| This file contains relict equipartion models that were formulated as solutions with prismatic | composition spaces. The proper formulation of such models is as order-disorder solution models, | but in THERMOCALC the models were formulated in terms of the "equipartition constraint" as a | means of eliminating illegitimate site populations. The equipartion constraint is itself invalid | and was not implmented in Perple_X, therefore the models contain here represent a compromise | between fidelity to the THERMOCALC implementation and thermodynamic principles. This compromise | was implemented prior to prior to 6.8.2, and restored Dec 6 2018 for a subset of the models herein: | Chl(HP), Chl(LWV), Sapp(HP), Sapp(KWP), GlTrTsPg, Amph(DHP), Amph(DPW), | o-Amph, Ca-Amph(D), Na-Amph(D), and GlTrTsMr | to facilitate the reproduction of phase relations computed with earlier versions of Perple_X. | The T and Atg(PN) models included below are not present in the current version of solution_model.dat, | which includes the simplicial equivalent of T and Atg(PN). The complete set of simplicial models | the correspond to the prismatic model here is preserved in | equipartition_solution_models_reformulated.dat. -------------------------------------------------------- begin_model Antigorite with Tschermak's substitution (Padrón-Navarta et al., 2013, Lithos) M0 M1 T1 ______________________ Mutliplicity 44 4 8 ______________________ 1 atg Mg Mg SiSi Species: 2 fatg Fe Fe SiSi 3 atgts Mg Al AlSi 4 fatgts Fe Al AlSi dependent ______________________ Dependent: fatgts = 1 atgts + 44/48 fatg - 44/48 atg This model requires the following make definition in the thermodynamic data file: atgts = 4 clin + 9/17 atg - 24/17 br -2e3. 46.1 0 Atg(PN) | solution name abbreviation Atg full_name serpentine 7 | model type: reciprocal, macroscopic 2 | 2 site reciprocal solution 2 2 | 2 species on each site atg fatg | endmember names, this order implies: atgts fatgts | x(11)=x(mg); x(12) = x(fe); x(21) = x(SiAl,t2); x(22) = x(Al2,t2) 1 | 1 dependent endmember: fatgts = 1 atgts + 44/48 fatg - 44/48 atg 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0.0 1. 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | range and resolution for 1-X(Tschermaks) on site 2, imod = 0 -> cartesian subdivision ideal 3 | 3 site (M0, M1, T1) configurational entropy model 2 44. | 2 species on M0, 2 sites per formula unit. z(m1,mg) = 1 atg + 1 atgts 2 8. | 2 species on T1, 2 sites per formula unit. z(t2,al) = 1/2 atgts 3 4. | 3 species on M1, 1 site per formula unit. z(m2,mg) = 1 atg z(fe,m2) = 1 fatg reach_increment 0 site_check_override end_of_model -------------------------------------------------------- begin_model Talc as an ideal H&P solution. 1 2 M1 M2 T2 ______________________ Mutliplicity 2 1 2 ______________________ 1 en Mg Mg SiSi Species: 2 fs Fe Fe SiSi 3 mgts Mg Al AlSi 4 fets Fe Al AlSi dependent ______________________ Dependent: ftat = tats + 2/3*(ta - fta) T | solution name abbreviation Tlc full_name talc 7 | model type: reciprocal, macroscopic 2 | 2 site reciprocal solution 2 2 | 2 species on each site ta fta | endmember names, this order implies: tats ftat_i | x(11)=x(mg); x(12) = x(fe); x(21) = x(SiAl,t2); x(22) = x(Al2,t2) 1 | 1 dependent endmember: ftat_i = 1 tats + 2/3 fta - 2/3 ta 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0.0 1. 