685 DO NOT DELETE THIS LINE --------------------------------------------------------------------------- DO NOT USE TABS IN PERPLE_X DATA FILES, TAB CHARACTERS ARE NOT INTERPRETED AS BLANK SPACES AND CAUSE FORMATTING ERRORS. --------------------------------------------------------------------------- SUBDIVISION SCHEMES define the discreitization and range of compositions for a solution during a calculation. he discreitization and range of compositions for a solution during a calculation. In many cases, particularly for chemically complex solutions, this range is restricted to reduce the time and memory required for calculations. If such a restriction is encountered (**warning ver993**) during the exploratory stage of a calculation the restriction may have consequences for the final auto-refine stage result. For this reason it is important for users to correct the scheme (unless the restriction is intentional). A resume of warnings written at the end of the exploratory stage is written to the *_auto_refine.txt file. This file should be examined before any results are accepted as final. A brief description of how subdivision schemes follows (it reads worse than it is): If the solution model has a simplicial composition space, then each scheme is directly associated with an endmember (as identified in *_auto_refine.txt). For a solution with N endmembers, there are thus N-1 subdivision schemes. In general it is best to order the solution model endmembers so that the most important end- member is listed last and therefore determined by difference. If the solution model has a prismatic composition space, then a scheme is associated with the S-1 independent compositions of the T simplexes that comprise the prism (as identified in *_auto_refine.txt). Thus for prismatic composition spaces there are T*(S-1) subdivision schemes for the compositional variables X(1..T,1..S-1). X(1..T,S) is determined by difference and therefore then endmembers should be ordered so that X(1..T,S) corresponds to the most important compositional variable. The subdivision scheme for each independent compositional variable is specified by four parameters, in order, XMIN, XMAX, XINC, IMOD: IMOD - may be either 0 or 1: IMOD = 0 - is the cartesian scheme, in which compositions are discretized with a regular spacing. IMOD = 1 - is a non-linear scheme, in which compositions become more closely spaced toward zero. XINC - in most cases the value of XINC is equated to the first (exploratory stage) or second value of the initial_resolution keyword, which defaults to [1/16 1/48], i.e., the value of XINC specified within the solution model text here is irrelevant. The exceptions are if initial_resolution = [0 0] or if the solution model type = 20 (electrolytic_fluid). For these exceptions, the value of XINC is read from the model text here. XINC controls the resolution of the compositional discretization, i.e., the number of compositions generated over the interval of interest is 1/XINC + 1 if XINC < 0 and is XINC+1 if XINC > 0. XMAX - is the maximum value of the compositional variable permitted by the scheme. This value may be relaxed if the hard_limits option is TRUE (default). XMIN - If IMOD = 0, XMIN is the minumum value of the compositional variable permitted by the scheme. This value may be relaxed if the hard_limits option is TRUE (default). If IMOD = 1 and XMIN > 0, then XMIN is the smallest non-zero value of the compositon for statically generated compositions. Thus, the value of XMIN dictates the asymmetry of the discretization. XMIN is not relaxed if this composition becomes limiting. If IMOD = 1 and XMIN = 0, then XMIN has no significance and the asymmetry of the discretization is specified by the stretch_factor option. For convexhull minimization calculations (CONVEX) the resolution of a composition is dictated entirely by the subdivision scheme and the initial_resolution option. For adaptive minimization calculations (VERTEX) the resolution of statically generated compositions is controlled as in convexhull calculations, but the compositional resolution for dynamically generated compositions is limited by the final_resolution keyword. In particular for non-linear subdivision, this has the consequence that the value of XMIN or stretch_factor should be viewed as the order of magnitude the poorest acceptable resolution. --------------------------------------------------------------------------- Solution model types are: 2 - simplicial composition space 6 - order-disorder, simplicial composition space 7 - prismatic composition space (reciprocal when correct) 8 - order-disorder, prismatic composition space 9 - order-disorder, simplicial composition space with a prismatic vertex 10 - simplicial composition space with a prismatic vertex Special model types: 0 - internal (fluid) EoS 20 - Electrolyte (charge balance) model 26 - Haefner H2O-CO2-NaCl 29 - BCC Fe-Si alloy, Lacaze & Sundman 1990. 30-33 - FeSiC alloys (BCC/FCC/CBCC/HCP), Lacaze & Sundman 1990. 39 - generic hybrid fluid EoS 40 - Silicate fluid (MRK) 41 - COH fluid (hybrid MRK) 42 - FeS liquid, Saxena & Eriksson 2015 with ECRG corrections --------------------------------------------------------------------------- Character data is format free. --------------------------------------------------------------------------- comments can be placed between models provided, nothing is written in the first 10 columns. Comments may be placed after data if it is separated from the data by a '|' marker. Comments may be placed within the data in some cases without the '|' marker, but it is always safe to add a comment with the marker. -------------------------------------------------------- begin_model | solution models begin/end with the begin_model/end_model tags model_name | the name (<11 chars) used to identify the solution model abbreviation F | an abbreviation used optionally for output (solution_names abb) full_name fluid | a long name used to classify the model (e.g., liquid) and optionally for | output (solution_names ful) 39 | model type: model_type_39, see perplex.ethz.ch/Perple_X_generic_hyrbid_fluid_EoS.html N | number of species name_1 name_2 ... name_N | species names, these must match the species names in thermodynamic data file 0 0 ... 0 | N species flags, if 0 the pure species is treated as part of the solution. | subdivision schemes (see above) for the first N-1 species 0 1 0.1 0 | scheme for species name_1 ... 0 1 0.1 0 | scheme for species name_N-1 | type 39 solution models use an internal EoS to compute excess properties, this is | indicated by the ideal tag ideal | type 39 solution models use a molecular configurational entropy model, this is | indicated by setting the the number of identisites to zero. 0 | the number of identisites (specify 0 for no model or a molecular entropy model) | the configurational entropy data may be followed by several optional tags and/or sections: reach_increment 0 | see www.perplex.ethz.ch/perplex_options_body.html#reach_increment refine_endmembers | see www.perplex.ethz.ch/perplex_options_body.html#refine_endmembers_solution_model_file | currently no provision is made for DQF corrections or van Laar excess funcitons in GFSM end_of_model -------------------------------------------------------- begin_model COH-Fluid+ Generic Hybrid Fluid EoS with non-linear Subdivision. see COH-Fluid for the linear subdivision version of this model. See the header of this file for an explanation of non-linear subdivision parameters. See perplex.ethz.ch/Perple_X_generic_hyrbid_fluid_EoS.html for explanation of this type of fluid model. -------------------------------------------------------- COH-Fluid+ abbreviation F full_name fluid 39 | model type: Generic Hybrid EoS 7 CO2 CH4 H2S SO2 H2 CO H2O 0 0 0 0 0 0 0 0 | endmember flags 1e-5 3e-1 .1 1 | subdivision ranges, imod = 1 -> non-linear subdivision 1e-5 1. .1 1 | subdivision ranges, imod = 1 -> non-linear subdivision 1e-5 1e-3 .1 1 | subdivision ranges, imod = 1 -> non-linear subdivision 1e-5 2.5e-5 .1 1 | subdivision ranges, imod = 1 -> non-linear subdivision 1e-5 1e-2 .1 1 | subdivision ranges, imod = 1 -> non-linear