C:\jamie\perplex_f90>build NO is the default () answer to all Y/N prompts Enter name of computational option file to be created, < 100 characters, left justified [default = in]: in3.dat Enter thermodynamic data file name, left justified, [default = hp98ver.dat]: hp98ver.dat The current data base components are: NA2O MGO AL2O3 SIO2 K2O CAO TIO2 MNO FEO O2 H2O CO2 Transform them (Y/N)? y Enter new component name, < 6 characters, left justified: KALO2 Enter old component to be replaced with KALO2: K2O Enter other components (< 12) in KALO2 1 per line, to finish: AL2O3 Enter stoichiometric coefficients of: K2O AL2O3 in KALO2 (in above order): 0.5 0.5 KALO2 = 0.50 K2O 0.50 AL2O3 Is this correct (Y/N)? y The current data base components are: NA2O MGO AL2O3 SIO2 KALO2 CAO TIO2 MNO FEO O2 H2O CO2 Transform them (Y/N)? Calculations with a saturated phase (Y/N)? The phase is: FLUID Its compositional variable is: Y(CO2), X(O), etc. y Select the independent saturated phase components: H2O CO2 Enter names, left justified, 1 per line, to finish: For C-O-H fluids it is only necessary to select volatile species present in the solid phases of interest. If the volatile species listed here are H2O and CO2, then to constrain oxygen chemical potential to be consistent with C-O-H fluid speciation treat oxygen as a saturated component. Refer to the Perple_X Tutorial for details. H2O Calculations with saturated components (Y/N)? y **warning ver015** if you select > 1 saturated component, then the order you enter the components determines the saturation heirarchy and may effect your results (see Connolly 1990). Select < 6 saturated components from the set: NA2O MGO AL2O3 SIO2 KALO2 CAO TIO2 MNO FEO O2 CO2 Enter names, left justified, 1 per line, to finish: SIO2 AL2O3 KALO2 Use chemical potentials, activities or fugacities as independent variables (Y/N)? Select thermodynamic components from the set: NA2O MGO CAO TIO2 MNO FEO O2 CO2 Enter names, left justified, 1 per line, to finish: MGO FEO Select fluid equation of state: 0 - X(CO2) Modified Redlich-Kwong (MRK/DeSantis/Holloway) 1 - X(CO2) Kerrick & Jacobs 1981 (HSMRK) 2 - X(CO2) Hybrid MRK/HSMRK 3 - X(CO2) Saxena & Fei 1987 pseudo-virial expansion 4 - Bottinga & Richet 1981 (CO2 RK) 5 - X(CO2) Holland & Powell 1991, 1998 (CORK) 6 - X(CO2) Hybrid Haar et al 1979/CORK (TRKMRK) 7 - f(O2/CO2)-f(S2) Graphite buffered COHS MRK fluid 8 - f(O2/CO2)-f(S2) Graphite buffered COHS hybrid-EoS fluid 9 - Max X(H2O) GCOH fluid Cesare & Connolly 1993 10 - X(O) GCOH-fluid hybrid-EoS Connolly & Cesare 1993 11 - X(O) GCOH-fluid MRK Connolly & Cesare 1993 12 - X(O)-f(S2) GCOHS-fluid hybrid-EoS Connolly & Cesare 1993 13 - X(H2) H2-H2O hybrid-EoS 14 - EoS Birch & Feeblebop (1993) 15 - X(H2) low T H2-H2O hybrid-EoS 16 - X(O) H-O HSMRK/MRK hybrid-EoS 17 - X(O) H-O-S HSMRK/MRK hybrid-EoS 18 - X(CO2) Delany/HSMRK/MRK hybrid-EoS, for P > 10 kb 19 - X(O)-X(S) COHS hybrid-EoS Connolly & Cesare 1993 20 - X(O)-X(C) COHS hybrid-EoS Connolly & Cesare 1993 21 - X(CO2) Halbach & Chatterjee 1982, P > 10 kb, hybrid-Eos 22 - X(CO2) DHCORK, hybrid-Eos 23 - Toop-Samis Silicate Melt 5 The data base has P(bars) and T(K) as default independent potentials. Make one dependent on the other, e.g., as along a geothermal gradient (y/n)? n Specify computational mode: 1 - Unconstrained minimization [default] 2 - Constrained minimization on a grid 3 - Output pseudocompound data Unconstrained optimization should be used for the calculation of composition, mixed variable, and Schreinemakers diagrams, it may also be used for the calculation of phase diagram sections for a fixed bulk composition. Gridded minimization can be used to construct phase diagram sections for both fixed and variable bulk composition. Gridded minimization is preferable for the recovery of phase and bulk properties. 1 Specify number of independent potential variables: 0 - Composition diagram [default] 1 - Mixed-variable diagram 2 - Sections and Schreinemakers-type diagrams 2 Select x-axis variable: 1 - P(bars) 2 - T(K) 3 - Y(CO2) *Although only 1 component is specified for the saturated fluid phase, the equation of state permits fluid composition to vary through the variable Y(CO2) . For pure fluid properties, specify the appropriate composition as a sectioning constraint. 2 Enter minimum and maximum values, respectively, for: T(K) 773 1073 Select y-axis variable: 2 - P(bars) 3 - Y(CO2) 2 Enter minimum and maximum values, respectively, for: P(bars) 2000 10000 Specify sectioning value for: Y(CO2) 0 Constrain bulk composition (as in pseudosections, y/n)? n Do you want a print file (Y/N)? y Enter the print file name, < 100 characters, left justified [default = pr]: print3 Long print file format (Y/N)? y Write full reaction equations (Y/N)? n Suppress console status messages (Y/N)? n Print dependent potentials for chemographies (Y/N)? Answer no if you do not know what this means. n Do you want a plot file (Y/N)? y Enter the plot file name, < 100 characters, left justified [default = pl]: plot3 Specify efficiency level [1-5, default = 3]: 1 - gives lowest efficiency, highest reliability 5 - gives highest efficiency, lowest reliability High values increase probability that a curve may be partially determined or skipped. 3 **warning ver013** phase k2o has null or negative composition and will be rejected from the composition space. Exclude phases (Y/N)? y Do you want to be prompted for phases (Y/N)? n Enter names, left justified, 1 per line, to finish: fosm osm1 osm2 sud fsud cel fcel tats ftat hcrd hfcrd Do you want to treat solution phases (Y/N)? y Enter solution model file name [default = solut.dat] left justified, < 100 characters: solut.dat **warning ver113** F is not a valid model because component H2O or CO2 is c ... blah blah ... **warning ver114** the following endmembers are missing for MnCtd mnctd **warning ver501** MnCtd will be recast with endmembers: 111 - mctd 211 - fctd Select phases from the following list, enter 1 per line, left justified, to finish aChl Chl sChl T Bio St Ctd Carp Crd hCrd Sud(Livi) Sud Cumm Anth K-Phen KN-Phen PaCel MuCel Opx(HP) E(HP) E O(HP) O Sp(JR) Sp(GS) Sp(HP) Sp GrPyAlSp(B GrPyAlSp(G GrPyAl(G) GtD Gt(HP) GrPyAl(B) Mn-Opx(HP) MnChl MnSt MnCtd aChl T Bio St Ctd Carp Crd E(HP) O(HP) Sp(HP) Gt(HP) Cumm Anth Calculate high variance phase fields (Y/N)? y Enter calculation title: Test Problem 3 C:\jamie\perplex_f90>vertex Enter computational option file name (i.e. the file created with BUILD), left justified: in3.dat Reading thermodynamic data from file: hp98ver.dat Writing print output to file: print3 Writing