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ABSTRACT We formulate an algorithm for the calculation of stable phase relations of a system with constrained
bulk composition as a function of its environmental variables. The basis of this algorithm is the
approximate representation of the free energy composition surfaces of solution phases by inscribed
polyhedra. This representation leads to discretization of high variance phase fields into a continuous
mesh of smaller polygonal fields within which the composition and physical properties of the phases are
uniquely determined. The resulting phase diagram sections are useful for understanding the phase
relations of complex metamorphic systems and for applications in which it is necessary to establish the
variations in rock properties such as density, seismic velocities and volatile-content through a
metamorphic cycle. The algorithm has been implemented within a computer program that is general
with respect to both the choice of variables and the number of components and phases possible in a
system, and is independent of the structure of the equations of state used to describe the phases of the
system.
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INTRODUCTION

Traditionally petrologists have relied on phase dia-
gram projections that implicitly show phase relations
for all possible compositions of a system as an explicit
function of environmentally determined thermody-
namic potentials (see Appendix for nomenclature).
The utility of this projection, i.e. a petrogenetic grid,
that normally represents only one-dimensional uni-
variant phase fields, is that it constrains the maximum
stability of any possible phase assemblage irrespective
of the bulk composition of the system. Unfortunately,
interpretation of such diagrams is complex in that
there may be many assemblages that are stable within
any given region of the diagram, and only a small
subset of the depicted phase relations may be relevant
for a specified composition. Moreover, if the phases
of the system are solutions, it is to be expected that
for a given composition, high variance fields rather
than the univariant fields of the conventional petro-
genetic grid will limit phase stabilities. Phase diagram
sections computed for a specified bulk composition
offer an alternative to projections that avoid these
complexities. Following recent geological usage (e.g.
Powell, 1978), we designate such sections as pseudo-
sections. In contrast to projections, there is only one
state represented by any point within a pseudosection,
so that at each point the composition and proportions
of the phases and the thermodynamic properties of

the system are uniquely determined. While the value
of pseudosections is recognized in the geological lit-
erature, techniques for the construction of pseudo-
sections are laborious. In this paper we present a
strategy for the construction of pseudosections from
thermodynamic data. The essence of this strategy is
the discretization of the continuous fields of a
pseudosection by a polygonal mesh. The phase rela-
tions of the polygonalized section are easily inter-
preted, and, because properties such as volatile
contents or density are associated with the polygons,
the diagrams provide a simple means of retrieving
rock and mineral properties as a function of environ-
mental conditions.

The value of pseudosections as a tool for interpret-
ing petrological equilibria has been amply demon-
strated (e.g. Powell & Holland, 1988; Dymoke &
Sandiford, 1992; Xu et al., 1994). Because pseudosec-
tions provide a map of both mineral chemistry and
modes as a function of environmental variables they
have application in thermobarometry (e.g. Stuewe &
Powell, 1995); where, compared to conventional
inverse modelling thermobarometric techniques, phase
diagram based methods have the advantage of ther-
modynamic consistency (e.g. Connolly et al., 1994).
The efficacy of phase diagram methods has been lim-
ited by the requirement of a complete thermodynamic
model for the solution phases of interest; however,
efforts to expand data compilations (e.g. Berman &
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Aranovich, 1996; Gottschalk, 1997; Holland & Powell,
1998) have made substantial progress toward over-
coming this limitation. A fundamental caveat in the
application of pseudosections to petrological problems
is that it is necessary to define an effective thermo-
dynamic bulk composition (e.g. Stuewe, 1997). In
many natural systems, there is no meaningful effective
bulk composition because disequilibrium fractiona-
tion continuously modifies the composition of the
equilibrated portion of the rock in response to
environmental factors. Where it can be argued that
disequilibrium is not important, a second complication
in the use of pseudosections is that their geometries can
be sensitive to uncertainties in the composition of
interest. Thus, thermobarometric applications require
an efficient means by which this sensitivity can be
explored; the method discussed here is a tool for this
exploration.

Perhaps the most important application of
pseudosections is that they provide a practical model
for the average behaviour of rocks in metamorphic
systems. While such models may appear crude to
petrologists, they are essential for understanding
many geological processes. Past applications of this
ilk have focused on physical models of the meta-
morphic process (e.g. Trommsdorff & Connolly,
1996; Stuewe & Powell, 1997; Connolly, 1997;
Kerrick & Connolly, 1998; Guiraud et al., 2001) or
the influence of phase transitions on geophysical or
geodynamic models (e.g. Saxena & Eriksson, 1983;

Wood & Holloway, 1984; Gubbins et al., 1994;
Sobolev & Babeyko, 1994; Bina, 1998). Recent
applications of both types (e.g. Jull & Kelemen, 2001;
Kerrick & Connolly, 2001a,b; Petrini et al., 2001;
Lucassen et al., 2001; Muntener et al., 2001; Cesare
et al., 2002) demonstrate the effectiveness of the
computer method presented here.

Several completely or partially automated com-
puter strategies for the calculation of petrological
phase equilibria are widely used by geologists. We
begin by reviewing these strategies to clarify the
merits of the techniques and to provide the motiva-
tion for our modification. Then our strategy is
presented in detail and concludes with a demon-
stration of its computer implementation, in which
the phase relations of a metapelite are calculated as
a function of pressure (P) and temperature (T). For
simplicity, we adopt terminology appropriate for the
analysis of an isobaric-isothermal closed chemical
system. In this case the Gibbs energy is the ther-
modynamic function that is minimized during phase
equilibrium calculations, the compositional variables
describe the proportions of the different kinds of
mass that may vary among the phases of the system,
and the environmental variables are pressure and
temperature. However, our computational strategy is
general and can be used for compositions that define
the thermal and mechanical properties and environ-
mental variables that relate to the chemistry
(Connolly, 1990).