subdivision 1e-5 1e-2 .1 1 | subdivision ranges, imod = 1 -> non-linear subdivision ideal 0 reach_increment 0 end_of_model -------------------------------------------------------- begin_model Cpx(H) - Holland et al (JPet, 2018) Clinopyroxene model. Coded for Perple_X by Julien Cornet Sept 2018. Re-formulated as a triple simplex prism. JADC, Dec 11, 2018. NOTES: to use this model, the following endmembers must be specified with make definitions in the thermodynamic data file cenjh = 1 en DQF = 3500 - 2 * T + 0.048 * P cfsg = 1 fs DQF = 2100 - 2 * T + 0.045 * P cessh = cats + acm - jd DQF = -3450 crdih = cats + kos - jd DQF = -4900 mcbuf = cats + 1/2 per + 1/2 ru -1/2 cor DQF = -1750 - 1.2 * T - 0.005 * P kjdh = jd + san - abh DQF = -3750 + 1.189 * P 9 compositionally independent endmembers 1 ordered endmember 15 dependent endmembers 16 fillers, 4 are utterly superfluous this formulation limits the buf exchange to {MgTi}/2{Fe} - {FeTi}/2{MgFe}/2 M1 M2 T ____________________________________ Multiplicity 1 1 1/2 <- fake T multiplicity ____________________________________ mkbuf_d MgTi K Si dependent mnbuf_d MgTi Na Si dependent mcbuf MgTi Ca AlSi mcbuf_d1 MgTi Ca AlSi filler ___ mkbuf_d1 MgTi K Si filler mnbuf_d1 MgTi Na Si filler mbuf_d MgTi Mg AlSi dependent mfbuf_d MgTi Fe AlSi dependent _________ crkjd_d Cr K Si dependent crjd_d Cr Na Si dependent crdi Cr Ca AlSi crdi_d1 Cr Ca AlSi filler ___ crkjd_d1 Cr K Si filler crjd_d1 Cr Na Si filler cren_d Cr Mg AlSi dependent crfs_d Cr Fe AlSi dependent _________ kess_d Fe3+ K Si dependent ness_d Fe3+ Na Si dependent cess Fe3 Ca AlSi cess_d1 Fe3 Ca AlSi filler ___ kess_d1 Fe3+ K Si filler ness_d1 Fe3+ Na Si filler mess_d Fe3 Mg AlSi dependent fess_d Fe3 Fe AlSi dependent _________ kjdh Al K Si jd Al Na Si cats Al Ca AlSi cats_d1 Al Ca AlSi filler ___ kjd_d1 Al K Si filler jd_d1 Al Na Si filler mats_d Al Mg AlSi dependent fats_d Al Fe AlSi dependent _________ kjd_d2 Al K Si filler jd_d2 Al Na Si filler di Mg Ca Si hed_d Fe Ca Si dependent ___ kjd_d3 Al K Si filler jd_d3 Al Na Si filler cenjh Mg Mg Si cfsg Fe Fe Si _______________________________________________ Ordered species: cfm Mg Fe Si independent Cpx(H) abbreviation Cpx full_name clinopyroxene 8 | model type: prismatic 3 | number of simplexes comprising the prism 4 2 5 | 15 true dependent endmembers: mkbuf_d mnbuf_d mcbuf mcbuf_d1 mkbuf_d1 mnbuf_d1 mfbuf_d mbuf_d crkjd_d crjd_d crdih crdi_d1 crkjd_d1 crjd_d1 crfs_d cren_d kess_d ness_d cessh cess_d1 kess_d1 ness_d1 fess_d mess_d kjd jd cats cats_d1 kjd_d1 jd_d1 fats_d mats_d kjd_d2 jd_d2 hed_d di kjd_d3 jd_d3 cfsg cenjh 1 | number of ordered species and definitions cfm = 1/2 cenjh + 1/2 cfsg enthalpy_of_ordering = -4400 - 0.0008*P | DQF(cfm) - (DQF(ceng) + DQF(cfsg))/2 begin_limits cfm = -2 + 2 cfsg + 1 cfm delta = 2 zm1fe cfm = 0 - 2 di - 2 cenjh - 1 cfm delta = 2 zm1mg cfm = 0 - 2 cfsg - 1 cfm delta = 2 zm2fe cfm = -2 + 2 cenjh + 1 cfm delta = 2 zm2mgd end_limits 31 | number of dependent endmembers and definitions | 15 true dependent endmembers: mkbuf_d = -1 cats + 1 mcbuf + 1 kjd mnbuf_d = -1 cats + 1 mcbuf + 1 jd mfbuf_d = -1 di + 1 mcbuf + 1 cfm mbuf_d = -1 di + 1 mcbuf + 1 cenjh crkjd_d = -1 cats + 1 crdih + 1 kjd crjd_d = -1 cats + 1 crdih + 1 jd cren_d = -1 di + 1 crdih + 1 cenjh crfs_d = -1 di + 1 crdih + 1 cfm kess_d = -1 cats + 1 cessh + 1 kjd ness_d = -1 cats + 1 cessh + 1 jd mess_d = -1 di + 1 cessh + 1 cenjh fess_d = -1 di + 1 cessh + 1 cfm mats_d = -1 di + 1 cats + 1 cenjh fats_d = -1 di + 1 cats + 1 cfm hed_d = 1 di + 1 cfsg - 1 cfm | 12 useful dependent filler endmembers mcbuf_d1 = 1 mcbuf mkbuf_d1 = -1 cats + 1 mcbuf + 1 kjd mnbuf_d1 = -1 cats + 1 mcbuf + 1 jd crdi_d1 = 1 crdih crkjd_d1 = -1 cats + 1 crdih + 1 kjd crjd_d1 = -1 cats + 1 crdih + 1 jd cess_d1 = 1 cessh kess_d1 = -1 cats + 1 cessh + 1 kjd ness_d1 = -1 cats + 1 cessh + 1 jd cats_d1 = 1 cats kjd_d1 = 1 kjd jd_d1 = 1 jd | 4 utterly useless dependent filler endmembers, | these could be sawdust for all they do. kjd_d2 = 1 kjd jd_d2 = 1 jd kjd_d3 = 1 kjd jd_d3 = 1 jd | | endmembers to make the Mg-free Ti exchange, these | | could replace utterly useless fillers to increase | | compositional converage |fcbuf_d = 1/2 cfsg + 1 mcbuf - 1/2 cfm |fbuf_d = -1 di + 1/2 cfsg + 1 mcbuf + 1/2 cfm |fkbuf_d = 1/2 cfsg - cats + mcbuf - 1/2 cfm + kjdh |fnbuf_d = 1/2 cfsg - 1 cats + 1 mcbuf + jd - 1/2 cfm 0 0 0 0 0 0 0 0 0 0 | endmember flags 0 0 0 0 0 0 0 0 0 0 | endmember flags 0 0 0 0 0 0 0 0 0 0 | endmember flags 0 0 0 0 0 0 0 0 0 0 | endmember flags | First (3d) simplex of the prism (Ca/Mg/Fe-Na-K) 0. .2 0.1 0 | range and resolution of X(1,1) => Na 0. .3 0.1 0 | range and resolution of X(1,2) => K 0. .6 0.1 0 | range and resolution of X(1,3) => Fe | Second (1d) simplex of the prism 0.9 1. 0.1 0 | range and resolution of (Fe+Mg)/(Ca+Fe+Mg) | third (4d) simplex of the prism 0. .1 0.1 0 | range and resolution of X("buf") 0. .1 0.1 0 | range and resolution of X("cr") 0. .1 0.1 0 | range and resolution of X("ess") 0. .1 0.1 0 | range and resolution of X("ts") begin_excess_function W(di cfsg) 25.8d3 - 0.03 * p W(di cats) 13d3 - 0.06 * p W(di crdih) 8d3 W(di cessh) 8d3 W(di jd) 26d3 W(di cenjh) 29.8d3 - 0.03 * p W(di cfm) 20.6d3 - 0.03 * p W(di kjd) 26d3 W(cfsg cats) 25d3 - 0.1 * p W(cfsg crdih) 38.3d3 W(cfsg cessh) 43.3d3 W(cfsg jd) 24d3 W(cfsg cenjh) 2.3d3 W(cfsg cfm) 3.5d3 W(cfsg kjd) 24d3 W(cats crdih) 2d3 W(cats cessh) 2d3 W(cats jd) 6d3 W(cats cenjh) 45.2d3 - 0.35 * p W(cats cfm) 27d3 - 0.1 * p W(cats kjd) 6d3 W(crdih cessh) 2d3 W(crdih jd) 3d3 W(crdih cenjh) 52.3d3 W(crdih cfm) 40.3d3 W(crdih kjd) 3d3 W(cessh jd) 3d3 W(cessh cenjh) 57.3d3 W(cessh cfm) 45.3d3 W(cessh kjd) 3d3 W(jd cenjh) 40d3 W(jd cfm) 40d3 W(jd kjd) 10d3 W(cenjh cfm) 4d3 W(cenjh kjd) 40d3 W(cfm kjd) 40d3 end_excess_function 3 | 3 site entropy model (M1, M2, T) 6 1 | 6 species on m1, mult = 1 z(m1,fe) = 1 cfsg z(m1,mg) = 1 di + 1 cenjh + 1/2 mcbuf + 1 cfm z(m1,fe3+) = 1 cessh z(m1,Ti) = 1/2 mcbuf z(m1,Cr) = 1 crdih 5 1 | 5 species on m2, mult. = 1 z(m2,na) = 1 jd z(m2,k) = 1 kjd z(m2,mg) = 1 cenjh z(m2,fe) = 1 cfm + 1 cfsg 2 0.5 | 2 species on T, effective mult. = 1/4 z(Al,T) = 1/2 cats + 1/2 mcbuf + 1/2 crdih + 1/2 cessh begin_van_laar_sizes alpha(di) 1.2 alpha(cenjh) 1 alpha(cfsg) 1 alpha(jd) 1.2 alpha(kjd) 1.2 alpha(cats) 1.9 alpha(mcbuf) 1.9 alpha(cessh) 1.9 alpha(crdih) 1.9 alpha(cfm) 1 end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Augite(G) => Green et al (JMG, 2016) Augite model. This model should not be used for "Na-rich" compositions. NOTE: to use this the following endmembers must be specified with make definitions in the thermodynamic data file cenjh = 1 en DQF = 3500 - 2 * T + 0.048 * P cfsg = 1 fs DQF = 2100 - 2 * T + 0.045 * P to avoid cluttering thermodynamic data files with the new plague of TC DQF "corrections", the following simple DQF's are specified in the make_definition section at the end of this model: dqf(jd) = 2000 dqf(acm) = -5000 dqf(cats) = 3800 - 2.8816 * T + 0.01 * P For (nonsensical, but common) positive DFQ's this approach may lead to interference between the phase relations of the solution model and the un-DQF'd endmember. If such interference occurs: the DQF'd endmember must be renamed; its definition placed in the thermodynamic data file; and the un-DQF'd endmember excluded from the calculation. The model composition space is formulated as prism composed of 3 simplexes the first simplex is 2d (ternary) and represents divalent elements Ca-Mg-Fe (M cations), the second simplex is 1d (binary) and represents the exchange of the M cations for Na and the third simplex is 2d (ternary) and represents the exchange of trivalent Al and Fe for Si. Because some of the exchanges are not possible due to charge balance constraints, the impossible vertices of the simplex are populated by replicating possible vertices (designated filler vertices below). Filler vertices must be chosen so that each exchange is dependent on only one prismatic. The use of filler vertices is undesireable because the same bulk composition may be replicated by different prismatic coordinates. They are employed here as interim method