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | range and resolution for 1-X(Tschermaks) on site 2, imod = 0 -> cartesian subdivision ideal 3 | 3 site (M1, M2, T2) conigurational entropy model 2 2. | 2 species on M1, 2 sites per formula unit. z(m1,mg) = 1 ta + 1 tats 2 2. | 2 species on T2, 2 sites per formula unit. z(t2,al) = 1/2 tats 3 1. | 3 species on M2, 1 site per formula unit. z(m2,mg) = 1 ta z(fe,m2) = 1 fta site_check_override end_of_model -------------------------------------------------------- begin_model Amphibole from Massonne & Willner (EJM, 2008) See notes for TrTsPg (above). GlTrTsMr abbreviation Amph full_name clinoamphibole 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 4 | 1 binary and 1 quaternary tr ftr mrie fmrie_i ts fts_i gl fgl_i 3 | number of dependent endmembers fmrie_i = 1 mrie + 3/5 ftr - 3/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr fgl_i = 1 gl + 3/5 ftr - 3/5 tr 0 0 0 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2 0. 1.0 0.1 0 | range and resolution for X(ts) on site 2 begin_excess_function W(gl tr) 77d3 0. 0. W(gl ftr) 83d3 0. 0. W(ts tr) 20d3 0. 0. W(ts ftr) -38d3 0. 0. W(tr ftr) 10d3 0. 0. end_excess_function 4 | 4 site (M1, M2, M4, T1) entropu model 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 0 + 1 ts 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 0 + 1 tr + 1 ts + 1 mrie + 1 gl 3 2. | 3 species on M2, 2 sites pfu z(m2,mg) = 0 + 1 tr z(m2,fe) = 0 + 1 ftr 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 0 + 1 gl begin_dqf_corrections dqf(ts) 10000 0 0 end_dqf_corrections site_check_override end_of_model -------------------------------------------------------- begin_model Dale et al, CMP 2000 140:353-362 amphibole model without Na, K, Ti or Mn solution. See Amph(DHP) or bAmph(DHP) for Na-Ca amphibole JADC 5/5/06. A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 2 _________________________________________ 1 tr Vac Mg Mg Ca Si_Si 2 ftr Vac Fe Fe Ca Si_Si 3 ts Vac Mg Al Ca Al_Si 4 fts Vac Fe Al Ca Al_Si 5 parg Na Mg Mg_Al Ca Al_Si 6 fparg Na Fe Fe_Al Ca Al_Si 9 mfets Vac Mg Fe3+ Ca Al_Si 10 ffets Vac Fe Fe3+ Ca Al_Si fparg = parg + 4/5 (ftr - tr) fts = ts + 3/5 (ftr - tr) Ca-Amph(D) | solution name abbreviation Amph full_name clinoamphibole 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 4 | 1 binary and 1 quinary tr ftr parg fparg_i ts fts_i mfets ffets_i 3 | number of dependent endmembers fparg_i = 1 parg + 4/5 ftr - 4/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr ffets_i = 1 mfets + 3/5 ftr - 3/5 tr 0 0 0 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 | range and resolution for X(Mg) on site 1 0 | subdivision scheme : imod = 0 -> cartesian for site 1 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2 0. 1. 0.1 0 | range and resolution for X(ts) on site 2 begin_excess_function W(parg tr) 29.3d3 0. 0. W(parg ts) 18.2d3 0. 0. W(parg ftr) 11.4d3 0. 0. W(ts tr) 20.8d3 0. 0. W(tr ftr) 11.4d3 0. 