Fig. 1. (a) Schematic isobaric-isothermal G� X diagram for a binary system with solution phases (a, b, c, d, e). Minimization strategies
(e.g. Saxena & Eriksson, 1983; Wood & Holloway, 1984; De Capitani & Brown, 1987; Eriksson & Hack, 1990) determine the
stable assemblage for a specified composition, for example for Xsystem the stable assemblage would be b + c. Phase equilibrium
calculators compute the equilibrium compositions (e.g. Powell et al., 1998; Spear, 1988) of a specified set of coexisting phases. If the
assemblage d + c is specified, an equilibrium calculator determines the compositions (filled circles) of d and c that are tangent to a
common G� X plane. If these compositions span that of the system, the assemblage is a possible equilibrium in terms of mass balance,
but, as illustrated, the assemblage may be metastable. Connolly & Kerrick (1987) developed a strategy that simultaneously determines
all the assemblages on the systems minimum G� X surface (heavy solid curve). This strategy is efficient if pseudocompounds are used
to define the possible compositions of solutions, e.g. in (b) b is represented by pseudocompounds b1…b8, the accuracy of this
representation is determined by the pseudocompound spacing.
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REVIEW OF EXISTING STRATEGIES

Four basic strategies have been employed for the cal-
culation of pseudosections for petrological applications
involving solution phases. The most straightforward
strategy is to use a nonlinear free energy minimization
technique to map the phase relations of a system as a
function of the section variables (e.g. Saxena & Eriks-
son, 1983; Wood & Holloway, 1984; DeCapitani &
Brown, 1987; Sobolev & Babeyko, 1994; Bina, 1998).
With this method all the variables of the system are
specified and the phase assemblage that minimizes its
free energy is computed. To illustrate this procedure
consider a molar free-energy (G) composition (X) dia-
gram for a binary system (Fig. 1a). For the specified
composition (Xsystem), minimization establishes the
identities, amounts, and compositions of the stable
phases (c + b). By varying pressure or temperature it
would then be possible to find conditions at which either
one of these phases disappears or a new phase appears,
thus defining a pseudosection phase field boundary.
Although the calculation of any individual equilibrium
with this strategy is done by computer, integration of
the results to obtain a pseudosection is time consuming.
Attempts to automate this integration have met with
some success (Eriksson & Hack, 1990; DeCapitani,
pers. comm., 1994), but are not always well suited for
the types of problems common in petrology. A technical
difficulty in nonlinear minimization problems is con-
vergence to local (false) minima; while many algorithms
reduce the probability of this, absolute certainty cannot
be assured for systems with nonideal phases.

A second strategy makes use of a phase equilibrium
calculator (Powell & Holland, 1988; Powell et al.,
1998; see also Hillert, 1981). This strategy is distin-
guished from free-energy minimization in that the
phases of an equilibrium are specified, rather than the
variables of the system. Returning to our illustration
(Fig. 1a), by this methodology the user might specify
the metastable assemblage c + d. The calculator
computes the equilibrium compositions of the coex-
isting phases, but in contrast to a minimization tech-
nique does not test the stability of the assemblage.
The calculator can also determine whether the
assemblage is possible for a composition of the sys-
tem, and if it is, the environmental conditions at
which one phase in the equilibrium vanishes. These
conditions may define a phase field boundary in a
pseudosection. Because phase field boundaries can be
located directly, rather than by the iterative proce-
dures, the technique offers some advantages over free-
energy minimization. Spear (1988) advocates a third
strategy by which the changes in the phases of a stable
equilibrium are determined as a function of environ-
mental variables by application of the Gibbs–Duhem
relation. As with the Holland and Powell strategy, this
methodology can be used to determine conditions
when a phase disappears from a system due to
homogeneous equilibration in response to changing

environmental conditions. Because these techniques
do not directly establish the stability of equilibria,
construction of a phase diagram section by these
methods is labour intensive and requires a priori
knowledge of phase stabilities. The recognition of
phase immiscibility also creates technical complica-
tions for equilibrium calculators because the calcula-
tors solve systems of equations that are formulated in
terms of phase species, rather the phases themselves.