of forcing VERTEX/MEEMUM to visit every possible bulk composition of a solution. This unfortunate situation will be remedied in the future by modifying Perple_X to allow compositions formed by the mixture of two or more prisms, for example the Augite(G) compositional 5 dimensional prism with 18 vertices (of which 7 are filler vertices), can be represented by all possible mixtures of a 4x2 prism [(di-en-mats-macm)-(hed-fs-fats- facm)] and a 2x2 prism [(cats-cacm)-(jd-acm)]. In the present model the independent prismatic variables (used for specifying) the subdivision of the composition space are: X(1,1) - Na/(Na+M) on M2 X(1,2) - Mg/(Na+M) on M2 X(2,1) - Ca/M on M2 X(3,1) - Fe(3+)/(Al+Fe+M) on M1 (i.e., Ferric-Tschermaks) X(3,2) - Al/(Al+Fe+M) on M1 (i.e., Al-Tschermaks) Sites M1 M2 T1 T2 ____________________________________ Mutliplicity 1 1 1 1 ____________________________________ _________ Acmite Fe3 Na Si Si cacm Fe3 Ca AlSi AlSi filler cacm Fe3 Ca AlSi AlSi filler ___ Acmite Fe3 Na Si Si filler macm Fe3 Mg AlSi AlSi dependent facm Fe3 Fe AlSi AlSi dependent _________ Jadeite Al Na Si Si Cats Al Ca AlSi AlSi Cats Al Ca AlSi AlSi filler ___ Jadeite Al Na Si Si filler Mats Al Mg AlSi AlSi dependent fats Al Fe AlSi AlSi dependent _________ Jadeite Al Na Si Si utterly useless filler Diopside Mg Ca Si Si hed Fe Ca Si Si dependent ___ Jadeite Al Na Si Si utterly useless filler cEnstatite Mg Mg Si Si cferrosilite Fe Fe Si Si _________ ___________________________________ Ordered species: oCaTs Al Ca Si Al fmc Mg Fe Si Si -------------------------------------------------------- The (future) dual prism model is: Prism I (4d) ____________________________________ Diopside Mg Ca Si Si cEnstatite Mg Mg Si Si Mats Al Mg AlSi AlSi dependent macm Fe3 Mg AlSi AlSi dependent Species: hed Fe Ca Si Si dependent cferrosilite Fe Fe Si Si fats Al Fe AlSi AlSi dependent facm Fe3 Fe AlSi AlSi dependent Prism II (2d) ____________________________________ Cats Al Ca AlSi AlSi cacm Fe3 Ca AlSi AlSi dependent Jadeite Al Na Si Si Acmite Fe3+ Na Si Si -------------------------------------------------------- Augite(G) abbreviation Cpx full_name clinopyroxene 8 | model type: prism + orphan vertices 3 | prism: 3 simplicies with a common vertex 3 2 3 | 2d 1d 2d | endmembers on the prism vertices acm cacm_d cacm_dd | (Fe3)-M acm_d1 macm_d facm_d jd cats cats_d | (Al)-M jd_d1 mats_d fats_d jd_d2 di hed_d | M-M jd_d3 cenjh cfsg 2 | number of ordered species and definitions ocats = 1 cats enthalpy_of_ordering = -3800 + 2.8816 * T -0.01 * P | this undoes the DQF on cats fmc = 1/2 cenjh + 1/2 cfsg enthalpy_of_ordering = -4400 | DQF(fmc) - (DQF(cenjh) + DQF(cfs))/2 begin_limits fmc = -2 + 2 cfsg + 1 fmc delta = 2 zm1fe fmc = 0 - 2 di - 2 cenjh - 1 fmc delta = 2 zm1mg fmc = 0 - 2 cfsg - 1 fmc delta = 2 zm2fe fmc = -2 + 2 cenjh + 1 fmc delta = 2 zm2mg ocats = 0 - 1 cats delta = 2 zAlT2 | these assume p0_ocats = 0 as will be ocats = -2 + 1 cats delta = 2 zAlT1 | true for the model as configured in PX | for testing against partially ordered initial configurations (e.g., a result from TC) the | above limit expressions should be replaced with: | ocats = 0 - 1 cats - 1 ocats delta = 2 zAlT2 | ocats = -2 + 1 cats + 1 ocats delta = 2 zAlT1 end_limits 12 | number of dependent endmembers and definitions jd_d1 = 1 jd jd_d2 = 1 jd jd_d3 = 1 jd cats_d = 1 cats acm_d1 = 1 acm cacm_dd = 1 acm + 1 cats - 1 jd hed_d = 1 di + 1 cfsg - 1 fmc cacm_d = 1 acm + 1 cats - 1 jd mats_d = 1 cats + 1 cenjh - 1 di macm_d = 1 cats + 1 cenjh - 1 di + 1 acm - 1 jd fats_d = 1 cats - 1 di + 1 fmc facm_d = 1 cats - 1 di + 1 fmc + 1 acm - 1 jd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | endmember flags | First (1d) simplex of the prism 0. .1 0.1 0 | range and resolution of X(1,1) => Na 0. 1. 0.1 0 | range and resolution of X(1,2) => Mg | Second (1d) simplex of the prism 0. 1. 0.1 0 | range and resolution of X(2,1) => (Fe+Mg)/Ca | third (3d) simplex of the prisms 0. .3 0.1 0 | range and resolution of X(3,1) - M-acm 0. .1 0.1 0 | range and resolution of X(3,2) - M-Ts begin_excess_function W(di cenjh) 29.8d3 -0.03 * p W(di cfsg) 25.8d3 -0.03 * p W(di jd) 26d3 W(di acm) 21d3 W(di ocats) 12.3d3 -0.01 * p W(di cats) 12.3d3 -0.01 * p W(di fmc) 20.6d3 -0.03 * p W(cenjh cfsg) 2.3d3 W(cenjh jd) 50d3 W(cenjh acm) 62d3 W(cenjh ocats) 45.7d3 -0.29 * p W(cenjh cats) 45.7d3 -0.29 * p W(cenjh fmc) 4d3 W(cfsg jd) 60d3 W(cfsg acm) 58d3 W(cfsg ocats) 48d3 W(cfsg cats) 48d3 W(cfsg fmc) 3.5d3 W(jd acm) 5d3 W(jd ocats) 40d3 W(jd cats) 40d3 W(jd fmc) 40d3 W(acm ocats) 35d3 W(acm cats) 35d3 W(acm fmc) 60d3 W(ocats cats) 3.8d3 + 0.01 * p W(ocats fmc) 50d3 W(cats fmc) 50d3 end_excess_function 4 | 4 site entropy model (M1, M2, T1, T2) 4 1 | 4 species on m1, mult = 1 z(m1,fe) = 1 cfsg z(m1,mg) = 1 di + 1 fmc + 1 cenjh z(m1,fe3+) = 1 acm 4 1 | 4 species on m2, mult. = 1 z(m2,na) = 1 acm + 1 jd z(m2,mg) = 1 cenjh z(m2,fe) = 1 fmc + 1 cfsg 2 0.25 | 2 species on T1, effective mult. = 1/4 z(Al,T1) = 1/2 cats 2 0.25 | 2 species on T2, effective mult. = 1/4 z(Al,T2) = 1/2 cats + 1 ocats begin_van_laar_sizes alpha(di) 1.2 alpha(cenjh) 1 alpha(cfsg) 1 alpha(jd) 1.2 alpha(acm) 1.2 alpha(ocats) 1.9 alpha(cats) 1.9 alpha(fmc) 1.0 end_van_laar_sizes begin_dqf_corrections dqf(jd) = 2000 dqf(acm) = -5000 dqf(cats) = 3800 - 2.8816 * T + 0.01 * P end_dqf_corrections reach_increment 0 end_of_model -------------------------------------------------------- begin_model cAmph(G) => Green et al. (JMG, 2016) clinoamphibole. Perple_X formulation reformulated as a triple-simplex prismatic composition space and adding M-parg, M-kparg, M-tts, and Ca-grk exchanges. JADC, November 3, 2018. NOTE: to use this the following endmembers must be specified with make definitions in the thermodynamic data file mrbG = 1 gl - 1 gr + 1 andr DQF = 0 kprg = 1 mu - 1 pa + 1 parg DQF = -7060 + 20 * T_K tts = -2 dsp + 2 ru + 1 ts DQF = 95000 to avoid cluttering thermodynamic data files with the new plague of TC DQF "corrections", the following simple DQF's are specified in the make_definition section at the end of this model: DQF(gl) = -3000 DQF(parg) = -10000 DQF(ts) = 10000 DQF(grun) = -3000 For (nonsensical, but common) positive DFQ's this approach may lead to interference between the phase relations of the solution model and the un-DQF'd endmember. If such interference occurs: the DQF'd endmember must be renamed; its definition placed in the thermodynamic data file; and the un-DQF'd endmember excluded from the calculation. The model composition space is formulated as prism composed of 3 simplexes the first simplex is 1d (binary) and represents divalent Mg/(Fe+Mg), the second simplex is 1d (binary) and represents the exchange of divalent M (Fe and Mg) for Ca and the third simplex is 7d (octary) and represents the generalized (M,Ca)-amphibole exchanges: (M,Ca)-Al_Tschermaks, (M,Ca)-Na_Pargasite, (M,Ca)-K_Pargasite, M-Riebeckite, M-Glaucophane, (M,Ca)-Ti_Tschermaks, and (M,Ca)-Fe3+_tschermaks (Na-free riebeckite). Because some of the exchanges are not possible due to charge balance constraints, the impossible vertices of the simplex (Ca-riebeckite, Ca-glaucophane) are populated by replicating possible vertices. The current formulation is undesirable both because of these replicated vertices and and because the dependent (M,Ca)-Fe3+_tschermaks adds a dimension to the composition space. See comments for the Augite(G) model for further discussion. In the present model the independent prismatic variables (used for specifying) the subdivision of the composition space are: X(1,1) - Mg/(Fe+Mg) X(2,1) - Ca/M on M1, M = divalent Fe and Mg X(3,1) - (M,Ca)-Al_Tschermak X(3,2) - (M,Ca)-Na_Pargasite X(3,3) - (M,Ca)-K_Pargasite X(3,4) - M-Riebeckite X(3,5) - M-Glaucophane X(3,6) - (M,Ca)-Ti_Tschermaks X(3,7) - (M,Ca)-Fe3+_tschermaks (Na-free riebeckite) -------------------------------------------------------- Sites A M1 M2 M4 T1 OH _______________________________________ Multiplicity 1 3 2 2 1(4) 2 _______________________________________ Ts V Mg Al Ca SiAl OH fTs_d V Fe Al Ca SiAl OH ffts_d V fe Al fe SiAl OH mmts_d V mg Al mg SiAl OH Parg Na Mg MgAl Ca SiAl OH