0. end_excess_function 4 | 4 site (A, M1, M2, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 1/2 ts + 1/2 fts_i + 1/2 parg + 1/2 mfets 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 mfets 4 2. | 4 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr z(m2,fe3+) = 1 mfets begin_dqf_corrections dqf(ts) 10000 0 0 end_dqf_corrections site_check_override end_of_model -------------------------------------------------------- begin_model Dale et al, CMP 2000 140:353-362 amphibole model without Ca, K, Ti or Mn solution. This model requires a fgl endmember, created as decribed by Powell's mdep paper. See Amph(DHP) for Na-Ca amphibole JADC 5/5/06. A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 2 _________________________________________ 7 gl Vac Mg Al Na Si_Si 8 fgl Vac Fe Al Na Si_Si 12 mrieb Vac Mg Fe3+ Na Si_Si 11 rieb Vac Fe Fe3+ Na Si_Si mrieb_i = 1 rieb + 3/5 tr - 3/5 ftr Na-Amph(D) | solution name abbreviation Amph full_name clinoamphibole 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 2 | 2 binaries gl fgl mrieb_i rieb 1 | number of dependent endmembers mrieb_i = 1 rieb + 1 gl - 1 fgl 0 0 0 0 | endmember flags. 0. 1.0 0.1 | range and resolution for X(Mg) on site 1 0 | subdivision scheme : imod = 0 -> cartesian for site 1 0. 1.0 0.1 | range and resolution for X(Al) on site 2 0 | subdivision scheme : imod = 0 -> cartesian for site 2 ideal 2 | 2 site (M1, M2) entropy model 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 gl 2 2. | 2 species on M2, 2 sites pfu z(m2,fe3+) = 1 rieb site_check_override end_of_model begin_model -------------------------------------------------------- begin_model Ideal orthoamphibole, this model assumes Al is present on only two tetrahedral sites and all five M2 sites. I have no idea if this is correct! fgedr endmember stoichiometry corrected, T. Wagner 2/18/06. M1 M2 T ______________________ Mutliplicity 2 5 2 ______________________ 1 anth Mg Mg SiSi Species: 2 fanth Fe Fe SiSi 3 ged Mg Mg3Al2 AlAl 4 fged Fe Fe3Al2 AlAl ______________________ Dependent: fged = ged + 5/7*(fanth - anth) o-Amph | solution name abbreviation oAmph full_name orthoamphibole 7 | model type: reciprocal, macroscopic 2 | 2 site reciprocal solution 2 2 | 2 species on each site anth fanth | endmember names, this order implies: ged fged_i | x(11)=x(mg); x(12) = x(fe); x(21) = x(si,t); x(22) = x(Al,t) 1 | 1 dependent endmember: fged_i = 1 ged + 5/7 fanth - 5/7 anth 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0. 1. .1 | range and resolution for X(Mg) on site 1 0 | subdivision scheme on site 2: imod = 0 -> cartesian 0. 1. .1 | range and resolution for 1-X(Tschermaks) on site 2 0 | subdivision scheme on site 2: imod = 0 -> cartesian ideal 3 | 3 site (M1, M2, T) conigurational entropy model 2 2. | 2 species on M1, 2 sites per formula unit. z(m1,mg) = 1 anth + 1 ged 2 2. | 2 species on T, 2 sites per formula unit. z(t,al) = 1 ged 3 1. | 3 species on M2, 1 site per formula unit. z(m2,mg) = 1 anth + 3/5 ged z(m2,fe) = 1 fanth site_check_override end_of_model -------------------------------------------------------- begin_model tr-ts-parg non-ideal model for holland and powell. assumes 2 M2 sites are coupled to 4 T1 sites. site multiplicity of the T1 site is reduced to 2, this is suggested by HP98 to account for charge balance constraints. but doesn't make a lot of sense for the tr-parg mixing. assume Na on the A-site is coupled to Al on M2. JADC Nov, 98. HP Am Min 99, 84:1-14 Oli Jagoutz revised april 9, 2002 in contrast to the earlier version of TrTsPg this version assumes the A site is decoupled from M2 JADC 4/03. fparg = parg + 4/5 (ftr - tr) fgl = gl + 3/5 (ftr - tr) fts = ts + 3/5 (ftr - tr) GlTrTsPg | solution name abbreviation Amph full_name clinoamphibole 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 4 | 1 binary and 1 quaternary tr ftr parg fparg_i ts fts_i gl fgl_i 3 | number of dependent endmembers fparg_i = 1 parg + 4/5 ftr - 4/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr fgl_i = 1 gl + 3/5 ftr - 3/5 tr 0 0 0 0 1 0 0 0 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(ts) on site 2, imod = 0 -> cartesian subdivision begin_excess_function | interaction parameters from | White, Powell & Phillips (2003, JMG) | and Wei, Powell, & Zhang (2003, JMG) | compiled by D. Tinkham. JADC 11/03 W(parg gl) 80d3 0. 