We focus on a fourth strategy in which the systems
minimum free energy surface is determined directly
(i.e. the heavy solid curve in Fig. 1a; Connolly &
Kerrick, 1987; Greiner, 1988). The result of such a
computation is identical to that which would be
obtained by energy minimization computations
repeated for all possible compositions of a system, or
alternatively by establishing the stability of all possible
equilibria in a system through the use of a phase
equilibrium calculator. Once these phase relations are
known, mass balance constraints can be used to
establish which equilibrium is relevant for a particular
composition, and the phase relations of this equilibri-
um can be monitored as a function of environmental
variables to obtain the desired phase diagram section.
It is not to be expected that this strategy will in general
be superior to iterative application of a minimization
technique. However, the efficiency of this strategy
increases enormously if the continuous compositional
variation of solutions is represented by a series of
discrete compositions, i.e. discretized (Connolly &
Kerrick, 1987). The initial implementation of this
strategy as a component of a computer program called
VERTEXVERTEX (Connolly, 1990) has had application for the
calculation of pseudosections (e.g. Gubbins et al.,
1994; Trommsdorff & Connolly, 1996; Connolly, 1997;
Kerrick & Connolly, 1998), but was complicated by
two problems that we resolve here. First, to maximize
efficiency, Connolly & Kerrick (1987) made use of
geometric constraints that required substantial com-
puter memory and thereby limited the dimension and
resolution of the compositional space that could be
treated. Here a simpler and more general algorithm is
introduced that overcomes these limitations. The sec-
ond problem is that VERTEX defines phase diagrams by
identifying the conditions at which changes in the
stable phase assemblages occur rather than by identi-
fying the assemblages themselves. While this is desir-
able for the construction of petrogenetic grids where
the stability fields of phase assemblages may overlap, it
results in a loss of information in the context of a
pseudosection. To recover this information we adopt
an algorithm whereby pseudosections are subdivided
into polygonal regions that correspond to phase fields.

COMPOSITIONAL DISCRETIZATION:
PSEUDOCOMPOUND APPROXIMATION

The free energy surface of a solution phase is a non-
linear function of its composition and consequently the
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numerical solution of phase equilibrium problems is
complicated. To circumvent such complications,
Connolly & Kerrick (1987) suggested an approxima-
tion by which the compositional variation of a solution
is represented by a series of compounds defined such
that each compound has the thermodynamic proper-
ties of the solution at an arbitrarily chosen composi-
tion. To distinguish these compounds from true
phases, the compounds are designated pseudo-
compounds. This approximation is illustrated for a
binary system with three possible phases (Fig. 1b),
where a and c are true compounds, and b is a solution
represented by the pseudocompounds b1…b8. After
the approximation the true curvilinear minimum
G� X surface the system, which defines both the stable
phase assemblages and the possible compositions of
the stable phases, becomes a piecewise linear hull
defined by the vertices a, b2,…,b6, c (the heavy seg-
mented curve in Fig. 1b). More generally, in a
c-component system, at arbitrarily specified environ-
mental conditions, the approximated minimum G� X
surface of the system is a convex faceted c ) 1
dimensional surface, each facet of which is defined by c
compounds that stably coexist. The true variance of
the assemblage corresponding to any facet can be
established by counting the number of phases repre-
sented by the compounds. Thus, a + b2 and b6 + c are
two-phase assemblages, whereas assemblages such as
b2 + b3 represent a portion of the homogeneous one-
phase region of solution b. Immiscibility is recognized
by testing whether two, or more, coexisting pseudo-
compounds of a solution bound the composition of a
metastable pseudocompound of the same solution. For
example, stability of the assemblage b2 + b7 would
imply the existence of a solvus in b spanning the
compositions b3, …, b6.

The distinction between apparent and true variance
of phase assemblages approximated by pseudocom-
pounds is also useful in characterizing changes in the
phase relations of a system as a function of environ-
mental variables. Returning to our illustration
(Fig. 1b), if the solution b is destabilized with respect
to the compounds a and c in response to a change in
some environmental variable, then this destabilization
must be manifest by a discontinuous reaction of the
form b2 ¼ b3 + a or b6 ¼ b5 + c. The equilibrium
of such a reaction has an apparent variance of one (i.e.
the equilibrium is pseudounivariant), but because the
same phase appears twice in the reaction the true
variance of the phase assemblage represented by the
reaction is two. In a phase diagram projection or sec-
tion, the conditions of these pseudounivariant equi-
libria define isopleths of the solution b in the divariant
fields of the assemblages a + b or b + c. In the context
of this example, the ultimate stability of the solution b
would be associated with a reaction of the form
b4 ¼ a + c, this reaction is recognized as univariant
because each compound represents a distinct phase. In
contrast to the true univariant field, for which the

associated reaction stoichiometry changes continu-
ously, the variation in the reaction stoichiometry for
the approximated univariant field occurs discontinu-
ously at pseudoinvariant fields defined by an assem-
blage such as b4 + b5 + a + c.

The essence of the pseudocompound approximation
is that in a pseudosection defined by two environ-
mental variables, any two-dimensional phase field
must represent the stability field of an assemblage
consisting of c compounds and therefore has an
apparent variance of two. Pseudodivariant phase fields
are separated by one-dimensional univariant fields that
intersect to define zero-dimensional invariant fields.
The true variance of these fields is determined by
counting the number of phases represented by the
fields, or, in the special case of phase immiscibility, by
applying a geometric test. These procedures can be
done within the same computer program that is used to
establish the phase fields. Thus, pseudocompounds are
an internal representation and both input and output
to programs based on the algorithm can be expressed
in terms of continuous solution phases and true vari-
ance. The accuracy of the approximation is determined
by the compositional spacing of the pseudocom-
pounds, given current computational resources this is
not an important limitation for geological problems.
Various schemes (e.g. Connolly & Kerrick, 1987) for
the internal generation of pseudocompounds are
described in the program documentation.