fParg_d Na Fe FeAl Ca SiAl OH mpg_d Na Mg mgAl Mg SiAl OH fpg_d Na Fe feAl fe SiAl OH Kprg K Mg MgAl Ca SiAl OH fkPrg K Fe FeAl Ca SiAl OH mkpg_d K Mg mgAl Mg SiAl OH fkpg_d k Fe feAl fe SiAl OH Gl V Mg Al Na Si OH fGl_d V Fe Al Na Si OH mrbG V Mg Fe3 Na Si OH frb_d V Fe Fe3 Na Si OH Tts V Mg Ti Ca SiAl O fcTts_d V Fe Ti Ca SiAl O mTts_d V Mg Ti Mg SiAl O fTts_d V Fe Ti Fe SiAl O cmgrk_d V Mg Fe3 Ca SiAl OH cfgrk_d V Fe Fe3 Ca SiAl OH mgrk_d V Mg Fe3 Mg SiAl OH fgrk_d V Fe Fe3 Fe SiAl OH Tr V Mg Mg Ca Si OH fTr_d V Fe Fe Ca Si OH Cumm V Mg Mg Mg Si OH Grun V Fe Fe Fe Si OH A V Mg Fe Fe Si OH B V Fe Mg Fe Si OH dependent exchange Mgrk V M Fe3 M SiAl OH dependent exchange Mts V M Al M SiAl OH dependent exchange Mpg Na M MAl M SiAl OH dependent exchange MKpg K M MAl M SiAl OH dependent exchange MTts V M Ti M SiAl OH 2 CaMg-1(M4) = (Tr-Cumm) 3 FeMg-1(M1) = (grun - a) 2 FeMg-1(M2) = (grun - b) 2 FeMg-1(M4) = (-grun - cumm + a + b) cAmph(G) abbreviation Amph full_name clinoamphibole 8 | model type: order-disorder, prismatic composition space 3 | 3 simplex prismatic space 2 2 8 | 1 binary + 1 binary + septary | the first simplex variable is FeMg-1 | the second simplex second variable is CaM-1, M = Fe or Mg | the third simplex variables are: mts_d fts_d | M-Ca-Al_tschermaks ts fcts_d mparg_d fparg_d | M-Ca-Na_parg parg fcparg_d kmparg_d kfparg_d | M-Ca-K_parg kprg kfcprg_d gl fgl_d | M-[Fe3]Na, redundant X(2,1) gl_d fgl_d1 mrbG frb_d | M-[Al]Na, redundant X(2,1) mrbG_d frb_d1 mtts_d ftts_d | M-Ca-Ti_tschermaks tts fctts_d mgrk_d fgrk_d | M-Ca-Fe3+_tschermaks (Na-free riebeckite) mcgrk_d fcgrk_d cumm grun | M-Ca tr ftr_d 2 | ordered species definitions: a = 3/7 cumm + 4/7 grun enthalpy_of_ordering = -9486 | = DQF(A) -4/7 DQF(Grun) b = 2/7 cumm + 5/7 grun enthalpy_of_ordering = -11657 | = DQF(B) -5/7 DQF(Grun) begin_limits a = -7/4 + 7/4 grun + 1 a + 1/2 b + 5/4 b delta = 7/4 z(M1,Fe) a = -7/3 grun - 4/3 a + 5/3 b - 5/3 b delta = 7/3 z(M2,Fe) a = -7/3 + 7/3 tr + 7/6 parg + 7/6 kprg + 7/3 cumm + 1 a + 5/3 b + 2/3 b delta = 7/3 z(M2,Mg) only 1 m2 equation can be independent a = -7/3 + 7/3 cumm + 1 a - 2/3 b + 2/3 b delta = 7/3 z(M4,Mg) only 1 m4 equation can be independent a = -7/3 grun - 4/3 a - 2/3 b - 5/3 b delta = 7/3 z(M4,Fe) b = -7/2 grun + 2 a - 2 a - 5/2 b delta = 7/2 z(M1,Fe) b = -7/5 + 7/5 grun + 3/5 a + 4/5 a + 1 b delta = 7/5 z(M2,Fe) b = -7/5 tr - 7/10 parg - 7/10 kprg - 7/5 cumm + 3/5 a - 3/5 a - 2/5 b delta = 7/5 z(M2,Mg) b = -7/2 + 7/2 cumm - 3/2 a + 3/2 a + 1 b delta = 7/2 z(M4,Mg) b = -7/2 grun - 3/2 a - 2 a -5/2 b delta = 7/2 z(M4,Fe) end_limits 23 | dependent endmember definitions: fcts_d = 1 ts + 1 grun - 1 a fts_d = 1 ts - 1 tr + 1 b mts_d = 1 ts - 1 tr + 1 cumm fcparg_d = 1 parg + 3/2 grun - 1 a - 1/2 b fparg_d = 1 parg + 1/2 grun + 1/2 b - 1 tr mparg_d = 1 parg - 1 tr + 1 cumm kfcprg_d = 1 kprg + 3/2 grun - 1 a - 1/2 b kfparg_d = 1 kprg + 1/2 grun + 1/2 b - 1 tr kmparg_d = 1 kprg - 1 tr + 1 cumm mrbG_d = 1 mrbG gl_d = 1 gl fgl_d = 1 gl + 1 grun - 1 a fgl_d1 = 1 gl + 1 grun - 1 a frb_d = 1 mrbG + 1 grun - 1 a frb_d1 = 1 mrbG + 1 grun - 1 a fctts_d = 1 tts + 1 grun - 1 a ftts_d = 1 tts - 1 tr + 1 b mtts_d = 1 tts - 1 tr + 1 cumm mcgrk_d = 1 mrbG + 1 ts - 1 gl mgrk_d = 1 mrbG + 1 ts - 1 gl - 1 tr + 1 cumm fgrk_d = 1 mrbG + 1 ts - 1 gl - 1 tr + 1 b fcgrk_d = 1 mrbG + 1 ts - 1 gl - 1 a + 1 grun ftr_d = 1 tr + 2 grun - 1 a - 1 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | endmember flags | imod = 0 -> cartesian subdivision | imod = 1 -> assymetric stretching subdivision | First (1d) simplex of the prism 0. 1. .1 0 0.43-0.7 | range and resolution for X(1,1) is X(Mg) for all quadrilaterals, imod = 0 | Second (1d) simplex of the prism 0. 1. .1 0 0.05-0.95 | range and resolution for X(2,1) is variably X Ca or Al, imod = 0 | Third (7d) simplex of the prism 0. .5 .1 0 0.20 | range and resolution for X(3,1) on Ts-prism, imod = 0 0. .75 .1 0 0.63 | range and resolution for X(3,2) on Parg-prism, imod = 0 0. .5 .1 0 0.05 | range and resolution for X(3,3) on KParg-prism, imod = 0 0. .5 .1 0 0.10 | range and resolution for X(3,4) on Rb-prism, imod = 0 0. .5 .1 0 0.09 | range and resolution for X(3,5) on Gl-prism, imod = 0 0. .5 .1 0 0.12 | range and resolution for X(3,6) on TiTs-prism, imod = 0 0. .5 .1 0 0.29 | range and resolution for X(3,7) on Grk-prism, imod = 0 begin_excess_function W(tr ts) 20d3 W(tr parg) 25d3 W(tr gl) 65d3 W(tr cumm) 45d3 W(tr grun) 75d3 W(tr a) 57d3 W(tr b) 63d3 W(tr mrbG) 52d3 W(tr kprg) 30d3 W(tr tts) 85d3 W(ts parg) -40d3 W(ts gl) 25d3 W(ts cumm) 70d3 W(ts grun) 80d3 W(ts a) 70d3 W(ts b) 72.5d3 W(ts mrbG) 20d3 W(ts kprg) -40d3 W(ts tts) 35d3 W(parg gl) 50d3 W(parg cumm) 90d3 W(parg grun) 106.7d3 W(parg a) 94.8d3 W(parg b) 94.8d3 W(parg mrbG) 40d3 W(parg kprg) 8d3 W(parg tts) 15d3 W(gl cumm) 100d3 W(gl grun) 113.5d3 W(gl a) 100d3 W(gl b) 111.2d3 W(gl kprg) 54d3 W(gl tts) 75d3 W(cumm grun) 33d3 W(cumm a) 18d3 W(cumm b) 23d3 W(cumm mrbG) 80d3 W(cumm kprg) 87d3 W(cumm tts) 100d3 W(grun a) 12d3 W(grun b) 8d3 W(grun mrbG) 91d3 W(grun kprg) 96d3 W(grun tts) 65d3 W(a b) 20d3 W(a mrbG) 80d3 W(a kprg) 94d3 W(a tts) 95d3 W(b mrbG) 90d3 W(b kprg) 94d3 W(b tts) 95d3 W(mrbG kprg) 50d3 W(mrbG tts) 50d3 W(kprg tts) 35d3 end_excess_function 6 | 6 site configurational entropy model (A, M1, M2, M4,T1, OH) 3 1 | 3 species on A, mult = 1 z(A,na) = 1 parg z(A,k) = 1 kprg 2 3 | 2 species on M1, mult = 3 z(M1,fe) = 1 grun + 1 b 5 2 | 5 species on M2, mult = 2 z(M2,fe) = 1 grun + 1 a z(M2,fe3) = 1 mrbG z(M2,al) = 1 ts + 1 gl + 1/2 kprg + 1/2 parg z(M2,ti) = 1 tts 4 2 | 4 species on M4, mult = 2 z(M4,mg) = 1 cumm z(M4,na) = 1 gl + 1 mrbG z(M4,fe) = 1 grun + 1 a + 1 b 2 1 | 2 species on T1, fake mutiplicity = 1 z(T1,Al) = 1/2 ts + 1/2 parg + 1/2 kprg + 1/2 tts 2 2 | 2 species on OH, mutiplicity = 2 z(OH,O) = 1 tts begin_van_laar_sizes alpha(tr) 1 alpha(ts) 1.5 alpha(parg) 1.7 alpha(gl) 0.8 alpha(cumm) 1 alpha(grun) 1 alpha(a) 1 alpha(b) 1 alpha(mrbG) 0.8 alpha(kprg) 1.7 alpha(tts) 1.5 end_van_laar_sizes begin_dqf_corrections DQF(gl) = -3000 DQF(parg) = -10000 DQF(ts) = 10000 DQF(grun) = -3000 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Universal melt, Holland et al., JPet, 2018. JADC 12/18 This model requires the following make definitions in the thermodynamic data file make_definitions section: foHL = 2 foL dqf = 8.75d3 -0.133*Pbar faHL = 2 faL dqf = 13.9d3 - 0.056*Pbar qHL = 4 qL dqf = 0.07d3 -0.062*Pbar jdL = 1 abL - 1 qL dqf = 11.85d3 - 0.096*Pbar hmL = 1/2 hemL dqf = 4.05d3 - 0.077*Pbar ekL = 1/2 eskL dqf = 24.75d3 + 0.245*Pbar tiL = 1 ruL dqf = 5.6d3 0 -0.489*Pbar kjL = 1 kspL - 1 qL dqf = 12.35d3 0 -0.210*Pbar to avoid cluttering thermodynamic data files with the new plague of TC DQF "corrections", the following simple DQF's are specified in the make_definition section at the end of this model: dqf(silL) = 6.35d3 -0.320*Pbar dqf(woL) = -0.18d3 -0.118*Pbar dqf(h2oL) = 3.24d3 -3.9*TK 0.00085*Pbar For (nonsensical, but common) positive DFQ's this approach may lead to interference between the phase relations of the solution model and the un-DQF'd endmember. If such interference occurs: the DQF'd endmember must be renamed; its definition placed in the thermodynamic data file; and the un-DQF'd endmember excluded from the calculation. WARNING 0: DQF'd endmembers (e.g., sil8L, ctjL) created for other thermocalc melt models (e.g., melt(W), melt(JH)) should be excluded (or deleted from the thermodynamic data file) from calculations with this model. melt(H) abbreviation Melt full_name liquid 6 | model type: simplicial composition space with speciation 11 | number of endmembers foHL faHL jdL silL kjL woL ekL hmL tiL qHL h2oL 1 | ordered species definition | H(ctL) = -108.3d3 +55*TK +0.053*Pbar - dqfwol - dqfsil + dqfq/4 ctL = 1 woL + 1 silL - 1/4 qHL Delta(enthalpy) = -114452.5 + 55*TK + .4755*Pbar 1 1 1 1 1 1 1 1 1 1 1 | endmember flags 0.0 0.3 0.1 0 | range and resolution of X(fo), 1 => asymmetric subdivision 0.0 0.3 0.1 0 | range and resolution of X(fa), 1 => asymmetric subdivision 0.0 0.8 0.1 0 | range and resolution of X(jd), 0 => cartesian subdivision 0.0 0.4 0.1 0 | range and resolution of X(sil), 