011 DO NOT DELETE THIS LINE FOR MODEL DEFINITIONS AND REFERENCES REFER TO THE GLOSSARY AT: www.perplex.ethz.ch/perplex_documentation.html#SOLUTION_MODEL_GLOSSARY DO NOT USE TABS IN PERPLE_X DATA FILES, TAB CHARACTERS ARE NOT INTERPRETED AS BLANK SPACES AND CAUSE FORMATTING ERRORS. Solution model type flags are: 0 - internal (fluid) EoS 1 - simple microscopic formulation (bragg-williams fractions) 2 - simple macroscopic formulation (endmember fractions) 5 - simple macroscopic formulation plus 1 arbitrary dependent endmember 6 - macroscopic formulation with speciation. 7 - macroscopic formulation reciprocal solution with dependent endmembers. 8 - macroscopic formulation reciprocal solution with dependent endmembers and speciation. Special models: 23 - Toops-Samis melt model 24 - Holland & Powell Haplogranite melt model 25 - Ghirso pMELTS/MELTS model 26 - Haefner H2O-CO2-NaCl 27 - Silicate vapor (ideal) For non-ideal solutions, microscopic models assume Margules type excess functions; macroscopic models may be posed in terms of Margules (See model "Bio(HP)" for a commented example) or Van Laar (e.g., Holland and Powell, CMP 2003; See model Fsp(C1) for a commented example) excess functions. The format of model type 1 is described in detail in the Perple_X program documentation (vdoc.pdf). The format for all other model types is not yet documented, but may be deduced from the commentary within the models included herein. Character data is format free in all models except model type 1. comments can be placed between models provided, nothing is written in the first 10 columns. Comments may be placed after data if it is separated from the data by a '|' marker. -------------------------------------------------------- begin_model Ti-Fe3+ Biotite from Tajcmanova et al., JMG 2009; extended for Mn solution after Tinkham et al. 2001. Model entered by Lucie Tajcmanova, December, 2008. NOTE this model requires the following make definitions in the thermodynamic data file: tbit = 1 phl - 1 br + 1 ru 84e3 -11.5 0 fbit = 1 east - 1/2 cor + 1/2 hem 6e3 0 0 site population limits added Feb 20, 2011, JADC. Site: M1 M2 T1 H ____________________________ Mutliplicity 1 2 2 2 endmember ____________________________ type _________ _________ mfbit Fe3+ MnMn AlAl OH dependent ffbit Fe3+ FeFe AlAl OH dependent fbit Fe3+ MgMg AlAl OH mtbit Mn TiMn AlSi O dependent ftbit Fe TiFe AlSi O dependent tbit Mg TiMg AlSi O mts Al MnMn AlAl OH dependent sdph Al FeFe AlAl OH dependent east Al MgMg AlAl OH mnbi Mn MnMn AlSi OH ann Fe FeFe AlSi OH phl Mg MgMg AlSi OH obi Fe MgMg AlSi OH ordered Bio(TCC) | model name 8 | model type: reciprocal, margules with dependent endmembers, one ordering parameter 2 | 2 independent mixing sites, reciprocal solution 3 4 | 3 components {Mn, Fe2+, Mg} for composition 1, 4 components {Al, Si, Fe3+, Ti} for composition 2. mfbit ffbit fbit | endmember names mtbit ftbit tbit mts sdph east mnbi ann phl 1 | 1 ordered species: obi = 2/3 phl + 1/3 ann enthalpy_of_formation = -6.8d3 begin_limits obi = -3 + 3 ann + 1 obi delta = 3 z(M2,Fe) obi = - 3 phl - 3/2 tbit - 3 east - 2 obi delta = 3 z(M2,Mg) obi = - 3/2 ann - 1/2 obi delta = 3/2 z(M1,Fe) obi = -3/2 + 3/2 tbit + 3/2 phl + 1 obi delta = 3/2 z(M1,Mg) end_limits 6 | 6 dependent endmembers sdph = 1 east + 1 ann - 1 obi mts = 1 east + 2/3 mnbi - 2/3 phl mfbit = 1 fbit + 2/3 mnbi - 2/3 phl mtbit = 1 tbit + 2/3 mnbi - 2/3 phl ffbit = 1 fbit + 1 ann - 1 obi ftbit = 1 tbit + 1/2 ann + 1/2 obi - 1 phl 0 0 0 0 0 0 0 0 0 0 0 0 | endmember flags 0. .5 .1 1 | range and resolution of X(Mn, M2), mod = 1 -> assymetric subdivision 0. 1. .1 0 | range and resolution of X(Mg, M2), mod = 0 -> cartesian subdivision 0. 1. .1 1 | range and resolution of X(Fe3+,*), mod = 0 -> cartesian subdivision 0. .5 .1 1 | range and resolution of X(Ti, *), mod = 1 -> assymetric subdivision 0. 1. .1 0 | range and resolution of X(Al, *), mod = 0 -> cartesian subdivision begin_excess_function W(phl ann) 12000. 0. 0. | excess parameters from Holland & Powell, JMG, 2006 W(phl east) 10000. 0. 0. W(phl obi) 4000. 0. 0. W(ann east) 3000. 0. 0. W(ann obi) 8000. 0. 0. W(obi east) 7000. 0. 0. end_excess_function 4 | Configurational entropy: 4 sites, M1, M2, T1 H. 5 1. | 5 species on M1, 1 site per formula unit. z(m1,fe) = 1 ann + 1 obi z(m1,mg) = 1 phl + 1 tbit z(m1,mn) = 1 mnbi z(m1,Fe3+) = 1 fbit 4 2. | 4 species on M2, 2 sites per formula unit. z(m2,fe) = 1 ann z(m2,Ti) = 1/2 tbit z(m2,mn) = 1 mnbi 2 2. | 2 species on T1, 2 site per formula unit. z(t1,al) = 1/2 + 1/2 east + 1/2 fbit 2 2. | 2 species on H, 2 site per formula unit. z(h,o) = 1 tbit end_of_model -------------------------------------------------------- begin_model Orthopyroxene with compound formation, PH '99 Am Min. JADC 3/03 site population limits added Feb 20, 2011, JADC. NOTES: * This model will only function for the FASH subsystem if MGO is present as a component in VERTEX. 1 2 M1 M2 _____________ Mutliplicity 1 1 _____________ 1 en Mg Mg Species: 2 fs Fe Fe 3 mgts Al Mg 4 fets Al Fe _____________ Internal: 5 opx Mg Fe Dependent: fets = mgts + opx - en Opx(HP) | solution name. 8 | model type: Reciprocal with speciation 2 | 2 independent mixing sites 2 2 | 2 dimensions on first site, 2 on second | endmember names mgts fets_d en fs 1 | ordered species definition opx = 1/2 en + 1/2 fs Delta(enthalpy) = -6.95d3 begin_limits opx = - 2 fs - 1 opx delta = 2 z(M2,Fe) opx = -2 + 2 fs + 1 opx delta = 2 z(M1,Fe) opx = - 2 en - 1 opx delta = 2 z(M1,Mg) end_limits 1 | 1 dependent endmember fets_d = 1 mgts + 1 opx - 1 en 0 0 0 0 | endmember flags, indicate if endmember is part of the solution. | subdivision model for (binary) site 1 (M2): 0. 1. .1 | range and resolution of X(Mg) 0 | subdivision scheme for site 1: imod = 0 -> cartesian | subdivision model for (ternary) site 2 0. 1. .1 | range and resolution of X(Ts) 0 | subdivision scheme for site 2: imod = 0 -> cartesian begin_excess_function w(en fs) 68d2 0. 0. w(fs mgts) -1d3 0. 0. w(en opx) 45d2 0. 0. w(fs opx) 45d2 0. 0. w(mgts opx) 12d2 0. 0. end_excess_function 2 | 2 site (M1, M2) configurational entropy model 3 1. | 3 species on M1, 1 site per formula unit. z(m1,fe) = 1 fs z(m1,al) = 1 mgts + 1 fets_d 2 1. | 2 species on M2, 1 site per formula unit. z(m2,mg) = 1 en + 1 mgts end_of_model -------------------------------------------------------- begin_model Orthopyroxene with compound formation, PH '99 Am Min. JADC 3/03. Site populations modified for HP 2011. JADC 8/10. NOTES: * This is not an equipartition model. * This model will only function for the FASH subsystem if MGO is present as a component in VERTEX. 1 2 M1 M2 T ____________________ Mutliplicity 1 1 1/2* ____________________ 1 en Mg Mg SiSi Species: 2 fs Fe Fe SiSi 3 mgts Al Mg AlSi 4 fets Al Fe AlSi ____________________ Internal: 5 opx Mg Fe SiSi *An HP pseudo-multiplicity. Dependent: fets = mgts + opx - en Opx(HP11) | solution name. 8 | model type: Reciprocal with speciation 2 | 2 independent mixing sitea 2 2 | 2 dimensions on first site, 2 on second | endmember names mgts fets_d en fs 1 | ordered species definition opx = 1/2 en + 1/2 fs Delta(enthalpy) = -6.95d3 begin_limits opx = - 2 fs - 1 opx delta = 2 z(M2,Fe) opx = -2 + 2 fs + 1 opx delta = 2 z(M1,Fe) opx = - 2 en - 1 opx delta = 2 z(M1,Mg) end_limits 1 | 1 dependent endmember fets_d = 1 mgts + 1 opx - 1 en 0 0 0 0 | endmember flags, indicate if endmember is part of the solution. | subdivision model for (binary) site 1 (M2): 0. 1. .1 | range and resolution of X(Mg) 0 | subdivision scheme for site 1: imod = 0 -> cartesian | subdivision model for (ternary) site 2 0. 1. .1 | range and resolution of X(Ts) 0 | subdivision scheme for site 2: imod = 0 -> cartesian begin_excess_function w(en mgts) 13d3 0. -0.15 | this is the only interaction term specified by H&P 2010 w(en fs) 68d2 0. 0. w(fs mgts) -1d3 0. 0. w(en opx) 45d2 0. 0. w(fs opx) 45d2 0. 0. w(mgts opx) 12d2 0. 0. end_excess_function 2 | 2 site (M1, M2) configurational entropy model 3 1. | 3 species on M1, 1 site per formula unit. z(m1,fe) = 1 fs z(m1,al) = 1 mgts + 1 fets_d 2 1. | 2 species on M2, 1 site per formula unit. z(m2,mg) = 1 en + 1 mgts end_of_model -------------------------------------------------------- begin_model Orthopyroxene with compound formation, PH '99 Am Min. JADC 3/03 Modified for ideal Cr, additionally a temperature dependence of -16 J/K has been assigned adhoc to W(mgts-en) and W(mgts-opx) in order to increase the Al-content of opx for upper mantle compositions and conditions. A better way of accomplishing the same result would be to increase the entropy of mgts. PGP Workshop 4/12/06. (folk.uio.no/ninasim/Cr_results.html) site population limits added Feb 20, 2011, JADC. NOTES: * This model should not be used for crustal rocks/conditions! * This model will only function for the FASH subsystem if MGO is present as a component in VERTEX. 1 2 M1 M2 _____________ Mutliplicity 1 1 _____________ 1 en Mg Mg Species: 2 fs Fe Fe 3 mgts Al Mg 4 fets Al Fe 5 crts Cr Mg 6 fcrts Cr Fe _____________ Internal: 7 opx Mg Fe Dependent: fets = mgts + opx - en fcrts = crts + opx - en CrOpx(HP) | solution name. 8 | model type: Reciprocal with speciation 2 | 2 independent mixing sitea 2 3 | 2 dimensions on first site, 3 on second | endmember names crts fcrts_d mgts fets_d en fs 1 | ordered species definition opx = 1/2 en + 1/2 fs Delta(enthalpy) = -6.95d3 begin_limits opx = - 2 fs - 1 opx delta = 2 z(M2,Fe) opx = -2 + 2 fs + 1 opx delta = 2 z(M1,Fe) opx = - 2 en - 1 opx delta = 2 z(M1,Mg) end_limits 2 | 2 dependent endmember fets_d = 1 mgts + 1 opx - 1 en fcrts_d = 1 crts - 1/2 en + 1/2 fs 0 0 0 0 0 0 | endmember flags, indicate if endmember is part of the solution. | subdivision model for (binary) site 1 (M2): 0. 1. .1 | range and resolution of X(Mg) 0 | subdivision scheme for site 1: imod = 0 -> cartesian | subdivision model for (ternary) site 2 0. 1. .1 1 | range and resolution of X(Cr): imod = 1 -> assymmetric stretching 0. 1. .1 0 | range and resolution of X(Ts): imod = 0 -> cartesian begin_excess_function w(en fs) 68d2 0. 0. w(fs mgts) -1d3 -14. 0. w(en opx) 45d2 0. 0. w(fs opx) 45d2 0. 0. w(mgts opx) 12d2 -14. 0. end_excess_function 2 | 2 site (M1, M2) configurational entropy model 4 1. | 4 species on M1, 1 site per formula unit. z(m1,fe) = 1 fs z(m1,al) = 1 mgts + 1 fets_d z(m1,cr) = 1 crts + 1 fcrts_d 2 1. | 2 species on M2, 1 site per formula unit. z(m2,mg) = 1 en + 1 mgts + 1 crts end_of_model -------------------------------------------------------- begin_model Silicate ideal gas Si-vapor 27 model type: internal, ideal gas 9 number of endmembers | ENDMEMBER NAMES: SiO2 SiO Si O2 O MgO Mg FeO Fe 0 0 0 0 0 0 0 0 0 | endmember flags. 0.0 1.0 0.1 0 | range and resolution of X(SiO2), 0 => cartesian subdivision/1 => asymmetric subdivision 0.0 0.5 0.1 0 | range and resolution of X(SiO) 0.0 0.5 0.1 0 | range and resolution of X(Si) 0.0 0.5 0.1 0 | range and resolution of X(O2) 0.0 0.5 0.1 0 | range and resolution of X(O) 0.0 0.5 0.1 0 | range and resolution of X(MgO) 0.0 0.5 0.1 0 | range and resolution of X(Mg) 0.0 0.5 0.1 0 | range and resolution of X(FeO) ideal 0 | internal routine for configurational entropy end_of_model -------------------------------------------------------- begin_model Garnet model of Malaspina et al. 2009 the andradite endmember should be excluded from calculations when this model is use. JADC, 6/2010 M1 M2 _____________ Mutliplicity 3 2 _____________ skiag Fe Fe3+ Dependent: kho Mg Fe3+ Dependent: andr Ca Fe3+ alm Fe Al py Mg Al gr Ca Al ____________ Gt(MPF) 7 | model type: Margules with dependent endmembers 2 | number of independent mixing sites, reciprocal solution 3 2 | 3 species on site M1, 2 species on site M2. alm py gr | endmember names skiag kho andr 2 | number of dependent endmembers andr = 1 gr + 1 skiag - 1 alm kho = 1 py + 1 skiag - 1 alm 0 0 0 0 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xfe) on M1 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xmg) on M1 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision x(fe3+) on M2 begin_excess_function w(alm gr) 15000. 0. 0. w(py gr) 80000. 0. 0. | HP (33000. 0. 0.) w(alm py) 2500. 0. 0. | HP w(alm skiag) -37053.18 0. 0. | Skiag end_excess_function 2 |2 site entropy model 3 3. |3 species, site multiplicity 3 z(x,fe) = 1 alm + 1 skiag z(x,Mg) = 1 py 2 2. |2 species, site multiplicity 2 z(y,al) = 1 alm + 1 py + 1 gr end_of_model -------------------------------------------------------- begin_model ORTHOAMPHIBOLE: Diener et al, JMG 2007 25:631-656 NOTE to use this the following endmembers must be specified with make definitions in the thermodynamic data file mpa = 1 parg - 1 tr +1 anth dqf(27d3) ged_dqf = dqf(ged) 22000. 0. 0. ogl_dqf = dqf(gl) 15000. 0. 0. fanth_dq = dqf(fanth) 7000. 0. 0. omrb_dqf = 1 gl -2 jd -2 acm dqf(33d3) additionally the following endmembers should be excluded in the computational option file: ged fanth gl A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 1(4)* _________________________________________ 1 tr Vac Mg Mg Ca Si_Si independent 2 ftr Vac Fe Fe Ca Si_Si dependent 3 ged_dqf Vac Mg Al Mg Al_Si independent 4 fged Vac Fe Al Fe Al_Si dependent 5 mpa Na Mg Mg_Al Mg Al_Si independent 6 fpa Na Fe Fe_Al Fe Al_Si dependent 7 ogl_dqf Vac Mg Al Na Si_Si independent 8 fgl Vac Fe Al Na Si_Si dependent 9 anth Vac Mg Mg Mg Si_Si independent 10 fanth_dq Vac Fe Fe Fe Si_Si independent 11 omrb_dqf Vac Mg Fe3+ Na Si_Si independent 12 frb Vac Fe Fe3+ Na Si_Si dependent 13 ammo1 Vac Mg Fe Fe Si_Si ordered 14 ammo2 Vac Fe Mg Fe Si_Si ordered *T1 has a true multiplicity of 4, H&P previously used an effective multiplicity of 2; in Diener et al '07 the multiplicity has been reduced to 1. JADC 9/07. 10/07 z(m2a,al) corrected. Y. Podladchikov. 3/08 z(m1a,mg),z(m4,ca),z(m4,mg), and fged corrected, T1 multiplicity reduced to 1. Enthalpies of ordering corrected. JADC. 8/08 Enthalpy of ordering corrected for HP dqfs. oAmph(DP) | model name 8 | model type: reciprocal, margules, two ordering parameters 2 | 2 site reciprocal solution 2 6 | 1 binary and 1 hexary tr ftr mpa fpa ged_dqf fged ogl_dqf fgl anth fanth_dq omrb_dqf frb 2 | 2 ordered species: ammo1 = 3/7 anth + 4/7 fanth_dq enthalpy_of_formation = -9.5d3 ammo2 = 2/7 anth + 5/7 fanth_dq enthalpy_of_formation = -11.7d3 begin_limits ammo1 = -7/4 + 7/4 fanth_dq + 1 ammo1 + 1/2 ammo2 + 5/4 ammo2 delta = 7/4 ammo1 = -7/3 + 7/3 tr + 7/6 mpa + 7/3 anth + 1 ammo1 + 5/3 ammo2 + 2/3 ammo2 delta = 7/3 ammo1 = -7/3 + 7/3 mpa + 7/3 anth + 7/3 ged_dqf + 1 ammo1 - 2/3 ammo2 + 2/3 ammo2 delta = 7/3 ammo1 = - 7/3 fanth_dq - 4/3 ammo1 - 2/3 ammo2 - 5/3 ammo2 delta = 7/3 ammo1 = - 7/3 fanth_dq - 4/3 ammo1 + 5/3 ammo2 - 5/3 ammo2 delta = 7/3 ammo2 = -7/2 fanth_dq + 2 ammo1 - 2 ammo1 - 5/2 ammo2 delta = 7/2 ammo2 = -7/5 tr - 7/10 mpa - 7/5 anth + 3/5 ammo1 - 3/5 ammo1 - 2/5 ammo2 delta = 7/5 ammo2 = -7/2 + 7/2 anth + 7/2 mpa + 7/2 ged_dqf - 3/2 ammo1 + 3/2 ammo1 + 1 ammo2 delta = 7/2 ammo2 = - 7/2 fanth_dq - 3/2 ammo1 - 2 ammo1 - 5/2 ammo2 delta = 7/2 ammo2 = -7/5 + 7/5 fanth_dq + 3/5 ammo1 + 4/5 ammo1 + 1 ammo2 delta = 7/5 end_limits 5 | 5 dependent endmembers ftr = 1 tr + 2 fanth_dq - 1 ammo1 - 1 ammo2 fpa = 1 mpa + 1/2 fanth_dq + 1/2 ammo2 - 1 anth fged = 1 ged_dqf - 1 anth + 1 ammo2 fgl = 1 ogl_dqf + 1 fanth_dq - 1 ammo1 frb = 1 omrb_dqf + 1 fanth_dq - 1 ammo1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(tr) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(pa) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(ged_dqf) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(ogl_dqf) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(anth) on site 2, imod = 0 -> cartesian subdivision begin_excess_function W(anth ged_dqf) 25d3 0 0 W(anth mpa) 25d3 0 0 W(anth ogl_dqf) 65d3 0 0 W(anth tr) 45d3 0 0 W(anth fanth_dq) 33d3 0 0 W(anth omrb_dqf) 65d3 0 0 W(anth ammo1) 18d3 0 0 W(anth ammo2) 23d3 0 0 W(ged_dqf mpa) -40d3 0 0 W(ged_dqf ogl_dqf) 25d3 0 0 W(ged_dqf tr) 70d3 0 0 W(ged_dqf fanth_dq) 39.5d3 0 0 W(ged_dqf omrb_dqf) 25d3 0 0 W(ged_dqf ammo1) 29d3 0 0 W(ged_dqf ammo2) 34.6d3 0 0 W(mpa ogl_dqf) 50d3 0 0 W(mpa tr) 90d3 0 0 W(mpa fanth_dq) 45d3 0 0 W(mpa omrb_dqf) 50d3 0 0 W(mpa ammo1) 33.2d3 0 0 W(mpa ammo2) 36d3 0 0 W(ogl_dqf tr) 65d3 0 0 W(ogl_dqf fanth_dq) 81.2d3 0 0 W(ogl_dqf ammo1) 65.5d3 0 0 W(ogl_dqf ammo2) 78.4d3 0 0 W(tr fanth_dq) 75d3 0 0 W(tr omrb_dqf) 65d3 0 0 W(tr ammo1) 57d3 0 0 W(tr ammo2) 63d3 0 0 W(fanth_dq omrb_dqf) 81.2d3 0 0 W(fanth_dq ammo1) 12d3 0 0 W(fanth_dq ammo2) 8d3 0 0 W(omrb_dqf ammo1) 65.5d3 0 0 W(omrb_dqf ammo2) 78.4d3 0 0 W(ammo1 ammo2) 20d3 0 0 end_excess_function 5 | 5 site (A, M1, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 mpa 2 1. | 2 species on T1, fake site multiplicity of 1. z(T1,Al) = 1/2 ged_dqf + 1/2 mpa 2 3. | 2 species on M1, 3 sites per formula unit z(m1,fe) = 1 fanth_dq + 1 ammo2 4 2. | 4 species on M2, 2 sites pfu z(m2,fe) = 1 fanth_dq + 1 ammo1 z(m2,al) = 1 ged_dqf + 1/2 mpa + 1 ogl_dqf z(m2,fe3+) = 1 omrb_dqf 4 2. | 4 species on M4, 2 sites pfu z(m4,ca) = 1 tr z(m4,mg) = 1 mpa + 1 anth + 1 ged_dqf z(m4,na) = 1 ogl_dqf + 1 omrb_dqf begin_van_laar_sizes alpha(tr) 1.0 0. 0. alpha(ged_dqf) 1.5 0. 0. alpha(mpa) 1.7 0. 0. alpha(ogl_dqf) 0.8 0. 0. alpha(anth) 1.0 0. 0. alpha(fanth_dq) 1.0 0. 0. alpha(ammo1) 1.0 0. 0. alpha(ammo2) 1.0 0. 0. alpha(omrb_dqf) 0.8 0. 0. end_van_laar_sizes begin_dqf_corrections | Perple_X, in contrast to THERMOCALC, automatically considers all endmembers | present in the thermodynamic data base. This behavior creates a potential | problem with THERMOCALC models that specify positive DQF corrections because | the DQF'd endmember is always less stable than the real endmember. For example | here the solution will always be metastable at compositions near to the ts and | parg endmember compositions. To avoid this problem, DQF corrected endmembers | (ged_dqf, ogl_dqf, fanth_dq and omrb_dqf) must be specified in the thermodynamic | data file and the true endmembers must be excluded from calculations. | dqf(ged) 22000. 0. 0. | dqf(gl) 15000. 0. 0. | dqf(fanth) 7000. 0. 0. | dqf(mrb) 25000. 0. 0. end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Green, ECR, Holland, TJB & Powell, R (2007) An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogite rocks. American Mineralogist, 92, 1181-1189. WARNING: The choice of independent ordered species (here, cfm, om, jac) has the conseqence that this model CANNOT be used for the following subcompositions: jd-hed, hed-acm, di-acm, hed-acm-jd, hed-acm-di to work in these joins either fom, hac, or dac must replace either om or/and cfm. Site: 1 2 3 4 M2a M2b M1a M1b ____________________________________ Mutliplicity 1/2 1/2 1/2 1/2 ____________________________________ 1 Diopside Ca Ca Mg Mg Species: 2 Jadeite Na Na Al Al 3 Hedenbergite Ca Ca Fe2+ Fe2+ 4 Acmite Na Na Fe3+ Fe3+ ___________________________________ Ordered Cpd: 5 om Na Ca Al Mg 6 cfm Ca Ca Mg Fe 7 jac Na Na Fe3+ Al Omph(GHP) 6 | model type margules with multiple compound formation 4 | disordered endmembers di jd acm hed 3 | number of ordered species om = 1/2 jd + 1/2 di enthalpy_of_formation = -2.9d3 cfm = 1/2 di + 1/2 hed enthalpy_of_formation = -1.5d3 jac = 1/2 jd + 1/2 acm enthalpy_of_formation = -1d3 | fom = 1/2 jd + 1/2 hed enthalpy_of_formation = -3.6d3 begin_limits om = -2 + 2 di + 2 hed delta = 2 om = -2 + 2 jd + 2 acm delta = 2 om = -2 + 2 di + 1 cfm delta = 2 om = -2 + 2 jd + 1 jac delta = 2 om = -2 + 2 acm + 2 jd + 2 hed + 1 cfm delta = 2 om = -2 + 2 acm + 2 di + 2 hed + 1 jac delta = 2 cfm = -2 di + 1 om delta = 2 cfm = -2 + 2 hed delta = 2 cfm = -2 hed delta = 2 cfm = -2 jd - 2 hed - 2 acm + 1 om delta = 2 jac = -2 acm delta = 2 jac = -2 jd + 1 om delta = 2 jac = -2 + 2 acm delta = 2 jac = -2 acm - 2 di - 2 hed + 1 om delta = 2 end_limits 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution of X(di) 0. 1. 0.1 0 | range and resolution of X(jd) 0. 1. 0.1 0 | range and resolution of X(acm) begin_excess_function W(jd di) 26d3 0 0 1 W(jd hed) 24d3 0 0 2 W(jd acm) 5d3 0 0 W(jd om) 15.5d3 0 0 3 W(jd cfm) 25.2d3 0 0 4 W(jd jac) 3d3 0 0 W(di hed) 4d3 0 0 5 W(di acm) 15d3 0 0 W(di om) 15.75d3 0 0 6 W(di cfm) 2d3 0 0 7 W(di jac) 21.05d3 0 0 W(hed acm) 14d3 0 0 W(hed om) 17.2d3 0 0 8 W(hed cfm) 2d3 0 0 9 W(hed jac) 20.1d3 0 0 W(acm om) 12.8d3 0 0 W(acm cfm) 15.5d3 0 0 W(acm jac) 3d3 0 0 W(om cfm) 18.45d3 0 0 10 W(om jac) 19.3d3 0 0 W(cfm jac) 21.05d3 0 0 | W(fom cfm) 17.75d3 0 0 11 | W(fom di) 17.05d3 0 0 12 | W(fom hed) 14.5d3 0 0 13 | W(fom jd ) 14.d3 0 0 14 | W(fom cfm) 15.75d3 0 0 15 | W(fom om) 2d3 0 0 16 end_excess_function 4 | 4 site entropy model (m1a, m1b, m2b, m2a) 4 0.5 | 4 species on m1b, mult = 1/2 z(m1b,al) = 1 jd + 1 jac z(m1b,fe2+) = 1 hed + 1 cfm z(m1b,fe3+) = 1 acm 2 0.5 | 2 species on m2a, mutiplicity = 1/2 z(m2a,ca) = 1 di + 1 hed + 1 cfm 2 0.5 | 2 species on m2b, mult. = 1/2 z(m2b,na) = 1 jd + 1 acm + 1 jac 4 0.5 | 4 species on m1a, mult = 1/2 z(m1a,mg) = 1 di + 1 cfm z(m1a,fe2+) = 1 hed z(m1a,fe3+) = 1 acm + 1 jac end_of_model -------------------------------------------------------- begin_model CLINOAMPHIBOLE: Diener et al., JMG 2007 25:631-656 NOTE to use this model the following endmembers must be specified with make definitions in the thermodynamic data file ts_dqf = dqf(ts) 10000. 