plot output to file: plot3 Reading solution models from file: solut.dat Endmember configurational entropies (doc. eq. 8.2) for aChl are: 111 - 11.52622 211 - 11.52622 121 - 0.00000 221 - 0.00000 **warning ver114** the following endmembers are missing for T tats ftat **warning ver501** T will be recast with endmembers: 111 - ta 211 - fta Endmember configurational entropies (doc. eq. 8.2) for T are: 111 - 11.52622 211 - 11.52622 Endmember configurational entropies (doc. eq. 8.2) for Bio are: 111 - 11.52622 211 - 11.52622 121 - 0.00000 221 - 0.00000 **warning ver114** the following endmembers are missing for O(HP) teph **warning ver501** O(HP) will be recast with endmembers: 111 - fo 211 - fa **warning ver114** the following endmembers are missing for Gt(HP) gr spss **warning ver501** Gt(HP) will be recast with endmembers: 111 - alm 211 - py cycle 1 1 1 cycle 2 2 2 cycle 3 3 3 cycle 4 4 4 cycle 5 5 5 cycle 6 6 6 cycle 7 7 7 cycle 8 8 8 cycle 9 9 9 cycle 10 10 10 cycle 11 11 11 cycle 12 12 12 cycle 13 13 13 cycle 14 14 14 cycle 15 15 15 Initial number of divariant assemblages to be tested is: 15 Testing divariant assemblage 1, 14 assemblages remaining to be tested. finished with equilibrium ( 1) aChl(cl98_84) = Bio(ph98_49) finished with equilibrium ( 2) aChl(cl98_84) = Bio(ph98_56) finished with equilibrium ( 3) Bio(ph98_56) = Bio(ph98_49) finished with equilibrium ( 4) aChl(cl98_84) = Bio(ph98_63) finished with equilibrium ( 5) Bio(ph98_63) = Bio(ph98_56) finished with equilibrium ( 6) aChl(clin) = Crd(crd) finished with equilibrium ( 6) aChl(clin) = Crd(crd) finished with equilibrium ( 3) Bio(ph98_56) = Bio(ph98_49) finished with equilibrium ( 7) aChl(cl98_84) = aChl(cl98_91) finished with equilibrium ( 8) aChl(cl98_91) = Bio(ph98_63) finished with equilibrium ( 9) aChl(clin) = Bio(phl) finished with equilibrium ( 9) aChl(clin) = Bio(phl) finished with equilibrium ( 5) Bio(ph98_63) = Bio(ph98_56) finished with equilibrium ( 9) aChl(clin) = Bio(phl) finished with equilibrium ( 10) Bio(phl) = Crd(crd) finished with equilibrium ( 11) Bio(ph98_70) = Bio(ph98_63) finished with equilibrium ( 12) aChl(cl98_91) = Bio(ph98_70) finished with equilibrium ( 11) Bio(ph98_70) = Bio(ph98_63) finished with equilibrium ( 9) aChl(clin) = Bio(phl) finished with equilibrium ( 11) Bio(ph98_70) = Bio(ph98_63) finished with equilibrium ( 10) Bio(phl) = Crd(crd) finished with equilibrium ( 5) Bio(ph98_56) = Bio(ph98_63) ... blah blah ... Testing divariant assemblage 294, 2 assemblages remaining to be tested. Testing divariant assemblage 295, 2 assemblages remaining to be tested. Testing divariant assemblage 296, 1 assemblages remaining to be tested. Testing divariant assemblage 297, 1 assemblages remaining to be tested. Testing divariant assemblage 298, 0 assemblages remaining to be tested. -------------------------------------------------------------------------------- WARNING!! The stability fields of the following equilibria may have been entirely or partially skipped in the calculation: ( 465-2) aChl(cl77_56) = aChl(cl77_63) -------------------------------------------------------------------------------- C:\jamie\perplex_f90>psvdraw Enter the VERTEX plot file name: plot3 PostScript will be written to file: plot3.ps Modify the default plot (y/n)? C:\jamie\perplex_f90>