1 => asymmetric subdivision 0.0 0.6 0.1 0 | range and resolution of X(kj), 1 => asymmetric subdivision 0.0 0.4 0.1 0 | range and resolution of X(wo), 1 => asymmetric subdivision 0.0 0.1 0.1 0 | range and resolution of X(ek), 1 => asymmetric subdivision 0.0 0.1 0.1 0 | range and resolution of X(hm), 1 => asymmetric subdivision 0.0 0.1 0.1 0 | range and resolution of X(ti), 1 => asymmetric subdivision 0.0 0.6 0.1 0 | range and resolution of X(q), 0 => cartesian subdivision begin_excess_function W(qHL silL) 9.5d3 -0.1 * Pbar W(qHL woL) -10.3d3 W(qHL foHL) -26.5d3 -3.12 * Pbar W(qHL faHL) -12d3 -0.55 * Pbar W(qHL jdL) -15.1d3 -0.13 * Pbar W(qHL hmL) 20d3 W(qHL tiL) 24.6d3 W(qHL kjL) -17.8d3 -0.05 * Pbar W(qHL ctL) -14.6d3 W(qHL h2oL) 17.9d3 -0.61 * Pbar W(silL woL) -26.5d3 0.85 * Pbar W(silL foHL) 2.2d3 W(silL faHL) 2.5d3 W(silL jdL) 16.8d3 W(silL hmL) -5d3 W(silL tiL) 15.2d3 -0.04 * Pbar W(silL kjL) 7d3 W(silL ctL) 4d3 W(silL h2oL) 23.7d3 -0.94 * Pbar W(woL foHL) 25.5d3 0.11 * Pbar W(woL faHL) 14d3 W(woL jdL) -1.2d3 W(woL tiL) 18d3 W(woL kjL) -1.1d3 W(woL ctL) 9.5d3 W(woL h2oL) 40.3d3 -0.86 * Pbar W(foHL faHL) 18d3 W(foHL jdL) 1.5d3 W(foHL tiL) 7.5d3 W(foHL kjL) 3d3 W(foHL ctL) -5.6d3 W(foHL h2oL) 9.4d3 -1.58 * Pbar W(faHL jdL) 7.5d3 -0.05 * Pbar W(faHL hmL) -30d3 W(faHL tiL) 6.7d3 W(faHL kjL) 10d3 W(faHL ctL) -6.5d3 W(faHL h2oL) 9.2d3 -1.58 * Pbar W(jdL hmL) 10d3 W(jdL tiL) 16.5d3 0.14 * Pbar W(jdL kjL) -5.9d3 W(jdL ctL) 7.6d3 W(jdL h2oL) -8.2d3 -0.06 * Pbar W(hmL kjL) 10d3 W(hmL h2oL) 60.2d3 -0.66 * Pbar W(ekL h2oL) 60.2d3 -0.66 * Pbar W(tiL kjL) 9d3 W(tiL h2oL) 60.2d3 -0.6 * Pbar W(kjL ctL) -5.6d3 W(kjL h2oL) -0.2d3 0.22 * Pbar W(ctL h2oL) 17.3d3 0.05 * Pbar end_excess_function 3 2 2. | water-vacancy site z(H) = 1 h2oL 4 0. | M-site n(Mg) = 4 foHL n(Fe) = 4 faHL n(Ca) = 1 woL n(Al) = 1 silL 9 0. | F-site, decompositing "alsi2" here eliminates the necessity of the A-site n(jdL) = 1 jdL n(kjL) = 1 kjL n(alsi) = 1 silL n(si0) = 1 woL n(ol) = 1 faHL + 1 foHL n(q) = 1 qHL n(eq) = 1 ekL n(ctL) = 1 ctL n(hem) = 1 hmL begin_dqf_corrections dqf(silL) = 6.35d3 - 0.32 *Pbar dqf(woL) = -0.18d3 - 0.118 *Pbar dqf(h2oL) = 3.24d3 -3.9*TK + 0.00085*Pbar end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Tonalitic melt, Green et al., JMG, 2016. JADC 9/16 reformulated as standard O/D model, 12/18, JADC This model requires the following make definitions in the thermodynamic data file make_definitions section: foTL = 2 foL dqf = -4d3 faTL = 2 faL dqf = -8.2d3 - 1.4 * P q8L = 4 qL dqf = 0 to avoid cluttering thermodynamic data files with the new plague of TC DQF "corrections", the following simple DQF's are specified in the make_definition section at the end of this model: dqf(silL) = -7800 dqf(woL) = 1300 For (nonsensical, but common) positive DFQ's this approach may lead to interference between the phase relations of the solution model and the un-DQF'd endmember. If such interference occurs: the DQF'd endmember must be renamed; its definition placed in the thermodynamic data file; and the un-DQF'd endmember excluded from the calculation. WARNING 0: DQF'd endmembers (e.g., sil8L, ctjL) created for other thermocalc melt models (e.g., melt(W), melt(JH)) should be excluded (or deleted from the thermodynamic data file) from calculations with this model. melt(G) abbreviation Melt full_name liquid 6 | model type: simplicial composition space with speciation 8 | number of endmembers foTL faTL abL silL kspL woL q8L h2oL 1 | ordered species definition | H(oanL) = -46.5d3 - 0.25 * P - dqf(woL) 1300 - dqf(silL) -7800 oanL = 1 woL + 1 silL Delta(enthalpy) = -40000 - 0.25 * P 1 1 1 1 1 1 1 1 | endmember flags 0.0 0.2 0.1 0 | range and resolution of X(fo), 1 => asymmetric subdivision 0.0 0.3 0.1 0 | range and resolution of X(fa), 1 => asymmetric subdivision 0.0 0.8 0.1 0 | range and resolution of X(ab), 0 => cartesian subdivision 0.0 0.4 0.1 0 | range and resolution of X(sil), 1 => asymmetric subdivision 0.0 0.6 0.1 0 | range and resolution of X(ksp), 1 => asymmetric subdivision 0.0 0.4 0.1 0 | range and resolution of X(wo), 1 => asymmetric subdivision 0.0 0.6 0.1 0 | range and resolution of X(q), 0 => cartesian subdivision begin_excess_function W(q8L abL) = 12d3 - 0.4 * P W(q8L kspL) = -2d3 - 0.5 * P W(q8L woL) = -5d3 W(q8L foTL) = 42d3 + 1.0 * P W(q8L h2oL) = 18.1d3 - 0.68 * P W(q8L oanL) = -29.5d3 - 0.1 * P W(abL kspL) = -6d3 + 3.0 * P W(abL woL) = -12d3 W(abL silL) = 10d3 W(abL faTL) = -30d3 + 0.8 * P W(abL foTL) = -47.3d3 + 0.3 * P W(abL h2oL) = -4.4d3 - 0.17 * P W(abL oanL) = 8.6d3 + 0.4 * P W(kspL woL) = -13d3 W(kspL faTL) = -11.3d3 W(kspL foTL) = 6.8d3 W(kspL h2oL) = 10.4d3 - 0.39 * P W(kspL oanL) = -16d3 - 0.25 * P W(woL silL) = -1.6d3 W(woL faTL) = 6.5d3 W(woL foTL) = 4d3 W(woL h2oL) = 21d3 W(woL oanL) = 3.5d3 W(silL faTL) = 12d3 W(silL foTL) = 12d3 W(silL h2oL) = 11d3 - 0.5 * P W(silL oanL) = 6.4d3 W(faTL foTL) = 18d3 W(faTL h2oL) = 29d3 W(faTL oanL) = -43.5d3 - 0.95 * P W(foTL h2oL) = 29d3 - 0.5 * P W(foTL oanL) = -26d3 - 0.6 * P W(h2oL oanL) = 9.75d3 - 0.5 * P end_excess_function 3 | Configurational entropy: two non-temkin sites (Water, Melt) | and one temkin site (olvine). HP assume a fsp = ab + or "molecule"" | with mixing on a temkin M site, but the math works out the same as | the endmembers are treated as separate endmembers and the M site | dropped. 2 1. | water-vacancy site z(H) = 1 h2oL 2 0. | temkin olivine site n(Mg) = 4 foTL n(Fe) = 4 faTL 8 0. | melt site, HP assume a fsp = ab + or "molecule" | with mixing on the M site, but the math works out the same as | the endmembers are treated as separate endmembers and the M site | dropped. z(q) = 1 q8L z(ksp) = 1 kspL z(ab) = 1 abL z(sil) = 1 silL z(an) = 1 oanL z(wo) = 1 woL z(ol) = 1 faTL + 1 foTL | this term was not counted prior to dec 12, 2018. z(H) = 1 h2oL begin_dqf_corrections dqf(silL) = -7800 dqf(woL) = 1300 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model CHLORITE, White et al JMG 32:261-286, 2014 NOTES: * This model will only function in the Al-free and Mg-free limits if Al and Mg are retained as thermodynamic components. JADC 4/14 This model requires the following make definition for f3clin: f3clin = 1 clin - 1/2 gr + 1/2 andr 2d3 0 0 TJ 4/14 Mn endmembers entered, P.-H. Trapy, 5/16 Site limits corrected, JADC, 5/16 M1 M2+M3 M4 T2 ________________________________ Mutliplicity 1 4 1 2 ________________________________ 1 fames Al Fe Al Al_Al dependent 2 fafchl Fe Fe Fe Si_Si dependent 3 ff3cli Fe Fe Fe3+ Al_Si dependent 4 daph Fe Fe Al Al_Si 5 f3clin Mg Mg Fe3+ Al_Si 6 ames Al Mg Al Al_Al 7 afchl Mg Mg Mg Si_Si 8 clin Mg Mg Al Al_Si 9 mnchl Mn Mn Al Al_Si _______________________________ 13 och1 Mg Fe Fe Si_Si ordered 14 och2 Fe Mg Mg Si_Si ordered Chl(W) abbreviation Chl full_name chlorite 9 | model type: order-disorder, prismatic vertex + orphan vertices 2 | prismatic vertex: 4 2 | quaternary + binary simplexes 1 | number of orphan vertices | endmembers on the prismatic vertex fames fafchl ff3cli daph ames afchl f3clin clin | orphan endmembers mnchl 2 | number of ordered species och1 = 1 afchl - 1 clin + 1 daph enthalpy_of_ordering = 3d3 och2 = 1 afchl - 1/5 clin + 1/5 daph enthalpy_of_ordering = 2.4d3 begin_limits och1 = 0 delta = 1 zFeM4 och1 = -1 + 1 afchl + 1 och1 + 0 och2 + 1 och2 delta = 1 zMgM4 och1 = -1 + 1 daph + 1 och1 + 4/5 och2 + 1/5 och2 delta = 1 zFeM1 | this limit may never be active?? och1 = - 1 afchl - 1 clin - 1 f3clin + 4/5 och2 - 4/5 och2 delta = 1 zMgM1 och2 = - 5/4 daph + 5/4 och1 - 5/4 och1 - 1/4 och2 delta = 5/4 zFeM1 och2 = -5/4 + 5/4 afchl + 5/4 f3clin + 5/4 clin + 5/4 och1 + 1 och2 delta = 5/4 zMgM1 och2 = -5 + 5 daph + 0 och1 + 5 och1 + 1 och2 delta = 5 zFeM2 och2 = - 5 ames - 5 f3clin - 5 clin -5 afchl - 4 och2 delta = 5 zMgM2. end_limits 3 | 6 dependent endmembers fames = 1 ames + 1 daph - 1 och2 + 1 afchl - 1 clin fafchl = 1 och1 + 1 och2 - 1 afchl ff3cli = 1 f3clin + 1 daph - 1 clin 0 0 0 0 0 0 0 0 0 0 0 0 |endmember flags | subdivision model for (quaternary) chemical mixing space 0. 1. .1 0 | range and resolution of X(M-ames), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(M-afchl), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(M-f3clin), imod = 0 -> cartesian subdivision | subdivision model for (ternary) chemical mixing space 0. 