0. W(parg tr) 30d3 0. 0. W(parg ftr) 38d3 0. 0. W(gl tr) 77d3 0. 0. W(gl ftr) 83d3 0. 0. W(ts tr) 20d3 0. 0. W(ts ftr) -38d3 0. 0. W(tr ftr) 10d3 0. 0. | earlier versions used (provenance unknown) | W(ts parg) -25000. 0. 0. | W(tr parg) 20000. 0. 0. | W(tr ts) 38000. 0. 0. end_excess_function 5 | 5 site (A, M1, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 1/2 ts + 1/2 parg 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 gl 3 2. | 3 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 1 gl begin_dqf_corrections dqf(ts) 10000 0 0 end_dqf_corrections site_check_override end_of_model -------------------------------------------------------- begin_model A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 2 _________________________________________ 1 tr Vac Mg Mg Ca Si_Si 2 ftr Vac Fe Fe Ca Si_Si 3 ts Vac Mg Al Ca Al_Si 4 fts Vac Fe Al Ca Al_Si 5 parg Na Mg Mg_Al Ca Al_Si 6 fparg Na Fe Fe_Al Ca Al_Si 7 gl Vac Mg Al Na Si_Si 8 fgl Vac Fe Al Na Si_Si 9 mfets Vac Mg Fe3+ Ca Al_Si 10 ffets Vac Fe Fe3+ Ca Al_Si Dale et al, CMP 2000 140:353-362 amphibole model without K, Ti or Mn solution. JADC 9/05. fparg = parg + 4/5 (ftr - tr) fgl = gl + 3/5 (ftr - tr) fts = ts + 3/5 (ftr - tr) Amph(DHP) | solution name abbreviation Amph full_name clinoamphibole 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 5 | 1 binary and 1 quinary tr ftr parg fparg_i ts fts_i gl fgl_i mfets ffets_i 4 | number of dependent endmembers fparg_i = 1 parg + 4/5 ftr - 4/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr fgl_i = 1 gl + 3/5 ftr - 3/5 tr ffets_i = 1 mfets + 3/5 ftr - 3/5 tr 0 0 0 0 1 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(ts) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(gl) on site 2, imod = 0 -> cartesian subdivision begin_excess_function W(parg gl) 84.5d3 0. 0. W(parg tr) 29.3d3 0. 0. W(parg ts) 18.2d3 0. 0. W(parg ftr) 11.4d3 0. 0. W(gl tr) 35.3d3 0. 0. W(ts tr) 20.8d3 0. 0. W(tr ftr) 11.4d3 0. 0. W(gl ftr) 15d3 0. 0. W(gl ts) 15d3 0. 0. end_excess_function 5 | 5 site (A, M1, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 1/2 ts + 1/2 parg + 1/2 mfets 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 gl + 1 mfets 4 2. | 4 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr z(m2,fe3+) = 1 mfets 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 1 gl begin_dqf_corrections dqf(ts) 10000 end_dqf_corrections reach_increment 1 site_check_override end_of_model -------------------------------------------------------- begin_model Dale et al, JMG 2005 23:771-791 amphibole model. JADC, 11/05. Margules parameters corrected from W(gl ftr) 393d3 0. 0. W(gl mfets) 459d3 0. 0. W(ftr mfets) 125d3 0. 