689 DO NOT DELETE THIS LINE | Solution models consistent with: | Stixrude, L. and Lithgow-Bertelloni, C. (2021), | GJI in revision. | the solution model names are: | O | Pl | Sp | Cpx | Wad | Ring | Pv | Wus | C2/c | Opx | Aki | Ppv | CF | Gt | NaAl -------------------------------------------------------- begin_model C2/c pyroxene solution C2/c 2 model type: Margules, macroscopic 2 2 endmembers c2/c fc2/c 0 0 0. 1. .1 0 ideal 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 c2/c end_of_model -------------------------------------------------------- begin_model magnesio-wuestite-na2al2o4 solution technically this is a 2 site model, but na2al2O2 adds different species on both sites, therefore it is condensed here to 1 site with mulitplicity 4. Wus 2 model type: Margules, macroscopic 3 3 endmembers per wus anao 0 0 0 0.0 1.0 0.1 0 0.0 1.0 0.1 0 begin_excess_function W(per wus) 44d3 + 0.044 * P_bar W(per anao) 120d3 W(wus anao) 120d3 end_excess_function 1 1 site entropy model 3 4. 3 species, site multiplicity = 4. z(mg) = 1 per z(fe) = 1 wus end_of_model -------------------------------------------------------- begin_model | perovskite solution Pv 2 | model type: Margules, macroscopic 3 | 3 endmembers aperov perov fperov 0 0 0 0. 1. 0.1 0 0. 1. 0.1 0 begin_excess_function W(perov fperov) -11.4d3 W(perov aperov) 35d3 end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 perov z(fe) = 1 fperov 2 1. 2 species on T site multiplicity = 1. z(al) = 1 aperov end_of_model -------------------------------------------------------- begin_model | Plagioclase Pl 2 | model type: Margules or Ideal 2 | # of endmembers ab an 0 0 | endmember flags 0. 1. .1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(an ab) 13d3 end_excess_function 1 | 1 site molecular model: 2 1. z(Na) = 1 ab end_of_model -------------------------------------------------------- begin_model | Spinel solution, fixed order! Sp 2 | model type: Margules, macroscopic 2 | 2 endmembers sp herc 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(sp herc) -0.5d3 end_excess_function 2 2 site entropy model 3 8. 3 species, site multiplicity = 8. z(B,mg) = 1/8 sp z(B,fe) = 1/8 herc 3 4. 3 species, site multiplicity = 4. z(B,mg) = 3/4 sp z(B,fe) = 3/4 herc end_of_model -------------------------------------------------------- begin_model | olivine solution O 2 | model type: Margules, macroscopic 2 | 2 endmembers fo fa 0 0 | endmember flags 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(fo fa) 4.7d3 end_excess_function 1 | 1 site entropy model 2 2. | 2 species, site multiplicity = 2. z(mg) = 1 fo end_of_model -------------------------------------------------------- begin_model | Wadleysite solution Wad 2 | model type: Margules, macroscopic 2 | 2 endmembers wad fwad 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(wad fwad) 13.2d3 end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 wad end_of_model -------------------------------------------------------- begin_model | Ringwoodite solution Ring 2 | model type: Margules, macroscopic 2 | 2 endmembers ring fring 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(ring fring) 7.6d3 end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 ring end_of_model -------------------------------------------------------- begin_model | Orthopyroxene solution Opx 2 | model type: Margules, macroscopic 4 | 4 endmembers odi en fs ts 0 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution for X(odi) 0. 1. .1 0 | range and resolution for X(en) 0. 1. .1 0 | range and resolution for X(fs) begin_excess_function W(odi ts) 48d3 W(odi en) 32.2d3 W(odi fs) 32.2d3 end_excess_function 2 | 2 site entropy model 3 1. | 3 species, M1 site multiplicity = 1. z(M1,Ca) = 1 odi z(M1,Fe) = 1 fs 3 1. | 3 species, M2 site multiplicity = 1. z(M2,Al) = 1 ts z(M2,Fe) = 1 fs end_of_model -------------------------------------------------------- begin_model | Clinopyroxene Cpx 2 | model type: Margules, macroscopic 5 | 5 endmembers jd di hed cen cts 0 0 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution for X(jd) 0. 1. .1 0 | range and resolution for X(di) 0. 1. .1 0 | range and resolution for X(hed) 0. 1. .1 0 | range and resolution for X(cen) begin_excess_function W(cen di) 24.7d3 W(jd di) 24.3d3 W(jd hed) 24.3d3 W(cts di) 26d3 W(cts hed) 26d3 W(cen cts) 60.1d3 W(cen hed) 24.7d3 W(cen jd) 46d3 W(jd cts) 10d3 end_excess_function 3 | 3 site entropy model 3 1. | 3 species, M1 site multiplicity = 1. z(M1,Mg) = 1 cen z(M1,Na) = 1 jd 3 1. | 3 species, M2 site multiplicity = 1. z(M2,Fe) = 1 hed z(M2,Al) = 1 jd + 1 cts 2 2. | 2 species, T site, multiplicity 2 z(T,AL) = 1/2 cts begin_van_laar_sizes alpha(jd) 1 alpha(di) 1 alpha(hed) 1 alpha(cen) 1 alpha(cts) 3.5 end_van_laar_sizes reach_increment 3 end_of_model -------------------------------------------------------- begin_model hem van laar size = 1.30000000000000 | akimotoite (ilmenite-structure) solution Aki 2 | model type: Margules, macroscopic 3 | 3 endmembers cor aki faki 0 0 0 | endmember flags 0.0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(aki cor) 59.3d3 W(faki cor) 59.3d3 end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 aki z(fe) = 1 faki 2 1. 