1. .1 0 | range and resolution of X(Fe), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(Mg), imod = 0 => cartesian subdivision begin_excess_function W(clin afchl) 17d3 0. 0. W(clin ames) 17d3 0. 0. W(clin daph) 20d3 0. 0. W(clin och1) 30d3 0. 0. W(clin och2) 21d3 0. 0. W(clin f3clin) 2d3 0. 0. W(clin mnchl) 15d3 0. 0. W(afchl ames) 16d3 0. 0. W(afchl daph) 37d3 0. 0. W(afchl och1) 20d3 0. 0. W(afchl och2) 4d3 0. 0. W(afchl f3clin) 15d3 0. 0. W(afchl mnchl) 32d3 0. 0. W(ames daph) 30d3 0. 0. W(ames och1) 29d3 0. 0. W(ames och2) 13d3 0. 0. W(ames f3clin) 19d3 0. 0. W(ames mnchl) 26d3 0. 0. W(daph och1) 18d3 0. 0. W(daph och2) 33d3 0. 0. W(daph f3clin) 22d3 0. 0. W(daph mnchl) 10d3 0. 0. W(och1 och2) 24d3 0. 0. W(och1 f3clin) 28.6d3 0. 0. W(och1 mnchl) 25d3 0. 0. W(och2 f3clin) 19d3 0. 0. W(och2 mnchl) 31d3 0. 0. W(f3clin mnchl) 17d3 0. 0. end_excess_function 4 | 4 site configurational entropy model: 4 1. | 4 species on 1 M1 site z(al,M1) = 1 ames z(fe,M1) = 1 daph + 1 och2 z(mn,M1) = 1 mnchl 3 4. | 3 species on 4 M2+M3 sites z(fe,m2+m3) = 1 daph + 1 och1 z(mn,m2+m3) = 1 mnchl 4 1. | 4 species on 1 M4 site z(fe3,m4) = 1 f3clin z(fe,m4) = 1 och1 z(mg,m4) = 1 afchl + 1 och2 2 2. | 2 species on 2 T2 sites z(al,T2) = 1 ames + 1/2 clin + 1/2 daph + 1/2 f3clin + 1/2 mnchl begin_dqf_corrections dqf(mnchl) -13030 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model holland and powell '11 non-ideal cz-fep solution entered by Pierre-Henri Trapy, May 16, 2016 M1 M3 _____________ Mutliplicity 1 1 _____________ 1 cz Al Al Species: 2 fep Fe Fe _____________ Ordered Cpd: 3 ep Al Fe Ep(HP11) abbreviation Ep full_name epidote 6 | model type: speciation 2 | 2 endmembers cz fep | endmember names 1 | ordered species definition ep = 1/2 fep + 1/2 cz Delta(enthalpy) = -12.5d3 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(cz), imod = 0 -> cartesian subdivision begin_excess_function w(cz fep) 3d3 0. 0. w(fep ep) 1d3 0. 0. w(cz ep) 1d3 0. 0. end_excess_function 2 | 2 site (M1, M3) configurational entropy model 2 1. | 2 species on M1, 1 site per formula unit. z(fe,m1) = 1 fep 2 1. | 2 species on M3, 1 site per formula unit. z(al,m3) = 1 cz end_of_model -------------------------------------------------------- begin_model Cpx(JH) => Jennings and Holland, J Pet, 56:869-892, 2015, intended for pressures of 0-60 GPa NOTES: The Cr/Fe3+-free version of this model is from Holland et al., 2013 or Green et al., 2012? Pierre Bouilhol & JADC, 12/16/15 Changed to true T site multiplicity, Oliver Shorttle, 3/16 Changed to fake T site multiplicity (1/4) with true Al site fraction, JADC 6/16 Changed to fake T site multiplicity (1/2) with true Al site fraction, Bob Myhill, 2/18 Formatted as prismatic model w/o Cr & Fe3+. Bob Myhill, 2/18 Reformatted as a prismatic + orphan vertex model, the scheme is less than desirable because it explicitly includes ordered states that are computed implicitly by speciation and because it does not include acm (ncess) or crjd. JADC, 5/18 Corrected cess composition assumed in the model (mess was assumed previously). JADC, 6/18 reformatted as a 3-simplex prism to allow complete M-essenite exchange. JADC, 11/18. to use this the following endmembers must be specified with make definitions in the thermodynamic data file odi = 1 di DQF = -100 + 0.211 * T + 0.005 * P | NOTE entropy term incorrect in some perplex files? cenjh = 1 en DQF = 3500 - 2 * T + 0.048 * P cfs = 1 fs DQF = 3800 - 3 * T + 0.03 * P The model composition space is formulated as prism composed of 3 simplexes the first simplex is 2d (ternary) and represents divalent elements Ca-Mg-Fe (M cations), the second simplex is 1d (binary) and represents the exchange of the M cations for Na and the third simplex is 3d (quaternary) and represents the exchange of trivalent Al, Cr, and Fe for Si. Because some of the exchanges are not possible due to charge balance constraints, the impossible vertices of the simplex are populated by replicating possible vertices (designated filler vertices below). Filler vertices must be chosen so that each exchange is dependent on only one prismatic. The use of filler vertices is undesireable because the same bulk composition may be replicated by different prismatic coordinates. They are employed here as interim method of forcing VERTEX/MEEMUM to visit every possible bulk composition of a solution. This unfortunate situation will be remedied in the future by modifying Perple_X to allow compositions formed by the mixture of two or more prisms, for example the Augite(G) compositional 5 dimensional prism with 18 vertices (of which 7 are filler vertices), can be represented by all possible mixtures of a 4x2 prism [(di-en-mats-macm)-(hed-fs-fats- facm)] and a 2x2 prism [(cats-cacm)-(jd-acm)]. In the present model the independent prismatic variables (used for specifying) the subdivision of the composition space are: X(1,1) - Na/(Na+M) on M2 X(1,2) - Mg/(Na+M) on M2 X(2,1) - Ca/M on M2 X(3,1) - Fe(3+)/(Al+Fe+M) on M1 (i.e., Ferric-Tschermaks) X(3,2) - Al/(Al+Fe+M) on M1 (i.e., Al-Tschermaks) M1 M2 T ____________________________________ Multiplicity 1 1 1/2 <- fake T multiplicity ____________________________________ crjd Cr Na Si dependent crdi Cr Ca AlSi independent crdi Cr Ca AlSi filler, independent ___ crjd Cr Na Si filler, dependent cren_d Cr Mg AlSi dependent crfs_d Cr Fe AlSi dependent _________ ness Fe3+ Na Si dependent cess Fe3 Ca AlSi cess Fe3 Ca AlSi filler, dependent ___ ness Fe3+ Na Si filler, dependent macm (mess) Fe3 Mg AlSi dependent facm (fess) Fe3 Fe AlSi dependent _________ Jadeite Al Na Si Cats Al Ca AlSi Cats Al Ca AlSi filler, dependent ___ Jadeite Al Na Si filler, dependent Mats Al Mg AlSi dependent fats Al Fe AlSi dependent _________ Jadeite Al Na Si filler, dependent di Mg Ca Si independent hed_d Fe Ca Si dependent ___ Jadeite Al Na Si filler, dependent cenjh Mg Mg Si independent cfs Fe Fe Si independent ___________________________________ Ordered species: cfm Mg Fe Si -------------------------------------------------------- The (future) dual prism model is: M1 M2 T ____________________________________ Multiplicity 1 1 1/2 <- fake T multiplicity ____________________________________ Prism I species: di Mg Ca Si independent cenjh Mg Mg Si independent mats_d Al Mg AlSi dependent cren_d Cr Mg AlSi dependent mcess_d Fe3+ Mg AlSi dependent hed_d Fe Ca Si dependent cfs Fe Fe Si independent fats_d Al Fe AlSi dependent crfs_d Cr Fe AlSi dependent fcess_d Fe3+ Fe AlSi dependent ____________________________________ Prism II species: cats Al Ca AlSi independent crdi Cr Ca AlSi independent cess Fe3+ Ca AlSi independent jd Al Na Si independent crjd Cr Na Si dependent ncess Fe3+ Na Si dependent ___________________________________ Cpx(JH) abbreviation Cpx full_name clinopyroxene 8 | model type: prismatic + orphan vertex, O/D 3 | number of simplexes comprising the prism 3 2 4 | number of vertexes on each simplex | quadrilaterals: crjd_d crdi crdi_d | M-Cr crjd_d1 cren_d crfs_d ness_d cess cess_d | (Fe3)-M ness_d1 mess_d fess_d jd cats cats_d | (Al)-M jd_d1 mats_d fats_d jd_d2 di hed_d | M-M jd_d3 cenjh cfs 1 | number of ordered species and definitions cfm = 1/2 cenjh + 1/2 cfs enthalpy_of_ordering = -6.65d3 2.5 - 0.039 | DQF(cfm) - (DQF(ceng) + DQF(cfs))/2 | -3.0 - (3.5 - 2T + 0.048P + 3.8 - 3T + 0.03)/2 | = -6.65 + 2.5T - 0.039P begin_limits cfm = -2 + 2 cfs + 1 cfm delta = 2 zm1fe cfm = 0 - 2 di - 2 cenjh - 1 cfm delta = 2 zm1mg cfm = 0 - 2 cfs - 1 cfm delta = 2 zm2fe cfm = -2 + 2 cenjh + 1 cfm delta = 2 zm2mg end_limits 17 | dependent endmember definitions crjd_d = 1 crdi + 1 jd - 1 cats crjd_d1 = 1 crdi + 1 jd - 1 cats crdi_d = 1 crdi cren_d = 1 cenjh + 1 crdi - 1 di crfs_d = 1 cfm + 1 crdi - 1 di ness_d = 1 cess + 1 jd - 1 cats ness_d1 = 1 cess + 1 jd - 1 cats cess_d = 1 cess mess_d = 1 cess - 1 di + 1 cenjh fess_d = 1 cess - 1 di + 1 cfm cats_d = 1 cats jd_d1 = 1 jd jd_d2 = 1 jd jd_d3 = 1 jd hed_d = 1 di + 1 cfs - 1 cfm mats_d = 1 cats + 1 cenjh - 1 di fats_d = 1 cats - 1 di + 1 cfm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | endmember flags | First (2d) simplex of the prism 0. .2 0.1 0 | range and resolution of X(1,1) => Na 0. 