STABLE PHASE ASSEMBLAGES AS A FUNCTION
OF COMPOSITION

In this section, an abbreviated combinatorial algo-
rithm to establish the stable phase assemblages of a
system as a function of its composition at constant,
and arbitrarily chosen, environmental conditions is
developed. For the purposes of the algorithm there is
no distinction between true compounds and pseudo-
compounds, so discussion is simplified by the
assumption that all possible phases are true com-
pounds. Gibbs’ conditions require that for the equi-
librium of p compounds the chemical potentials of
each component, in every compound in which it
occurs, must be equal. From the definition of the
Gibbs energy, this condition is expressed

R
c

j¼1
Xi

jlj ¼ G
i
; i ¼ 1; . . . ; p ð1Þ

where i indexes the properties of the compounds. If the
Gibbs energies and compositions of the compounds are
known, then eq. (1) is a system of p linear equations in c
unknowns. It follows, that all, and only, assemblages of
p ¼ c compounds with linearly independent compo-
sitions uniquely define the equilibrium states of the
system. Such assemblages are stable if the condition:

G
i � R

c

j¼1
Xi

jlj � 0 i ¼ 1; . . . ; p ð2Þ
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is true for the p compounds possible in the system.
Based on these constraints, we formulate an algorithm
consisting of an initial step in which a stable com-
pound assemblage is identified. New assemblages
involving a subset of c – 1 compounds of the assem-
blage(s) already known to be stable are identified in the
second step. This step is repeated using the assem-
blages identified in the previous iteration as seeds until
no new assemblages are identified and the composition
diagram is completely determined. In detail, the
structure of each step is:

Step 1. The stable phase in a one-component sub-
composition is found. Components are progressively
added to the subcomposition, and after each addition,
the compound that stably coexists with the compounds
known to be stable from the previous step is deter-
mined. When all c components have been included, the
assemblage of c compounds is a stable divariant
assemblage that defines a corner on the simplicial hull
of the systems minimum G� X surface.

Step 2. Each c – 1 compound permutation of the
c-compound assemblages identified in the previous
step is examined to determine if the permutation is not
present in any other stable assemblage identified in the
current or previous step. If this condition is met, then a
compound is sought that lies on the opposite side of
the c – 1 dimensional plane spanning the compositions
of the permutation from the compound already known
to coexist with the permutation. If such a compound
exists, then there is an additional stable assemblage
involving the permutation. The compound is then
taken as an initial guess for the compound that coexists
with the permutation and eq. (1) is solved. The stability
of this new assemblage is tested by eq. (2), if the
assemblage is found to be metastable with respect to
the jth phase, the guess for the stable phase is updated
to be the jth phase, and eq. (2) is evaluated for the
remaining p – j phases. The assemblage identified in
this manner is stable, but may duplicate an assemblage
already identified in the same iteration. Thus the
assemblage must be compared to a list of assemblages
identified in the current step.

To illustrate this procedure consider the ternary
system shown in Fig. 2. In the initial step of the
algorithm the stable compound, a, in the subcompo-
sition defined by component 1 is identified; the sub-
composition is expanded to include component 2, and
the stable compound, c, that coexists with a in the
binary, is established. The subcomposition is then
augmented to the full ternary composition, and the
compound, b3, that coexists with the a + c is found.
For the second step, the assemblage is a + c + b3 is
now known to be stable; therefore there are two stable
c – 1 phase permutations to be considered a + b3 and
c + b3 that may coexist with a third compound (a + c
is excluded a priori because it lies in a subcomposition
and therefore must be on the edge of the composition
space). Beginning with a + b3, the compounds b4, b5

and b6 lie on the opposite side of the line (i.e. a c – 1

dimensional plane) spanning the compositions of
a + b3 from the compound c and therefore may
coexist with a + b3. One of these compounds is chosen
to form a trial configuration, such as a + b3 + b6, for
which eq. (1) is solved. The stability of b4 and b5 is
then tested relative to the trial configuration with
eq. (2), if either of these compounds is found to be
stable relative to the trial configuration the compound
replaces b6 in the trial configuration, and the stability
of the new trial configuration is tested against the
remaining compounds. The procedure for the second
permutation, c + b3, is identical except that this
assemblage may only coexist with the compounds b4,
b5, b6 and d. If a trial configuration is not metastable
with respect to any of the compounds with which it
may coexist, then it is accepted as a stable assemblage.

Fig. 2. Schematic isobaric-isothermal G� X diagram for a
ternary system illustrating the unconstrained minimization
strategy used in VERTEX. From eq. (1), any assemblage of p ¼ c
compositionally nondegenerate compounds defines a G� X
plane. The assemblage is stable if there are no compounds
with G� X co-ordinates below this plane (eq. 2) is true as is
the case for the assemblage a + c + b3 (open circles indicate
compounds that lie above the a + c + b3 G� X plane). In the
initial step of the algorithm the stable compound, a, in the
subcomposition defined by component 1 is identified; the sub-
composition is expanded to include component 2, and the stable
compound, c, which coexists with a in the binary, is established.
With the addition of the third component to the composition
space, the stable compound b3 that coexists with the binary
assemblage a + c is identified. In the second step, phases are
sought that coexist with every permutation of c–1 compounds
from the assemblage(s) identified in the previous step.
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If at the conclusion of this step, the stable configura-
tions identified in this manner are a + b3 + b4 and
c + b3 + b4, then in the next iteration of this step
there are again two stable c – 1 phase permutations to
be considered a + b4 and c + b5 (here b3 + b4 is
excluded a priori because it is common to two stable
assemblages). The calculation is concluded when all
the stable c – 1 phase assemblages identified are either
common to two assemblages or cannot coexist with
any of the compounds possible in the system (i.e. they
are on the edge of the portion of the composition
space that can be physically realised given the com-
pounds defined for the problem).

