 4. | 3 species on MA, 4 sites per formula unit. z(ma,Al) = 3/4 + 1/8 spr7 + 1/8 fspr z(ma,fe) = 1/8 fspr 2 4. | 2 species on T, 4 sites per formula unit. z(T,Al) = 3/4 + 1/8 spr7 + 1/8 fspr end_of_model -------------------------------------------------------- begin_model Sapphirine, non-ideal, Kelsey et al. (J. metamorphic Geol., 2004, 22, 559-578) NOTE: This model should be used in conjunction with a special high temperature version of the HP data base (kel04ver.dat). Model originally entered by Pulak Sengupta, 7/16/05. 1) Site populations corrected to correspond to those of Kelsey et al by P Goncalves, 10/12/2010. reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). JADC, 10/5/2018 1 2 3 M3 M46 T _________________ Mutliplicity 1 3 1 _________________ 1 spr4 Mg Mg Si Species: 2 fspr Fe Fe Si 3 spr5 Al Mg Al Sapp(KWP) abbreviation Sap full_name sapphirine 2 | model type: simplicial composition space, equipartion relict 3 | number of endmembers spr4 fspr spr5 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution for spr4, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for fspr, imod = 0 -> cartesian subdivision begin_excess_function w(spr5 spr4) 10000 0 0 w(spr5 fspr) 12000 0 0 w(spr4 fspr) 8000 0 0 end_excess_function 3 | 3 site (M3, M46, T) configurational entropy model 2 3. | 2 species on M46, 3 sites per formula unit z(m46,mg) = 1 spr5 + 1 spr4 3 1. | 3 species on M3, 1 sites per formula unit. z(ma,Al) = 1 spr5 z(ma,fe) = 1 fspr 2 1. | 2 species on T, 1 sites per formula unit. z(T,si) = 1 spr4 + 1 fspr end_of_model -------------------------------------------------------- begin_model | CHLORITE: extended from holland et al. 1998, EJM. NOTES: * This model was tested with the maple script complete_chl.mws * For normal aluminous chlorites there is little to be gained by considering the afchl endmember becuase the endmember has negligible contribution to the total energy of the solution (see fig 4 of holland et al). Exclude this endmember to save computational resources. For Al-poor systems exclude ames and retain afchl. JADC 4/03 1 2 3 4 M1 M2+M3 M4 T2 ________________________________ Mutliplicity 1 4 1 2 ________________________________ 3 mnchl Mn Mn Al Al_Si 6 daph Fe Fe Al Al_Si 7 ames Al Mg Al Al_Al 8 afchl Mg Mg Mg Si_Si 9 clin Mg Mg Al Al_Si reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). JADC 5/10/2018 Chl(HP) abbreviation Chl full_name chlorite 2 | model type: simplicial (brute force o/d), equipartition relict 5 | number of endmembers daph ames afchl mnchl clin | endmembers 0 0 0 0 0 |endmember flags | subdivision model 0. 1. .1 0 | range and resolution of daph, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of ames, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of afchl, imod = 0 -> cartesian subdivision 0. .2 .1 0 | range and resolution of mnchl, imod = 0 -> cartesian subdivision begin_excess_function w(clin ames) 18000. 0. 0. w(clin afchl) 18000. 0. 0. w(ames afchl) 20000. 0. 0. w(clin daph) 2500. 0. 0. w(daph ames) 13500. 0. 0. w(daph afchl) 14500. 0. 0. end_excess_function 4 |4 site configurational entropy model: 4 1. |4 species on 1 M1 site z(al,M1) = 1 ames z(mn,M1) = 1 mnchl z(fe,M1) = 1 daph 3 4. |3 species on 4 M2+M3 sites z(mn,m2+m3)= 1 mnchl z(fe,m2+m3)= 1 daph 2 1. |3 species on 1 M4 site z(mg,m4) = 1 afchl 2 2. |2 species on 2 T2 sites z(al,T2)= 1 ames + 1/2 clin + 1/2 daph + 1/2 mnchl end_of_model -------------------------------------------------------- begin_model | CHLORITE: extended from Holland et al. (1998) for sud substitution | Entered by Thomas Wagner, 5/12. LWV 7/12 | The reference for this model is Lanari, Wagner and Vidal, | CMP 2014 167:968 reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). this is a brute force o/d model and is probably incorrectly (but correctably) formulated. JADC, 10/5/2018 1 2 3 4 M1 M2+M3 M4 T2 ________________________________ Mutliplicity 1 4 1 2 ________________________________ 2 ames Al Mg Al Al_Al 3 clin Mg Mg Al Al_Si 4 daph Fe Fe Al Al_Si 6 sud Va Al2_Mg2 Al Al_Si Chl(LWV) abbreviation Chl full_name chlorite 2 | model type: simplicial composition space, equipartion relict 4 | number of endmembers daph ames sud_dqf clin 0 0 0 0 |endmember flags 0. 1. .1 0 | range and resolution of daph, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of ames, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of sud_dqf, imod = 0 -> cartesian subdivision begin_excess_function w(clin ames) 18000. 0. 0. w(clin daph) 2500. 0. 0. w(clin sud_dqf) 49100. 0. 0. w(daph ames) 13500. 0. 0. w(daph sud_dqf) 43400. 0. 0. w(ames sud_dqf) 43300. 0. 0. end_excess_function 3 |3 site configurational entropy model: 4 1. |4 species on 1 M1 site z(al,M1) = 1 ames z(mg,M1) = 1 clin z(fe,M1) = 1 daph 3 4. |3 species on 4 M2+M3 sites z(fe,m2+m3) = 1 daph z(mg,m2+m3) = 1 clin + 1 ames + 1/2 sud_dqf 2 2. |2 species on 2 T2 sites z(al,T2) = 1 ames + 1/2 clin + 1/2 daph + 1/2 sud_dqf end_of_model -------------------------------------------------------- begin_model Dale et al, CMP 2000 140:353-362 amphibole model without Ca, K, Ti or Mn solution. This model requires a fgl endmember, created as decribed by Powell's mdep paper. See Amph(DHP) for Na-Ca amphibole JADC 5/5/06. reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). JADC 5/10/2018 A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 2 _________________________________________ 7 gl Vac Mg Al Na Si_Si 8 fgl Vac Fe Al Na Si_Si 11 rieb Vac Fe Fe3+ Na Si_Si Na-Amph(D) | solution name abbreviation Amph full_name clinoamphibole 2 | model type: simplicial composition space, equipartition relict 3 | number of endmembers gl fgl rieb 0 0 0 | endmember flags 0. 1.0 0.1 0 | range and resolution for gl: imod = 0 -> cartesian for site 1 0. 1.0 0.1 0 | range and resolution for fgl: imod = 0 -> cartesian for site 2 ideal 2 | 2 site (M1, M2) entropy model 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 gl 2 2. | 2 species on M2, 2 sites pfu z(m2,fe3+) = 1 rieb end_of_model