0. 0. parg_dqf = dqf(parg) 15000. 0. 0. gl_dqf = dqf(gl) 3000. 0. 0. additionally the following endmembers should be excluded in the computational option file: ts parg gl A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 1(4)* _________________________________________ 1 tr Vac Mg Mg Ca Si_Si independent 2 ftr Vac Fe Fe Ca Si_Si dependent 3 ts_dqf Vac Mg Al Ca Al_Si independent 4 fts Vac Fe Al Ca Al_Si dependent 5 parg_dqf Na Mg Mg_Al Ca Al_Si independent 6 fparg Na Fe Fe_Al Ca Al_Si dependent 7 gl_dqf Vac Mg Al Na Si_Si independent 8 fgl Vac Fe Al Na Si_Si dependent 9 cumm Vac Mg Mg Mg Si_Si independent 10 grun Vac Fe Fe Fe Si_Si independent 11 mrb Vac Mg Fe3+ Na Si_Si independent 12 frb Vac Fe Fe3+ Na Si_Si dependent 13 cammo1 Vac Mg Fe Fe Si_Si ordered 14 cammo2 Vac Fe Mg Fe Si_Si ordered *T1 has a true multiplicity of 4, H&P previously used an effective multiplicity of 2; however in Diener et al. '07 the multiplicity has been reduced to 1. JADC 9/07. 10/07 z(m2a,al) corrected. Y Y. Podladchikov 3/08 z(m1a,mg),z(m4,ca),z(m4,mg), and fged corrected, T1 multiplicity reduced to 1. Enthalpies of ordering corrected. JADC. 6/08 z(m1,mg) corrected to include mrb, second limit equations for cammo1 and cammo2 corrected accordingly. corrected enthalpies for cammo1 and cammo2. cAmph(DP) | solution name 8 | model type: reciprocal, margules, two ordering parameters 2 | 2 site reciprocal solution 2 6 | 1 binary and 1 hexary tr ftr parg_dqf fparg ts_dqf fts gl_dqf fgl cumm grun mrb frb 2 | 2 ordered species: cammo1 = 3/7 cumm + 4/7 grun enthalpy_of_formation = -9.5d3 | these differ from the TC values because they include the DQFs for cumm and grun cammo2 = 2/7 cumm + 5/7 grun enthalpy_of_formation = -11.7d3 begin_limits cammo1 = -7/3 grun - 4/3 cammo1 + 5/3 cammo2 - 5/3 cammo2 delta = 7/3 z(M2,Fe) cammo1 = -7/4 + 7/4 grun + 1 cammo1 + 1/2 cammo2 + 5/4 cammo2 delta = 7/4 z(M1,Fe) cammo1 = -7/3 + 7/3 tr + 7/6 parg_dqf + 7/3 cumm + 1 cammo1 + 5/3 cammo2 + 2/3 cammo2 delta = 7/3 z(M2,Mg) cammo1 = -7/3 + 7/3 cumm + 1 cammo1 - 2/3 cammo2 + 2/3 cammo2 delta = 7/3 z(M4,Mg) cammo1 = -7/3 grun - 4/3 cammo1 - 2/3 cammo2 - 5/3 cammo2 delta = 7/3 z(M4,Fe) cammo2 = -7/5 + 7/5 grun + 3/5 cammo1 + 4/5 cammo1 + 1 cammo2 delta = 7/5 z(M2,Fe) cammo2 = -7/2 grun + 2 cammo1 - 2 cammo1 - 5/2 cammo2 delta = 7/2 z(M1,Fe) cammo2 = -7/5 tr - 7/10 parg_dqf - 7/5 cumm + 3/5 cammo1 - 3/5 cammo1 - 2/5 cammo2 delta = 7/5 cammo2 = -7/2 + 7/2 cumm - 3/2 cammo1 + 3/2 cammo1 + 1 cammo2 delta = 7/2 cammo2 = -7/2 grun - 3/2 cammo1 - 2 cammo1 - 5/2 cammo2 delta = 7/2 end_limits 5 | 5 dependent endmembers ftr = 1 tr + 2 grun - 1 cammo1 - 1 cammo2 fparg = 1 parg_dqf + 3/2 grun - 1 cammo1 - 1/2 cammo2 fgl = 1 gl_dqf + 1 grun - 1 cammo1 frb = 1 mrb + 1 grun - 1 cammo1 fts = 1 ts_dqf + 1 grun - 1 cammo1 1 1 1 1 1 1 1 1 1 1 1 1 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(tr) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(pg) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(ts_dqf) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(gl) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(cumm) on site 2, imod = 0 -> cartesian subdivision begin_excess_function w(mrb tr) 65e3 0. 0. w(mrb ts_dqf) 25e3 0. 0. w(mrb parg_dqf) 50e3 0. 0. | w(mrb gl) is zero w(mrb cumm) 100e3 0. 0. w(mrb grun) 113.5e3 0. 0. w(mrb cammo1) 100e3 0. 0. w(mrb cammo2) 111.2e3 0. 0. w(cammo2 tr) 63e3 0. 0. w(cammo2 ts_dqf) 72.5e3 0. 0. w(cammo2 parg_dqf) 94.8e3 0. 0. w(cammo2 gl_dqf) 111.2e3 0. 0. w(cammo2 cumm) 23e3 0. 0. w(cammo2 grun) 8e3 0. 0. w(cammo2 cammo1) 20e3 0. 0. w(cammo1 tr) 57e3 0. 0. w(cammo1 ts_dqf) 70e3 0. 0. w(cammo1 parg_dqf) 94.8e3 0. 0. w(cammo1 gl_dqf) 100e3 0. 0. w(cammo1 cumm) 18e3 0. 0. w(cammo1 grun) 12e3 0. 0. w(grun tr) 75e3 0. 0. w(grun ts_dqf) 80e3 0. 0. w(grun parg_dqf) 106.7e3 0. 0. w(grun gl_dqf) 113.5e3 0. 0. w(grun cumm) 33e3 0. 0. w(cumm tr) 45e3 0. 0. w(cumm ts_dqf) 70e3 0. 0. w(cumm parg_dqf) 90e3 0. 0. w(cumm gl_dqf) 100e3 0. 0. w(gl_dqf tr) 65e3 0. 0. w(gl_dqf ts_dqf) 25e3 0. 0. w(gl_dqf parg_dqf) 50e3 0. 0. w(parg_dqf tr) 25e3 0. 0. w(parg_dqf ts_dqf) -40e3 0. 0. w(ts_dqf tr) 20e3 0. 0. end_excess_function 5 | 5 site (A, M1, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg_dqf 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts_dqf + 1 parg_dqf + 1 gl_dqf + 1 cammo1 + 1 cumm + 1 mrb 4 2. | 4 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg_dqf + 1 cumm + 1 cammo2 z(m2,al) = 1 ts_dqf + 1/2 parg_dqf + 1 gl_dqf z(m2,fe3+) = 1 mrb 4 2. | 4 species on M4, 2 sites pfu z(m4,na) = 1 gl_dqf + 1 mrb z(m4,mg) = 1 cumm z(m4,fe) = 1 grun + 1 cammo1 + 1 cammo2 2 1. | 2 species on T1, fake site multiplicity of 1. z(T1,Al) = 1/2 ts_dqf + 1/2 parg_dqf begin_van_laar_sizes alpha(tr) 1.0 0. 0. alpha(parg_dqf) 1.7 0. 0. alpha(ts_dqf) 1.5 0. 0. alpha(gl_dqf) 0.8 0. 0. alpha(cumm) 1.0 0. 0. alpha(grun) 1.0 0. 0. alpha(cammo1) 1.0 0. 0. alpha(cammo2) 1.0 0. 0. alpha(mrb) 0.8 0. 0. end_van_laar_sizes begin_dqf_corrections | Perple_X, in contrast to THERMOCALC, automatically considers all endmembers | present in the thermodynamic data base. This behavior creates a potential | problem with THERMOCALC models that specify positive DQF corrections because | the DQF'd endmember is always less stable than the real endmember. For example | here the solution will always be metastable at compositions near to the ts and | parg endmember compositions. To avoid this problem, DQF corrected endmembers | (ts_dqf, gl_dqf and parg_dqf) must be specified in the thermodynamic data file and the | true ts, gl and parg endmembers must be excluded from calculations. | dqf(ts) 10000. 0. 0. | dqf(parg) 10000. 0. 0. dqf(cumm) -6400. 0. 0. dqf(grun) -5000. 0. 0. end_dqf_corrections end_of_model -------------------------------------------------------- begin_model | CHLORITE: extended from holland et al. 1998, EJM. NOTES: * This model will only function for the FASH subsystem if MGO is also used as a component in VERTEX. * This model was tested with the maple script complete_chl.mws * For normal aluminous chlorites there is little to be gained by considering the afchl endmember becuase the endmember has negligible contribution to the total energy of the solution (see fig 4 of holland et al). Exclude this endmember to save computational resources. For Al-poor systems exclude ames and retain afchl. JADC 4/03 | Despite this models complexity it can be | written as a simple ternary with one independent | ordering parameter, however perplex does not | yet have speciation models implemented for | solutions in which multiple endmembers are | characterized by a single ordering parameter. | hence the model is formulated here explicitly | in terms of the dependent endmembers with the | site occupancy table: 1 2 3 4 M1 M2+M3 M4 T2 ________________________________ Mutliplicity 1 4 1 2 ________________________________ 1 mame Al Mn Al Al_Al dependent 2 mafchl Mn Mn Mn Si_Si dependent 3 mnchl Mn Mn Al Al_Si 4 fames Al Fe Al Al_Al dependent 5 fafchl Fe Fe Fe Si_Si dependent 6 daph Fe Fe Al Al_Si 7 ames Al Mg Al Al_Al 8 afchl Mg Mg Mg Si_Si 9 clin Mg Mg Al Al_Si Dependent endmembers: fame = ames + 4/5 * (daph - clin) fafchl = afchl + 6/5 * (daph - clin) mame = ames + 4/5 * (mnchl - clin) mafchl = afchl + 6/5 * (mnchl - clin) | For normal aluminous chlorites there is little to be gained | by considering the afchl and fafchl endmembers | becuase the endmember has negligible | contribution to the total energy of the solution | (see fig 4 of holland et al) Chl(HP) 7 | model type reciprocal, macroscopic formulation 2 3 3 mame_i mafchl_i mnchl fame_i fafchl_i daph ames afchl clin 4 | 4 dependent endmembers fame_i = 1 ames + 4/5 daph - 4/5 clin fafchl_i = 1 afchl + 6/5 daph - 6/5 clin mame_i = 1 ames + 4/5 mnchl - 4/5 clin mafchl_i = 1 afchl + 6/5 mnchl - 6/5 clin 1 1 1 0 0 0 0 0 0 |endmember flags | subdivision model for (ternary) site 1 (T2): 0. 1. .1 0 | range and resolution of X(Al_Si), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(Al_Al), imod = 0 -> cartesian subdivision | subdivision model for (ternary) site 2 (M2) 0. .2 .1 1 | range and resolution of X(Mn), imod = 1 => asymmetric subdivision 0. 1. .1 0 | range and resolution of X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(clin ames) 18000. 0. 0. w(clin afchl) 18000. 0. 0. w(ames afchl) 20000. 0. 0. w(clin daph) 2500. 0. 0. w(daph ames) 13500. 0. 0. w(daph afchl) 14500. 0. 0. end_excess_function 4 |4 site configurational entropy model: 4 1. |4 species on 1 M1 site z(al,M1) = 1 ames z(mn,M1) = 1 mnchl z(fe,M1) = 1 daph 3 4. |3 species on 4 M2+M3 sites z(mn,m2+m3)= 1 mnchl z(fe,m2+m3)= 1 daph 2 1. |3 species on 1 M4 site z(mg,m4) = 1 afchl 2 2. |2 species on 2 T2 sites z(al,T2)= 1 ames + 1/2 clin + 1/2 daph + 1/2 mnchl end_of_model -------------------------------------------------------- begin_model Sack & Ghiorso (1989 CMP 102:41-68) for Fe-Mg olivine. [an astoundingly complex presentation] JADC 7/03 O(SG) 2 model type margules, macroscopic 2 2 endmembers fo fa 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution of X(mg), imod = 0 -> cartesian subdivision begin_excess_function w(fo fa) 20314. 0. 3e-2 end_excess_function 1 1 site entropy model (m) 2 2. 2 species on m2, mutiplicity = 2 z(m,mg) = 1 fo end_of_model -------------------------------------------------------- begin_model Holland and Powell (2001) J.Petrol 426, 673-683 (KNCASH) White et al (2001) JMG 19: 139-153 (FM+KNCASH). Calculations with this model can be sped up significantly by restricting the subdivsion ranges specified below. JADC 3/03 Changed DQF terms to account for modifications of faL and foL (White et al 2007). Mark Caddick, Nov, 07. Zr8L added. Jeff Marsh, Jan 10, 2012. WARNING 1: This model can only be used for hydrous systems if H2O is specified as a thermodynamic component or as a staurated component, it CANNOT be used if water is specified as a saturated phase component (i.e., if H2O is specified as a saturated phase component, VERTEX will reject the H2OL endmember and the model will be applicable only to dry melts). WARNING 2: DO NOT CHANGE THE ORDER OF THE FIRST 3 ENDMEMBERS this model uses an internal routine to compute the entropy of the melt that assumes the order entered here, see comments with endmember names below. WARNING 3: the endmembers q8L, fa8L, fo8L, and sil8L must be "made" in the thermodynamic data file. See the header section of hp02ver.dat for details on the "make" structure. WARNING 3.1: the (stabilizing) dqf corrections made to the fo8L, fa8L, and sil8L enedmembers make the haplogranite melt model inapplicable to melts where these endmembers are present in high concentrations, to model such situations or to reproduce the published fo-fa-q or sil-q melting phase relations, the dqf corrections (below) should be set to zero. WARNING 4: different versions of the HP data base may result in significant variations in the predicted position of the wet-solidus (Powell, pers comm.). WARNING 5: The melt model incorrectly predicts a high pressure-low temperature stability field for water-silica rich melts. at 10 kb this field extends to ca 750 K and at 3 kb to ca 550 K. For this reason the melt model should not be used at pressures far above 10 kb. WARNING 6: the subdivision ranges below may not span the entire range of validity for the solution model. Check these ranges, and adjust them as necessary before using this model. melt(HP) 24 model type: margules, internal entropy routine 9 number of endmembers | ENDMEMBER NAMES: h2oL | Because this model uses an internal routine to compute the | entropy of the melt h2oL must be the specified as the first | endmember (See WARNING 2 in the header of this model). | fo8 and fa8 must be the 2nd and 3rd endmembers, but their fo8L fa8L | relative order is arbitrary. abL sil8L anL | The relative order of these endmembers is arbitrary. kspL zr8L q8L 0 0 0 0 0 0 0 0 0 | endmember flags. | RESTRICTED(!) subdivision ranges and model | the ranges must be extended if calculations | are to be done in subsystems like fo-fa-h2o, | Ab-H2O etc etc; these numbers seem about right | for pelite melting. 0.0 0.8 0.1 0 | range and resolution of X(h2o), 0 => cartesian subdivision 0.0 0.1 0.1 1 | range and resolution of X(fo), 1 => asymmetric subdivision 0.0 0.1 0.1 1 | range and resolution of X(fa), 1 => asymmetric subdivision 0.0 0.4 0.1 0 | range and resolution of X(ab), 0 => cartesian subdivision 0.0 0.2 0.1 1 | range and resolution of X(sil), 1 => asymmetric subdivision 0.0 0.1 0.1 1 | range and resolution of X(an), 1 => asymmetric subdivision 0.0 0.4 0.1 0 | range and resolution of X(ksp), 0 => cartesian subdivision 0.0 0.2 0.1 0 | range and resolution of X(zr), 0 => cartesian subdivision begin_excess_function | the excess parameters used for the haplo- | granite melt model vary between papers (notably w(an-sil)), | the values here are from the thermocalc | model file 'thdmloss.txt' and appear largely | consistent with the white et al paper. w(q8L anL) -10d3 0. 0. w(q8L sil8L) 12d3 0. 0. w(q8L abL) 12d3 0. -0.4 w(q8L kspL) -2d3 0. -0.5 w(q8L h2oL) 15d3 0. 0. w(q8L fo8L) 12d3 0. -0.4 w(q8L fa8L) 14d3 0. 0. w(abL sil8L) 12d3 0. 0. w(abL kspL) -6d3 0. 3. w(abL fo8L) 10d3 0. 0. w(abL fa8L) 2d3 0. 0. w(abL h2oL) 1d3 0. -0.2 w(kspL anL) 0 0. -1. w(kspL sil8L) 12d3 0. 0. w(kspL h2oL) 11d3 0. -0.45 w(kspL fo8L) 12d3 0. 0. w(kspL fa8L) 12d3 0. 0. | w(anL sil8) is 12 kJ in the Holland & Powell J Pet paper | but appears to have accidentally been set to zero | for the calculations published in the White et al. JMG | paper. To restore this parameter delete the comment | marker "|" on the following line: | w(anL sil8) 12d3 0. 0. w(anL h2oL) 9d3 0. -0.85 w(sil8L fo8L) 12d3 0. 0. w(sil8L fa8L) 12d3 0. 0. w(sil8L h2oL) 16d3 0. 0. w(fo8L fa8L) 18d3 0. 0. w(fo8L h2oL) 11d3 0. -0.5 w(fa8L h2oL) 12d3 0. 0. w(q8L zr8L) 14d3 0. 0. w(abL zr8L) 12d3 0. 0. w(kspL zr8L) 12d3 0. 0. w(zr8L fo8L) 12d3 0. 0. w(zr8L fa8L) 12d3 0. 0. w(zr8L h2oL) 25d3 0. 0. end_excess_function 0 | no configurational entropy model (internal routine hpmelt). begin_dqf_corrections dqf(fo8L) -10d3 0 0 dqf(fa8L) -9d3 0 -1.3 dqf(sil8L) -10d3 0 0 | pre-white et al '07 value: dqf(fo8L) -15d3 0 0 | pre-white et al '07 value: dqf(fa8L) -15d3 0 0 | pre-white et al '07 value: dqf(sil8L) -10d3 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model Ghiorso et al (2002) G3 v. 3 (n. 5) model for mantle melting, 1-3 GPa. Read cautionary notes in Ghirso for applications beyond this pressure range. Calculations with this model can be sped up significantly by restricting the subdivsion ranges specified below. This is a reduced version of the pMELTS model that excludes the Cr-, Ni-, Co-, and P-bearing melt components. The melt endmember names have been changed from those used in the pMELTS paper. This model should be applied with solid phase data and solution models from the MELTS program. The melt endmember data converted to PERPLE_X format is in the file pMELTSver.dat. The PERPLE_X solid phase data files b92ver.dat and hp98ver.dat also include this data and therefore can be used with the pMELTS model, however using these files will almost certainly result in inconsistencies with published pMELTS results. JADC 7/03 WARNING 1: This model can only be used for hydrous systems if H2O is specified as a thermodynamic component (i.e., if H2O is specified as a saturated component, VERTEX will reject the h2oG(L) endmember and the model will be applicable only to dry melts). WARNING 2: this model uses an internal routine to compute the entropy of the melt that assumes h2oG(l) is the first endmember. WARNING 3: the subdivision ranges below may not span the entire range of validity for the pMELT model. Check these ranges, and adjust them as necessary before using this model. ==================================================== Modified to use pure water at P and T standard state (the H2O endmember) as opposed to the h2oGL endmember of Ghiorso et al. (2003), which so far as I understand should be equivalent. NOTE: Use of H2O as an endmember requires the user specify an equation of state for H2O when running BUILD. To be strictly consistent with Ghiorso et al the Sterner and Pitzer EoS for water should be used for this purpose, but it is not presently included in perplex. Instead of the Sterner-Pitzer EoS i would recommend using the CORK EoS, which differs negligibly from the Sterner-Pitzer EoS. JADC May 23, 2004. Added TiO2 endmember. JADC Feb 7, 2012. pMELTS(G) 25 model type: margules, internal entropy routine 9 number of endmembers H2O | h2o MUST be the first endmember, see WARNING 1 above. foGL faGL woGL kalGL nasGL coGL tiGL qGL 1 0 0 0 0 0 0 0 0 | endmember flags | NOTE restricted compositional ranges! 0.0 1.0 0.1 0 | range and resolution of X(h2o), 0 => cartesian subdivision 0.0 0.5 0.1 0 | range and resolution of X(fo), 0 => cartesian subdivision 0.0 0.2 0.1 0 | range and resolution of X(fa), 0 => cartesian subdivision 0.0 0.2 0.1 0 | range and resolution of X(wo), 0 => cartesian subdivision 0.0 0.6 0.1 0 | range and resolution of X(kal), 0 => cartesian subdivision 0.0 0.6 0.1 0 | range and resolution of X(nas), 0 => cartesian subdivision 0.0 0.2 0.1 0 | range and resolution of X(co), 0 => cartesian subdivision 0.0 0.2 0.1 0 | range and resolution of X(Ti), 0 => cartesian subdivision begin_excess_function w( coGL qGL ) -296975.2 0. 0. w( faGL qGL ) -18841.4 0. 0. w( foGL qGL ) -33833.5 0. 0. w( woGL qGL ) -34232.9 0. 0. w( nasGL qGL ) -59822.7 0. 0. w( kalGL qGL ) -102706.5 0. 0. w( H2O qGL ) -45181.6 0. 0. w( faGL coGL ) -200788.1 0. 0. w( foGL coGL ) -192709.0 0. 0. w( woGL coGL ) -270700.8 0. 0. w( nasGL coGL ) -205068.6 0. 0. w( kalGL coGL ) -114506.5 0. 0. w( H2O coGL ) -161944.4 0. 0. w( foGL faGL ) -28736.4 0. 0. w( woGL faGL ) -28573.8 0. 0. w( nasGL faGL ) -4723.9 0. 0. w( kalGL faGL ) 22245.0 0. 0. w( H2O faGL ) 9769.4 0. 0. w( woGL foGL ) 574.1 0. 0. w( nasGL foGL ) 9272.3 0. 0. w( kalGL foGL ) 36512.7 0. 0. w( H2O foGL ) 24630.1 0. 0. w( nasGL woGL ) 7430.3 0. 0. w( kalGL woGL ) 19927.4 0. 0. w( H2O woGL ) -1583.7 0. 0. w( kalGL nasGL) -1102.3 0. 0. w( H2O nasGL) 13043.1 0. 0. w( H2O kalGL) 35572.8 0. 0. w(coGL tiGL) 144804.9 0. 0. w(faGL tiGL) 9324.2 0. 0. w(foGL tiGL) 16355.6 0. 0. w(woGL tiGL) 9471.5 0. 0. w(nasGL tiGL) 22194.2 0. 0. w(kalGL tiGL) 3744.0 0. 0. end_excess_function 0 | no configurational entropy model (internal routine gmelt). end_of_model -------------------------------------------------------- begin_model Ghiorso & Sack (1995) CMP 119:197-212 (the MELTS model) Read cautionary notes in Ghirso. Calculations with this model can be sped up significantly by restricting the subdivsion ranges specified below. This is a reduced version of the MELTS model that excludes the Cr- and P-bearing melt components. The melt endmember names have been changed from those used in the MELTS paper. This model should be applied with solid phase data and solution models from the MELTS program. The melt endmember data converted to PERPLE_X format is in the file pMELTSver.dat. The PERPLE_X solid phase data files b92ver.dat and hp98ver.dat also include this data and therefore can be used with the MELTS model, however using these files will almost certainly result in inconsistencies with published MELTS results. JADC 7/03 WARNING 1: This model can only be used for hydrous systems if H2O is specified as a thermodynamic component (i.e., if H2O is specified as a saturated component, VERTEX will reject the h2oGM endmember and the model will be applicable only to dry melts). WARNING 2: this model uses an internal routine to compute the entropy of the melt that assumes h2oGM is the first endmember. WARNING 3: the subdivision ranges below may not span the entire range of validity for the MELT model. Check these ranges, and adjust them as necessary before using this model. MELTS(GS) 25 model type: margules, internal entropy routine 8 number of endmembers h2oGM foGM faGM woGM kalGM nasGM coGM qGM 0 0 0 0 0 0 0 0 | endmember flags 0.0 0.3 0.04 0 0.3 0.7 0.04 0 0.0 0.3 0.04 0 0.0 0.2 0.04 0 0.0 0.4 0.04 0 0.0 0.2 0.04 0 0.0 0.3 0.04 0 | (restricted) subdivision ranges and model begin_excess_function w( coGM qGM ) -39120. 0. 0. w( faGM qGM ) 23661. 0. 0. w( foGM qGM ) 3421. 0. 0. w( woGM qGM ) -864. 0. 0. w( nasGM qGM ) -99039. 0. 0. w( kalGM qGM ) -33922. 0. 0. w( h2oGM qGM ) 30967. 0. 0. w( faGM coGM ) -30509. 0. 0. w( foGM coGM ) -32880. 0. 0. w( woGM coGM ) -57918. 0. 0. w( nasGM coGM ) -130785. 0. 0. w( kalGM coGM ) -25859. 0. 0. w( h2oGM coGM ) -16098. 0. 0. w( foGM faGM ) -37257. 0. 0. w( woGM faGM ) -12971. 0. 0. w( nasGM faGM ) -90534. 0. 0. w( kalGM faGM ) 23649. 