As a demonstration of the practicality of the fore-
going algorithm, Fig. 3 shows a calculated �AFM�
diagram (Thompson, 1957) in which the compositions
of two ternary and nine binary solutions are resolved
to an accuracy of one percent. The computer time
required to calculate and draft the diagram is less than
five seconds on a computer with a clock speed of
200 MHz.

Extension to constrained bulk composition

The algorithm outlined above determines all the stable
compound assemblages of a system irrespective of its
composition. Excepting cases of pathological degen-
eracy, only one of these assemblages will be stable for a
given bulk composition. Discounting the caveat, this
assemblage is identified by determining the propor-
tions ai of the compounds in each assemblage neces-
sary to obtain the systems composition by solving the
mass balance constraint:

R
p

j¼1
Xi

jai ¼ Xsystem
j ; j ¼ 1; . . . ; c ð3Þ

The stable compound assemblage is that assemblage
for which the proportions of the compounds are
greater than zero.

For most purposes, pseudosections are used for
problems in which the amounts of all the components
are specified, i.e. the rank of Eqs. 2 and 3 is c. How-
ever, under some circumstances it may be desirable to

constrain only a subset of the systems components, e.g.
a situation where the Fe:Mg ratio of a system is
known, but the proportions of the remaining compo-
nents cannot be defined. Alternatively, it may be
desirable to reduce the dimension of the composition
space by specifying that one or more components are
present in excess. In VERTEX, multiple component sat-
uration constraints are implemented by a component
saturation hierarchy; a scheme that preserves thermo-
dynamic consistency and permits thermodynamic
projections through solution phases (Connolly, 1990).
In these cases, the rank of eq. (3) is greater than that of
eq. (1). As there is no algorithmic constraint on the
rank of eq. (3), these situations are easily dealt with
using the foregoing algorithm.

POLYGONALIZED PHASE DIAGRAM SECTIONS

As a consequence of the pseudocompound approxi-
mation, the maximum apparent variance of any phase
assemblage is two and thus the stability of these
assemblages can only be limited by either univariant
fields or invariant fields where univariant fields
intersect. To establish the conditions for these low
variance fields we employ the following algorithm,
illustrated in Fig. 4, for a system with a fully
constrained composition; for partially constrained
compositions we employ the algorithm outlined by
Connolly (1990).

Step 1. The stable divariant assemblage is deter-
mined, by the procedure outlined previously, at an
arbitrary point along the boundary of the pseudosec-
tion co-ordinate frame (a + c at point a, Fig. 4).

Step 2. One co-ordinate frame variable is incre-
mented until the divariant assemblage becomes meta-
stable with respect to exactly one compound (b1 at
conditions immediately beyond point b, Fig. 4). This
compound together with the initial assemblage
comprises the assemblage of the univariant field. The
univariant field is located on the edge of the co-ordi-
nate frame by solving for the equilibrium condition of
the relevant univariant reaction (a + c ¼ b1 at point
b, Fig. 4; see also Eqs. A1 and A2, Appendix).

Fig. 3. AFM diagram illustrating the
capacity of the program VERTEX to provide
high resolution of compositional phase
relations, thermodynamic data as discussed
in reference to Fig. 5, mineral notation after
Kretz (1983) with stoichiometric phases
indicated by lower case abbreviations. Inset
shows phase relations in terms of the
pseudocompounds specified for the calcula-
tion. Calculation and drafting, which
required < 5 s on a 200-MHz computer, was
done using >20000 pseudocompounds.
Reconstruction of true phase relations is
done automatically by the graphics program
PSVDRAWPSVDRAW.
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Step 3. The univariant field is traced within the
co-ordinate frame, by incrementing one section vari-
able and solving for the other, until it either becomes
metastable at an invariant field (a + c + b1 + b2 at
point c, Fig. 4) or intersects the edge of the co-ordinate
frame. In the former case, the additional stable uni-
variant fields that emanate from the invariant field
(a + c + b2 and a + b1 + b2) are established by
determining the c + 1 phase permutations of the
invariant assemblage that span the bulk composition
(eq. 3) and these are traced in the same manner. This step
is repeated to determine all the univariant fields that
connect to the initial univariant field via invariant fields.

If the foregoing procedure is repeated for every
divariant field identified on the perimeter of the sec-
tions co-ordinate frame, then all the univariant fields
relevant to the bulk composition are established. Each
of these fields separates two divariant fields, the iden-
tities of which are found by determining the two
c phase permutations that span the bulk composition
(eq. 3). This information completes the definition of
the pseudosection, but the interpretation of the
pseudosection is complicated by the fact the output of
the algorithm defines the edges of the two-dimensional
regions of the pseudosection rather than the

two-dimensional regions themselves. To eliminate
this difficulty we make use of the fact there is a
unique divariant assemblage in every two-dimensional
field of the pseudosection. Each of these fields is a
polygon, the vertices of which correspond to the points
along the bounding univariant fields and associated
invariant fields or intercepts with the co-ordinate frame
where these univariant fields terminate. The program
POLYGONPOLYGON assembles this polygonal mesh from the out-
put created by VERTEX and associates a divariant
assemblage with each element of the mesh. For our
example (Fig. 4), the output from POLYGON would be
a mesh consisting of six elements representing the
divariant fields a + c, c + b1, c + b2, b2 + b3, a + b3

and a + b4. If it is acknowledged that b1…b4 represent
a single solution b, then four true phase fields can be
reconstructed from the internal pseudocompound
representation: the divariant field a + c; the one phase
trivariant field of b represented by the pseudodivariant
assemblage b2 + b3; and the divariant fields of c + b
and a + b represented by divariant assemblages
{c + b1, c + b2} and {a + b3, a + b4}, respectively.
For graphical purposes the true phase relations are
obtained with the program PSVDRAW. In its default
mode PSVDRAW shows all true univariant fields