0. to current values. M. Racek, 2/10/06. A M13 M2 M4 T1* _________________________________________ Mutliplicity 1 3 2 2 4(1) _________________________________________ 1 tr Vac Mg Mg Ca Si_Si 2 ftr Vac Fe Fe Ca Si_Si 3 ts Vac Mg Al Ca Al_Si 4 fts_d Vac Fe Al Ca Al_Si 5 parg Na Mg Mg_Al Ca Al_Si 6 fparg_d Na Fe Fe_Al Ca Al_Si 7 gl Vac Mg Al Na Si_Si 8 fgl_d Vac Fe Al Na Si_Si 9 mfets Vac Mg Fe3+ Ca Al_Si 10 ffets_d Vac Fe Fe3+ Ca Al_Si fparg_d = 1 parg + 4/5 ftr - 4/5 tr fts_d = 1 ts + 3/5 ftr - 3/5 tr fgl_d = 1 gl + 3/5 ftr - 3/5 tr ffets_d = 1 mfets + 3/5 ftr - 3/5 tr *Dale et al compute amphibole T1 site fractions assuming a site multiplicity of 4, but compute activities for a T1 site multiplicity of 1. In previous models H&P computed activities for a T1 site multiplicity of 2. Amph(DPW) | solution name abbreviation Amph full_name clinoamphibole 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 5 | 1 binary and 1 quinary tr ftr parg fparg_i ts fts_i gl fgl_i mfets ffets_i 4 | number of dependent endmembers fparg_i = 1 parg + 4/5 ftr - 4/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr fgl_i = 1 gl + 3/5 ftr - 3/5 tr ffets_i = 1 mfets + 3/5 ftr - 3/5 tr 0 0 0 0 1 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(ts) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(gl) on site 2, imod = 0 -> cartesian subdivision begin_excess_function W(tr ts) 20d3 0. 0. W(tr parg) 33d3 0. 0. W(tr gl) 65d3 0. 0. W(tr ftr) 10d3 0. 0. W(tr mfets) 20d3 0. 0. W(ts parg) -385d2 0. 0. W(ts gl) 25d3 0. 0. W(ts ftr) 125d2 0. 0. W(parg gl) 50d3 0. 0. W(parg ftr) -19d2 0. 0. W(parg mfets) -385d2 0. 0. W(gl ftr) 393d2 0. 0. W(gl mfets) 459d2 0. 0. W(ftr mfets) 125d2 0. 0. end_excess_function 5 | 5 site (A, M13, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 1. | 2 species on T1, fake site multiplicity of 1. z(T1,Al) = 1/2 ts + 1/2 parg + 1/2 mfets 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 gl + 1 mfets 4 2. | 4 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr z(m2,fe3+) = 1 mfets 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 1 gl begin_van_laar_sizes alpha(tr) 1.0 0. 0. alpha(ts) 1.5 0. 0. alpha(parg) 1.7 0. 0. alpha(gl) 0.8 0. 0. alpha(ftr) 1.0 0. 0. alpha(mfets) 1.5 0. 0. end_van_laar_sizes begin_dqf_corrections dqf(gl) 5d3 0 0 dqf(ts) 1d4 0 0 dqf(parg) 15d3 0 0 end_dqf_corrections site_check_override end_of_model -------------------------------------------------------- begin_model Sapphirine, ideal, holland and powell '98 config entropy corrected, P Goncalves/JADC, 10/1/03 the corrected model assumes (after the text on TJBH's saphhirine web page www.esc.cam.ac.uk/astaff/holland/ds5/sapphirines/spr.html) that: 1) a 14 cation unit formula 2) Si occupies T2, Al occupies T5, Si and Al mix on remaining 4 sites T1 T3 T4 T6 (the T site below) 3) Al occupies M7; only Fe and Mg may occupy sites M4, M5, M6 (Site MB below); Al, Mg, and Fe may occupy sites M1, M2, M3 and M8 (Site MA below) N.B. This model seems to differ from the Thermocalc format version on TJBH's web page in that it accounts for the configurational entropy arising from mixing on MB (i.e., the Thermocalc model looks like it was written for Fe-free sapphirine). Eliminate site MB to reproduce the TJBH web page Thermocalc model. 1 2 3 MA MB T _________________ Mutliplicity 4 3 4 _________________ 1 spr7 MgAl7 Mg SiAl7 Species: 2 fspr FeAl7 Fe SiAl7 3 spr4 MgAl3 Mg SiAl3 4 fsp4_i FeAl3 Fe SiAl3 Dependent endmember: fsp4_i = spr4 + 8/7 * (fspr - spr7) Sapp(HP) abbreviation Sap full_name sapphirine 7 model type 2 reciprocal solution 2 2 2 species on each site spr7 fspr spr4 fsp4_i 1 1 dependent endmember fsp4_i = 1 spr4 + 8/7 fspr - 8/7 spr7 0 0 0 0 endmember flags 0. 1. 