0. 0. w( h2oGM faGM ) 28874. 0. 0. w( woGM foGM ) -31732. 0. 0. w( nasGM foGM ) -41877. 0. 0. w( kalGM foGM ) 22323. 0. 0. w( h2oGM foGM ) 35634. 0. 0. w( nasGM woGM ) -13247. 0. 0. w( kalGM woGM ) 17111. 0. 0. w( h2oGM woGM ) 20375. 0. 0. w( kalGM nasGM) 6523. 0. 0. w( h2oGM nasGM) -96938. 0. 0. w( h2oGM kalGM) 10374. 0. 0. end_excess_function 0 | no configurational entropy model (internal routine gmelt). end_of_model -------------------------------------------------------- begin_model holland and powell '98 non-ideal cz-fep solution 1 2 M1 M3 _____________ Mutliplicity 1 1 _____________ 1 cz Al Al Species: 2 fep Fe Fe _____________ Ordered Cpd: 3 ep Al Fe Ep(HP) 6 | model type: Margules, speciation 2 | 2 endmembers cz fep | endmember names 1 | ordered species definition ep = 1/2 fep + 1/2 cz Delta(enthalpy) = -13.05d3 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(cz), imod = 0 -> cartesian subdivision begin_excess_function w(cz fep) 15400.0 0. 0. w(fep ep) 3000.0 0. 0. end_excess_function 2 | 2 site (M1, M3) configurational entropy model 2 1. | 2 species on M1, 1 site per formula unit. z(fe,m1) = 1 fep 2 1. | 2 species on M3, 1 site per formula unit. z(al,m3) = 1 cz end_of_model -------------------------------------------------------- begin_model Phengite as http://www.esc.cam.ac.uk/astaff/holland/ds5/muscovites/mu.html This model assumes M2 (multiplicity 2) is split into 1 M2a site on which tri- and di-valent cations mix, and an M2b site occupied solely by Al. JADC 2/03 config entropy corrected, D Tinkham, 5/6/03 A M2a T1 _________________________ Mutliplicity 1 1 2 _________________________ 1 mu K Al Al_Si Species: 2 cel K Mg Si_Si 3 fcel K Fe Si_Si 4 pa Na Al Al_Si this model makes a dqf correction for paragonite (meaning that this model is not valid for Na-rich compositions). Pheng(HP) | solution name 2 | model type: Margules, endmember fractions 4 | 4 species pa | endmember names cel fcel mu | endmember names 1 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for x(pa), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for x(cel), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for x(fcel), imod = 0 -> cartesian subdivision begin_excess_function w(mu pa) 12d3 0. 0.4 w(cel pa) 14d3 0. 0.2 w(fcel pa) 14d3 0. 0.2 end_excess_function 3 | 3 sites (A, M2, T1) configurational entrpoy model 2 1. | 2 species on A, 1 site per formula unit. z(A,Na) = 1 pa 3 1. | 3 species on M2a, 1 sites per formula unit. z(m2,Mg) = 1 cel z(m2,Fe) = 1 fcel 2 2. | 2 species on T1, 2 sites per formula unit. z(T1,Si) = 1/2 mu + 1/2 pa begin_dqf_corrections | for endmember "name" the dqf correction is | entered as | dqf(name) num1 num2 num3 | where the dqf correction to the endmembers | Gibbs energy is computed as | Gdqf(J/mol) = num1 + T[K]*num2 + P[bar]*num3 dqf(pa) 1420 0 0.4 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Sapphirine, ideal, holland and powell '98 config entropy corrected, P Goncalves/JADC, 10/1/03 the corrected model assumes (after the text on TJBH's saphhirine web page www.esc.cam.ac.uk/astaff/holland/ds5/sapphirines/spr.html) that: 1) a 14 cation unit formula 2) Si occupies T2, Al occupies T5, Si and Al mix on remaining 4 sites T1 T3 T4 T6 (the T site below) 3) Al occupies M7; only Fe and Mg may occupy sites M4, M5, M6 (Site MB below); Al, Mg, and Fe may occupy sites M1, M2, M3 and M8 (Site MA below) N.B. This model seems to differ from the Thermocalc format version on TJBH's web page in that it accounts for the configurational entropy arising from mixing on MB (i.e., the Thermocalc model looks like it was written for Fe-free sapphirine). Eliminate site MB to reproduce the TJBH web page Thermocalc model. 1 2 3 MA MB T _________________ Mutliplicity 4 3 4 _________________ 1 spr7 MgAl7 Mg SiAl7 Species: 2 fspr FeAl7 Fe SiAl7 3 spr4 MgAl3 Mg SiAl3 4 fsp4_i FeAl3 Fe SiAl3 Dependent endmember: fsp4_i = spr4 + 8/7 * (fspr - spr7) Sapp(HP) 7 model type 2 reciprocal solution 2 2 2 species on each site spr7 fspr spr4 fsp4_i 1 1 dependent endmember fsp4_i = 1 spr4 + 8/7 fspr - 8/7 spr7 0 0 0 0 endmember flags 0. 1. 0.1 0 | range and resolution for X(Mg), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for 1-X(Tschermaks), imod = 0 -> cartesian subdivision ideal 3 | 3 site (MA, MB, T) configurational entropy model 2 3. | 2 species on MB, 3 sites per formula unit z(mb,mg) = 1 spr4 + 1 spr7 3 4. | 3 species on MA, 4 sites per formula unit. z(ma,Al) = 3/4 + 1/8 spr7 + 1/8 fspr z(ma,fe) = 1/8 fspr 2 4. | 2 species on T, 4 sites per formula unit. z(T,Al) = 3/4 + 1/8 spr7 + 1/8 fspr end_of_model -------------------------------------------------------- begin_model Sapphirine, non-ideal, Kelsey et al. (J. metamorphic Geol., 2004, 22, 559-578) NOTE: This model should be used in conjunction with a special high temperature version of the HP data base (kel04ver.dat). Model originally entered by Pulak Sengupta, 7/16/05. 1) Site populations corrected to correspond to those of Kelsey et al by P Goncalves, 10/12/2010. 1 2 3 M3 M46 T _________________ Mutliplicity 1 3 1 _________________ 1 spr4 Mg Mg Si Species: 2 fspr Fe Fe Si 3 spr5 Al Mg Al 4 fsp5_i Al Fe Al Dependent endmember: fsp5_i = spr5 + 3/4 * (fspr - spr4) Sapp(KWP) 7 model type 2 reciprocal solution 2 2 2 species on each site spr4 fspr spr5 fsp5_i 1 1 dependent endmember fsp5_i = 1 spr5 + 3/4 fspr - 3/4 spr4 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Mg), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for 1-X(Tschermaks), imod = 0 -> cartesian subdivision begin_excess_function w(spr5 spr4) 10000 0 0 w(spr5 fspr) 12000 0 0 w(spr4 fspr) 8000 0 0 end_excess_function 3 | 3 site (M3, M46, T) configurational entropy model 2 3. | 2 species on M46, 3 sites per formula unit z(m46,mg) = 1 spr5 + 1 spr4 3 1. | 3 species on M3, 1 sites per formula unit. z(ma,Al) = 1 spr5 z(ma,fe) = 1 fspr 2 1. | 2 species on T, 1 sites per formula unit. z(T,si) = 1 spr4 + 1 fspr end_of_model -------------------------------------------------------- begin_model Osumilite, ideal, Holland et al Contrib Mineral Petrol (1996) 124: 383-394 1 2 3 M1 T1 T2 _________________ Mutliplicity 2 3 2 _________________ Species: osm1 Mg Al Al osm2 Mg MgAl2 AlSi fosm Fe Al Al Osm(HP) 2 model type: Margules, endmember fractions. 3 number of endmembers osm1 osm2 fosm endmember names 0 0 0 endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision ideal 3 | 3 site (M1, T1, T2) configurational entropy model 2 2. | 2 species on M1, 2 sites per formula unit z(m1,fe) = 1 fosm 2 3. | 2 species on T1, 3 sites per formula unit. z(t1,mg) = 1/3 osm2 2 2. | 2 species on T2, 2 sites per formula unit. z(t2,si) = 1/2 osm2 end_of_model -------------------------------------------------------- begin_model primitive non-inverse spinel model with gahnite end-member. Interaction parameters after Nichols et al.(1992), CMP 111, 362-377. Jiri Konopasek GaHcSp 2 model type margules, macroscopic 3 3 endmembers gah herc sp endmember names - this order implies: x(1) = x(Zn),x(2) = x(Fe), x(3) = x(Mg) 0 0 0 endmember flags 0.0 0.2 0.1 1 | range and resolution for X(Zn), imod = 1 -> asymmetric transform subdivision 0.0 1. 0.1 0 | range and resolution for X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(gah herc) -3800. 0. 0. w(herc sp) 1960. 0. 0. w(gah sp) -2600. 0. 0. end_excess_function 1 one site configurational entropy model 3 1. 3 species on M site with multiplicity 1 z(M,mg) = 1 sp z(M,fe) = 1 herc end_of_model -------------------------------------------------------- begin_model F | Fluid, ala Connolly and Trommsdorff CMP 1991. 0 | model type internal EoS. 2 | 2 endmembers CO2 H2O 0 0 | endmember flags 0.0 1.0 0.1 0 | subdivision ranges, 0 => cartesian subdivision ideal 0 | no config entropy (internal model) end_of_model -------------------------------------------------------- begin_model F(salt) | H2O-CO2-NaCl Fluid from andreas's thesis 26 | model type internal EoS. 3 | three endmembers hltL H2O CO2 0 0 0 0.0 1.0 0.1 0 | range and increment for x(hlt), imod = 0 -> cartesian subdivision 0.0 1.0 0.1 0 | range and increment for x(H2O), imod = 0 -> cartesian subdivision ideal | internal excess function 0 | internal config entropy model end_of_model -------------------------------------------------------- begin_model Talc as an ideal H&P solution. 1 2 M1 M2 T2 ______________________ Mutliplicity 2 1 2 ______________________ 1 en Mg Mg SiSi Species: 2 fs Fe Fe SiSi 3 mgts Mg Al AlSi 4 fets Fe Al AlSi dependent ______________________ Dependent: ftat = tats + 2/3*(ta - fta) T | solution name 7 | model type: reciprocal, macroscopic 2 | 2 site reciprocal solution 2 2 | 2 species on each site ta fta | endmember names, this order implies: tats ftat_i | x(11)=x(mg); x(12) = x(fe); x(21) = x(SiAl,t2); x(22) = x(Al2,t2) 1 | 1 dependent endmember: ftat_i = 1 tats + 2/3 fta - 2/3 ta 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0.0 1. 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | range and resolution for 1-X(Tschermaks) on site 2, imod = 0 -> cartesian subdivision ideal 3 | 3 site (M1, M2, T2) conigurational entropy model 2 2. | 2 species on M1, 2 sites per formula unit. z(m1,mg) = 1 ta + 1 tats 2 2. | 2 species on T2, 2 sites per formula unit. z(t2,al) = 1/2 tats 3 1. | 3 species on M2, 1 site per formula unit. z(m2,mg) = 1 ta z(fe,m2) = 1 fta end_of_model -------------------------------------------------------- begin_model Scapolite as an ideal H&P solution. Presumably from Barbara Kuhn's thesis. M T2a T2b ______________________ Mutliplicity 4 1 2 ______________________ 1 me Ca Al Al independent Species: 2 coma Na3Ca Si Si independent _____________________________________ 3 mizz NaCa3 Si Al ordered Scap | solution name 6 | model type: compound formation 2 | 2 endmembers me coma 1 | ordered species definition mizz = 2/3 me + 1/3 coma enthalpy_of_formation = -13.67d3 0 0 | endmember flags 0.0 1. 0.1 0 begin_excess_function w(me coma) 20000. 0. 0. w(me mizz) 20000. 0. 0. w(coma mizz) 30000. 0. 0. end_excess_function 3 | 3 site (M1, T2a, T2b) conigurational entropy model 2 4. | 2 species on M, 4 sites per formula unit. z(m,na) = 1/4 mizz + 3/4 coma 2 1. | 2 species on T2a, 1 site per formula unit. z(t2a,al) = 1 me 2 2. | 2 species on T2b, 1 site per formula unit. z(t1a,si) = 1 coma end_of_model -------------------------------------------------------- begin_model St(HP) | Mn-Fe-Mg Staurolite 2 model type: Ideal or Margules 3 3 endmembers mnst fst mst 1 0 0 | endmember flags 0. 1. 0.1 1 | range and resolution for X(Mn), imod = 1 -> asymmetric transform subdivision 0. 1. 0.1 0 | range and resolution for X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(mst fst) -8d3 0. 0. end_excess_function 1 1 site entropy model 3 4. 3 species, site multiplicity of 4 z(Fe) = 1 fst z(Mg) = 1 mst end_of_model | end of model keyword -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model Mn-Fe-Mg Ctd Ctd(HP) 2 | model type: Ideal or Margules 3 | 3 endmembers mnctd fctd mctd 1 0 0 | endmember flags | Note restricted range on X(Mn) 0. .2 0.1 1 | range and resolution for X(Mn), imod = 1 -> asymmetric transform subdivision 0. 1. 0.1 0 | range and resolution for X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(mctd fctd) 1000. 0. 0. end_excess_function 1 1 site entropy model 3 1. 3 species, site multiplicity = 1. z(Fe) = 1 fctd z(Mg) = 1 mctd end_of_model -------------------------------------------------------- begin_model Carp | Carpholite 2 | model type: Margules. 2 | 2 endmembers mcar fcar 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision ideal 1 1 site entropy model 2 1. 2 species, site multiplicity = 1. z(Mg) = 1 mcar end_of_model -------------------------------------------------------- begin_model ideal anhydrous/hydrous mg/fe HP cordierite model. hfcrd_i stoichiometry corrected, L. Baumgartner, 5/6/03 M H ________________ Mutliplicity 2 1 ________________ 1 mncrd Mn Vac Species: 2 fcrd Fe Vac 3 crd Mg Vac 4 hmncrd Mn H2O dependent 5 hfcrd Fe H2O dependent 6 hcrd Mg H2O _______________ Dependent: hfcrd = hcrd + (fcrd - crd) hCrd 7 model type: reciprocal 2 2 reciprocal sites 3 2 3 species on site 1, 2 on site 2 mncrd fcrd crd hmncrd_i hfcrd_i hcrd 2 2 dependent endmembers hfcrd_i = 1 hcrd + 1 fcrd - 1 crd hmncrd_i = 1 hcrd + 1 mncrd - 1 crd 1 0 0 1 0 0 | endmember flags | Note restricted range on X(Mn) 0. .2 .1 1 | range and resolution for X(Mn) on M site, imod = 1 -> asymmetric transform subdivision 0. 1. .1 0 | range and resolution for X(Fe) on M site, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for 1-X(H2O) on H site, imod = 0 -> cartesian subdivision ideal 2 2 site entropy model. 3 2. 3 species on M, 2 sites per formula unit. z(m,mg) = 1 crd + 1 hcrd z(m,fe) = 1 fcrd 2 1. 2 species on H, 1 sites per formula unit. z(H,H2O) = 1 hcrd end_of_model -------------------------------------------------------- begin_model | ideal model for mg-fe sudoite assuming | mg fe and al are distributed over | 4 m1 sites. Sud(Livi) 2 | Macroscopic 2 | 2 endmembers fsud sud 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision ideal 1 | 1 independent mixing site, M1. 3 4. | 3 species on M1, 4 sites per formula unit. z(Mg) = 1/2 sud z(Fe) = 1/2 fsud end_of_model -------------------------------------------------------- begin_model | ideal model for mg-fe sudoite assuming | mg and fe are distributed over | 2 sites. Sud 2 | model type: Margules 2 | 2 endmembers fsud sud 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision ideal 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(Mg) = 1 sud end_of_model -------------------------------------------------------- begin_model HP '98 Non-ideal amphibole Cumm 2 | model type: macroscopic 2 cumm grun 0 0 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function W(cumm grun) 17500. 0. 0. end_excess_function 1 1 site entropy model 2 7. 2 species, site multiplicity = 7. z(mg) = 1 cumm end_of_model -------------------------------------------------------- begin_model anthophyllite Anth 2 | model type: macroscopic 2 isp fanth anth 0 0 endmember flags 0. 1. 0.1 0 subdivision ranges and model ideal 1 1 site entropy model 2 7. 2 species, site multiplicity = 7. z(mg) = 1 anth end_of_model -------------------------------------------------------- begin_model "anthophyllite" a compromise model using the clinoamphibole Fe-endmember, cumm and fap should be excluded. A 2 | model type: Macroscopic 2 grun ap 0 0 0. 1. 0.1 0 | subdivision ranges, imod = 0 -> cartesian subdivision ideal 1 1 site entropy model 2 7. 2 species, site multiplicity = 7. z(mg) = 1 ap end_of_model -------------------------------------------------------- begin_model Gl 2 | model type: Macroscopic 2 gl fgl 0 0 endmember flags 0. 1. 0.1 0 | subdivision ranges and model, imod = 0 -> cartesian subdivision ideal 1 1 site entropy model 2 3. 2 species, site multiplicity = 3 z(gl) = 1 gl end_of_model -------------------------------------------------------- begin_model Tr | Tremolite 2 | model type: Macroscopic 2 ftr tr 0 0 endmember flags 0. 1. 0.1 0 | subdivision ranges, imod = 0 -> cartesian subdivision ideal 1 1 site entropy model 2 5. 2 species, site multiplicity = 5. z(mg) = 1 tr end_of_model -------------------------------------------------------- begin_model See notes for TrTsPg (above). JADC 4/03. fparg = parg + 4/5 (ftr - tr) fgl = gl + 3/5 (ftr - tr) fts = ts + 3/5 (ftr - tr) GlTrTsPg | solution name 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 4 | 1 binary and 1 quaternary tr ftr parg fparg_i ts fts_i gl fgl_i 3 | number of dependent endmembers fparg_i = 1 parg + 4/5 ftr - 4/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr fgl_i = 1 gl + 3/5 ftr - 3/5 tr 0 0 0 0 1 0 0 0 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(ts) on site 2, imod = 0 -> cartesian subdivision begin_excess_function | interaction parameters from | White, Powell & Phillips (2003, JMG) | and Wei, Powell, & Zhang (2003, JMG) | compiled by D. Tinkham. JADC 11/03 W(parg gl) 80d3 0. 0. W(parg tr) 30d3 0. 0. W(parg ftr) 38d3 0. 0. W(gl tr) 77d3 0. 0. W(gl ftr) 83d3 0. 0. W(ts tr) 20d3 0. 0. W(ts ftr) -38d3 0. 0. W(tr ftr) 10d3 0. 0. | earlier versions used (provenance unknown) | W(ts parg) -25000. 0. 0. | W(tr parg) 20000. 0. 0. | W(tr ts) 38000. 0. 0. end_excess_function 5 | 5 site (A, M1, M2, M4, T1) entropu model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 1/2 ts + 1/2 parg 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 gl 3 2. | 3 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 1 gl begin_dqf_corrections dqf(ts) 10000 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 2 _________________________________________ 1 tr Vac Mg Mg Ca Si_Si 2 ftr Vac Fe Fe Ca Si_Si 3 ts Vac Mg Al Ca Al_Si 4 fts Vac Fe Al Ca Al_Si 5 parg Na Mg Mg_Al Ca Al_Si 6 fparg Na Fe Fe_Al Ca Al_Si 7 gl Vac Mg Al Na Si_Si 8 fgl Vac Fe Al Na Si_Si 9 mfets Vac Mg Fe3+ Ca Al_Si 10 ffets Vac Fe Fe3+ Ca Al_Si Dale et al, CMP 2000 140:353-362 amphibole model without K, Ti or Mn solution. JADC 9/05. fparg = parg + 4/5 (ftr - tr) fgl = gl + 3/5 (ftr - tr) fts = ts + 3/5 (ftr - tr) Amph(DHP) | solution name 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 5 | 1 binary and 1 quinary tr ftr parg fparg_i ts fts_i gl fgl_i mfets ffets_i 4 | number of dependent endmembers fparg_i = 1 parg + 4/5 ftr - 4/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr fgl_i = 1 gl + 3/5 ftr - 3/5 tr ffets_i = 1 mfets + 3/5 ftr - 3/5 tr 0 0 0 0 1 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(ts) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(gl) on site 2, imod = 0 -> cartesian subdivision begin_excess_function W(parg gl) 84.5d3 0. 0. W(parg tr) 29.3d3 0. 0. W(parg ts) 18.2d3 0. 0. W(parg ftr) 11.4d3 0. 0. W(gl tr) 35.3d3 0. 0. W(ts tr) 20.8d3 0. 0. W(tr ftr) 11.4d3 0. 0. W(gl ftr) 15d3 0. 0. W(gl ts) 15d3 0. 0. end_excess_function 5 | 5 site (A, M1, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 1/2 ts + 1/2 parg + 1/2 mfets 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 gl + 1 mfets 4 2. | 4 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr z(m2,fe3+) = 1 mfets 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 1 gl begin_dqf_corrections dqf(ts) 10000 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Dale et al, JMG 2005 23:771-791 amphibole model. JADC, 11/05. Margules parameters corrected from W(gl ftr) 393d3 0. 0. W(gl mfets) 459d3 0. 0. W(ftr mfets) 125d3 0. 0. to current values. M. Racek, 2/10/06. A M13 M2 M4 T1* _________________________________________ Mutliplicity 1 3 2 2 4(1) _________________________________________ 1 tr Vac Mg Mg Ca Si_Si 2 ftr Vac Fe Fe Ca Si_Si 3 ts Vac Mg Al Ca Al_Si 4 fts_d Vac Fe Al Ca Al_Si 5 parg Na Mg Mg_Al Ca Al_Si 6 fparg_d Na Fe Fe_Al Ca Al_Si 7 gl Vac Mg Al Na Si_Si 8 fgl_d Vac Fe Al Na Si_Si 9 mfets Vac Mg Fe3+ Ca Al_Si 10 ffets_d Vac Fe Fe3+ Ca Al_Si fparg_d = 1 parg + 4/5 ftr - 4/5 tr fts_d = 1 ts + 3/5 ftr - 3/5 tr fgl_d = 1 gl + 3/5 ftr - 3/5 tr ffets_d = 1 mfets + 3/5 ftr - 3/5 tr *Dale et al compute amphibole T1 site fractions assuming a site multiplicity of 4, but compute activities for a T1 site multiplicity of 1. In previous models H&P computed activities for a T1 site multiplicity of 2. Amph(DPW) | solution name 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 5 | 1 binary and 1 quinary tr ftr parg fparg_i ts fts_i gl fgl_i mfets ffets_i 4 | number of dependent endmembers fparg_i = 1 parg + 4/5 ftr - 4/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr fgl_i = 1 gl + 3/5 ftr - 3/5 tr ffets_i = 1 mfets + 3/5 ftr - 3/5 tr 0 0 0 0 1 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(ts) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(gl) on site 2, imod = 0 -> cartesian subdivision begin_excess_function W(tr ts) 20d3 0. 0. W(tr parg) 33d3 0. 0. W(tr gl) 65d3 0. 0. W(tr ftr) 10d3 0. 0. W(tr mfets) 20d3 0. 0. W(ts parg) -385d2 0. 0. W(ts gl) 25d3 0. 0. W(ts ftr) 125d2 0. 0. W(parg gl) 50d3 0. 0. W(parg ftr) -19d2 0. 0. W(parg mfets) -385d2 0. 0. W(gl ftr) 393d2 0. 0. W(gl mfets) 459d2 0. 0. W(ftr mfets) 125d2 0. 0. end_excess_function 5 | 5 site (A, M13, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 1. | 2 species on T1, fake site multiplicity of 1. z(T1,Al) = 1/2 ts + 1/2 parg + 1/2 mfets 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 gl + 1 mfets 4 2. | 4 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr z(m2,fe3+) = 1 mfets 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 1 gl begin_van_laar_sizes alpha(tr) 1.0 0. 0. alpha(ts) 1.5 0. 0. alpha(parg) 1.7 0. 0. alpha(gl) 0.8 0. 0. alpha(ftr) 1.0 0. 0. alpha(mfets) 1.5 0. 0. end_van_laar_sizes begin_dqf_corrections dqf(gl) 5d3 0 0 dqf(ts) 1d4 0 0 dqf(parg) 15d3 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model | ternary feldsar (fuhrman & lindsley, am min, 1988) | for binary plagioclse this model is identical | to that of Newton et al. 1980, and for binary | alkali feldspar it is identical to Haselton et al. (1983). CORRECTED FOR TYPO IN ORIGINAL PAPER. feldspar 2 | model type: Margules or Ideal 3 | 3 endmembers abh an san 0 0 0 | endmember flags = 0 if the endmember is part of the solution. 