Fig. 4. Schematic pseudosection for a binary system illustrating the tracing algorithm used by VERTEX. Arrows indicate the path traced
by VERTEX, with G� X diagrams at points along the path as discussed in the text. In the G� X diagrams, the vertical dashed line
indicates the systems composition. One-dimensional univariant fields are traced by locating conditions at which c + 1 phases are
simultaneously tangent to a G� X plane subject to the condition that there are no other compounds below the plane, as in (b);
univariant fields may terminate at zero-dimensional invariant fields located by conditions at which an additional compound becomes
tangent to the G� X plane of the univariant field. The divariant fields separated by each univariant field are established by finding
the two c-phase permutations of the univariant assemblage that span the composition of the system (eq. 3). The univariant fields divide
the P–T space of the section into a polygonal mesh, the program POLYGON assembles this mesh from the output generated by VERTEX

and associates a divariant assemblage with each polygon, e.g. the field b1 + b2 (shaded) constitutes one element of the mesh. True
phase field variance is determined by counting the number of phases represented by the compounds; thus, truly univariant phase fields
such as a + c ¼ b1 are distinguished from pseudounivariant b1 + c ¼ b2 fields. Likewise, the programs recognize that two or
more elements of the polygonal mesh, such as c + b1 and c + b2, may represent a single true phase field.
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(e.g. a + b1 + c) and any pseudounivariant fields
(c + b2 + b3 and a + b2 + b3) that define the limit
of a true phase region, and suppresses pseudounivari-
ant fields that correspond to boundaries between
polygons that represent the same true phase assem-
blage (c + b1 + b2 and a + b3 + b4).

To illustrate the tractability of geological problems
by our method, the computer implementation of this
strategy was applied to the calculation of the phase
relations for Shaw’s (1956) average metapelite compo-
sition (atomic proportions 6.32 Na: 7.12 K: 2.21 Ca:
5.73 Mg: 9.05 Fe: 24.00 Al: 210.14 Si). To constrain
the proportions of H2O, CO2 and O2, the system is
assumed to be in equilibrium with a fluid formed by
equilibration of water with graphite, a model argued to
provide a reasonable model for metapelite devolatil-
ization (Connolly & Cesare, 1993). The calculation was
made with the thermodynamic data of Holland &
Powell (1998), taking into account the crystalline solu-
tions as detailed in Table 1. Computer time required to
calculate and draft the pseudosection is c. 10 min on a
200-MHz computer. The raw output from VERTEX that
forms the basis of the polygonalized pseudosection is
shown in Fig. 5(a); the section after processing with
POLYGONPOLYGON is shown in Fig. 5(b), with labelling sup-
pressed for legibility; and the final redrafted section is
shown in Fig. 5(c). The computed phase relations are
consistent with petrographic observation (e.g. Bucher
& Frey, 1994), an agreement that provides some

assurance that current thermodynamic models are
adequate for modelling natural systems. Discretization
of solution composition limits the resolution of certain
pseudosection features, most notably in Fig. 5(c) this is
manifest in the narrow high variance fields that sepa-
rate phase fields of lower variance and uncertainty as to
the arrangement of high variance phase fields about the
ends of univariant fields. Examples of this uncertainty
are the small triangular trivariant fields that terminate
the univariant field that limits the stability of albite with
respect to plagioclase (at c. 450 �C, 0.7 GPa in Fig. 5c).
While the existence of these fields cannot be rejected on
the basis of topological arguments, their small size leads
to the suspicion that they are an artefact of composi-
tional discretization. The validity of such features can
usually be verified by refining the discretization scheme,
but in some cases unambiguous resolution requires
numerically exact computational procedures (e.g. those
of Powell et al., 1998 or Spear, 1989).

Once a polygonalized pseudosection has been com-
puted, chemical and thermophysical properties at any
condition within the section are retrieved by the pro-
gram WERAMI. WERAMI determines the polygonal ele-
ment spanning the condition of interest and reports
the requested properties, a program with similar
structure is used by Spear (1999) to recover phase
diagram information. Because of the pseudocompound
approximation, mineral chemistry changes only across
the boundaries of the polygonal elements of the
pseudosection, whereas thermophysical properties vary
both continuously through a polygonal element and
discontinuously across its boundary. These properties
can be visualized directly as a false colour image by
assigning representative values to each element of the
polygonal mesh. Alternatively, property values can be
sampled on a grid or path, defined by an arbitrary
polynomial, through the pseudosection and then
interpolated to provide a continuous model for the
properties. This latter mode of representation is used
to depict modal variation of the mineralogy and water
content (Fig. 5d) and plagioclase and garnet compo-
sitions (Fig. 5e) for our model pelite as a function of
pressure and temperature. The latter plot (Fig. 5e)
demonstrates that when the use of pseudosections is
justified, mineral solution chemistry provides an
extraordinarily simple thermobarometric method. The
irregular trajectories of the mineral isopleths are due to
abrupt changes in the P–T dependence of mineral
composition across phase field boundaries.