0.1 0 | range and resolution for X(Mg), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for 1-X(Tschermaks), imod = 0 -> cartesian subdivision ideal 3 | 3 site (MA, MB, T) configurational entropy model 2 3. | 2 species on MB, 3 sites per formula unit z(mb,mg) = 1 spr4 + 1 spr7 3 4. | 3 species on MA, 4 sites per formula unit. z(ma,Al) = 3/4 + 1/8 spr7 + 1/8 fspr z(ma,fe) = 1/8 fspr 2 4. | 2 species on T, 4 sites per formula unit. z(T,Al) = 3/4 + 1/8 spr7 + 1/8 fspr site_check_override end_of_model -------------------------------------------------------- begin_model Sapphirine, non-ideal, Kelsey et al. (J. metamorphic Geol., 2004, 22, 559-578) NOTE: This model should be used in conjunction with a special high temperature version of the HP data base (kel04ver.dat). Model originally entered by Pulak Sengupta, 7/16/05. 1) Site populations corrected to correspond to those of Kelsey et al by P Goncalves, 10/12/2010. 1 2 3 M3 M46 T _________________ Mutliplicity 1 3 1 _________________ 1 spr4 Mg Mg Si Species: 2 fspr Fe Fe Si 3 spr5 Al Mg Al 4 fsp5_i Al Fe Al Dependent endmember: fsp5_i = spr5 + 3/4 * (fspr - spr4) Sapp(KWP) abbreviation Sap full_name sapphirine 7 model type 2 reciprocal solution 2 2 2 species on each site spr4 fspr spr5 fsp5_i 1 1 dependent endmember fsp5_i = 1 spr5 + 3/4 fspr - 3/4 spr4 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Mg), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for 1-X(Tschermaks), imod = 0 -> cartesian subdivision begin_excess_function w(spr5 spr4) 10000 0 0 w(spr5 fspr) 12000 0 0 w(spr4 fspr) 8000 0 0 end_excess_function 3 | 3 site (M3, M46, T) configurational entropy model 2 3. | 2 species on M46, 3 sites per formula unit z(m46,mg) = 1 spr5 + 1 spr4 3 1. | 3 species on M3, 1 sites per formula unit. z(ma,Al) = 1 spr5 z(ma,fe) = 1 fspr 2 1. | 2 species on T, 1 sites per formula unit. z(T,si) = 1 spr4 + 1 fspr site_check_override end_of_model -------------------------------------------------------- begin_model | CHLORITE: extended from holland et al. 1998, EJM. NOTES: * This model will only function for the FASH subsystem if MGO is also used as a component in VERTEX. * This model was tested with the maple script complete_chl.mws * For normal aluminous chlorites there is little to be gained by considering the afchl endmember becuase the endmember has negligible contribution to the total energy of the solution (see fig 4 of holland et al). Exclude this endmember to save computational resources. For Al-poor systems exclude ames and retain afchl. JADC 4/03 | Despite this models complexity it can be | written as a simple ternary with one independent | ordering parameter, however perplex does not | yet have speciation models implemented for | solutions in which multiple endmembers are | characterized by a single ordering parameter. | hence the model is formulated here explicitly | in terms of the dependent endmembers with the | site occupancy table: 1 2 3 4 M1 M2+M3 M4 T2 ________________________________ Mutliplicity 1 4 1 2 ________________________________ 1 mame Al Mn Al Al_Al dependent 2 mafchl Mn Mn Mn Si_Si dependent 3 mnchl Mn Mn Al Al_Si 4 fames Al Fe Al Al_Al dependent 5 fafchl Fe Fe Fe Si_Si dependent 6 daph Fe Fe Al Al_Si 7 ames Al Mg Al Al_Al 8 afchl Mg Mg Mg Si_Si 9 clin Mg Mg Al Al_Si Dependent endmembers: fame = ames + 4/5 * (daph - clin) fafchl = afchl + 6/5 * (daph - clin) mame = ames + 4/5 * (mnchl - clin) mafchl = afchl + 6/5 * (mnchl - clin) | For normal aluminous chlorites there is little to be gained | by considering the afchl and fafchl endmembers | becuase the endmember has negligible | contribution to the total energy of the solution | (see fig 4 of holland et al) Chl(HP) abbreviation Chl full_name chlorite 7 | model type reciprocal, macroscopic formulation 2 3 3 mame_i mafchl_i mnchl fame_i fafchl_i daph ames afchl clin 4 | 4 dependent endmembers fame_i = 1 ames + 4/5 daph - 4/5 clin fafchl_i = 1 afchl + 6/5 daph - 6/5 clin mame_i = 1 ames + 4/5 mnchl - 4/5 clin mafchl_i = 1 afchl + 6/5 mnchl - 6/5 clin 0 0 0 0 0 0 0 0 0 |endmember flags | subdivision model for (ternary) site 1 (T2): 0. 1. .1 0 | range and resolution of X(Al_Si), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(Al_Al), imod = 0 -> cartesian subdivision | subdivision model for (ternary) site 2 (M2) 0. .2 .1 0 | range and resolution of X(Mn), imod = 1 => asymmetric subdivision 0. 1. .1 0 | range and resolution of X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(clin ames) 18000. 0. 0. w(clin afchl) 18000. 0. 0. w(ames afchl) 20000. 0. 0. w(clin daph) 2500. 0. 0. w(daph ames) 13500. 0. 0. w(daph afchl) 14500. 0. 0. end_excess_function 4 |4 site configurational entropy model: 4 1. |4 species on 1 M1 site z(al,M1) = 1 ames z(mn,M1) = 1 mnchl z(fe,M1) = 1 daph 3 4. |3 species on 4 M2+M3 sites z(mn,m2+m3)= 1 mnchl z(fe,m2+m3)= 1 daph 2 1. |3 species on 1 M4 site z(mg,m4) = 1 afchl 2 2. |2 species on 2 T2 sites z(al,T2)= 1 ames + 1/2 clin + 1/2 daph + 1/2 mnchl site_check_override end_of_model -------------------------------------------------------- begin_model | CHLORITE: extended from Holland et al. (1998) for sud substitution | Entered by Thomas Wagner, 5/12. LWV 7/12 | The reference for this model is Lanari, Wagner and Vidal, | CMP 2014 167:968 | the model is formulated here explicitly | in terms of the dependent endmembers with the | site occupancy table: 1 2 3 4 M1 M2+M3 M4 T2 ________________________________ Mutliplicity 1 4 1 2 ________________________________ 1 fames Al Fe Al Al_Al dependent 2 ames Al Mg Al Al_Al 3 clin Mg Mg Al Al_Si 4 daph Fe Fe Al Al_Si 5 fsud Va Al2_Fe2 Al Al_Si dependent 6 sud Va Al2_Mg2 Al Al_Si Dependent endmembers: fames = ames + 4/5 * (daph - clin) fsud = sud + 2/5 * (daph - clin) Chl(LWV) abbreviation Chl full_name chlorite 7 | model type reciprocal, macroscopic formulation 2 3 2 fames_i fsud_i daph ames sud_dqf clin 2 | 2 dependent endmembers fames_i = 1 ames + 4/5 daph - 4/5 clin fsud_i = 1 sud_dqf + 2/5 daph - 2/5 clin 0 0 0 0 0 0 |endmember flags | subdivision model for (ternary) site 1 (T2): 0. 1. .1 0 | range and resolution of X(Al_Si), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(Al_Al), imod = 0 -> cartesian subdivision | subdivision model for (ternary) site 2 (M2) 0. 1. .1 0 | range and resolution of X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(clin ames) 18000. 0. 0. w(clin daph) 2500. 0. 0. w(clin sud_dqf) 49100. 0. 0. w(daph ames) 13500. 0. 0. w(daph sud_dqf) 43400. 0. 0. w(ames sud_dqf) 43300. 0. 0. end_excess_function 3 |3 site configurational entropy model: 4 1. |4 species on 1 M1 site z(al,M1) = 1 ames z(mg,M1) = 1 clin z(fe,M1) = 1 daph 3 4. |3 species on 4 M2+M3 sites z(fe,m2+m3) = 1 daph z(mg,m2+m3) = 1 clin + 1 ames + 1/2 sud_dqf 2 2. |2 species on 2 T2 sites z(al,T2) = 1 ames + 1/2 clin + 1/2 daph + 1/2 sud_dqf site_check_override end_of_model