1. 0.1 0 | range and resolution of X(1,2) => Mg | Second (1d) simplex of the prism 0. 1. 0.1 0 | range and resolution of X(2,1) => (Fe+Mg)/Ca | third (3d) simplex of the prisms 0. .1 0.1 0 | range and resolution of X(3,1) - M-Cr 0. .1 0.1 0 | range and resolution of X(3,2) - M-acm 0. .1 0.1 0 | range and resolution of X(3,3) - M-Ts begin_excess_function W(di cfs) 20d3 0 0 W(di cats) 12.3d3 0 -0.1 W(di jd) 26d3 0 0 W(di cenjh) 29.8d3 0 -0.03 W(di cfm) 18d3 0 0 W(cfs cats) 25d3 0 -0.1 W(cfs jd) 36d3 0 0 W(cfs cenjh) 7d3 0 0 W(cfs cfm) 4d3 0 0 W(cats jd) 6d3 0 0 W(cats cenjh) 45.7d3 0 -0.29 W(cats cfm) 27d3 0 -0.1 W(jd cenjh) 40d3 0 0 W(jd cfm) 40d3 0 0 W(cenjh cfm) 4d3 0 0 W(di crdi) 8d3 W(di cess) 8d3 W(cfs crdi) 34d3 W(cfs cess) 34d3 W(cats crdi) 2d3 W(cats cess) 2d3 W(crdi cess) 2d3 W(crdi jd) 3d3 W(crdi cenjh) 48d3 W(crdi cfm) 36d3 W(cess jd) 3d3 W(cess cenjh) 58d3 W(cess cfm) 36d3 end_excess_function 3 | 3 site entropy model (M1, M2, T) 5 1 | 3 species on m1, mult = 1 z(m1,fe) = 1 cfs z(m1,al) = 1 cats + 1 jd z(m1,fe3) = 1 cess z(m1,cr) = 1 crdi 4 1 | 4 species on m2, mult. = 1 z(m2,na) = 1 jd z(m2,mg) = 1 cenjh z(m2,fe) = 1 cfs + 1 cfm 2 0.5 | 2 species on T, effective mult. = 1/2 z(t1,al) = 1/2 cats + 1/2 cess + 1/2 crdi begin_van_laar_sizes alpha(di) = 1.2 alpha(cfs) = 1.0 alpha(cats) = 1.9 alpha(crdi) = 1.9 alpha(cess) = 1.9 alpha(jd) = 1.2 alpha(cenjh) = 1.0 alpha(cfm) = 1.0 end_van_laar_sizes reach_increment 0 end_of_model -------------------------------------------------------- begin_model Jennings and Holland, J Pet, 56:869-892, 2015 Mantle Melt Model, intended for pressures of 0-60 GPa Pierre Bouilhol & JADC, 12/16/15 Temkin M-site added 3/16, Oliver Shorttle Melt(JH) abbreviation Melt full_name liquid 2 8 jdjL ctjL fojL fajL dijL hmjL ekjL qjL 0 0 0 0 0 0 0 0 0. .5 .1 0 0. .3 .1 0 0. 1 .1 0 0. .5 .1 0 0. 0.5 .1 0 0. 0.1 .1 0 0. 0.1 .1 0 begin_excess_function W(qjL dijL) 26d3 0 -0.4 W(qjL jdjL) -10d3 0 0 W(qjL ctjL) -10d3 0 0 W(qjL fojL) -25d3 0 -0.1 W(qjL fajL) -7d3 0 0 W(dijL ctjL) -2d3 0 0 W(dijL fojL) 24d3 0 0.2 W(dijL fajL) 17d3 0 0 W(ctjL fojL) -1d3 0 0.1 W(fojL fajL) 9d3 0 0 end_excess_function 2 only 2 sites contribute to configurational entropy 3 0. Temkin M-site has Fe, Mg, Ca n(Ca) = 1 dijL n(Mg) = 1 dijL + 2 fojL n(Fe) = 2 fajL 7 1. F site z(jd) = 1 jdjL z(di) = 1 dijL z(ct) = 1 ctjL z(ol) = 1 fojL + 1 fajL z(q) = 1 qjL z(ek) = 1 ekjL end_of_model -------------------------------------------------------- begin_model Jennings and Holland, J Pet, 56:869-892, 2015 Mantle Melt Model, intended for pressures of 0-60 GPa Pierre Bouilhol & JADC, 12/16/15 O(JH) abbreviation Ol full_name olivine 2 model type: simplicial composition space 2 2 endmembers fo fa 0 0 | endmember flags 0.0 1.0 0.1 0 | range and resolution for X(Mg), imod = 0 -> cartesian subdivision begin_excess_function W(fo fa) 9000. 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(fe) = 1 fa end_of_model -------------------------------------------------------- begin_model Jennings and Holland, J Pet, 56:869-892, 2015 Mantle Melt Model, intended for pressures of 0-60 GPa Pierre Bouilhol & JADC, 12/16/15 Removed extraneous line in Sp(JH) excess definitions [which read w(sp herc) 7d2 0 0] Added z(al) = 2/3 sp + 2/3 herc definition to Sp(JH) configurational entropy site fractions. Oliver Shorttle, 3/18/16 Sp(JH) abbreviation Sp full_name spinel 2 | model type: simplicial composition space 4 | 4 endmembers sp mt picr herc 0 0 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(sp herc) 4d3 0 0 W(sp mt) 56d3 0 0 W(sp picr) 39d3 0 0 W(herc mt) 32d3 0 0 W(herc picr) 27d3 0 0 W(mt picr) 36d3 0 0 end_excess_function 1 5 3. cations disordered across all sites z(al) = 2/3 sp + 2/3 herc z(mg) = 1/3 sp + 1/3 picr z(fe3) = 2/3 mt z(cr) = 2/3 picr end_of_model -------------------------------------------------------- begin_model Jennings and Holland, J Pet, 56:869-892, 2015 Mantle Melt Model, intended for pressures of 0-60 GPa Pierre Bouilhol & JADC, 12/16/15 Pl(JH) abbreviation Pl full_name binary-feldspar 2 | model type: simplicial composition space 2 | 2 endmembers abh an 1 0 | endmember flags 0. 1. .1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(abh an) 22.4d3 0 0 end_excess_function 2 | 2 sites (O, T) kerrick and darkens Al-avoidance model: 2 1. | 2 species on O site, multiplicity = 1. z(Na) = 1 abh 2 2. | 2 species on T, mutiplicity = 2. z(Al) = 1/2 + 1/2 an begin_van_laar_sizes alpha(abh) 1.0 0 0 alpha(an) 0.39 0 0 end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Jennings and Holland, J Pet, 56:869-892, 2015 Mantle Melt Model, intended for pressures of 0-60 GPa Pierre Bouilhol & JADC, 12/16/15 X Y _____________ Mutliplicity 3 2 _____________ Dependent: fkho_d Fe Fe3+ Dependent: kho_d Mg Fe3+ andr Ca Fe3+ Dependent: fkno_d Fe Cr knor Mg Cr Dependent: ckno_d Ca Cr alm Fe Al py Mg Al gr Ca Al Grt(JH) abbreviation Gt full_name garnet 7 2 3 3 alm py gr fkno_d knor ckno_d fkho_d kho_d andr 4 fkno_d = 1 alm + 1 knor - 1 py ckno_d = 1 gr + 1 knor - 1 py fkho_d = 1 alm + 1 andr - 1 gr kho_d = 1 py + 1 andr - 1 gr 0 0 0 0 0 0 0 0 0 0. 1. .1 0 0. 1. .1 0 0. 1. .1 0 0. 1. .1 0 begin_excess_function W(py alm) 4d3 0 0.1 W(py gr) 35d3 0 0.1 W(py andr) 91d3 1.7 0.032 W(py knor) 2d3 0 0 W(alm gr) 4d3 0 0.1 W(alm andr) 60d3 1.7 0.032 W(alm knor) 6d3 0 0.01 W(gr andr) 2d3 0 0 W(gr knor) 47d3 -33.8 0.221 W(andr knor) 101d3 -32.1 0.153 end_excess_function 2 3 3. z(m1,fe) = 1 alm z(m1,mg) = 1 py + 1 knor 3 2. z(m2,cr) = 1 knor z(m2,fe3) = 1 andr end_of_model -------------------------------------------------------- begin_model Jennings and Holland, J Pet, 56:869-892, 2015 originally from Holland et al., 2013; dx.doi.org/10.1093/petrology/egt035 Mantle Melt Model, intended for pressures of 0-60 GPa Pierre Bouilhol & JADC, 12/16/15 T-site mixing added 3/16, O. Shorttle. T-site mixing corrected for a false multiplicity of 1/4, with the fully disordered tetrahedral Al site fraction. JADC, 6/10/15 Changed fake T site multiplicity from 1/4 to 1/2 with true Al site fraction. Bob Myhill, 2/18 NOTE: to use this the following endmembers must be specified with make definitions in the thermodynamic data file odi = 1 di DQF = -100 + 0.211 * T + 0.005 * P | NOTE entropy term incorrect in some perplex files M1 M2 T _____________________ Mutliplicity 1 1 1/4 ______________________ en Mg Mg SiSi mgts Al Mg SiAl oen Fe3+ Mg SiAl cren Cr Mg SiAl Species: fs Fe Fe SiSi tsfs Al Fe SiAl dependent ofs Fe3+ Fe SiAl dependent crfs Cr Fe SiAl dependent Species: odi Mg Ca SiSi tsdi Al Ca SiAl dependent odif Fe3+ Ca SiAl dependent odicr Cr Ca SiAl dependent _____________ Internal: opx Mg Fe SiSi Opx(JH) abbreviation Opx full_name orthopyroxene 8 | model type: Reciprocal with speciation 2 | 2 independent composition spaces 3 4 | 3 dimensions on first space, 4 on second | endmembers: odif oen ofs odicr cren crfs tsdi mgts tsfs odi en fs 1 | ordered species definition opx = 1/2 en + 1/2 fs Delta(enthalpy) = -6d3 begin_limits opx = - 2 fs - 1 opx delta = 2 z(M2,Fe) opx = -2 + 2 fs + 1 opx delta = 2 z(M1,Fe) opx = - 2 en - 1 opx delta = 2 z(M1,Mg) end_limits 6 | 6 dependent endmembers tsfs = 1 mgts + 1 opx - 1 en tsdi = 1 odi + 1 mgts - 1 en ofs = 1 oen + 1 opx - 1 en odif = 1 odi + 1 oen - 1 en crfs = 1 cren + 1 opx - 1 en odicr = 1 odi + 1 cren - 1 en 0 0 0 0 0 0 0 0 0 0 0 0 | endmember flags, indicate if endmember is part of the solution (i.e. iend = 0). | subdivision model for (ternary) site 1 (M1): 0. .2 .1 0 0. 1. .1 0 | subdivision model for (quaternary) site 2 (M2): 0. 1. .1 0 0. 1. .1 0 0. 