0. 1. 0.1 0 | range and resolution for albite, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for anorthite, imod = 0 -> cartesian subdivision begin_excess_function w(abh abh san) 27320. -10.3 .394 w(abh san san) 18810. -10.3 .394 w(an an san) 52468. .0 .0 w(an san san) 47396. .0 -.12 w(an an abh) 28226. .0 .0 w(an abh abh) 8471. .0 .0 w(an abh san) 100045.5 -10.3 -0.76 end_excess_function 2 | 2 site (O-site and T-site) entropy model 3 1. | 3 species on O-site, 1 site per formula unit. z(Na) = 1 abh z(Ca) = 1 an 2 2. | 2 species on T-site, 2. sites per formula (al-avoidance model) z(Al) = 1/2 + 1/2 an end_of_model -------------------------------------------------------- begin_model | ternary feldspar (Benisek et al, CMP 160:327-337, 2010) | for T > 973 K. | Entered by Vratislav Hurai, May 10, 2011. feldspar_B 2 | model type: Margules or Ideal 3 | 3 endmembers abh an san 0 0 0 | endmember flags = 0 if the endmember is part of the solution. 0. 1. .1 0 | range and resolution for albite, cartesian subdivision 0. 1. .1 0 | range and resolution for anorthite, cartesian subdivision begin_excess_function w(abh abh san) 17711. -10.3 .461 w(abh san san) 22945. -10.3 .327 w(an an san) 90600. 0.0 -.257 w(an san san) 60300. 0.0 -.21 w(an an abh) 40000. -16.4 .069 w(an abh abh) 14000. -4.7 -.049 w(an abh san) 210078. -114.75 -.2965 end_excess_function 2 | 2 site (O-site and T-site) entropy model 3 1. | 3 species on O-site, 1 site per formula unit. z(Na) = 0 + 1 abh z(Ca) = 0 + 1 an 2 2. | 2 species on T-site, 2. sites per formula (al-avoidance model) z(Al) = 1/2 + 1/2 an end_of_model -------------------------------------------------------- begin_model Pl(h) | Newton et al 1981 2 | model type: Margules or Ideal 2 | 2 endmembers abh an 1 0 | endmember flags 0. 1. .1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(abh abh an) 8477.00 0. 0. w(an an abh) 28246.0 0. 0. end_excess_function 2 | 2 sites (O, T) kerrick and darkens Al-avoidance model: 2 1. | 2 species on O site, multiplicity = 1. z(Na) = 1 abh 2 2. | 2 species on T, mutiplicity = 2. z(Al) = 1/2 + 1/2 an end_of_model -------------------------------------------------------- begin_model | Waldbaum and Thompson 1968. This model is just the San | model with the low structural state endmembers. Kf 2 | model type: Macroscopic 2 | 2 endmembers mic ab 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(mic ab ab) 32098.0 -16.1356 0.469020 w(mic mic ab) 26470.0 -19.3810 0.387020 end_excess_function 1 | 1 site mixing model 2 1. | 2 species on O-site, 1 site per formula unit. z(Na) = 1 ab end_of_model -------------------------------------------------------- begin_model San | Waldbaum and Thompson 1968. 2 | model type: Macroscopic 2 | 2 endmembers san abh 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(san abh abh) 32098.0 -16.1356 0.469020 w(san san abh) 26470.0 -19.3810 0.387020 end_excess_function 1 | 1 site mixing model 2 1. | 2 species on O-site, 1 site per formula unit. z(Na) = 1 abh end_of_model -------------------------------------------------------- begin_model San(TH) | Thompson and Hovis 1979. 2 | model type: Macroscopic 2 | 2 endmembers san abh 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(san abh abh) 17062.4 0. 0.360661 w(san san abh) 30978.3 -21.7568 0.360661 end_excess_function 1 | 1 site mixing model 2 1. | 2 species on O-site, 1 site per formula unit. z(Na) = 1 abh end_of_model -------------------------------------------------------- begin_model Connolly and Cesare C-O-H Fluid this model is for X(O) = 0-1 GCOHF 0 | model type: Internal EoS 2 O2 H2 0 0 endmember flags 0.0 1.0 0.1 0 | subdivision ranges, imod = 0 -> cartesian subdivision | 0.666666666 | second symmetry axis, required for imod = 3 ideal 0 end_of_model -------------------------------------------------------- begin_model Non-ideal margarite-paragonite to fit field data of Bucher-Nurminen et al (1983) and Frank (1983), critical T = 972 K, X(Ma) = 33%. JADC, 4/08. MaPa | margarite-paragonite 2 | macroscopic 2 pa ma 0 0 endmember flags 0. 1. 0.1 0 subdivision ranges and model begin_excess_function w(pa pa ma) 18201. 0. 0. w(ma ma pa) 9101. 0. 0. end_excess_function 1 | 1 site mixing model 2 1. | 2 species on O-site, 1 site per formula unit. z(Na) = 1 pa end_of_model -------------------------------------------------------- begin_model | non-ideal hybrid model for K-Na phengitic mica | mixes Chaterjee and Froese (1975) with ideal phengite model | this configurational entropy is that of HP '98, see Phen(HP) config entropy corrected, D Tinkham, 5/6/03 A M2a T _________________________ Mutliplicity 1 1 2 _________________________ Species: 1 cel K Mg Si_Si 2 fcel K Fe Si_Si 3 mu K Al Al_Si 4 pa Na Al Al_Si Mica(CF) | solution name 2 | model type: Margules, reciprocal 4 | endmembers cel fcel mu pa 0 0 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(mu pa pa) 19456.0 1.65440 -.456100 W(mu mu pa) 12230.0 0.710440 0.665300 end_excess_function 3 | 3 site (M2a, T2, A) entropy model 3 1. | 3 species on M2a, 1 sites per formula unit. z(m,mg) = 1 cel z(m,fe) = 1 fcel 2 2. | 2 species on T2, 2 sites per formula unit. z(t,al) = 1/2 mu + 1/2 pa 2 1. | 2 species on A, 1 site per formula unit. z(a,k) = 1 mu + 1 cel + 1 fcel end_of_model -------------------------------------------------------- begin_model Mica(CHA1): Reciprocal version of white mica model Mica(CHA) after: Coggon & Holland (JMG, 2002, 20:683-696) Auzanneau et al. (CMP 159:1-24, 2010) Coggon & Holland model orginally entered by Mark Caddick, Aug 30, 2005. This model allows Tschermaks and Ti substitution in both the Na and Ca mica subsytems. When these substitutions are insignificant, use of the reduced version of the model used in Mica(CHA) is much more efficient. This model requires the make definition: tip = 1 fcel + 1 geik - 1/2 fs -482876. -14.694 .84 in the thermodynamic data file (e.g., hp02ver.dat) for Ti-phengite (tip). MODIFICATION/CORRECTION HISTORY: 1) van laar size terms added Nov 25, 2005. JADC. 2) ma t12 site occupancy corrected from AlSi to AlAl, D. Dolejs. Mar 23, 2006 3) endmember order corrected from: mu pa ma cel npa nfpa fcel nfma nma to: mu pa ma cel npa nma fcel nfpa nfma JADC, May 4, 2006. 4) van Laar size terms for potassic endmembers corrected from 0.67 to 0.63. L. Tajcmanova, Jan 6, 2010. 5) extended from Mica(CH1) to include Ti-substitution afer Auzanneau et al (2010). A M2a M2b T12 M1 ___________________________________ Mutliplicity 1 1 1 2 1 ___________________________________ 1 mu K Al Al AlSi _ 2 pa Na Al Al AlSi _ 3 ma Ca Al Al AlAl _ 4 cel K Mg Al SiSi _ 5 npa Na Mg Al SiSi _ dependent 6 nma Ca Mg Al AlSi _ dependent 7 fcel K Fe Al SiSi _ 8 nfpa Na Fe Al SiSi _ dependent 9 nfma Ca Fe Al SiSi _ dependent 10 tip K Mg Ti AlSi _ 11 ntip Na Mg Ti AlSi _ dependent 12 ctip Ca Mg Ti AlAl _ dependent 13 ftip K Fe Ti AlSi _ dependent 14 nftip Na Fe Ti AlSi _ dependent 15 cftip Ca Fe Ti AlAl _ dependent ___________________________________ Mica(CHA1) 7 | model type: Macroscopic Margules with dependent endmembers. 2 | number of independent mixing sites 3 5 | 3 species on site 1, 5 species on site 2. cel npa nma fcel nfpa nfma tip ntip ctip ftip nftip cftip mu pa ma 9 | dependent end-members nma = 1 cel + 1 ma - 1 mu npa = 1 cel + 1 pa - 1 mu nfpa = 1 fcel + 1 pa - 1 mu nfma = 1 fcel + 1 ma - 1 mu ntip = 1 tip + 1 pa - 1 mu ctip = 1 tip + 1 ma - 1 mu ftip = 1 tip + 1 fcel - 1 cel nftip = 1 tip + 1 fcel - 1 cel + 1 pa - 1 mu cftip = 1 tip + 1 fcel - 1 cel + 1 ma - 1 mu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | endmember flags | subdivision model, site 1 (A): 0. 1. .1 0 | range and resolution of X(K) 0. 1. .1 0 | range and resolution of X(Na) | subdivision model, site 2 (M2) 0. .8 .1 0 | range and resolution of X(MgAl,M2) 0. .5 .1 0 | range and resolution of X(FeAl,M2) 0. .5 .1 1 | range and resolution of X(MgTi,M2) 0. .3 .1 1 | range and resolution of X(FeTi,M2) begin_excess_function W(mu pa) 10120. 3.4 0.353 W(mu ma) 30000. 0. 0. W(mu cel) 0. 0. 0.2 W(mu fcel) 0. 0. 0.2 W(pa ma) 14500. 0. 0. W(pa cel) 52000. 0. 0. W(pa fcel) 52000. 0. 0. W(ma cel) 30000. 0. 0.2 W(ma fcel) 30000. 0. 0.2 W(tip cel) 10000. 0. 0. W(tip fcel) 10000. 0. 0. W(tip pa) 80000. 0. 0. | W(prl mu) 20000. 0. 0.2 | W(prl pa) 20000. 0. 0.2 | W(prl ma) 30000. 0. 0.2 | W(prl cel) 25000. 0. 0.2 | W(prl fcel) 25000. 0. 0.2 | W(prl tip) 40000. 0. 0. end_excess function 4 | Configurational entropy: 4 sites, A, M2a, M2b, T1. 3 1. | 3 species on A, 1 site per formula unit. z(a,k) = 1 mu + 1 cel + 1 fcel z(a,na) = 1 pa 3 1. | 3 species on M2a, 1 site per formula unit. z(m2a,al) = 1 mu + 1 pa + 1 ma z(m2a,mg) = 1 cel + 1 tip 2 1. | 2 species on M2b, 1 site per formula unit. z(m2b,ti) = 1 tip 2 2. | 2 species on T1, 2 sites per formula unit. z(t,al) = 1/2 mu + 1/2 pa + 1/2 tip + 1 ma begin_van_laar_sizes alpha(mu) 0.63 0. 0. alpha(pa) 0.37 0. 0. alpha(ma) 0.37 0. 0. alpha(cel) 0.63 0. 0. alpha(tip) 0.63 0. 0. alpha(fcel) 0.63 0. 0. | alpha(prl) 0.5 0. 0. | alpha(phl) 0.63 0. 0. end_van_laar_sizes end_of_model | end of model keyword -------------------------------------------------------- begin_model Mica(CHA): Non-reciprocal version of white mica model Mica(CHA1) after: Coggon & Holland (JMG, 2002, 20:683-696) Auzanneau et al. (CMP 159:1-24, 2010) The non-reciprocal version does not allow tschermaks or Ti substutions in the Ca- and Na-subsystems. If these substitutions are important use the more costly model Mica(CHA1) This model requires the make definition: tip = 1 fcel + 1 geik - 1/2 fs -482876. -14.694 .84 in the thermodynamic data file (e.g., hp02ver.dat) for Ti-phengite (tip). This version does not include the prl and phl endmembers considered by both Coggon & Holland (2002) and Auzanneau et al. (2010) (the data is commented below) as solution of these endmembers is usually unimportant. JADC, 1/18/10 A M2a M2b T1 M1 ___________________________________ Mutliplicity 1 1 1 2 1 ___________________________________ 1 mu K Al Al AlSi _ 2 pa Na Al Al AlSi _ 3 ma Ca Al Al AlAl _ 4 cel K Mg Al SiSi _ 5 fcel K Fe Al SiSi _ 6 tip K Mg Ti AlSi _ not included: ___________________________________ 7 prl _ Al Al SiSi _ 8 phl K Mg Mg AlSi Mg ___________________________________ Mica(CHA) 2 | model type: macroscopic. 6 | 6 endmembers mu pa ma cel tip fcel | prl phl 0 0 0 0 0 0 0 0 | endmember flags | subdivision model 0. 1. .1 0 | range and resolution of X(mu), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(pa), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(ma), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(cel), imod = 0 -> cartesian subdivision 0. 0.3 .1 1 | range and resolution of X(tip), imod = 1 -> asymmetric transform subdivision begin_excess_function W(mu pa) 10120. 3.4 0.353 W(mu ma) 30000. 0. 0. W(mu cel) 0. 0. 0.2 W(mu fcel) 0. 0. 0.2 W(pa ma) 14500. 0. 0. W(pa cel) 52000. 0. 0. W(pa fcel) 52000. 0. 0. W(ma cel) 30000. 0. 0.2 W(ma fcel) 30000. 0. 0.2 W(tip cel) 10000. 0. 0. W(tip fcel) 10000. 0. 0. W(tip pa) 80000. 0. 0. | W(prl mu) 20000. 0. 0.2 | W(prl pa) 20000. 0. 0.2 | W(prl ma) 30000. 0. 0.2 | W(prl cel) 25000. 0. 0.2 | W(prl fcel) 25000. 0. 0.2 | W(prl tip) 40000. 0. 0. end_excess function 4 | Configurational entropy: 4 sites, A, M2a, M2b, T1. 3 1. | 3 species on A, 1 site per formula unit. z(a,k) = 1 mu + 1 cel + 1 fcel z(a,na) = 1 pa 3 1. | 3 species on M2a, 1 site per formula unit. z(m2a,al) = 1 mu + 1 pa + 1 ma z(m2a,mg) = 1 cel + 1 tip 2 1. | 2 species on M2b, 1 site per formula unit. z(m2b,ti) = 1 tip 2 2. | 2 species on T1, 2 sites per formula unit. z(t,al) = 1/2 mu + 1/2 pa + 1/2 tip + 1 ma begin_van_laar_sizes alpha(mu) 0.63 0. 0. alpha(pa) 0.37 0. 0. alpha(ma) 0.37 0. 0. alpha(cel) 0.63 0. 0. alpha(tip) 0.63 0. 0. alpha(fcel) 0.63 0. 0. | alpha(prl) 0.5 0. 0. | alpha(phl) 0.63 0. 0. end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model HP '98 olivine solution O(HP) 2 model type: Margules, macroscopic 3 3 endmembers teph fo fa 0 0 0 | endmember flags | NOTE restricted compositional range for Mn 0.0 1.0 0.1 1 | range and resolution for X(Mn), imod = 1 -> asymmetric transform subdivision 0.0 1.0 0.1 0 | range and resolution for X(Mg), imod = 0 -> cartesian subdivision begin_excess_function W(fo fa) 8400. 0. 0. | corrected from 4.2 kJ Nov 15, 2004. end_excess_function 1 1 site entropy model 3 2. 3 species, site multiplicity = 2. z(mg) = 1 fo z(fe) = 1 fa end_of_model -------------------------------------------------------- begin_model "Ordered" Jadeite-Diopside-Hedenbergite-CaTs, as: 1) Gasparik '85 (GCA) in the jd/di limit. 2) HP'98 in the di/hed limit 3) Assuming nonideality in the jd/hed limit is the same as for jd/di. 4) No ternary interactions. 5) Gasparik '85 (CMP) in the jd/cats limit. This should be Gaspariks preferred model. JADC Apr. 99. the configurational entropy model has been constructed to take into account that Gasparik uses an X^2 molecular model for CaTs-Di and an X molecular model for Jd-Di. This implies that there is no disorder associated with placing Na on M2 (i.e., it is associated with Al on M1), whereas Al on M1 is not assocated with Al on T. To get Gasparik's molecular formulation it is necessary to specify that Al mixes on only one of the two T-sites. Cpx(l) 2 | model type: Ideal or Margules 4 | 4 endmembers di hed cats jd 0 0 0 0 | endmember flags 0. 1. 0.1 0 0. 1. 0.1 0 0. 1. 0.1 0 | subdivision ranges and model begin_excess_function w(cats jd) 14810. -7.15 0. w(cats cats jd) -5070. 0.00 0. w(cats jd jd) 5070. 0.00 0. w(cats cats cats jd) -3350. 0.00 0. w(cats cats jd jd) 6700. 0.00 0. w(cats jd jd jd) -3350. 0.00 0. w(di jd jd) 12600. -7.6 0. w(di di jd) -12600. 7.6 0. w(di jd jd jd) -21400. 16.2 0. w(di di jd jd) 42800. -32.4 0. w(di di di jd) 21400. -16.2 0. w(di jd) 12600. -9.45 0. w(di hed) 2500. 0.0 0. w(hed hed jd) -12600. 7.6 0. w(hed jd jd jd) -21400. 16.2 0. w(hed jd) 12600. -9.45 0. w(hed jd jd) 12600. -7.6 0. w(hed hed jd jd) 42800. -32.4 0. w(hed hed hed jd) -21400. 16.2 0. end_excess_function 2 wierd entropy model, see above (maybe it's right). 3 1. M1, Al-Mg-Fe, 1 site z(fe,m1) = 1 hed z(mg,m1) = 1 di 2 1. T, Al-Si, this is fake to get gasparik's model. z(al,t) = 1 cats end_of_model -------------------------------------------------------- begin_model "disordered" Jadeite-Diopside-Hedenbergite-CaTs, as: 1) Gasparik '85 (GCA) in the jd/di limit. 2) HP'98 in the di/hed limit 3) Assuming nonideality in the jd/hed limit is the same as for jd/di. 4) No ternary interactions. 5) Gasparik '85 (CMP) in the jd/cats limit. JADC Apr. 99. the configurational entropy model has been constructed to take into account that Gasparik uses an X^2 molecular model for CaTs-Di and Jd-Di. See comments for Cpx(l) above. Cpx(h) 2 4 di hed cats jd 0 0 0 0 | endmember flags 0. 1. 0.1 0 0. 1. 0.1 0 0. 1. 0.1 0 | subdivision ranges and model begin_excess_function w(cats jd) 14810. -7.15 0. w(cats cats jd) -5070. 0.00 0. w(cats jd jd) 5070. 0.00 0. w(cats cats cats jd) -3350. 0.00 0. w(cats cats jd jd) 6700. 0.00 0. w(cats jd jd jd) -3350. 0.00 0. w(di jd jd) 12430. -6.21 0. w(di di jd) -12430. 6.21 0. w(di jd jd jd) -22290. 23.19 0. w(di di jd jd) 44580. -46.38 0. w(di di di jd) -22290. 23.19 0. w(di jd) 12540. 12.63 0. w(di hed) 2500. 0.0 0. w(hed hed jd) -12430. 6.21 0. w(hed jd jd jd) -22290. 23.19 0. w(hed jd) 12540. 12.63 0. w(hed jd jd) 12430. -6.21 0. w(hed hed jd jd) 44580. -46.38 0. w(hed hed hed jd) -22290. 23.19 0. end_excess_function 3 msite 3 1. M1, Al-Mg-Fe, 1 site z(Fe,m1) = 1 hed z(Mg,m1) = 1 di 2 1. M2, Ca-Na, 1 site z(na,m2) = 1 jd 2 1. T, Al-Si, this is fake to get gasparik's model. z(al,t) = 1 cats end_of_model -------------------------------------------------------- begin_model Mont 2 | macroscopic 3 | 3 endmembers fo mont fa 0 0 0 0.0 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0.0 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(fo fa) 8400. 0. 0. | corrected from 4.2 kJ Nov 15, 2004. end_excess_function 1 3 1. z(Ca) = 1/2 mont z(Mg) = 1 fo + 1/2 mont end_of_model | end of model keyword -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model HP '98 dolomite-ankerite solution Do(HP) 2 | macroscopic 2 | 2 endmembers dol ank 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(dol ank) 3000.0 0. 0. 0. 0. end_excess_function 1 | 1 site entropy model 2 1. z(Mg) = 1 dol end_of_model -------------------------------------------------------- begin_model HP '98 Magnesite/siderite modified by DMH to include rhc M(HP) 2 model type: Margules, endmember fractions. 3 number of endmembers rhc mag sid endmember names 0 0 0 | endmember flags 0. 1. 0.1 1 | range X(Mn), imod = 1 -> asymmetric transform subdivision 0. 1. 0.1 0 | range X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(mag sid) 4000. 0. 0. | hp '98 give 4 kJ end_excess_function 1 1 site entropy model 3 1. 3 species, site multiplicity 1 z(Fe) = 1 sid z(Mg) = 1 mag end_of_model -------------------------------------------------------- begin_model A solution model for Dolomite from Anovitz & Essene 1987 J Pet 28:389-414; this model requires fictive do-structure endmembers that have a standard state G 20920 j > than the cc-structure endmember, these are made here by a "DQF" correction. Do(AE) 2 | model type: Ideal or Margules 3 | 3 endmembers cc mag sid 1 1 1 | endmember flags 0. 1. 0.1 0 | subdivision range X(cc), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | subdivision range X(mag), imod = 0 -> cartesian subdivision begin_excess_function w(mag mag cc) -96850 36.23 0 w(mag cc cc) -55480 -22.85 0 w(sid sid cc) -155523 141.5 0 | this is a linearization of -1040 -T*(212.4 - 0.2027*T) at 873 K, JADC 5/08. w(sid cc cc) -16746 -89.2 0 | this is a linearization of -86740-T*(-71.18+.9184e-1*T) at 873 K, JADC 5/08. w(sid cc mag) -293520 -121.6 0 | this is a linearization of -185450-T*(369.2-.1418*T) at 873 K, JADC 5/08. end_excess_function 1 | 1 site entropy model 3 1. | 2 species, site multiplicity of 1? should check against source z(Mg) = 1 mag z(Fe) = 1 sid begin_dqf_corrections dqf(cc) 20920 0 0 dqf(mag) 20920 0 0 dqf(sid) 20920 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model A solution model for Magnesite from Anovitz & Essene 1987 J Pet 28:389-414. Cc(AE) 2 | model type: Ideal or Margules 3 | 2 endmembers mag cc sid 0 0 0 endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(cc cc mag) 24300 -7.743 0 w(cc mag mag) 23240 0. 0 w(sid sid cc) 28404 -2.5 0 | this is a linearization of 27313.2-5.9651e-6/T-1.43147e-3*T^2 at T = 873. JADC, 5/08. w(sid cc cc) 20624 -7.533 0 | this is a linearization of -70751.4 + 91.8848*T + 2.79244e7/T - 3.59552e-2 * T^2 at T = 873. JADC, 5/08. | missing the ternary interaction parameter estimated by Anovitz & Essene. end_excess_function 1 3 1. z(mg) = 1 mag z(fe) = 1 sid end_of_model -------------------------------------------------------- begin_model Magnesioferrite/magnetite MF 2 | model type: Ideal or Margules 2 1 isp(1), ist(1) mt mfer 0 0 endmember flags 0. 1. .1 0 subdivision range, imod = 0 -> cartesian subdivision ideal 1 1 site entropy model 2 1. 2 species, site multiplicity of 2 z(Fe) = 1 mt end_of_model | end of model keyword -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model Sp(JR) Jamieson and Roeder '85 (iron + ol,1300 C) 2 | model type: Ideal or Margules 2 | 2 endmembers sp herc 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(sp herc) -3102. 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity of 2 z(Fe) = 1 herc end_of_model -------------------------------------------------------- begin_model Ghiorso 1991, gives similar W=8638 Sp(GS) Ganguly and Saxena '87 (ol, 1200-1300 C, 1-5 kb) 2 | model type: Ideal or Margules 2 | 2 endmembers sp herc 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(sp herc) 7703. 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity of 2 z(Fe) = 1 herc end_of_model -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model Sp(HP) HP '98: 2 | model type: Ideal or Margules 2 | 2 endmembers sp herc 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(sp herc) 7d2 0. 0. end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity of 1 z(Fe) = 1 herc end_of_model -------------------------------------------------------- begin_model valid for T>800C<1300C Mt(W) Wood et al 1991 2 | model type: Ideal or Margules 2 | 2 endmembers usp mt 0 0 endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(usp mt mt) 42110. 0. 0. w(usp usp mt) 10580. 0. 