PRACTICAL IMPLEMENTATION
OF THE ALGORITHM

The programs VERTEX, POLYGON and WERAMI are com-
ponents of a collection of FORTRAN computer programs
for the calculation and graphical representation of
phase equilibria. This package, including documenta-
tion, can be copied via Internet (http://www.
perplex.ethz.ch). This web site also includes a tutorial

Table 1. Mineral solution notation, formulae and model sources
(1 ¼ Holland & Powell, 1998; 2 ¼ modified from Anovitz &
Essene, 1987; 3 ¼ Holland et al., 1998; 4 ¼ modified from
modified from Gasparik, 1985 and Holland & Powell, 1998;
5 ¼ Thompson & Waldbaum, 1969; 6 ¼ modified from
Chatterjee & Froese, 1975 and Holland & Powell, 1998; 7 ¼
Newton et al., 1980). The compositional variables w, x, y, and
z may vary between zero and unity and are determined as a
function of pressure and temperature by free-energy
minimization.

Symbol Solution Formula Source

Amph amphibole Ca2)2zNazMgxFe(1)x)Al3w+4ySi8)2w)2yO22(OH)2 1

Bio biotie KMg(3)y)xFe(3)y)(1)x)Al1+2ySi3)yO10(OH)2 1

Cal calcite Ca1)x)yMgxFeyCO3 2

Chl chlorite Mg(5)y+z)xFe(5)y+z)(1)x)Al2(1+y)z)Si3)y+zO10(OH)8 3

Cph carpholite MgxFe1)xAl2Si2O6(OH)4; 1

Cpx clinopyroxene Na1)yCayMgxyFe(1)x)yAlySi2O6 4

Crd cordierite Mg2xFe2)2xAl4Si5O18
• (H2O)y 1

Ctd chloritoid MgxFe1)xAl2SiO5(OH)2 1

Dol dolomite CaMgxFe1)x(CO3)2 1

Ep epidote Ca2Al3)2xFe2xSi3O12OH 1

Gl glaucophane Ca2)2zNazMgxFe1)xAl3w+4ySi8)2w)2yO22(OH)2 1

Grt garnet Fe3xCa3yMg31)x)yAl2Si3O12 1

Kfs alkali feldspar NaxKyAlSi3O8 5

Mgs magnesite MgxFe1)xCO3 1

Ms muscovite KxNa1)xMgywFe(1)y)wAl3)2wSi3+wO10(OH)2 6

Ol olivine MgxFe1)xSiO4 1

Opx orthopyroxene Mgx(2)y)Fe(1)x)(2)y)Al2ySi2)yO6 1

Pl plagioclase NaxCa1)xAl2)xSi2+xO8 7

Pg paragonite KxNa1)xMgywFe(1)y)Al3)2wSi3+wO10(OH)2 6

Prg amphibole Ca2NawMgxFe1)xAl3w+4ySi8)2w)2yO22(OH)2 1

Sa sanidine NaxKyAlSi3O8 5

Sp spinel MgxFe1)xAlO3 1

St staurolite Mg4xFe4)4xAl18Si7.5O48H4 1
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outlining the steps necessary for the computation
illustrated by Fig. 5. The programs can be used with
most recent geological thermodynamic databases (e.g.
Johnson et al., 1992; Berman & Aranovich, 1996;

Gottschalk, 1997; Holland & Powell, 1998). Because
the FORTRAN sources of the programs are available, the
programs can be modified to accommodate mineral
equations of state that have not been anticipated in the

Fig. 5. Computed pseudosection for Shaw’s (1956) average (subaluminous) metapelite composition, solution models as in Table 1,
compositions were resolved with minimum accuracy of 3 mol percentage. Calculation and drafting required c. 10 min on a 200-MHz
computer. Raw output from VERTEX (a) consists of pseudounivariant curves; this output is processed by Polygon to obtain the pseudo-
section (b, labels omitted for legibility), which is redrafted in (c). Univariant fields shown by heavy solid lines, divariant fields by white fill,
and higher variance fields by progressively darker shading. All fields include quartz in addition to the indicated mineralogy. Numbered
fields in (c) correspond to: (1) ab + Chl + Ms + wrk (wairakite), (2) ab + Cal + Chl + Ms + Pg, (3) Chl + Ep + Ms + Pl,
(4) Bt + Chl + Grt + Ms + Pl, (5) Bt + Grt + Ms + Pl + St, (6) Bt + Ms + Pl + sil, (7) Bt + Grt + Pl + Sa + sil,
(8) Bt + Crd + Grt + Pl + sil, (9) Amph + Bt + Grt + Ms + Pl, (10) Bt + Crd + Ol + Pl + Sa, (11) Chl + Crp (carpho-
lite) + lws + Ms + Pg, (12) Chl + Cpx + Crp + lws + Ms, (13) Chl + Cpx + lws + Ms + Pg, (14) Amph + Cal + Chl +
Ms + Pg. Unlabelled phase fields can be deduced from the rule that adjacent phase fields differ by only one phase. (d) Modal variations,
along path indicated by heavy dashed curve in (c). (e) Contour plot of the mole fractions of the anothite end-member in plagioclase and the
pyrope end-member in garnet, heavy solid curves indicate stability fields of plagioclase and garnet. Both (d) and (e) constructed from
the polygonalized pseudosection by WERAMI.
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present code or for other specialized purposes.
Graphical output from the package is written in
interpreted PostScript that can be imported into
commercial graphical editors.