2 species on T site multiplicity = 1. z(al) = 1 cor end_of_model -------------------------------------------------------- begin_model Garnet solution with Fe-majorite (Fe3MgSiSi3O12) and Ca-majorite (Ca3MgSiSi3O12), the use of these endmembers appear to be necessary to reproduce the Stixrude & Lithgow-Bertelloni (2011) calculations. reformulated as an irregular prismatic model, JADC, 5/18 reformulated as 688 standard format. JADC, 10/19 A B1/B2 ____________________ Multiplicity 3 2 ____________________ prismatic vertex: py Mg AlAl independent alm Fe AlAl independent gr Ca AlAl independent maj Mg MgSi independent fmaj Fe MgSi dependent cmaj Ca MgSi dependent orphan vertex: namj Na2Mg SiSi independent (orphan) Gt 688 | model type: 688 format standard model 2 | number of polytopes | polytope names and composite composition space subdivision schemes [namj] 0 1 .1 0 | subdivision range for X(1) = M-free [~namj] by difference | = [M][Al,MgSi], M = Mg,Fe,Ca | ---------------------------- | Polytope 1 - 1 simplex 1 | number of simplices, [Na2/3Al1/3][AlSi] 1 | number of vertices on each simplex namj | endmembers on the vertices | ---------------------------- | Polytope 2 - 3x2 simplices 2 | number of simplices 3 2 | number of vertices on each simplex | endmembers on the vertices cmaj fmaj maj gr alm py | First 3-simplex X_Ca,A 0. 1. .1 0 | range and resolution for X(Ca,A), imod = 0 -> cartesian subdivision X_Fe,A 0. 1. .1 0 | range and resolution for X(Fe,A), imod = 0 -> cartesian subdivision X_Mg,A by difference | Second 2-simplex X_MgSi,B 0. 1. .1 0 | range and resolution for X(1-Ts,B), imod = 0 -> cartesian subdivision X_AlAl,B by difference begin_dependent_endmembers fmaj = 1 maj + 1 alm - 1 py cmaj = 1 maj + 1 gr - 1 py end_dependent_endmembers begin_excess_function W(gr maj) 61d3 W(gr namj) 60.7d3 W(gr py) 21.1d3 + 0.103 * P_bar W(gr alm) 21.1d3 W(alm maj) 22.7d3 W(alm namj) 22.9d3 W(py maj) 22.7d3 W(py namj) 22.9d3 W(maj namj) 71d3 end_excess_function 3 | 3 site configurational entropy model A | site name 4 3 3 | number of species, effective multiplicity, true multiplicity z(Ca,A) = 1 gr z(Fe,A) = 1 alm z(Na,A) = 2/3 namj z(Mg,A) = 1 py + 1 maj + 1/3 namj |z(Mg,A) = 1 py + 1 maj + 1 namj B1 | site name 3 1 1 | number of species, effective multiplicity, true multiplicity z(Mg,B1) = 1 maj z(Al,B1) = 1 gr + 1 py + 1 alm z(Si,B1) = 1 namj B2 | site name 2 1 1 | number of species, effective multiplicity, true multiplicity z(Si,B2) = 1 maj + 1 namj z(Al,B2) = 1 gr + 1 py + 1 alm [Si3O12] | formula suffix, enter "none" for no suffix. end_of_model -------------------------------------------------------- begin_model Ppv 2 model type: Margules, macroscopic 3 3 endmembers appv ppv fppv 0 0 0 | endmember flags 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(ppv fppv) -11d3 W(ppv appv) 35d3 W(fppv appv) 35d3 end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 ppv z(fe) = 1 fppv 2 1. 2 species on T site multiplicity = 1. z(al) = 1 appv end_of_model -------------------------------------------------------- begin_model Ca-Ferrite solution. CF 2 model type: Margules, macroscopic 3 3 endmembers mfer ffer nfer 0 0 0 0. 1. .1 0 0. 1. .1 0 begin_excess_function W(mfer nfer) 61d3 W(ffer nfer) 61d3 end_excess_function 2 number of sites for the entropy model 3 1. 3 species, A site multiplicity = 1. z(A,fe) = 1 ffer z(A,mg) = 1 mfer 2 1. al-si mixing on only one "T" site. z(M,Si) = 1 nfer begin_van_laar_sizes alpha(mfer) 1 alpha(ffer) 1 alpha(nfer) 4.4532 end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Na-Al phase solution. A B C 1 2 6 mnal Na Mg Al5Si1 fnal Na Fe Al5Si1 nnal Na Na Al3Si3 NaAl 688 | model type: 688 format standard model 1 | number of polytopes 1 | number of simplices, [Na2/3Al1/3][AlSi] 3 | number of vertices on each simplex fnal | endmembers on the vertices mnal nnal 0. 1. .1 0 | range and resolution for X(fnal), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(mnal), imod = 0 -> cartesian subdivision begin_excess_function w(mnal nnal) -61d3 w(fnal nnal) -60.8d3 end_excess_function 2 | number of sites in configurational entropy model B | site name 3 2 2 | number of species, effective multiplicity, true multiplicity z(Na,B) = 1 nnal z(Mg,B) = 1 mnal z(Fe,B) = 1 fnal C | site name 2 6 6 | number of species, effective multiplicity, true multiplicity z(Al,C) = 5/6 mnal + 5/6 fnal + 1/2 nnal z(Si,C) = 1/6 mnal + 1/6 fnal + 1/2 nnal [NaO12] | formula suffix, enter "none" for no suffix. end_of_model