0. end_excess_function 2 | 2 site model 3 2. | 3 species on O, 2 sites per formula unit. z(Ti,O) = 1/2 usp z(Fe3+,O) = 1/2 mt 2 1. | 2 species on T, 1 site per formula unit. z(Fe3+,T) = 1 mt end_of_model -------------------------------------------------------- begin_model The Anderson and Lindsley models (Am Min v 73, p 714, 1988) are for ilmenite coexisiting with magnetite, its performance at high T (ca 1200) has been criticized by Ghiorso, but this is probably the best model for T<800 C IlHm(A) 2 | macroscopic 2 | 2 endmembers ilm hem 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(ilm hem hem) 126342.5 -100.6 0. term 1 w(ilm ilm hem) 44204.8 -12.274 0. term 2 end_excess_function 1 2 2. z(Ti) = 1 ilm end_of_model -------------------------------------------------------- begin_model Ideal ilmenite-geikielite-pyrophanite solution IlGkPy 2 | model type: Ideal or Margules 3 | 3 endmembers pnt geik ilm 0 0 0 | endmember flags | restricted mn range! 0. .2 0.1 1 | imod = 1 -> asymmetric transform subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision ideal 1 | 1 site entropy model 3 1. | 3 species, site multiplicity of 1 z(Mn) = 1 pnt z(Mg) = 1 geik end_of_model -------------------------------------------------------- begin_model MtUl(A) | Anderson and Lindsley 1988, Akimoto model 2 | model type: Ideal or Margules 2 | 2 species usp mt 0 0 endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(usp mt mt) 46175. -23.077 0. w(usp usp mt) 15748. 0. 0. end_excess_function 2 | 2 site model 3 2. | 3 species on O, 2 sites per formula unit. z(Ti,O) = 1/2 usp z(Fe3+,O) = 1/2 mt 2 1. | 2 species on T, 1 site per formula unit. z(Fe3+,T) = 1 mt end_of_model -------------------------------------------------------- begin_model Neph(FB) Ferry and Blencoe '78 2 | macroscopic 2 | 2 endmembers ne kals 0 0 endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(ne kals kals) 85057.0 -20.0500 -.550000 w(ne ne kals) 35945.0 23.7800 0.69 end_excess_function 1 | 1 site model 2 1. | 2 species, 1 sites per formula unit. z(na) = 1 ne end_of_model -------------------------------------------------------- begin_model GrPyAlSp(B) Grossular-pyrope-almandine-spessartine, Berman '90, 2 | macroscopic 4 | 4 endmembers gr py alm spss 0 0 0 0 endmember flags 0.0 1. 0.1 0 | imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(gr gr py) 21560.0 -18.79 0.100000 term 1 w(gr py py) 69200.0 -18.79 0.10 term 2 w(gr gr alm) 20320 -5.08 0.17 term 3 w(gr alm alm) 2620.0 -5.08 0.09 term 4 w(py py alm) 230.0 0. 0.01 term 5 w(py alm alm) 3720.0 0. 0.06 term 6 w(gr py alm) 58825. -23.87 0.265 term 7 w(gr py spss) 45424. -18.7900 0.100000 term 8 w(gr alm spss) 11470.0 -18.7900 0.130000 term 9 w(py alm spss) 1975.00 0. 0.035000 term 10 end_excess_function 1 1 site entropy model 4 3. 4 species, site multiplicity 3 z(Fe) = 1 alm z(Mg) = 1 py z(Ca) = 1 gr end_of_model -------------------------------------------------------- begin_model Grossular-pyrope-almandine-spessartine garnet Ganguly, Cheng & Tirrone (1996) Contrib Mineral Petrol 126:137-151 The expansion of the Cheng & Ganguly (1994) GCA 58:3763-3767 model to the Perple_X excess function is in Maple file garnet_jiba_96.mws JADC Nov 23, 2010. Gt(GCT) 2 | model type: 2 - margules expansion 4 | endmembers gr py alm spss 0 0 0 0 | endmember flags 0.0 1. 0.1 0 | imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(gr py ) 47191.395 -17.34 .105 w(gr alm) 11468.955 -5.07 .045 w(alm spss) 1616.925 0. .075 w(gr spss) 1616.925 0. .075 w(py alm) 4217.895 0. .105 w(py spss) 36248.895 -23.01 .105 w(gr gr py ) -17689.569 0. .069 w(py py gr) 17689.569 0. -.069 w(gr gr alm) 8849.955 0. .045 w(alm alm gr) -8849.955 0. -.045 w(py py alm) -2132.895 0. -.105 w(alm alm py) 2132.895 0. .105 | these could be deleted: w(py py spss) .15e-1 0. -.015 w(spss spss py) -.15e-1 0. .015 w(alm alm spss) .45e-1 0. -.045 w(spss spss alm) -.45e-1 0. .045 w(gr gr spss) .45e-1 0. -.045 w(spss spss gr) -.45e-1 0. .045 end_excess_function 1 1 site entropy model 4 3. 4 species, site multiplicity 3 z(Fe) = 1 alm z(Mg) = 1 py z(Ca) = 1 gr end_of_model -------------------------------------------------------- begin_model hp '98 quaternary garnet model Gt(HP) 2 model type: Margules, endmember fractions. 4 number of endmembers spss alm py gr endmember names 1 0 0 0 | endmember flags 0. 0.2 0.1 1 | imod = 1 -> asymmetric transform subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision | NOTE restricted subdivision range on Mn (Species 1)! begin_excess_function w(py gr) 33000. 0. 0. w(alm py) 2500. 0. 0. | hp '98 give 2.4 kJ w(py spss) 4500. 0. 0. w(alm spss) 240. 0. 0. end_excess_function 1 1 site entropy model 4 3. 4 species, site multiplicity 3 z(Fe) = 1 alm z(Mg) = 1 py z(Ca) = 1 gr end_of_model -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model Mg-Fe-Ca-Al-Fe3 Garnet Hybrid Holland & Powell + Engi & Wersin The Engi & Wersin terms for the excess energy are suspect and should probably be set to zero. Gt(EWHP) 7 | model type: reciprocal 2 | 2 chemical site model 3 2 | 3 endmembers mix on site 1, 2 endmembers mix on site 2 gr alm py andr FA_d MA_d 2 | 2 dependent endmembers MA_d = -1 gr + 1 py + 1 andr FA_d = -1 gr + 1 alm + 1 andr 0 0 0 0 0 0 | endmember flags 0 include it 1 drop it 0. 1. .1 0 | range and resolution for XCa on A 0. 1. .1 0 | range and resolution for XFe on A 0. 1. .1 0 | range and resolution for XAl on B, imod = 0 -> cartesian begin_excess_function w(py gr) 33d3 0. 0. w(gr andr andr) 25812 0. -0.52 | eliminate this terms to make Fe3+ - Al exchange ideal w(andr gr gr) -93820 0. -0.11 | eliminate this terms to make Fe3+ - Al exchange ideal end_excess_function 2 2 site entropy model 3 3. 3 species, site multiplicity of 3 z(Ca) = 1 gr + 1 andr z(Mg) = 1 py 2 2. 2 species, site multiplicity of 2 z(Al) = 1 gr + 1 alm + 1 py end_of_model -------------------------------------------------------- begin_model Ca-Fe2+-Mg-Al-Fe3+ Garnet model after White, Powell & Holland (JMG, 2007, 25:511-527) Model entered by Lucie Tajcamanova, May 11, 2007. w(alm py) value and reference corrected, Thomas Wagner, June 22, 2007. Interaction parameters (W terms) updated to the current THERMOCALC "preferred" values, Van Laar size parameters, added spessartine, Mark Caddick, Nov, 07. Deleted the unused kho_i interaction term, JADC, Nov 07. alphas and w's updated to current TC values, Lucie Tajcamanova, April 14, 2010. NOTE: the more recent Smye et al. (2011) models [Mica(SGH), Carp(SGH), and Ctd(SGH)]are calibrated in terms of the Gt(WPPH) model for garnet. JADC, Oct 27, 2011. 1 2 X Y _____________ Mutliplicity 3 2 _____________ Dependent: fkho_i Fe Fe3+ Dependent: kho_i Mg Fe3+ Dependent: fmn_i Mn Fe3+ andr Ca Fe3+ spss Mn Al alm Fe Al py Mg Al gr Ca Al ____________ Gt(WPH) 7 | model type: Margules with dependent endmembers . 2 | the number of independent subcompositions, reciprocal solution if > 1. 4 2 | 4 species on site 1, 2 species on site 2. | M2 and M1 can be identified as sites 1 and 2, respectively. the | species that mix on site 1 are Mn-Mg-Fe-Ca and the species that mix on | site 2 are Al-Fe3+. spss alm py gr | endmember names fmn_i fkho_i kho_i andr 3 | number of dependent endmembers fmn_i = 1 andr + 1 spss -1 gr fkho_i = 1 andr + 1 alm -1 gr kho_i = 1 andr + 1 py -1 gr 0 0 0 0 0 0 0 0 | endmember flags 0. .2 0.1 1 | imod = 0 -> cartesian subdivision (xmn) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xfe) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xmg) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision x(fe3+) on Y begin_excess_function | commented values are from White et al. (2007): w(alm gr) 10000. 0. 0. | w(alm gr) 15000. 0. 0. w(py gr) 45000. 0. 0. | w(py gr) 33000. 0. 0. w(alm py) 2500. 0. 0. | w(alm py) 2500. 0. 0. w(py andr) 90000. 0. 0. | w(py andr) 160000. 0. 0. w(alm andr) 75000. 0. 0. | w(alm andr) 135000. 0. 0. end_excess_function 2 |2 site entropy model 4 3. |4 species, site multiplicity 3 z(x,mn) = 1 spss z(x,fe) = 1 alm z(x,Mg) = 1 py 2 2. |2 species, site multiplicity 2 z(y,al) = 1 spss + 1 alm + 1 py + 1 gr begin_van_laar_sizes | commented values are from White et al. (2007): alpha(py) 1 0.0 0.0 alpha(alm) 1 0.0 0.0 alpha(spss) 1 0.0 0.0 alpha(gr) 3 0.0 0.0 | 9 alpha(andr) 3 0.0 0.0 | 9 end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model berman and brown 1984, cao-al2o3-sio2 melt model. reformulated as macroscopic Aug 21, 2007. casmelt 2 | model type: macroscopic 3 | 3 species SIO2 AL2O3 CAO | endmember names 0 0 0 | endmember flags 0. 1. 0.1 0 | cartesian 0. 1. 0.1 0 begin_excess_function w(SIO2 AL2O3 AL2O3 AL2O3) 63617.2 -23.7400 0. term 1 w(SIO2 SIO2 AL2O3 AL2O3) 0.164266d7 -763.870 0. term 2 w(SIO2 SIO2 SIO2 AL2O3) -106635. 28.1300 0. term 3 w(SIO2 CAO CAO CAO) -898693. 240.770 0. term 4 w(SIO2 SIO2 CAO CAO) -350208. -48.6200 0. term 5 w(SIO2 SIO2 SIO2 CAO) -14081.8 -35.4900 0. term 6 w(AL2O3 CAO CAO CAO) -455634. 2.47000 0. term 7 w(AL2O3 AL2O3 CAO CAO) -725166. 255.390 0. term 8 w(AL2O3 AL2O3 AL2O3 CAO) -240215. 26.7000 0. term 9 w(SIO2 SIO2 AL2O3 CAO) -.284791d7 1046.35 0. term 10 w(SIO2 AL2O3 AL2O3 CAO) -.214904d7 641.840 0. term 11 w(SIO2 AL2O3 CAO CAO) 209109. -313.360 0. term 12 end_excess_function 1 1 site molecular entropy model 3 1. 3 species, site multiplicity 1 z(SIO2) = 1 SIO2 z(AL2O3) = 1 AL2O3 end_of_model | end of model keyword -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model A-phase ideal phase A 2 | macroscopic 2 phA fphA 0 0 endmember flags 0. 1. 0.1 1 | subdivision range, imod = 1 -> asymmetric transform subdivision ideal 1 | 1 site entropy model 2 7. | 2 species, 7 sites pfu z(mg) = 1 phA end_of_model | end of model keyword -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model Chum ideal clinohumite 2 | macroscopic 2 chum fchum 0 0 endmember flags 0. 1. 0.1 1 | subdivision range, imod = 1 -> asymmetric transform subdivision ideal 1 | 1 site entropy model 2 9. | 2 species, 9 sites pfu z(mg) = 1 chum end_of_model | end of model keyword -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model Atg ideal antigorite 2 | macroscopic 2 atg fatg 0 0 endmember flags 0. 1. 0.1 1 | subdivision range, imod = 1 -> asymmetric transform subdivision ideal 1 | 1 site entropy model 2 48. | 2 species, 48 sites pfu z(mg) = 1 atg end_of_model | end of model keyword -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model B ideal brucite 2 | macroscopic 2 isp(1) br fbr 0 0 endmember flags 0. 1. 0.1 1 | subdivision range, imod = 1 -> asymmetric transform subdivision ideal 1 | 1 site entropy model 2 1. | 2 species, 1 site pfu z(mg) = 1 br end_of_model -------------------------------------------------------- begin_model P ideal periclase 2 | macroscopic 2 | 2 endmembers per fper 0 0 endmember flags 0. 1. 0.1 1 | subdivision range, imod = 1 -> asymmetric transform subdivision ideal 1 | 1 site entropy model 2 1. | 2 species, 1 site pfu z(mg) = 1 per end_of_model -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model dummy model to produce pseudocompounds for the Toop-Samis model, the first endmember must be sio2, the remaining endmembers must be entered in order of increasing at wt of the cation, i.e. na, mg, al....., with the present format you are going to be limited to 4 component melts, dum1 and dum2 will be ignored by vertex (i.e., if it doesn't find the endmember in the thermodynamic data file it will eliminate the component from the model. Toop-Melt 23 model type: Toop internal EoS 4 number of endmembers SIO2 CAO DUM1 | endmember names DUM2 0 0 0 0 endmember flags 0. 1. 0.1 0 0. 1. 0.1 0 0. 1. 0.1 0 subdivision ranges and model ideal 1 3 site entropy model 4 3. 4 species, multiplicity = 3 z(Ca) = 1 CAO z(Si) = 1 SIO2 z(DUM1) = 1 DUM1 end_of_model -------------------------------------------------------- begin_model Ternary feldspars (Holland and Powell, 2003, CMP, p.492-501) Van Laar Versions. USE THIS MODEL WITH EXTREME CAUTION (AND DON'T USE THE MODEL IF YOU DON'T UNDERSTAND THE IMPLICATIONS OF THIS WARNING): The model has the following difficulties for the Ab-An binary and they undoubtedly cause problems in the ternary: 1) The I1/C1 models are not (and cannot be used to) predict the stable structural state, the I1 model is always more stable than the C1; thus the "stable" state is supposed to be chosen by assuming the C1 model is valid at X(Ab) > 1 - (0.12+0.00038*TK). 2) The model assigns a large positive interaction term for I1 plagioclase, as a result the I1 model gives a solvus that closes at ~ 910 K. At temperatures below the critical temperature plagioclases in vicinity of the prescribed I1/C1 transition (as defined in 1, above), that in principle is supposed to be stable, is metastable with respect to a mixture of I1 and C1 plagioclase. JADC 1/04 MORE NOTES: * These models use the asymmetric formalism as outlined by H & P. * They are complicated by the C1/I1 transition across the plag. join. * Model parameters for the C1 field (Ab-rich plag. component) Wabsan = 25100 - 10.8*T + 0.343*P Wansan = 40000 Wanab = 3100 a-san = 1.0 a-ab = 0.643 a-an = 1.0 Ian = 7030 - 4.66*T * Model parameters for the I1 field (An-rich plag. component) Wabsan = 25100 - 10.8*T + 0.343*P Wansan = 40000 Wanab = 15000 a-san = 1.0 a-ab = 0.643 a-an = 1.0 Iab = 570 - 4.12*T D.Tinkham, 12-18-2003 reformatted and compositional ranges chosen given the following considerations (JADC 12/03): * On the Ab-An join C1 is not stable below ~ 800 K, and has X(An) < 0.4 and I1 is not stable for X(An) < 0.6 * On the Ab-Or join C1 is always stable, with critical composition X(Ab) ~ 0.34 * The above considerations suggest the I1 model could be effectively represented by a binary An-Ab (with X(Ab)>0.2) model; and the C1 model should be split into a model with X(ab) < 0.33 with extensive ternary solution; and a model with X(Ab) > 0.33 with very limited ternary solution. Assuming these relationships are valid the ternary feldspar phase relations are well represented by three solutions models AbFsp(C1) and OrFsp(C1) - represent Ab-rich ternary feldspar and Or-rich essentially binary (Ab-Or) feldspar, all with the C1 structural state Pl(I1) - represents essentially binary (Ab-An) anorthite rich I1 structural state feldspar. A negative consequence of using AbFsp(C1) and OrFsp(C1) to represent supercritical feldspar is the models produce a mock "solvus" where the compositional ranges abut. ----------------------------------------------------------- | See WARNING above for HP ASF Ternary Feldspar OrFsp(C1) | solution name. To be used with Pl(I1,HP) and AbFsp(C1). 2 | model type: van laar as formulated by Holland & Powell (macroscopic formulation) 3 | number of endmembers an san abh 0 1 1 | endmember flags 0. 0.1 0.1 0 | compositional range and resolution of an 0.34 1.0 0.1 0 | compositional range and resolution of san begin_excess_function w(san abh) 25100. -10.8 0.343 w(san an) 40000. 0. 0. w(abh an) 3100. 0. 0. end_excess_function 1 | 1 site entropy model 3 1. | 3 species, site multiplicity of 1 z(Ca) = 1 an z(K) = 1 san begin_van_laar_sizes alpha(san) 1.0 0.0 0.0 alpha(abh) 0.643 0.0 0.0 alpha(an) 1.0 0.0 0.0 end_van_laar_sizes begin_dqf_corrections dqf(an) 7030 -4.66 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model | See WARNING above for HP ASF Ternary Feldspar AbFsp(C1) | solution name. To be used with Pl(I1,HP) and OrFsp(C1). 2 | model type: van laar as formulated by Holland & Powell (macroscopic formulation) 3 | number of endmembers abh san an 0 1 1 | endmember flags 0.66 1. 0.1 0 | compositional range and resolution of abh 0. 1. 0.1 0 | compositional range and resolution of san begin_excess_function w(san abh) 25100. -10.8 0.343 w(san an) 40000. 0. 0. w(abh an) 3100. 0. 0. end_excess_function 1 | 1 site entropy model 3 1. | 3 species, site multiplicity of 1 z(Ca) = 1 an z(K) = 1 san begin_van_laar_sizes alpha(san) 1.0 0.0 0.0 alpha(abh) 0.643 0.0 0.0 alpha(an) 1.0 0.0 0.0 end_van_laar_sizes begin_dqf_corrections dqf(an) 7030 -4.66 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model | This model should be used in conjunction with | AbFsp(C1) and OrFsp(C1) Pl(I1,HP) | solution name. 2 | model type: van laar as formulated by Holland & Powell (macroscopic formulation) 3 | number of endmembers san abh an 1 1 0 | endmember flags 0. 1. 0.1 0 | compositional range and resolution of san 0. 1. 0.1 0 | compositional range and resolution of abh begin_excess_function w(san abh) 25100. -10.8 0.343 w(san an) 40000. 0. 0. w(abh an) 15000. 0. 0. end_excess_function 1 | 1 site entropy model 3 1. | 3 species, site multiplicity of 1 z(Ca) = 1 an z(K) = 1 san | van laar volumes follow: begin_van_laar_sizes alpha(san) 1.0 0.0 0.0 alpha(abh) 0.643 0.0 0.0 alpha(an) 1.0 0.0 0.0 end_van_laar_sizes begin_dqf_corrections dqf(abh) 570 -4.12 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model | See WARNING above for HP ASF Ternary Feldspar Fsp(C1) | solution name. To be used with Pl(I1,HP) 2 | model type: van laar as formulated by Holland & Powell (macroscopic formulation) 3 | number of endmembers an san abh 0 1 1 | endmember flags 0. 1.0 0.1 0 | compositional range and resolution of an 0. 1.0 0.1 0 | compositional range and resolution of san begin_excess_function w(san abh) 25100. -10.8 0.343 w(san an) 40000. 0. 0. w(abh an) 3100. 0. 0. end_excess_function 1 | 1 site entropy model 3 1. | 3 species, site multiplicity of 1 z(Ca) = 1 an z(K) = 1 san begin_van_laar_sizes alpha(san) 1.0 0.0 0.0 alpha(abh) 0.643 0.0 0.0 alpha(an) 1.0 0.0 0.0 end_van_laar_sizes begin_dqf_corrections dqf(an) 7030 -4.66 0 end_dqf_corrections end_of_model | end of model keyword -------------------------------------------------------- begin_model HP '03 CMP van Laar Calcite-Magnesite with Dolomite compound formation. oCcM(HP) 2 model type van laar. 3 number of endmembers cc mag odo 0 0 0 endmember flags 0. 1. 0.1 0 | range and increments on X(cc) 0. 1. 0.1 0 | range and increments on X(mag) begin_excess_function w(cc mag) 35000. 0. 0. w(cc odo) 10250. 0. 0. w(mag odo) 14950. 0. 0. end_excess_function 2 2 site (m1 m2) entropy model 2 0.5 2 species on m2, mutiplicity = 1/2 z(m2,Ca) = 1 cc + 1 odo 2 0.5 2 species on m1, mult. = 1/2 z(m1,Ca) = 1 cc begin_van_laar_sizes alpha(cc) 0.5 0.000546 0.0 alpha(mag) 1.0 0. 0.0 alpha(odo) 0.7 0. 0.0 end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Tourmaline model with no Li formulated as a hexary solution. NOTE: ffoit, mfoit, drav and shrl are linearly dependent 1 2 3 x y z _________________________ Mutliplicity 1 3 6 _________________________ Species: 1 drav Na Mg3 Al6 2 uvit Ca Mg3 MgAl5 3 mfoit vac Mg2Al Al6 4 shrl Na Fe3 Al6 5 olen Na Al3 Al6 6 ffoit vac Fe2Al Al6 ________________________ Vincent van Hinsberg Tour(V) | solution name. 2 | model type: margules in terms of endmember fractions 6 | 6 species mix on the chemical mixing site drav uvit mfoit | endmember names shrl olen ffoit | 0 0 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0. 1. .1 0 | range drav 0. .2 .1 0 | restricted range uvit 0. 1. .1 0 | range mfoit 0. 1. .1 0 | range shrl 0. 1. .1 0 | range olen ideal 3 | configurational entropy: 3 sites 3 1. | 3 species on X, 1 site per formula unit. z(na,x) = 1 drav + 1 shrl + 1 olen z(ca,x) = 1 uvit 3 3. | 3 species on Y, 3 sites per formula unit. z(mg,y) = 1 drav + 1 uvit + 2/3 mfoit z(al,y) = 1/3 mfoit + 1 olen + 1/3 ffoit 2 6. | 2 species on Z, 6 site per formula unit. z(al,z) = 1 drav + 5/6 uvit + 1 mfoit + 1 shrl + 1 olen + 1 ffoit end_of_model -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model dolomite order disorder model Site: 1 2 M1 M2 ____________ Mutliplicity 1 1 ____________ 1 adol Ca Mg Species: 2 bdol CaMg CaMg ___________ DoDo 2 model type margules. 2 number of endmembers adol bdol 0 0 endmember flags 0. 1. 0.1 0 | range and increments on X(cc) ideal 2 2 site (m1 m2) entropy model 2 0.5 2 species on m2, mutiplicity = 1/2 z(m2,Ca) = 1/2 bdol 2 0.5 2 species on m1, mult. = 1/2 z(m1,Mg) = 1/2 bdol end_of_model | end of model keyword begin_model magnesio-wuestite solution, after fabrichnaya '99 Wus(fab) 2 model type: Margules, macroscopic 2 2 endmembers per wus 0 0 | endmember flags 0.0 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(per wus) 24d3 -0. 0. | was 24d3 end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity = 1. z(mg) = 1 per end_of_model -------------------------------------------------------- begin_model akimotoite (ilmenite-structure) solution, after fabrichnaya '99 Aki(fab) 2 model type: Margules, macroscopic 3 3 endmembers cor aki faki 1 0 0 | endmember flags 0.0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(aki cor) 60000.0 0. 0. W(faki cor) 60000.0 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 aki z(fe) = 1 faki 2 1. 2 species on T site multiplicity = 1. z(al) = 1 cor end_of_model -------------------------------------------------------- begin_model | perovskite solution, after fabrichnaya '99 Pv(fab) 2 model type: Margules, macroscopic 3 3 endmembers aperov perov fperov 0 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(perov aperov) 49000.0 0. 0. W(fperov aperov) 49000.0 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 perov z(fe) = 1 fperov 2 1. 