DISCUSSION

The advance accomplished by this work is technical
in that we have developed a robust and general
method for computing pseudosections that requires
no a priori knowledge of the phase relations in
question. Our method eliminates several difficulties
endemic to numerically exact nonlinear optimization
strategies; these problems include convergence to
local (metastable) free energy minima; numerical
instability; and, in the case of equilibrium calculators,
complications caused by phase separation. Addition-
ally, the approach advocated here offers a more
rational means of representing the computed phase
relations than can be obtained by conventional energy
minimization strategies (e.g. Saxena & Eriksson, 1983;
Wood & Holloway, 1984; DeCapitani & Brown,
1987; Eriksson & Hack, 1990). In contrast to the
methods outlined by Powell et al. (1998) and Spear
(1988), the approach has the advantage that of being
fully automated. The feasibility of our strategy rests
on the discretization of the continuous compositional
variation of solution phases with pseudocompounds
(Connolly & Kerrick, 1987). While discretization
results in finite accuracy, it is unlikely that this is
a major limitation given present computational
resources and accuracy of mineralogical solution
models. In cases where this assumption proves untrue,
our approach may serve as a complement to numer-
ically exact procedures.
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APPENDIX: PHASE DIAGRAM NOMENCLATURE

Although much of current petrological phase diagram jargon is
generally understood, the meaning of some terms is vague. To
avoid the possibility that our language gives rise to any ambiguity
we review some aspects of phase diagram terminology. The inde-
pendent variables of phase diagrams can be related to a ratio of
extensive properties (e.g. chemical composition), or to an intensive
state function (P, T, l1,…,lc). Both kinds of variables are inten-
sive and to distinguish them they are designated potential (Hillert,
1985; Palatnik & Landau, 1964) and compositional (Connolly,
1990) variables, respectively. It is convenient to consider these
variables to be the representative co-ordinates of a system com-
posed of c independently variable kinds of matter. A real phys-
icochemical system is open with respect to some extensive property
if the property may vary through interactions with the environ-
ment of the system. These properties must be characterized by
potentials, referred to as environmental variables, because in
equilibrium thermodynamics the nature of such interactions
can only be defined if these potentials have the same value
both within and beyond the boundaries of the system. The asso-
ciation of the variables of a diagram with the determinative

physicochemical properties of a real system is of course unspecified
because it is impossible to prescribe the way a phase diagram will
be used.

A diagram is a phase diagram only if its geometry defines the
representative co-ordinates of both a system and its stable phases
(e.g. Schmalzreid & Pelton, 1973; Hillert, 1985; Palatnik & Landau,
1964). From the definition of composition variables, it follows that
such a diagram must be c + 1 dimensional (i.e. only c + 1 of the
intensive variables can be independent). If all c + 1 variables of this
diagram are compositions, then diagram is composed of c + 1
dimensional phase fields that define the loci of conditions for which a
specific phase assemblage of p phases is in equilibrium. Defining
phase field variance as f ” c + 2 ) p, if v composition variables of
the phase diagram are replaced by their conjugate potentials, then
the dimension of any phase field with f < v is reduced by v ) f
dimensions, because of the equality of potentials among coexisting
equilibrium phases.

In general the information in phase diagrams must be presented in
two dimensions by sectioning or projection to be of practical value.
Phase diagram sections may be defined by potential or composition
sectioning variables, and are designated potential and composition
sections, respectively (Hillert, 1985). Potential sections are themselves
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phase diagrams because the section defines the state of both the
system and its phases. In contrast, composition sections are not
phase diagrams because the section defines neither the compositions
nor the amounts of the phases. In this respect, usage of the term
pseudosection to designate composition sections, as implicit in recent
geological literature (e.g. Powell et al., 1998), is not inappropriate.
We employ the term in this paper as short-hand for composition
sections made on a two-dimensional co-ordinate frame defined by
two potentials. In this context, c + 1 dimensional univariant fields
and c dimensional invariant fields appear as curves and points,
respectively. It is always possible to write a mass balance relation-
ship, i.e. a reaction, among the phases of a univariant field of the
general form:

R
cþ1

i¼1
mi~uui ¼ 0 ðA:1Þ

where ~uui is a vector representing the composition of the ith phase and
mi is its reaction coefficient. If the potentials of interest are pressure
and temperature, a necessary condition for the stability of the
univariant assemblage is

R
cþ1

i¼1
miG

i ¼ DG ¼ 0; ðA:2Þ

the sufficient condition being that eq. (1) is true for all nondegenerate
permutations of c phases of the univariant assemblage. The reaction
coefficients of one, or more, phases in Eq. (A.1) may be zero, thus
the reaction equation can be written among a subset of the equilib-
rium phases, e.g. as would be the case for a polymorphic phase
transformation in a system with c > 1. We do not follow the com-
mon petrological practice of identifying univariant fields by reactions
to emphasize that within a univariant field the state of the system can
only be defined by all c + 1 phases of the fields, regardless of the
number of phases involved in the associated reaction. Likewise, we
do not follow the practice of identifying univariant and invariant
fields as univariant curves and invariant points for two reasons: (i)
curves and points represent, by definition, univariant and invariant
conditions, and therefore the adjectives are superfluous; and (ii) we
seek language that allows concise statement of phase diagram prin-
ciples such as the Maessing-Palatnik rule, which states that adjacent
phase fields differ by exactly one phase (e.g. Hillert, 1985).
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