2 species on T site multiplicity = 1. z(al) = 1 aperov end_of_model -------------------------------------------------------- begin_model | perovskite solution, after oganov. the fppv and | appv endmembers are henry's law ss. Ppv(og) 2 model type: Margules, macroscopic 3 3 endmembers appv ppv fppv 0 0 0 | endmember flags 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision ideal 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 ppv z(fe) = 1 fppv 2 1. 2 species on T site multiplicity = 1. z(al) = 1 appv end_of_model -------------------------------------------------------- begin_model olivine solution O(stx) 2 model type: Margules, macroscopic 2 2 endmembers fo fa 0 0 | endmember flags 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(fo fa) 14400.0 0. 0. | was 7200. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 fo end_of_model -------------------------------------------------------- begin_model Wadleysite solution Wad(stx) 2 | model type: Margules, macroscopic 2 | 2 endmembers wad fwad 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(wad fwad) 3000. 0. 0. | was 1500. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 wad end_of_model -------------------------------------------------------- begin_model Ringwoodite solution Ring(stx) 2 model type: Margules, macroscopic 2 2 endmembers ring fring 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(ring fring) 7800. 0. 0. | was 3900. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 ring end_of_model -------------------------------------------------------- begin_model Spinel solution, fixed order! Sp(stx) 2 model type: Margules, macroscopic 2 2 endmembers sp herc 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(sp herc) 28800. 0. 0. | was 7200. end_excess_function 2 2 site entropy model 3 8. 3 species, site multiplicity = 8. z(B,mg) = 1/8 sp z(B,fe) = 1/8 herc 3 4. 3 species, site multiplicity = 4. z(B,mg) = 3/4 sp z(B,fe) = 3/4 herc end_of_model -------------------------------------------------------- begin_model Garnet solution. From Stixrude's endmember notation (parenthesis used to indicate disordered site populations), it appears the B site should be split into two M-sites for the 05 paper. Gt(stx) 2 model type: Margules, macroscopic 4 4 endmembers gr alm maj py 0 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution for X(gr), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(alm), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(py), imod = 0 -> cartesian subdivision ideal 3 3 site entropy model 3 3. 3 species, A site multiplicity = 3. z(A,ca) = 1 gr z(A,fe) = 1 alm 2 1. 2 species, M1 site multiplicity = 1. z(M1,Mg) = 1 maj 2 1. 2 species, M2 site multiplicity = 1. z(M1,Si) = 1 maj end_of_model -------------------------------------------------------- begin_model C2/c pyroxene solution C2/c(stx) 2 model type: Margules, macroscopic 2 2 endmembers c2/c fc2/c 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision ideal 1 1 site entropy model 2 4. 2 species, site multiplicity = 4. z(mg) = 1 c2/c end_of_model -------------------------------------------------------- begin_model Opx solution From Stixrude's endmember notation (parenthesis used to indicate disordered site populations), it appears disorder is assumed across all 4 M sites, for the 05-07 papers. Opx(stx) 2 model type: Margules, macroscopic 3 3 endmembers en fs ts 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution for X(en) 0. 1. .1 0 | range and resolution for X(fs) ideal 1 1 site entropy model 3 4. 3 species, M site multiplicity = 4. z(M,al) = 1/2 ts z(M,fe) = 1 fs end_of_model -------------------------------------------------------- begin_model Cpx solution, entropy model not specified by stixrude, additionally there is some ambiguity about his excess term, here i assume its Gex = X(M1,Ca)*X(M1,M)*W. Cpx(stx) 2 model type: Margules, macroscopic 3 3 endmembers di hed mdi 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution for X(di) 0. 1. .1 0 | range and resolution for X(hed) begin_excess_function W(mdi di) 52000.0 0. 0. W(mdi hed) 52000.0 0. 0. end_excess_function 2 2 site entropy model 2 2. 2 species, M1 site multiplicity = 2. z(M1,Mg) = 1 mdi 2 2. 2 species, M2 site multiplicity = 2. z(M2,Fe) = 1 hed end_of_model -------------------------------------------------------- begin_model Stixrude pers com (10/07) indicates Gex = X(M1,Ca)*X(M1,Mg)*W. JADC 12/07 Corrected excess function to include W(mdi hed), 9/08, JADC. Cpx(stx7) 2 model type: Margules, macroscopic 3 3 endmembers di hed mdi 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution for X(di) 0. 1. .1 0 | range and resolution for X(hed) begin_excess_function W(mdi di) 52600.0 0. 0. W(mdi hed) 52600.0 0. 0. end_excess_function 2 2 site entropy model 2 2. 2 species, M1 site multiplicity = 2. z(M1,Mg) = 1 mdi 2 2. 2 species, M2 site multiplicity = 2. z(M2,Fe) = 1 hed end_of_model -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model Ideal orthoamphibole, this model assumes Al is present on only two tetrahedral sites and all five M2 sites. I have no idea if this is correct! fgedr endmember stoichiometry corrected, T. Wagner 2/18/06. M1 M2 T ______________________ Mutliplicity 2 5 2 ______________________ 1 anth Mg Mg SiSi Species: 2 fanth Fe Fe SiSi 3 ged Mg Mg3Al2 AlAl 4 fged Fe Fe3Al2 AlAl ______________________ Dependent: fged = ged + 5/7*(fanth - anth) o-Amph | solution name 7 | model type: reciprocal, macroscopic 2 | 2 site reciprocal solution 2 2 | 2 species on each site anth fanth | endmember names, this order implies: ged fged_i | x(11)=x(mg); x(12) = x(fe); x(21) = x(si,t); x(22) = x(Al,t) 1 | 1 dependent endmember: fged_i = 1 ged + 5/7 fanth - 5/7 anth 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0. 1. .1 | range and resolution for X(Mg) on site 1 0 | subdivision scheme on site 2: imod = 0 -> cartesian 0. 1. .1 | range and resolution for 1-X(Tschermaks) on site 2 0 | subdivision scheme on site 2: imod = 0 -> cartesian ideal 3 | 3 site (M1, M2, T) conigurational entropy model 2 2. | 2 species on M1, 2 sites per formula unit. z(m1,mg) = 1 anth + 1 ged 2 2. | 2 species on T, 2 sites per formula unit. z(t,al) = 1 ged 3 1. | 3 species on M2, 1 site per formula unit. z(m2,mg) = 1 anth + 3/5 ged z(m2,fe) = 1 fanth end_of_model | end of model keyword -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model HP '96 Am Min, Non-ideal quasi ordered omphacite, i.e., compound formation only occurs for omph. This model should only be used in conjunction with Cpx(HP). The value of wdh appears discrepant with the value in HP '98. The interaction parameters here are from the Omphacite model distributed with the '00 Thermocalc program. JADC 2/03 Added ideal acm+cats, JADC, 1/06. NOTE: this model does not require Mg/(Fe+Mg) is the same across sites (as done in Thermocalc). CORRECTIONS: enthalpy of ordering corrected from -16 kJ to -3.5 kJ. JADC, Aug 20, 2003. Modified for non-ideal cats after Zeh et al. (2005) JMG, v. 23, p. 1-17. T. Wagner 2/18/06. Site: 1 2 3 4 5 M2a M2b M1a M1b T1 ____________________________________ Mutliplicity 1/2 1/2 1/2 1/2 1 ____________________________________ 1 Diopside Ca Ca Mg Mg Si Species: 2 Jadeite Na Na Al Al Si 3 Hedenbergit Ca Ca Fe2+ Fe2+ Si 4 Ca-Tschermaks Ca Ca Al Al Al 5 Acmite Na Na Fe3+ Fe3+ Si ___________________________________ Ordered Cpd: 6 Omphacite Na Ca Al Mg Si Omph(HP) 6 model type margules with compound formation 5 5 disordered endmembers di jd cats acm hed 1 | ordered species definition omph = 1/2 jd + 1/2 di enthalpy_of_formation = -35d2 0 0 0 0 0 | endmember flags | NOTE RESTRICTED RANGES: 0. 1. 0.1 0 | range and resolution of X(di) 0. 1. 0.1 0 | range and resolution of X(jd) 0. 1. 0.1 0 | range and resolution of X(cats) 0. 1. 0.1 0 | range and resolution of X(acm) begin_excess_function w(di jd) 26000. 0. 0. w(omph jd) 16000. 0. 0. w(omph di) 16000. 0. 0. w(omph hed) 17000. 0. 0. w(hed jd) 24000. 0. 0. w(di hed) 4000. 0. 0. | hp 98 give 2.5 kJ w(cats di) 7d3 0. 0. w(cats hed) 4d3 0. 0. end_excess_function 5 | 4 site entropy model (m1a, m1b, m2b, m2a) 2 0.5 | 2 species on m2a, mutiplicity = 1/2 | WARNING! fractions can only be used in the site | fraction definitions, do not use fractions to specify | site multiplicities in the above line. z(m2a,ca) = 1 di + 1 hed + 1 cats 2 0.5 2 species on m2b, mult. = 1/2 z(m2a,na) = 1 jd + 1 acm 4 0.5 4 species on m1a, mult = 1/2 z(m1a,mg) = 1 di z(m1a,fe2+) = 1 hed z(m1a,fe3+) = 1 acm 4 0.5 4 species on m1b, mult = 1/2 z(m1b,al) = 1 jd + 1 cats z(m1a,fe2+) = 1 hed z(m1a,fe3+) = 1 acm 2 1.0 2 species on T1 (perhaps Al should be disordered over T1-T2?) z(t1,al) = 1 cats end_of_model | end of model keyword -------------------------------------------------------- begin_model Mg-Fe-Ca-Al-Cr Garnet Hybrid Holland & Powell + Simon/PGP Cr Workshop (folk.uio.no/ninasim/Cr_results.html) CrGt 7 | model type: reciprocal 2 | 2 chemical site model 3 2 | 3 endmembers mix on site 1, 2 endmembers mix on site 2 uv_d fuv_d knor gr alm py 2 | 2 dependent endmembers uv_d = 1 gr + 1 knor - 1 py fuv_d = 1 alm + 1 knor - 1 py 0 0 0 0 0 0 | endmember flags 0 include it 1 drop it 0. 1. .1 0 | range and resolution for XCa on A 0. 1. .1 0 | range and resolution for XFe on A 0. 1. .1 1 | range and resolution for XCr on B begin_excess_function w(py gr) 33d3 0. 0. | w(py py gr) 59304. -10.5 .036 Ganguly excess paramters | w(py gr gr) 25860. -10.5 .174 end_excess_function 2 2 site entropy model 3 3. 3 species, site multiplicity of 3 z(Ca) = 1 gr + 1 uv_d z(Mg) = 1 py + 1 knor 2 2. 2 species, site multiplicity of 2 z(Al) = 1 gr + 1 alm + 1 py end_of_model -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model HP '96 Am Min, Non-ideal disordered cpx Note HP '98 give Wdh = 2500 j/mol. Configurational entropy model changed (corrected) from 1 site two 2 site model and model reformatted. D. Tinkham, 1/04. Added ideal acm+cats, JADC, 1/06. Modified for non-ideal cats after Zeh et al. (2005) JMG, v. 23, p. 1-17. T. Wagner 2/18/06. Added ideal Cr, PGP Workshop 4/12/06. (folk.uio.no/ninasim/Cr_results.html) Corrected z(m1,al) = 1 jd to z(m1,al) = 1 jd + 1 cats M. Caddick, 5/8/08. Cpx(HP) 2 | model type sf. 6 | number of endmembers ccrts cats jd acm hed di 0 0 0 0 0 0 | endmember flags | NOTE RESTRICTED RANGES: 0. 1. .1 1 | range and resolution of X(ccrts): imod = 1 -> assymmetric stretching 0. 1. .1 1 | range and resolution of X(cats): imod = 1 -> assymmetric stretching 0. 1. .1 0 | range and resolution of X(jd) 0. 1. .1 1 | range and resolution of X(acm): imod = 1 -> assymmetric stretching 0. 1. .1 0 | range and resolution of X(hed) begin_excess_function w(jd di) 26d3 0. 0. w(jd hed) 24d3 0. 0. w(di hed) 4d3 0. 0. w(cats di) 7d3 0. 0. w(cats hed) 4d3 0. 0. end_excess_function 3 | 3 site (M1, M2, T1) configurational entropy model 5 1. | 5 species on M1, 1 site per formula unit. z(m1,fe) = 1 hed z(m1,al) = 1 jd + 1 cats z(m1,fe3+) = 1 acm z(m1,cr) = 1 ccrts 2 1. | 2 species on M2, 1 site per formula unit. z(m2,na) = 1 jd + 1 acm 2 1. | 2 species on T1, ccrts not counted intentionally. z(t1,al) = 1 cats end_of_model | end of model keyword -------------------------------------------------------- begin_model Chromite/Spinel, Klemme et al. 2010. To use this model, the fcrm endmember must be excluded from thermodynamic stability calculations. 1 2 A B _____________ Mutliplicity 1 2 _____________ 1 sp Mg Al Species: 2 herc Fe Al 3 mcrm Mg Cr 4 fcrm_d Fe Cr Dependent: fcrm_d = herc + mcrm - sp CrSp | solution name. 7 | model type: Reciprocal 2 | 2 independent subcompositions 2 2 | 2 dimensions on each site mcrm fcrm_d sp herc 1 | 1 dependent endmember fcrm_d = 1 herc + 1 mcrm - 1 sp 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. | subdivision model for (binary) site 1 (A): 0. 1. .1 0 | range and resolution of X(Mg): imod = 0 -> cartesian | subdivision model for (binary) site 2 (B) 0. 1. .1 0 | range and resolution of X(Cr): imod = 0 -> cartesion begin_excess_function w(sp herc) 7d2 0 0 w(mcrm sp sp) 4208. 1.501 .321e-1 | from Oka et al CMP '84 w(mcrm sp) 19686 0.463 0.0183 | 19686 + 0.0183*P + 0.463*T; w(mcrm herc) 20d3 0. 0. | guessed solvus end_excess_function 2 | 2 site (a, b) configurational entropy model 2 1. | 2 species on a, 1 site per formula unit. z(a,fe) = 1 herc + 1 fcrm_d 2 2. | 2 species on b, 2 site per formula unit. z(b,cr) = 1 fcrm_d + 1 mcrm end_of_model -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model Eskolaite, PGP Workshop 4/12/06. (folk.uio.no/ninasim/Cr_results.html) Eskol(C) 2 model type: Margules, endmember fractions. 2 number of endmembers esk cor endmember names 0 0 | endmember flags 0. 1. 0.1 | range X(Cr) 0 | cartesian model begin_excess_function w(esk cor cor) -5755. .385 -.38e-1 | Chattejee et al '82 Am Min w(esk cor) 37484 4.334 0.0386 | Chattejee et al '82 Am Min end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity 2 z(Al) = 1 cor end_of_model -------------------------------------------------------- begin_model Ca-Amph(D) Dale et al, CMP 2000 140:353-362 amphibole model without Na, K, Ti or Mn solution. See Amph(DHP) or bAmph(DHP) for Na-Ca amphibole JADC 5/5/06. A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 2 _________________________________________ 1 tr Vac Mg Mg Ca Si_Si 2 ftr Vac Fe Fe Ca Si_Si 3 ts Vac Mg Al Ca Al_Si 4 fts Vac Fe Al Ca Al_Si 5 parg Na Mg Mg_Al Ca Al_Si 6 fparg Na Fe Fe_Al Ca Al_Si 9 mfets Vac Mg Fe3+ Ca Al_Si 10 ffets Vac Fe Fe3+ Ca Al_Si fparg = parg + 4/5 (ftr - tr) fts = ts + 3/5 (ftr - tr) Ca-Amph(D) | solution name 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 4 | 1 binary and 1 quinary tr ftr parg fparg_i ts fts_i mfets ffets_i 3 | number of dependent endmembers fparg_i = 1 parg + 4/5 ftr - 4/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr ffets_i = 1 mfets + 3/5 ftr - 3/5 tr 0 0 0 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 | range and resolution for X(Mg) on site 1 0 | subdivision scheme : imod = 0 -> cartesian for site 1 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2 0. 1. 0.1 0 | range and resolution for X(ts) on site 2 begin_excess_function W(parg tr) 29.3d3 0. 0. W(parg ts) 18.2d3 0. 0. W(parg ftr) 11.4d3 0. 0. W(ts tr) 20.8d3 0. 0. W(tr ftr) 11.4d3 0. 0. end_excess_function 4 | 4 site (A, M1, M2, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 1/2 ts + 1/2 fts_i + 1/2 parg + 1/2 mfets 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 mfets 4 2. | 4 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr z(m2,fe3+) = 1 mfets begin_dqf_corrections dqf(ts) 10000 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Na-Amph(D) Dale et al, CMP 2000 140:353-362 amphibole model without Ca, K, Ti or Mn solution. This model requires a fgl endmember, created as decribed by Powell's mdep paper. See Amph(DHP) for Na-Ca amphibole JADC 5/5/06. A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 2 _________________________________________ 7 gl Vac Mg Al Na Si_Si 8 fgl Vac Fe Al Na Si_Si 12 mrieb Vac Mg Fe3+ Na Si_Si 11 rieb Vac Fe Fe3+ Na Si_Si mrieb_i = 1 rieb + 3/5 tr - 3/5 ftr Na-Amph(D) | solution name 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 2 | 2 binaries gl fgl mrieb_i rieb 1 | number of dependent endmembers mrieb_i = 1 rieb + 1 gl - 1 fgl 0 0 0 0 | endmember flags. 0. 1.0 0.1 | range and resolution for X(Mg) on site 1 0 | subdivision scheme : imod = 0 -> cartesian for site 1 0. 1.0 0.1 | range and resolution for X(Al) on site 2 0 | subdivision scheme : imod = 0 -> cartesian for site 2 ideal 2 | 2 site (M1, M2) entropy model 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 gl 2 2. | 2 species on M2, 2 sites pfu z(m2,fe3+) = 1 rieb end_of_model begin_model magnesio-wuestite solution, stixrude EPSL 07 also xu et al EPSL 08 Wus(stx7) 2 model type: Margules, macroscopic 2 2 endmembers per wus 0 0 | endmember flags 0.0 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(per wus) 13d3 0. 0. end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity = 1. z(mg) = 1 per end_of_model -------------------------------------------------------- begin_model akimotoite (ilmenite-structure) solution, stixrude EPSL 07 Aki(stx7) 2 model type: Margules, macroscopic 3 3 endmembers cor aki faki 1 0 0 | endmember flags 0.0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function | Stixrude pers com (10/07) states | Gex = X(One_Site,Al)*X(One_Site,Mg)*W | JADC 12/07 W(aki cor) 66000. 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 aki z(fe) = 1 faki 2 1. 2 species on T site multiplicity = 1. z(al) = 1 cor end_of_model -------------------------------------------------------- begin_model | perovskite solution, stixrude epsl 07 also xu et al epsl 08 Pv(stx7) 2 model type: Margules, macroscopic 3 3 endmembers aperov perov fperov 0 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function | Stixrude pers com (10/07) | Gex = X(Big_Site,Al)*X(Big_Site,Mg)*W | JADC 12/07 W(perov aperov) 12000 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 perov z(fe) = 1 fperov 2 1. 2 species on T site multiplicity = 1. z(al) = 1 aperov end_of_model -------------------------------------------------------- begin_model olivine solution O(stx7) 2 model type: Margules, macroscopic 2 2 endmembers fo fa 0 0 | endmember flags 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(fo fa) 10.6d3 0 0. 0. | was 5.3 kJ/molar site end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 fo end_of_model -------------------------------------------------------- begin_model Wadleysite solution Wad(stx7) 2 | model type: Margules, macroscopic 2 | 2 endmembers wad fwad 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(wad fwad) 12.2d3 0. 0. | 6.1 kJ/site end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 wad end_of_model -------------------------------------------------------- begin_model Ringwoodite solution Ring(stx7) 2 model type: Margules, macroscopic 2 2 endmembers ring fring 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(ring fring) 7d3 0. 0. | 3.5 kJ/site end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 ring end_of_model -------------------------------------------------------- begin_model Spinel solution, fixed order! Sp(stx7) 2 model type: Margules, macroscopic 2 2 endmembers sp herc 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(sp herc) 20d3 0. 0. | was 5 kJ/site end_excess_function 2 2 site entropy model 3 8. 3 species, site multiplicity = 8. z(B,mg) = 1/8 sp z(B,fe) = 1/8 herc 3 4. 3 species, site multiplicity = 4. z(B,mg) = 3/4 sp z(B,fe) = 3/4 herc end_of_model -------------------------------------------------------- begin_model Spinel after White, RW, Powell, R & Clarke, GL (JMG, 2002) This model has two fake sites, each with a mulitplicity of one. Fe3+ Al and Ti mix on the fake A site, and Mg-Fe2+ mix on the fake B site Replaces Sp(WPH), JADC Mar 5, 2009. A B _____________ Mutliplicity 1 1 _____________ 1 sp Al Mg Species: 2 herc Al Fe2+ 3 usp Ti Fe2+ 4 mt Fe3+ Fe2+ Sp(WPC) 2 | model type: Ideal or Margules 4 | 4 endmembers sp herc usp mt 0 0 0 0 | endmember flags 0. 1. .1 0 | X(sp) subdivision range, imod = 0 -> cartesian 0. 0.2 .1 1 | X(herc) subdivision range, imod = 1 -> assymmetric stretching 0. 0.2 .1 1 | X(usp) subdivision range, imod = 1 -> assymmetric stretching begin_excess_function W(herc mt) 18.5d3 0 0 W(herc usp) 27d3 0 0 W(sp mt) 40d3 0 0 W(sp usp) 30d3 0 0 end_excess_function 2 2 site entropy model, see comments above 3 1. 3 species, site multiplicity of 1 z(a,Fe3+) = 1 mt z(a,Ti) = 1 usp 2 1. 2 species, site multiplicity of 1 z(b,Mg) = 1 sp end_of_model -------------------------------------------------------- begin_model Ilmenite after White, RW, Powell, R, Holland, TJB & Worley, BA (2000, JMG) A B _____________________ Mutliplicity 1 1 _____________________ 1 oilm Fe Ti Species: 2 dilm FeTi FeTi 3 hem Fe3+ Fe3+ 4 pnt Mn Ti 5 geik Mg Ti Model entered by Lucie Tajcamanova, Apr 14, 2008. NOTES: Requires that the endmember ilm_nol be created from the endmember ilm in the thermodynamic data file by eliminating the Landau transition from the ilm endmember, additionally the following make definitions must be present in the thermodynamic file. oilm = ilm_nol -13608. 9.426 0 dilm = ilm_nol 1993. -2.1 0 Both the ilm and ilm_nol endmembers should be excluded from calculations to avoid conflicts with this model. For Mg and Mn solution this model differs from the Thermocalc version in that Mg and Mn are confined to the A-site, in contrast in Thermocalc the "equipartition" assumption is used to allocate Mg and Mn to the B-site in proportion to the Ferrous iron intersite partitioning. Consequently, this model predicts lower Mn and Mg solubility in ilmenite than the Thermocalc version of the model. JADC, Oct 29, 2011. Added W(pnt oilm). Felix Gervais, Oct 29, 2011. Ilm(WPH) 2 | macroscopic 5 | 5 endmembers pnt geik hem oilm dilm 0 0 1 0 0 | endmember flags 0. .2 0.1 1 | subdivision range, X(pnt), imod = 1 -> assymetric 0. .2 0.1 1 | subdivision range, X(geik), imod = 1 -> assymetric 0. 1. 0.1 0 | subdivision range, X(hem), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | subdivision range, X(oilm), imod = 0 -> cartesian subdivision begin_excess_function W(oilm dilm) 15600 0 0 W(oilm hem) 26600 0 0 W(dilm hem) 11000 0 0 W(oilm pnt) 1760 0 0 end_excess_function 2 | 2 site model 4 1. | A - Fe2+ Mn Fe3+ Mg z(A,Mg) = 1 geik z(A,mn) = 1 pnt z(A,fe3+) = 1 hem 3 1. | B - Fe3+ Ti4+ Fe2+ z(b,fe3+) = 1 hem z(b,fe2+) = 1/2 dilm end_of_model -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model CPX in CMASCH marbles (di-en-cats), hence enstatite endmember added. Entered by A Proyer, Aug 27, 2008. based on: HP '96 Am Min, Non-ideal disordered cpx Note HP '98 give Wdh = 2500 j/mol. Configurational entropy model changed (corrected) from 1 site two 2 site model and model reformatted. D. Tinkham, 1/04. Modified for non-ideal cats after Zeh et al. (2005) JMG, v. 23, p. 1-17. T. Wagner 2/18/06. Cpx(m) 2 | model type sf. 3 | number of endmembers en cats di 0 0 0 | endmember flags | NOTE RESTRICTED RANGES: 0. 1. .1 1 | range and resolution of X(en): imod = 1 -> assymmetric stretching 0. 1. .1 1 | range and resolution of X(cats): imod = 1 -> assymmetric stretching begin_excess_function w(en cats) 24d3 0. 0. w(en di) 24d3 0. 0. w(cats di) 7d3 0. 0. end_excess_function 2 | 2 site (M1, M2) configurational entropy model 2 1. | 2 species on M1, 1 site per formula unit. z(m1,al) = 1 cats 2 1. | 2 species on M2, 1 site per formula unit. z(m2,mg) = 1 en begin_dqf_corrections dqf(en) 8100 -4.5 0 end_dqf_corrections end_of_model | end of model keyword -------------------------------------------------------- begin_model Olivine in marble; from TC-solution model: Ca only on M2 Entered by A Proyer, Aug 27, 2008. Ol(m) 2 | model type: Ideal or Margules 2 | 2 endmembers fo mont 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(fo mont) 24000. 0. 0. end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity of 1 z(Ca) = 1 mont end_of_model -------------------------------------------------------- begin_model Pl(stx8) | Xu et al. EPSL 08, to be used with the stx08ver.dat data generated from that paper. 2 | model type: Margules or Ideal 2 | # of endmembers ab an 0 0 | endmember flags 0. 1. .1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(an ab) 26d3 0. 0. end_excess_function 1 | 1 site molecular model: 2 1. z(Na) = 1 ab end_of_model -------------------------------------------------------- begin_model Spinel solution, fixed order! Sp(stx8) 2 model type: Margules, macroscopic 2 2 endmembers sp herc 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(sp herc) 29.6d3 0. 0. end_excess_function 2 2 site entropy model 3 8. 3 species, site multiplicity = 8. z(B,mg) = 1/8 sp z(B,fe) = 1/8 herc 3 4. 3 species, site multiplicity = 4. z(B,mg) = 3/4 sp z(B,fe) = 3/4 herc end_of_model -------------------------------------------------------- begin_model olivine solution O(stx8) 2 model type: Margules, macroscopic 2 2 endmembers fo fa 0 0 | endmember flags 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(fo fa) 9d3 0 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 fo end_of_model -------------------------------------------------------- begin_model Wadleysite solution Wad(stx8) 2 | model type: Margules, macroscopic 2 | 2 endmembers wad fwad 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(wad fwad) -8.6d3 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 wad end_of_model -------------------------------------------------------- begin_model Ringwoodite solution Ring(stx8) 2 model type: Margules, macroscopic 2 2 endmembers ring fring 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(ring fring) 8d3 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 ring end_of_model -------------------------------------------------------- begin_model Opx solution From Stixrude's endmember notation (parenthesis used to indicate disordered site populations), it appears disorder that in the '08 papers the M sites are now split. Opx(stx8) 2 model type: Margules, macroscopic 4 4 endmembers odi en fs ts 0 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution for X(odi) 0. 1. .1 0 | range and resolution for X(en) 0. 1. .1 0 | range and resolution for X(fs) begin_excess_function W(odi ts) 43.8d3 0. 0. W(odi en) 43.8d3 0. 0. end_excess_function 2 |2 site entropy model, Al on M2 is associated with Mg on M1 and |Ca on M1 is associated with Mg on M2, so reduce M2 site model to |a two species model? 3 2. 3 species, M1 site multiplicity = 2. z(M1,Ca) = 1 odi z(M1,Fe) = 1 fs 3 2. 3 species, M2 site multiplicity = 2. z(M2,Al) = 1 ts z(M2,Fe) = 1 fs end_of_model -------------------------------------------------------- begin_model Cpx(stx8) 2 model type: Margules, macroscopic 5 # of endmembers jd di hed mdi cts 0 0 0 0 0 endmember flags 0. 1. .1 0 | range and resolution for X(jd) 0. 1. .1 0 | range and resolution for X(di) 0. 1. .1 0 | range and resolution for X(hed) 0. 1. .1 0 | range and resolution for X(mdi) begin_excess_function W(mdi di) 49d3 0. 0. | Mg-Ca W(mdi hed) 49d3 0. 0. W(mdi cts) 49d3 0. 0. W(jd di) 486d2 0. 0. | Na-Ca W(jd hed) 486d2 0. 0. W(jd cts) 486d2 0. 0. end_excess_function 2 2 site entropy model 3 2. 3 species, M1 site multiplicity = 2. z(M1,Mg) = 1 mdi z(M1,Na) = 1 jd 3 2. 3 species, M2 site multiplicity = 2. z(M2,Fe) = 1 hed z(M2,Al) = 1 jd + 1 cts end_of_model -------------------------------------------------------- begin_model akimotoite (ilmenite-structure) solution Aki(stx8) 2 model type: Margules, macroscopic 3 3 endmembers cor aki faki 1 0 0 | endmember flags 0.0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(aki cor) 42000. 0. 0. W(faki cor) 52000. 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 aki z(fe) = 1 faki 2 1. 2 species on T site multiplicity = 1. z(al) = 1 cor end_of_model -------------------------------------------------------- begin_model Garnet solution, from Xu et al '08. Gt(stx8) 2 model type: Margules, macroscopic 5 # of endmembers gr alm maj py jmaj 0 0 0 0 0 endmember flags 0. 1. .1 0 | range and resolution for X(gr), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(alm), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(maj), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(py), imod = 0 -> cartesian subdivision begin_excess_function W(gr maj) 45000. 0. 0. W(gr py) 45000. 0. 0. end_excess_function 2 # of sites for configurational entropy model 4 0. 4 independent species, A site multiplicity = 0 => variable multiplicity, means need molar amounts of all species n(A,ca) = 3 gr n(A,fe) = 3 alm n(A,na) = 2 jmaj n(A,mg) = 3 py + 3 maj 3 2. 3 species, B site multiplicity = 2, this is a peculiarity in stixrude's model because he sets r[Al,jmj,B]=2 z(B,Mg) = 1/2 maj z(B,Si) = 1/2 maj end_of_model -------------------------------------------------------- begin_model Ppv(stx8) 2 model type: Margules, macroscopic 3 3 endmembers appv ppv fppv 0 0 0 | endmember flags 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(ppv appv) 21000. 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 ppv z(fe) = 1 fppv 2 1. 2 species on T site multiplicity = 1. z(al) = 1 appv end_of_model -------------------------------------------------------- begin_model Ca-Ferrite solution. CF(stx8) 2 model type: Margules, macroscopic 3 3 endmembers mfer ffer nfer 0 0 0 0. 1. .1 0 0. 1. .1 0 ideal 2 number of sites for the entropy model 3 1. 3 species, A site multiplicity = 1. z(A,fe) = 1 ffer z(A,mg) = 1 mfer 2 1. al-si mixing on only one "T" site. z(M,Si) = 1 nfer end_of_model -------------------------------------------------------- begin_model Fe2+-Fe3+-Mg pumpellyite Massonne & Willner (EJM, 2008) Ideal Pu(M) 2 | model type: Ideal or Margules 3 | 3 endmembers pump fpum ffpu 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Mg) 0. 1. 0.1 0 | range and resolution for X(Fe2), 0 -> cartesian ideal 1 1 site entropy model 3 1. 3 species, site multiplicity = 1. z(Fe) = 1 fpum z(Mg) = 1 pump end_of_model -------------------------------------------------------- begin_model Low Temperature Amphibole from Massonne & Willner (EJM, 2008) Act(M) 2 | model type: Ideal or Margules 4 | 4 endmembers tr acti gl mrie 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Mn) 0. 1. 0.1 0 | range and resolution for X(Fe) 0. 1. 0.1 0 | range and resolution for X(Al) begin_excess_function w(tr gl) 27000. 0. 0. w(acti gl) 27000. 0. 0. w(tr mrie) 15000. 0. 0. w(gl mrie) 15000. 0. 0. end_excess_function 1 1 site entropy model 4 2. 4 species, site multiplicity = 2. z(Fe) = 0 + 1 acti z(Mg) = 0 + 1 tr z(Al) = 0 + 1 gl end_of_model -------------------------------------------------------- begin_model Fe2-Mg-Mn Stilpnomelane from Massonne & Willner (EJM, 2008) Stlp(M) 2 | model type: Ideal or Margules 3 | 3 endmembers stlp mstl mnsp 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Mg) 0. 1. 0.1 0 | range and resolution for X(Fe2) ideal 1 1 site entropy model 3 48. 3 species, site multiplicity = 48. z(Fe) = 0 + 1 stlp z(Mg) = 0 + 1 mstl end_of_model -------------------------------------------------------- begin_model Margarite-Muscovite-Paragonite from Massonne & Willner (EJM, 2008) Mica(M) 2 | model type: Ideal or Margules 3 | 3 endmembers ma mu pa 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Ca) 0. 1. 0.1 0 | range and resolution for X(K) begin_excess_function w(ma ma pa) 18200. 0. 0. w(pa pa ma) 10000. 0. 0. W(mu pa pa) 19456.0 1.65440 -.456100 W(mu mu pa) 12230.0 0.710440 0.665300 w(ma mu) 35000. 0. 0. end_excess_function 1 1 site entropy model 3 1. 2 species, site multiplicity = 1. z(Ca) = 0 + 1 ma z(K) = 0 + 1 mu end_of_model -------------------------------------------------------- begin_model Mn-Fe-Mg Carpholite from Massonne & Willner (EJM, 2008) Carp(M) 2 | model type: Ideal or Margules 3 | 3 endmembers mnca fcar mcar 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Mn) 0. 1. 0.1 0 | range and resolution for X(Fe) ideal 1 1 site entropy model 3 1. 3 species, site multiplicity = 1. z(Fe) = 0 + 1 fcar z(Mg) = 0 + 1 mcar end_of_model -------------------------------------------------------- begin_model fe-mg sudoite from Massonne & Willner (EJM, 2008) Sud(M) 2 | model type: Ideal or Margules 2 | 2 endmembers fsud sud 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Fe) ideal 1 1 site entropy model 2 3. 2 species, site multiplicity = 3. z(Fe) = 0 + 1 fsud end_of_model -------------------------------------------------------- begin_model Amphibole from Massonne & Willner (EJM, 2008) See notes for TrTsPg (above). GlTrTsMr 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 4 | 1 binary and 1 quaternary tr ftr mrie fmrie_i ts fts_i gl fgl_i 3 | number of dependent endmembers fmrie_i = 1 mrie + 3/5 ftr - 3/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr fgl_i = 1 gl + 3/5 ftr - 3/5 tr 0 0 0 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2 0. 1.0 0.1 0 | range and resolution for X(ts) on site 2 begin_excess_function W(mrie gl) 0d3 0. 0. W(mrie tr) 0d3 0. 0. W(mrie ftr) 0d3 0. 0. W(gl tr) 77d3 0. 0. W(gl ftr) 83d3 0. 0. W(ts tr) 20d3 0. 0. W(ts ftr) -38d3 0. 0. W(tr ftr) 10d3 0. 0. end_excess_function 4 | 4 site (M1, M2, M4, T1) entropu model 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 0 + 1 ts 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 0 + 1 tr + 1 ts + 1 mrie + 1 gl 3 2. | 3 species on M2, 2 sites pfu z(m2,mg) = 0 + 1 tr z(m2,fe) = 0 + 1 ftr 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 0 + 1 gl begin_dqf_corrections dqf(ts) 10000 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Magnesite-Siderite-Calcite-Rhodochrosite Carb(M) 2 | model type: Ideal or Margules 4 | 4 endmembers cc mag sid rhc 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Ca) 0. 1. 0.1 0 | range and resolution for X(Mg) 0. 1. 0.1 0 | range and resolution for X(Fe) begin_excess_function w(cc mag) 35000. 0. 0. w(cc cc sid) 13500. 0. 0. w(cc sid sid) 21000. 0. 0. w(mag sid) 4000. 0. 0. | hp '98 give 4 kJ w(mag rhc) 20000. 0. 0. w(sid rhc) 4000. 0. 0. end_excess_function 1 1 site entropy model 4 1. 4 species, site multiplicity = 1. z(Ca) = 0 + 1 cc z(Mg) = 0 + 1 mag z(Fe) = 0 + 1 sid end_of_model -------------------------------------------------------- begin_model | keyword indicating beginning of a solution model Ti-Fe-Mg-Mn-Biotite with compound formation, Powell and Holland '99 Am Min, extended for Mn-solution. NOTES: * This model will only function for the MnASH and FASH subsystems if MGO is also used as a component. * Stoichiometric definition of the mnts_i endmember corrected, 2/04. JADC * Limits added 5/6/2011. JADC. 1 2 3 M1 M2 T2 _________________________ Mutliplicity 1 2 2 _________________________ Dependent: 1 mtbi Ti MnV AlSi Dependent: 2 ftbi Ti FeV AlSi 3 tbi Ti MgV AlSi 4 MnTs Al Mn AlAl Dependent: 5 Sdph Al Fe AlAl 6 East Al Mg AlAl 7 MnBi Mn Mn AlSi Species: 8 Ann Fe Fe AlSi 9 Phl Mg Mg AlSi ________________________ Ordered Cpd: 10 Obi Fe Mg AlSi | Comments can be placed before character data within a solution | model as long as they are preceded by the comment marker "|", | in general comments should not be placed before numerica data, | but they can be written following numeric data on the same line. TiBio(HP) | solution name. 8 | model type: Margules with dependent endmembers and speciation. 2 | the number of independent subcompositions, reciprocal solution if > 1. 3 3 | 3 species on site 1, 2 species on site 2. this line (see also Sect 1.3.1 | and Sect 4 [READ 3] in vdoc.pdf) defines the geometric | shape of the composition space, in this case a 4 dimensional prism. | the following lines list the endmembers that define the 9 vertices of | this prism. the geometry can be understood by noting that although | biotite as 3 subcompositions (refer to the occupancy table above), the | site populations on all 3 sites are determined if the population on any | 2 crystallographic sites. the independent "chemical" subcompositions need | not correspond to the actual crystallographic sites, but in this case | M2 and M1 can be identified as sites 1 and 2, respectively. Thus the | species that mix on site 1 are Mg-Fe-Mn, and the species that mix on | site 2 are M2+, Al, Ti. The identity of M2+ on site 2 is determined by | the identity of the M2+ cation on site 1, and the vacancy population on | site 1 is determined by the Ti concentration on site 2. If the endmember | with species i on site 1 and species j on site 2 is written as endmember ij, | then the 9 endmembers will be read in the order: 11, 21, 31, 12, 22, 32, | 13, 23, 33. mtbi_i ftbi_i tbi mnts_i sdph_i east | endmember names (refer to the above comment, see also Sect 4 [Read 4] in mnbi ann phl | vdoc.pdf). 1 | ordered species: | model types 6 and 8 require data defining the | properties of an ordered "species". this species | is defined as a stoichiometric combination of | two independent endmembers and the enthalpy of | formation of the ordered species from the | these independent endmbers. the format for this | data is | name = num_1 * name_1 + num_2 * name_2 text = enthalpy | where name is the arbitrary name of the ordered | species, num_j is a number or fraction (i.e., two | numbers separated by a '/') and name_j is the | name of a valid endmember. text is arbitrary and | enthalpy is the enthalpy of formation of the ordered species. obi = 2/3 phl + 1/3 ann enthalpy_of_formation = -10.73d3 begin_limits obi = -3 + 3 ann + 1 obi delta = 3 z(M2,Fe) obi = - 3 phl - 3/2 tbi -3 east -2 obi delta = 3 z(M2,Mg) obi = - 3/2 ann - 1/2 obi delta = 3/2 z(M1,Fe) obi = -3/2 + 3/2 tbi + 3/2 phl +1 obi delta = 3/2 z(M1,Mg) end_limits 4 | 4 dependent endmembers | model types 7 and 8 (reciprocal solutions) use | internal endmembers that are defined as a | stoichiometric combination of the other endmembers. | the names of these endmembers are arbitrary, but | here dependent endmembers are highlighted by the | suffix "_i", this also serves to distinguish the | endmembers from real equivalents that may be | present in the thermodynamic data file. | the format of this data is | name = num_1 * name_1 + num_2 * name_2 | where num_j is a number or fraction (i.e., two | numbers separated by a '/') and name_j is the | name of a valid endmember. | for theoretical reasons that are too complicated to | explain here (see Powell & Holland 2001), if an ordered | species (e.g., obi) is included in a reciprocal solution | then any dependent endmembers that can be defined in terms | of this dependent endmember must be so defined. | i.e., here sdph_i must be defined in terms of obi, but | the mnts_i endmember can only be written in terms of | mnbi and phl. mnts_i = 1 east + 2/3 mnbi - 2/3 phl sdph_i = 1 east + 1 ann - 1 obi mtbi_i = 1 tbi + 1/3 mnbi - 1/3 phl ftbi_i = 1 tbi + 1/2 ann - 1/2 obi 0 0 0 0 0 0 0 0 0 | endmember flags: if 0 the endmember is considered to be part of the solution. | subdivision model for (ternary) site 1 (M2): 0. .2 .1 1 | range and resolution of X(Mn) 0. 1. .1 0 | range and resolution of X(Fe) | subdivision model for (ternary) site 2 (M1) 0. 1. .1 1 | range and resolution of X(Ti,M1) 0. 1. .1 0 | range and resolution of X(Al,M1) | the foregoing lines define the pseudocompound compositions generated | on each "chemical" mixing site of the solution (Sect 4 [READ 6] vdoc.pdf). | for each site the compositional "range" of c-1 species (c is the number of | species on the site as defined in READ 3) is specified as well as a scheme | for interpreting the range. each range is defined by 3 numbers XMIN, XMAX, | and XINC, and the scheme is specified by an integer (IMD) written after the | c-1 ranges. The simplest scheme is cartesian, in which case IMD = 0 and the | the XMIN, XMAX, and XINC indicate the range of compositions (from XMIN to XMAX) | of the respective c-1 species and the compositional spacing (XINC) of the | pseudocompounds. As entered above, the subdivision scheme will generate | pseudocompounds with X(Mn) on site 1 from 0 to 0.20 mol at 0.01 mol increments | for each X(Mn) isopleth, compounds will be generated with X(Fe) from 0 to 1-X(Mn), | where "0" and "1" correspond to XMIN and XMAX in the range for the second species | on site 1, and X(Mg) = 1 - X(Fe) - X(Mn). | Alternative subdivision shemes detailed in vdoc.pdf, may be useful for specialized | applications, e.g., creating models with variable compositional resolution. | By restricting the ranges specified in a model it is possible to focus pseudocompounds | over a particular portion of a solutions composition space, such focusing can be | computationally advantageous when it is known a priori that only a limited range of | compositions can be stable, but it should be undertaken with caution because the | results are not always easy to anticipate. | The primary difficulty in restricting compositional ranges is that the user | can explicitly control the composition of only c-1 compositions since the | cth composition is determined by difference. Additionally the subdivision ranges | are applied sequentially, with compositions that violate mass balance (sum of | compositions > 1) eliminated as they occur. Thus, in general, users have the greatest | control on the composition of the first species on a site and no direct control | on the composition of the last species. Since in most cases it is desired to | restrict the composition of dilute species, endmembers should be specified | (READ 4) so that the dilute species is not the last species. begin_excess_function | format is W(e1 e1 e2 ...) num1 num2 num3 | where the excess parameter = num1 + num2*T + num3*P | and is multiplied by y(e1)*y(e1)*y(e2)... W(phl ann) 9000. 0. 0. W(phl east) 10000. 0. 0. W(phl obi) 3000. 0. 0. W(phl tbi) -10000. 0. 0. W(ann east) -1000. 0. 0. W(ann obi) 6000. 0. 0. W(ann tbi) 12000. 0 0 W(obi east) 10000. 0. 0. end_excess_function 3 | Configurational entropy: 3 sites, M1, M2, T1. 5 1. | 4 species on M1, 1 site per formula unit. | If a mixing site involves n species, VERTEX | expects to find n-1 site fraction definitions | in terms of the endmember fractions. These | definitions have the general format: | text = num + num1 * name1 + num2 * name2 | where num is a number or fraction (i.e., two | numbers separated by a '/') and name is the | name of a valid endmember. | WARNING! fractions can only be used in the site | fraction definitions, do not use fractions to specify | site multiplicities in the above line. z(m1,fe) = 1 ann + 1 obi z(m1,mg) = 1 phl z(m1,mn) = 1 mnbi z(m1,al) = 1 east 4 2. | 4 species on M2, 2 sites per formula unit. z(m2,fe) = 1 ann z(m2,mn) = 1 mnbi z(m2,vac) = 1/2 tbi 2 2. | 2 species on T1, 2 site per formula unit. z(t1,al) = 1/2 + 1/2 east end_of_model -------------------------------------------------------- begin_model Mica(SGH): Non-reciprocal version of white mica model Mica(SGH1) after: Smye et al (JMG, 2011, 28:753-768) This model requires the make definition: fmu = 1 mu + 1/2 hem - 1/2 cor -30d3 0 0 ma_dqf = 1 ma 3d3 0 0 in the thermodynamic data file (e.g., hp02ver.dat), additionally the endmember "ma" must be exlcuded from any calculations that employ this model. WARNING! The computed phase relations in Fig 1 of Smye et al (2011) were computed by imposing the tetrahedral silica content. Thus it is unlikely that the model accurately predicts silica content. JADC, 19/09/11 A M2a M2b T1 M1 ___________________________________ Mutliplicity 1 1 1 2 1 ___________________________________ 1 mu K Al Al AlSi _ 2 pa Na Al Al AlSi _ 3 ma_dqf Ca Al Al AlAl _ 4 cel K Mg Al SiSi _ 5 fcel K Fe Al SiSi _ 6 fmu K Al Fe3+ AlSi _ Mica(SGH) 2 | model type: macroscopic. 6 | 6 endmembers mu pa ma_dqf cel fmu fcel 0 0 0 0 0 0 0 0 | endmember flags | subdivision model 0. 1. .1 0 | range and resolution of X(mu), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(pa), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(ma_dqf), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(cel), imod = 0 -> cartesian subdivision 0. 0.3 .1 1 | range and resolution of X(fmu), imod = 1 -> asymmetric transform subdivision begin_excess_function W(mu pa) 10120. 3.4 0.353 W(mu ma_dqf) 35000. 0. 0. W(mu cel) 0. 0. 0.2 W(mu fcel) 0. 0. 0.2 W(pa cel) 45000. 0. 0.25 W(ma_dqf cel) 40000. 0. 0. W(pa fcel) 45000. 0. 0.25 W(ma_dqf fcel) 40000. 0. 0. W(pa ma_dqf) 15000. 0. 0. W(pa fmu) 30000. 0. 0. W(ma_dqf fmu) 35000. 0. 0. end_excess function 4 | Configurational entropy: 4 sites, A, M2a, M2b, T1. 3 1. | 3 species on A, 1 site per formula unit. z(a,k) = 1 mu + 1 cel + 1 fcel + 1 fmu z(a,na) = 1 pa 3 1. | 3 species on M2a, 1 site per formula unit. z(m2a,al) = 1 mu + 1 pa + 1 ma_dqf + 1 fmu z(m2a,mg) = 1 cel 2 1. | 2 species on M2b, 1 site per formula unit. z(m2b,fe) = 1 fmu 2 2. | 2 species on T1, 2 sites per formula unit. z(t,al) = 1/2 mu + 1/2 pa + 1/2 fmu + 1 ma_dqf begin_van_laar_sizes alpha(mu) 0.63 0. 0. alpha(pa) 0.37 0. 0. alpha(ma_dqf) 0.63 0. 0. alpha(cel) 0.63 0. 0. alpha(fmu) 0.63 0. 0. alpha(fcel) 0.63 0. 0. end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Mn-Fe-Mg-Fe3+ Chloritoid after: Smye et al (JMG, 2011, 28:753-768) This model requires the make definition: octd = 1 fctd + 1/4 hem - 1/4 cor 125d2 0 0 in the thermodynamic data file (e.g., hp02ver.dat). NOTE: this version is formulated with 5 Oxygen formula unit, NOT the 10 oxygen formula unit used by Smye et al (2011). JADC, 19/09/11 M1a M1b _______________ Mutliplicity 1/2 1 _______________ mctd Al Mg fctd Al Fe mnctd Al Mn octd Fe3+ Fe Ctd(SGH) 2 | model type 4 | endmembers octd mnctd fctd mctd 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Fe3+), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(Mn), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(mctd fctd ) 500. 0. 0. w(mctd mnctd) 500. 0. 0. w(fctd mnctd) 500. 0. 0. end_excess_function 2 2 site entropy model 2 .5 2 species on M1a, site multiplicity = 1/2 z(Fe) = 1 octd 3 1. 3 species on M1b, site multiplicity = 1 z(Mn) = 1 mnctd z(Mg) = 1 mctd end_of_model -------------------------------------------------------- begin_model Mn-Fe-Mg-Fe3+ Carpholite after: Smye et al (JMG, 2011, 28:753-768) This model requires the make definitions: ocar = 1 fcar + 1/2 hem - 1/2 cor 45d3 0 0 mncar = 1 mcar + 1 mang - 1/2 cor 30d3 0 0 in the thermodynamic data file (e.g., hp02ver.dat). JADC, 19/09/11 M2 M1 _______________ Mutliplicity 1 1 _______________ mcar Al Mg fcar Al Fe mncar Al Mn ocar Fe3+ Fe Carp(SGH) 2 | model type 4 | endmembers mncar ocar fcar mcar 0 0 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(mcar fcar ) 1d3 0. 0. w(mcar mncar) 1d3 0. 0. w(fcar mncar) 1d3 0. 0. end_excess_function 2 2 site entropy model 2 .5 2 species on M2, site multiplicity = 1 z(Fe) = 1 ocar 3 1. 3 species on M1, site multiplicity = 1 z(Mn) = 1 mncar z(Mg) = 1 mcar end_of_model -------------------------------------------------------- begin_model Ca-Fe2+-Mg-Al-Fe3+ Garnet model after White, Pomroy, Powell & Holland (JMG, 2005) When originally entered 9/20/11, this model was formulated (incorrectly) in terms of andradite, it was corrected to use the khoharite endmember 10/24/11. JADC In calculations that use this model, the andradite endmember ("andr") in the Holland and Powell data base must be excluded. This model also requires the following make definition for khoharite in the thermodynamic data file: kho = 1 py - 1 gr + 1 andr 40d3 0 0 1 2 X Y _____________ Mutliplicity 3 2 _____________ Dependent: fkho_i Fe Fe3+ Dependent: kho Mg Fe3+ Dependent: fmn_i Mn Fe3+ andr_i Ca Fe3+ spss Mn Al alm Fe Al py Mg Al gr Ca Al ____________ Gt(WPPH) 7 | model type: Margules with dependent endmembers . 2 | the number of independent subcompositions, reciprocal solution if > 1. 4 2 | 4 species on site 1, 2 species on site 2. | M2 and M1 can be identified as sites 1 and 2, respectively. the | species that mix on site 1 are Mn-Mg-Fe-Ca and the species that mix on | site 2 are Al-Fe3+. spss alm py gr | endmember names fmn_i fkho_i kho andr_i 3 | number of dependent endmembers andr_i = 1 kho + 1 py -1 gr fkho_i = 1 kho + 1 alm -1 py fmn_i = 1 kho + 1 spss -1 py 0 0 0 0 0 0 0 0 | endmember flags 0. .2 0.1 1 | imod = 0 -> cartesian subdivision (xmn) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xfe) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xmg) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision x(fe3+) on Y begin_excess_function w(alm py) 2.5d3 0. 0. w(alm kho) 22.5d3 0. 0. w(py gr) 33d3 0. 0. w(gr kho) -7d3 0. 0. w(spss kho) 20d3 0. 0. end_excess_function 2 |2 site entropy model 4 3. |4 species, site multiplicity 3 z(x,mn) = 1 spss z(x,fe) = 1 alm z(x,ca) = 1 gr 2 2. |2 species, site multiplicity 2 z(y,al) = 1 spss + 1 alm + 1 py + 1 gr end_of_model -------------------------------------------------------- begin_model CLINOAMPHIBOLE: Diener et al, JMG 2011 25:631-656, modified from Diener et al, JMG 2008 2011 Model revisions entered by MJC, Oct 31, 2011. --------------------------------------------- NOTE to use this model the following endmembers must be specified with make definitions in the thermodynamic data file ts_dqf = dqf(ts) 10000. 0. 0. parg_dqf = dqf(parg) 15000. 0. 0. gl_dqf = dqf(gl) 3000. 0. 0. additionally the following endmembers should be excluded in the computational option file: ts parg gl A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 1(4)* _________________________________________ 1 tr Vac Mg Mg Ca Si_Si independent 2 ftr Vac Fe Fe Ca Si_Si dependent 3 ts_dqf Vac Mg Al Ca Al_Si independent 4 fts Vac Fe Al Ca Al_Si dependent 5 parg_dqf Na Mg Mg_Al Ca Al_Si independent 6 fparg Na Fe Fe_Al Ca Al_Si dependent 7 gl_dqf Vac Mg Al Na Si_Si independent 8 fgl Vac Fe Al Na Si_Si dependent 9 cumm Vac Mg Mg Mg Si_Si independent 10 grun Vac Fe Fe Fe Si_Si independent 11 mrb Vac Mg Fe3+ Na Si_Si independent 12 frb Vac Fe Fe3+ Na Si_Si dependent 13 cammo1 Vac Mg Fe Fe Si_Si ordered 14 cammo2 Vac Fe Mg Fe Si_Si ordered *T1 has a true multiplicity of 4, H&P previously used an effective multiplicity of 2; however in Diener et al. '07 the multiplicity has been reduced to 1. JADC 9/07. 10/07 z(m2a,al) corrected. Y Y. Podladchikov 3/08 z(m1a,mg),z(m4,ca),z(m4,mg), and fged corrected, T1 multiplicity reduced to 1. Enthalpies of ordering corrected. JADC. 6/08 z(m1,mg) corrected to include mrb, second limit equations for cammo1 and cammo2 corrected accordingly. corrected enthalpies for cammo1 and cammo2. cAmph(DP2) | solution name 8 | model type: reciprocal, margules, two ordering parameters 2 | 2 site reciprocal solution 2 6 | 1 binary and 1 hexary tr ftr parg_dqf fparg ts_dqf fts gl_dqf fgl cumm grun mrb frb 2 | 2 ordered species: cammo1 = 3/7 cumm + 4/7 grun enthalpy_of_formation = -9.5d3 | these are retaind from the original DP model, they differ from TC because the DQFs on deepen cumm & grun are already included cammo2 = 2/7 cumm + 5/7 grun enthalpy_of_formation = -11.7d3 begin_limits cammo1 = -7/3 grun - 4/3 cammo1 + 5/3 cammo2 - 5/3 cammo2 delta = 7/3 z(M2,Fe) cammo1 = -7/4 + 7/4 grun + 1 cammo1 + 1/2 cammo2 + 5/4 cammo2 delta = 7/4 z(M1,Fe) cammo1 = -7/3 + 7/3 tr + 7/6 parg_dqf + 7/3 cumm + 1 cammo1 + 5/3 cammo2 + 2/3 cammo2 delta = 7/3 z(M2,Mg) cammo1 = -7/3 + 7/3 cumm + 1 cammo1 - 2/3 cammo2 + 2/3 cammo2 delta = 7/3 z(M4,Mg) cammo1 = -7/3 grun - 4/3 cammo1 - 2/3 cammo2 - 5/3 cammo2 delta = 7/3 z(M4,Fe) cammo2 = -7/5 + 7/5 grun + 3/5 cammo1 + 4/5 cammo1 + 1 cammo2 delta = 7/5 z(M2,Fe) cammo2 = -7/2 grun + 2 cammo1 - 2 cammo1 - 5/2 cammo2 delta = 7/2 z(M1,Fe) cammo2 = -7/5 tr - 7/10 parg_dqf - 7/5 cumm + 3/5 cammo1 - 3/5 cammo1 - 2/5 cammo2 delta = 7/5 cammo2 = -7/2 + 7/2 cumm - 3/2 cammo1 + 3/2 cammo1 + 1 cammo2 delta = 7/2 cammo2 = -7/2 grun - 3/2 cammo1 - 2 cammo1 - 5/2 cammo2 delta = 7/2 end_limits 5 | 5 dependent endmembers ftr = 1 tr + 2 grun - 1 cammo1 - 1 cammo2 fparg = 1 parg_dqf + 3/2 grun - 1 cammo1 - 1/2 cammo2 fgl = 1 gl_dqf + 1 grun - 1 cammo1 frb = 1 mrb + 1 grun - 1 cammo1 fts = 1 ts_dqf + 1 grun - 1 cammo1 1 1 1 1 1 1 1 1 1 1 1 1 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(tr) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(pg) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(ts_dqf) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(gl) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(cumm) on site 2, imod = 0 -> cartesian subdivision begin_excess_function w(mrb tr) 52e3 0. 0. w(mrb ts_dqf) 20e3 0. 0. w(mrb parg_dqf) 40e3 0. 0. | w(mrb gl) is zero w(mrb cumm) 80e3 0. 0. w(mrb grun) 91e3 0. 0. w(mrb cammo1) 80e3 0. 0. w(mrb cammo2) 90e3 0. 0. w(cammo2 tr) 63e3 0. 0. w(cammo2 ts_dqf) 72.5e3 0. 0. w(cammo2 parg_dqf) 94.8e3 0. 0. w(cammo2 gl_dqf) 111.2e3 0. 0. w(cammo2 cumm) 23e3 0. 0. w(cammo2 grun) 8e3 0. 0. w(cammo2 cammo1) 20e3 0. 0. w(cammo1 tr) 57e3 0. 0. w(cammo1 ts_dqf) 70e3 0. 0. w(cammo1 parg_dqf) 94.8e3 0. 0. w(cammo1 gl_dqf) 100e3 0. 0. w(cammo1 cumm) 18e3 0. 0. w(cammo1 grun) 12e3 0. 0. w(grun tr) 75e3 0. 0. w(grun ts_dqf) 80e3 0. 0. w(grun parg_dqf) 106.7e3 0. 0. w(grun gl_dqf) 113.5e3 0. 0. w(grun cumm) 33e3 0. 0. w(cumm tr) 45e3 0. 0. w(cumm ts_dqf) 70e3 0. 0. w(cumm parg_dqf) 90e3 0. 0. w(cumm gl_dqf) 100e3 0. 0. w(gl_dqf tr) 65e3 0. 0. w(gl_dqf ts_dqf) 25e3 0. 0. w(gl_dqf parg_dqf) 50e3 0. 0. w(parg_dqf tr) 25e3 0. 0. w(parg_dqf ts_dqf) -40e3 0. 0. w(ts_dqf tr) 20e3 0. 0. end_excess_function 5 | 5 site (A, M1, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg_dqf 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts_dqf + 1 parg_dqf + 1 gl_dqf + 1 cammo1 + 1 cumm + 1 mrb 4 2. | 4 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg_dqf + 1 cumm + 1 cammo2 z(m2,al) = 1 ts_dqf + 1/2 parg_dqf + 1 gl_dqf z(m2,fe3+) = 1 mrb 4 2. | 4 species on M4, 2 sites pfu z(m4,na) = 1 gl_dqf + 1 mrb z(m4,mg) = 1 cumm z(m4,fe) = 1 grun + 1 cammo1 + 1 cammo2 2 1. | 2 species on T1, fake site multiplicity of 1. z(T1,Al) = 1/2 ts_dqf + 1/2 parg_dqf begin_van_laar_sizes alpha(tr) 1.0 0. 0. alpha(parg_dqf) 1.7 0. 0. alpha(ts_dqf) 1.5 0. 0. alpha(gl_dqf) 0.8 0. 0. alpha(cumm) 1.0 0. 0. alpha(grun) 1.0 0. 0. alpha(cammo1) 1.0 0. 0. alpha(cammo2) 1.0 0. 0. alpha(mrb) 0.8 0. 0. end_van_laar_sizes begin_dqf_corrections | Perple_X, in contrast to THERMOCALC, automatically considers all endmembers | present in the thermodynamic data base. This behavior creates a potential | problem with THERMOCALC models that specify positive DQF corrections because | the DQF'd endmember is always less stable than the real endmember. For example | here the solution will always be metastable at compositions near to the ts and | parg_dqf endmember compositions. To avoid this problem, DQF corrected endmembers | (ts_dqf, gl_dqf and parg_dqf) must be specified in the thermodynamic data file and the | true ts, gl and parg_dqf endmembers must be excluded from calculations. dqf(cumm) -6400. 0. 0. dqf(grun) -5000. 0. 0. end_dqf_corrections end_of_model -------------------------------------------------------- begin_model ORTHOAMPHIBOLE: Diener et al, JMG 2011 25:631-656, modified from Diener et al, JMG 2008 2011 Model revisions entered by MJC, Oct 31, 2011. --------------------------------------------- NOTE to use this the following endmembers must be specified with make definitions in the thermodynamic data file mpa2 = 1 parg - 1 tr +1 anth dqf(25d3) ged_dqf2 = dqf(ged) 20000. 0. 0. ogl_dqf = dqf(gl) 15000. 0. 0. fanth_dq = dqf(fanth) 7000. 0. 0. omrb_dqf = 1 gl -2 jd -2 acm dqf(33d3) additionally the following endmembers should be excluded in the computational option file: ged fanth gl A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 1(4)* _________________________________________ 1 tr Vac Mg Mg Ca Si_Si independent 2 ftr Vac Fe Fe Ca Si_Si dependent 3 ged_dqf Vac Mg Al Mg Al_Si independent 4 fged Vac Fe Al Fe Al_Si dependent 5 mpa2 Na Mg Mg_Al Mg Al_Si independent 6 fpa Na Fe Fe_Al Fe Al_Si dependent 7 ogl_dqf Vac Mg Al Na Si_Si independent 8 fgl Vac Fe Al Na Si_Si dependent 9 anth Vac Mg Mg Mg Si_Si independent 10 fanth_dq Vac Fe Fe Fe Si_Si independent 11 omrb_dqf Vac Mg Fe3+ Na Si_Si independent 12 frb Vac Fe Fe3+ Na Si_Si dependent 13 ammo1 Vac Mg Fe Fe Si_Si ordered 14 ammo2 Vac Fe Mg Fe Si_Si ordered *T1 has a true multiplicity of 4, H&P previously used an effective multiplicity of 2; in Diener et al '07 the multiplicity has been reduced to 1. JADC 9/07. 10/07 z(m2a,al) corrected. Y. Podladchikov. 3/08 z(m1a,mg),z(m4,ca),z(m4,mg), and fged corrected, T1 multiplicity reduced to 1. Enthalpies of ordering corrected. JADC. 8/08 Enthalpy of ordering corrected for HP dqfs. oAmph(DP2) | model name 8 | model type: reciprocal, margules, two ordering parameters 2 | 2 site reciprocal solution 2 6 | 1 binary and 1 hexary tr ftr mpa2 fpa ged_dqf2 fged ogl_dqf fgl anth fanth_dq omrb_dqf frb 2 | 2 ordered species: ammo1 = 3/7 anth + 4/7 fanth_dq enthalpy_of_formation = -9.5d3 ammo2 = 2/7 anth + 5/7 fanth_dq enthalpy_of_formation = -11.7d3 begin_limits ammo1 = -7/4 + 7/4 fanth_dq + 1 ammo1 + 1/2 ammo2 + 5/4 ammo2 delta = 7/4 ammo1 = -7/3 + 7/3 tr + 7/6 mpa2 + 7/3 anth + 1 ammo1 + 5/3 ammo2 + 2/3 ammo2 delta = 7/3 ammo1 = -7/3 + 7/3 mpa2 + 7/3 anth + 7/3 ged_dqf2 + 1 ammo1 - 2/3 ammo2 + 2/3 ammo2 delta = 7/3 ammo1 = - 7/3 fanth_dq - 4/3 ammo1 - 2/3 ammo2 - 5/3 ammo2 delta = 7/3 ammo1 = - 7/3 fanth_dq - 4/3 ammo1 + 5/3 ammo2 - 5/3 ammo2 delta = 7/3 ammo2 = -7/2 fanth_dq + 2 ammo1 - 2 ammo1 - 5/2 ammo2 delta = 7/2 ammo2 = -7/5 tr - 7/10 mpa2 - 7/5 anth + 3/5 ammo1 - 3/5 ammo1 - 2/5 ammo2 delta = 7/5 ammo2 = -7/2 + 7/2 anth + 7/2 mpa2 + 7/2 ged_dqf2 - 3/2 ammo1 + 3/2 ammo1 + 1 ammo2 delta = 7/2 ammo2 = - 7/2 fanth_dq - 3/2 ammo1 - 2 ammo1 - 5/2 ammo2 delta = 7/2 ammo2 = -7/5 + 7/5 fanth_dq + 3/5 ammo1 + 4/5 ammo1 + 1 ammo2 delta = 7/5 end_limits 5 | 5 dependent endmembers ftr = 1 tr + 2 fanth_dq - 1 ammo1 - 1 ammo2 fpa = 1 mpa2 + 1/2 fanth_dq + 1/2 ammo2 - 1 anth fged = 1 ged_dqf2 - 1 anth + 1 ammo2 fgl = 1 ogl_dqf + 1 fanth_dq - 1 ammo1 frb = 1 omrb_dqf + 1 fanth_dq - 1 ammo1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(tr) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(pa) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(ged_dqf2) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(ogl_dqf) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(anth) on site 2, imod = 0 -> cartesian subdivision begin_excess_function W(anth ged_dqf2) 25d3 0 0 W(anth mpa2) 25d3 0 0 W(anth ogl_dqf) 65d3 0 0 W(anth tr) 45d3 0 0 W(anth fanth_dq) 33d3 0 0 W(anth omrb_dqf) 52d3 0 0 W(anth ammo1) 18d3 0 0 W(anth ammo2) 23d3 0 0 W(ged_dqf2 mpa2) -40d3 0 0 W(ged_dqf2 ogl_dqf) 25d3 0 0 W(ged_dqf2 tr) 70d3 0 0 W(ged_dqf2 fanth_dq) 38.5d3 0 0 W(ged_dqf2 omrb_dqf) 20d3 0 0 W(ged_dqf2 ammo1) 29d3 0 0 W(ged_dqf2 ammo2) 34.6d3 0 0 W(mpa2 ogl_dqf) 50d3 0 0 W(mpa2 tr) 90d3 0 0 W(mpa2 fanth_dq) 45d3 0 0 W(mpa2 omrb_dqf) 40d3 0 0 W(mpa2 ammo1) 33.2d3 0 0 W(mpa2 ammo2) 36d3 0 0 W(ogl_dqf tr) 65d3 0 0 W(ogl_dqf fanth_dq) 81.2d3 0 0 W(ogl_dqf ammo1) 65.5d3 0 0 W(ogl_dqf ammo2) 78.4d3 0 0 W(tr fanth_dq) 75d3 0 0 W(tr omrb_dqf) 52d3 0 0 W(tr ammo1) 57d3 0 0 W(tr ammo2) 63d3 0 0 W(fanth_dq omrb_dqf) 65d3 0 0 W(fanth_dq ammo1) 12d3 0 0 W(fanth_dq ammo2) 8d3 0 0 W(omrb_dqf ammo1) 52d3 0 0 W(omrb_dqf ammo2) 63d3 0 0 W(ammo1 ammo2) 20d3 0 0 end_excess_function 5 | 5 site (A, M1, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 mpa2 2 1. | 2 species on T1, fake site multiplicity of 1. z(T1,Al) = 1/2 ged_dqf2 + 1/2 mpa2 2 3. | 2 species on M1, 3 sites per formula unit z(m1,fe) = 1 fanth_dq + 1 ammo2 4 2. | 4 species on M2, 2 sites pfu z(m2,fe) = 1 fanth_dq + 1 ammo1 z(m2,al) = 1 ged_dqf2 + 1/2 mpa2 + 1 ogl_dqf z(m2,fe3+) = 1 omrb_dqf 4 2. | 4 species on M4, 2 sites pfu z(m4,ca) = 1 tr z(m4,mg) = 1 mpa2 + 1 anth + 1 ged_dqf2 z(m4,na) = 1 ogl_dqf + 1 omrb_dqf begin_van_laar_sizes alpha(tr) 1.0 0. 0. alpha(ged_dqf2) 1.5 0. 0. alpha(mpa2) 1.7 0. 0. alpha(ogl_dqf) 0.8 0. 0. alpha(anth) 1.0 0. 0. alpha(fanth_dq) 1.0 0. 0. alpha(ammo1) 1.0 0. 0. alpha(ammo2) 1.0 0. 0. alpha(omrb_dqf) 0.8 0. 0. end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Diener & Powell's (2011) modification of the Green, Holland & Powell (2007) omphacite 2011 Model revisions entered by MJC, Oct 31, 2011. requires use of acm = acm - 4000 J/mol (NOT IN ORIGINAL GHP MODEL) --------------------------------------------- WARNING: The choice of independent ordered species (here, cfm, om, jac) has the conseqence that this model CANNOT be used for the following subcompositions: jd-hed, hed-acm, di-acm, hed-acm-jd, hed-acm-di to work in these joins either fom, hac, or dac must replace either om or/and cfm. Site: 1 2 3 4 M2a M2b M1a M1b ____________________________________ Mutliplicity 1/2 1/2 1/2 1/2 ____________________________________ 1 Diopside Ca Ca Mg Mg Species: 2 Jadeite Na Na Al Al 3 Hedenbergite Ca Ca Fe2+ Fe2+ 4 Acmite Na Na Fe3+ Fe3+ ___________________________________ Ordered Cpd: 5 om Na Ca Al Mg 6 cfm Ca Ca Mg Fe 7 jac Na Na Fe3+ Al Omph(GHP2) 6 | model type margules with multiple compound formation 4 | disordered endmembers di jd acm hed 3 | number of ordered species om = 1/2 jd + 1/2 di enthalpy_of_formation = -2.9d3 cfm = 1/2 di + 1/2 hed enthalpy_of_formation = -1.5d3 jac = 1/2 jd + 1/2 acm enthalpy_of_formation = -1d3 begin_limits om = -2 + 2 di + 2 hed delta = 2 om = -2 + 2 jd + 2 acm delta = 2 om = -2 + 2 di + 1 cfm delta = 2 om = -2 + 2 jd + 1 jac delta = 2 om = -2 + 2 acm + 2 jd + 2 hed + 1 cfm delta = 2 om = -2 + 2 acm + 2 di + 2 hed + 1 jac delta = 2 cfm = -2 di + 1 om delta = 2 cfm = -2 + 2 hed delta = 2 cfm = -2 hed delta = 2 cfm = -2 jd - 2 hed - 2 acm + 1 om delta = 2 jac = -2 acm delta = 2 jac = -2 jd + 1 om delta = 2 jac = -2 + 2 acm delta = 2 jac = -2 acm - 2 di - 2 hed + 1 om delta = 2 end_limits 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution of X(di) 0. 1. 0.1 0 | range and resolution of X(jd) 0. 1. 0.1 0 | range and resolution of X(acm) begin_excess_function W(jd di) 26d3 0 0 W(jd hed) 24d3 0 0 W(jd acm) 5d3 0 0 W(jd om) 15.5d3 0 0 W(jd cfm) 25.2d3 0 0 W(jd jac) 3d3 0 0 W(di hed) 4d3 0 0 W(di acm) 21d3 0 0 W(di om) 15.75d3 0 0 W(di cfm) 2d3 0 0 W(di jac) 24.65d3 0 0 W(hed acm) 20.8d3 0 0 W(hed om) 17.2d3 0 0 W(hed cfm) 2d3 0 0 W(hed jac) 24.6d3 0 0 W(acm om) 16.4d3 0 0 W(acm cfm) 22.2d3 0 0 W(acm jac) 3d3 0 0 W(om cfm) 18.45d3 0 0 W(om jac) 19.5d3 0 0 W(cfm jac) 24.55d3 0 0 end_excess_function 4 | 4 site entropy model (m1a, m1b, m2b, m2a) 4 0.5 | 4 species on m1b, mult = 1/2 z(m1b,al) = 1 jd + 1 jac z(m1b,fe2+) = 1 hed + 1 cfm z(m1b,fe3+) = 1 acm 2 0.5 | 2 species on m2a, mutiplicity = 1/2 z(m2a,ca) = 1 di + 1 hed + 1 cfm 2 0.5 | 2 species on m2b, mult. = 1/2 z(m2b,na) = 1 jd + 1 acm + 1 jac 4 0.5 | 4 species on m1a, mult = 1/2 z(m1a,mg) = 1 di + 1 cfm z(m1a,fe2+) = 1 hed z(m1a,fe3+) = 1 acm + 1 jac begin_dqf_corrections dqf(acm) -4000 0. 0. end_dqf_corrections end_of_model -------------------------------------------------------- begin_model | preliminary BCC iron solution model FeSi(BCC) 2 | model type: Margules. 2 | 2 endmembers iron Si 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function W(iron Si) -100d3 0 0 end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity = 1. z(Fe) = 1 iron end_of_model -------------------------------------------------------- begin_model | Entered by Jeff Marsh, Jan 10, 2012. ZrRu | zr in rutile after Tomkins et al., 07 2 | model type 2 2 | number of endmembers zrru ru 0 0 | endmember flags 0 0.4 0.1 0 | range and resolution of ru begin_excess_function w(ru zrru) 10000 0 0 end_excess_function 1 | 1 site configurational entropy model 2 1. | 2 species, site multiplicity = 1. z(Ti) = 1 ru end_of_model -------------------------------------------------------- begin_model | Entered by Jeff Marsh, Jan 10, 2012. ZrGt(KP) | addition of Ca3Al2[Si2Zr]O12 end-mem after Kelsey & Powell ‘11 2 | model type: Margules, endmember fractions. 4 | number of endmembers zrg alm py gr | endmember names 0 0 0 0 | endmember flags 0. 0.1 0.1 1 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(py gr) 45000. 0. 0. w(alm py) 2500. 0. 0. w(alm gr) 10000. 0. 0. end_excess_function 2 2 site entropy model 3 3. 3 species, site multiplicity 3 z(Fe) = 1 alm z(Mg) = 1 py 2 2. |2 species, site multiplicity 2 z(Zr) = 1 zrg end_of_model --------------------------------------------------------