1. .1 0 begin_excess_function W(en fs) 5.2d3 0 0 W(en opx) 4d3 0 0 W(en odi) 32.2d3 0 0.12 W(en mgts) 13d3 0 -0.15 W(en cren) 8d3 0 0 W(en oen) 8d3 0 0 W(fs opx) 4d3 0 0 W(fs odi) 24d3 0 0 W(fs mgts) 7d3 0 -0.15 W(fs cren) 10d3 0 0 W(fs oen) 10d3 0 0 W(opx odi) 18d3 0 0 W(opx mgts) 2d3 0 -0.15 W(opx cren) 12d3 0 0 W(opx oen) 12d3 0 0 W(odi mgts) 75.4d3 0 -0.94 W(odi cren) 30d3 0 0 W(odi oen) 30d3 0 0 W(mgts cren) 2d3 0 0 W(mgts oen) 2d3 0 0 W(cren oen) 2d3 0 0 end_excess_function 3 | 2 site (M1, M2, T1) configurational entropy model 5 1. | 5 species on M1, 1 site per formula unit. z(m1,fe) = 1 fs z(m1,cr) = 1 cren z(m1,fe3+) = 1 oen z(m1,al) = 1 mgts 3 1. | 3 species on M2, 1 site per formula unit. OS_EDIT-3/16 changed comment [2 species...] z(m2,ca) = 1 odi z(m2,fe) = 1 fs + 1 opx 2 0.5 | 2 species on "1/2" T sites with true site fraction. z(t,al) = 1/2 mgts + 1/2 cren + 1/2 oen begin_van_laar_sizes alpha(en) 1.0 0 0 alpha(fs) 1.0 0 0 alpha(opx) 1.0 0 0 alpha(odi) 1.2 0 0 alpha(mgts) 1.0 0 0 alpha(cren) 1.0 0 0 alpha(oen) 1.0 0 0 end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Ca-Fe2+-Mg-Al-Fe3+ Garnet, White et al., JMG 32:261-286, 2014. * In calculations that use this model, the andradite endmember ("andr") in the Holland and Powell data base must be excluded. This model also requires the following make definition for khoharite in the thermodynamic data file: kho1 = 1 py - 1 gr + 1 andr 27d3 0 0 * Mn added as in Gt(WPPH). JADC 4/14 * Mn excess energy updated, alpha(kho1 & spss) reduced to 1.0 (formerly 2.7). Felix Gervais, 1/28/2015. X Y _____________ Mutliplicity 3 2 _____________ Dependent: fkho_i Fe Fe3+ Dependent: kho1 Mg Fe3+ Dependent: fmn_i Mn Fe3+ andr_i Ca Fe3+ spss Mn Al alm Fe Al py Mg Al gr Ca Al Gt(W) abbreviation Gt full_name garnet 7 | model type: prismatic (reciprocal) 2 | the number of independent subcompositions 4 2 | 4 species on site 1, 2 species on site 2. | M2 and M1 can be identified as sites 1 and 2, respectively. the | species that mix on site 1 are Mn-Mg-Fe-Ca and the species that mix on | site 2 are Al-Fe3+. spss alm py gr | endmember names fmn_i fkho_i kho1 andr_i 3 | number of dependent endmembers andr_i = 1 kho1 - 1 py +1 gr fkho_i = 1 kho1 + 1 alm -1 py fmn_i = 1 kho1 + 1 spss -1 py 0 0 0 0 0 0 0 0 | endmember flags 0. .2 0.1 0 | imod = 0 -> cartesian subdivision (xmn) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xfe) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xmg) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision x(fe3+) on Y begin_excess_function W(py alm) 2.5d3 0 0 | as given by Green et al 2016. W(py gr) 30.1d3 0 0.164 W(py kho1) 5.4d3 0 0 W(py spss) 2d3 0 0 W(alm gr) 5d3 0 0 W(alm kho1) 21.63d3 0 0.168 W(alm spss) 2d3 0 0 W(gr kho1) -16.15d3 0 0.164 w(spss kho1) 28.43d3 0 0.168 end_excess_function 2 |2 site entropy model 4 3. |4 species, site multiplicity 3 z(x,mn) = 1 spss z(x,fe) = 1 alm z(x,ca) = 1 gr 2 2. |2 species, site multiplicity 2 z(y,al) = 1 spss + 1 alm + 1 py + 1 gr begin_van_laar_sizes alpha(py) 1.0 0. 0. alpha(alm) 1.0 0. 0. alpha(gr) 2.7 0. 0. alpha(kho1) 1.0 0. 0. alpha(spss) 1.0 0. 0. end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Melt, White et al., JMG 32:261-286, 2014. JADC 4/14 reformulated as ordinary configurational entropy model. JADC 12/18. This model requires the following make definitions in the thermodynamic data file make_definitions section: sil8L = 8/5 silL -23d3 0 0 fo8L = 2 foL -10d3 0 0 fa8L = 2 faL -9d3 0 -1.3 q8L = 4 qL 0 0 0 WARNING 3: the (stabilizing) dqf corrections made to the fo8L, fa8L, and sil8L enedmembers make the haplogranite melt model inapplicable to melts where these endmembers are present in high concentrations, to model such situations or to reproduce the published fo-fa-q or sil-q melting phase relations, the dqf corrections (below) should be set to zero. WARNING 5: The melt model incorrectly predicts a high pressure-low temperature stability field for water-silica rich melts. at 10 kb this field extends to ca 750 K and at 3 kb to ca 550 K. To eliminate this artifact set T_melt in perplex_option.dat. melt(W) abbreviation Melt full_name liquid 2 model type: simplicial composition space. 8 number of endmembers fo8L fa8L abL sil8L anL kspL q8L h2oL 0 0 0 0 0 0 0 0 0 | endmember flags. 2d-3 0.1 0.1 1 | range and resolution of X(fo), 1 => asymmetric subdivision 2d-3 0.1 0.1 1 | range and resolution of X(fa), 1 => asymmetric subdivision 0.0 0.4 0.1 0 | range and resolution of X(ab), 0 => cartesian subdivision 2d-3 0.1 0.1 1 | range and resolution of X(sil), 1 => asymmetric subdivision 2d-3 0.2 0.1 1 | range and resolution of X(an), 1 => asymmetric subdivision 0.0 0.5 0.1 0 | range and resolution of X(ksp), 0 => cartesian subdivision 0.0 0.6 0.1 0 | range and resolution of X(q), 0 => cartesian subdivision begin_excess_function W(q8L abL) 12d3 0 -0.4 W(q8L kspL) -2d3 0 -0.5 W(q8L anL) 5d3 0 0 W(q8L sil8L) 12d3 0 0 W(q8L fo8L) 12d3 0 -0.4 W(q8L fa8L) 14d3 0 0 W(q8L h2oL) 17d3 0 -0.5 W(abL kspL) -6d3 0 3 W(abL sil8L) 12d3 0 0 W(abL fo8L) 10d3 0 0 W(abL fa8L) 2d3 0 0 W(abL h2oL) -1.5d3 0 -0.3 W(kspL anL) 0d3 0 -1 W(kspL sil8L) 12d3 0 0 W(kspL fo8L) 12d3 0 0 W(kspL fa8L) 12d3 0 0 W(kspL h2oL) 9.5d3 0 -0.3 W(anL h2oL) 7.5d3 0 -0.5 W(sil8L fo8L) 12d3 0 0 W(sil8L fa8L) 12d3 0 0 W(sil8L h2oL) 11d3 0 0 W(fo8L fa8L) 18d3 0 0 W(fo8L h2oL) 11d3 0 -0.5 W(fa8L h2oL) 12d3 0 0 end_excess_function 3 | Configurational entropy: two non-temkin sites (Water, Melt) | and one temkin site (olvine). 2 1. | water-vacancy site z(H) = 1 h2oL 2 0. | temkin olivine site n(Mg) = 4 fo8L n(Fe) = 4 fa8L 7 0. | melt species site, treating ksp and abl as separate species n(q) = 1 q8L | accomplishes the same thing as adding them to form fsp and then n(ksp) = 1 kspL | adding a fsp temkin site. n(ab) = 1 abL n(sil) = 1 sil8L n(an) = 1 anL n(ol) = 1 fo8L + 1 fa8L | this term was not counted prior to dec 2018. n(w) = 1 h2oL end_of_model -------------------------------------------------------- begin_model Mica(W), White et al., JMG 32:261-286, 2014. This model requires the make definitions: fmu = 1 mu + 1/2 andr - 1/2 gr 25d3 0 0 ma1_dqf = 1 ma 6.5d3 0 0 in the thermodynamic data file (e.g., hp11ver.dat), additionally the endmember "ma" must be exlcuded from any calculations that employ this model. In thermocalc, different dqf's are used for "muscovite", "margarite" and "paragonite" described by this model. this treatment is clearly inconsistent and not followed here. The dqf's given above are for the thermocalc "muscovite" phase. JADC, 4/14 A M2a M2b T1 M1 ___________________________________ Mutliplicity 1 1 1 2 1 ___________________________________ 1 mu K Al Al AlSi _ 2 pa Na Al Al AlSi _ 3 ma1_dqf Ca Al Al AlAl _ 4 cel K Mg Al SiSi _ 5 fcel K Fe Al SiSi _ 6 fmu K Al Fe3+ AlSi _ Mica(W) abbreviation Mica full_name white-mica 2 | model type: simplex 6 | 6 endmembers mu pa ma1_dqf cel fmu fcel 0 0 0 0 0 0 0 0 | endmember flags | subdivision model 0. 1. .1 0 | range and resolution of X(mu), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(pa), imod = 0 -> cartesian subdivision 0. 1. .1 1 | range and resolution of X(ma1_dqf), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(cel), imod = 0 -> cartesian subdivision 0. .3 .1 0 | range and resolution of X(fmu), begin_excess_function W(mu cel) 0d3 0 0.2 W(mu fcel) 0d3 0 0.2 W(mu pa) 10.12d3 3.4 0.353 W(mu ma1_dqf) 34d3 0 0 W(mu fmu) 0d3 0 0 W(cel fcel) 0d3 0 0 W(cel pa) 45d3 0 0.25 W(cel ma1_dqf) 50d3 0 0 W(fcel pa) 45d3 0 0.25 W(fcel ma1_dqf) 50d3 0 0 W(pa ma1_dqf) 18d3 0 0 W(pa fmu) 30d3 0 0 W(ma1_dqf fmu) 35d3 0 0 end_excess function 4 | Configurational entropy: 4 sites, A, M2a, M2b, T1. 3 1. | 3 species on A, 1 site per formula unit. z(a,k) = 1 mu + 1 cel + 1 fcel + 1 fmu z(a,na) = 1 pa 3 1. | 3 species on M2a, 1 site per formula unit. z(m2a,al) = 1 mu + 1 pa + 1 ma1_dqf + 1 fmu z(m2a,mg) = 1 cel 2 1. | 2 species on M2b, 1 site per formula unit. z(m2b,fe) = 1 fmu 2 2. | 2 species on T1, 2 sites per formula unit. z(t,al) = 1/2 mu + 1/2 pa + 1/2 fmu + 1 ma1_dqf begin_van_laar_sizes alpha(mu) 0.63 0. 0. alpha(pa) 0.37 0. 0. alpha(ma1_dqf) 0.63 0. 0. alpha(cel) 0.63 0. 0. alpha(fmu) 0.63 0. 0. alpha(fcel) 0.63 0. 0. end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Fe3-Fe-Mg Ctd, White et al., JMG 32:261-286, 2014. This model requires the make definitions: ctdo = 1 mct + 1/4 andr - 1/4 gr 25d3 0 0 JADC, 4/14 Ctd(W) abbreviation Ctd full_name chloritoid 2 | model type: simplicial composition space 3 | 3 endmembers ctdo fctd mctd 0 0 0 | endmember flags | Note restricted range on X(Mn) 0. .2 0.1 0 | range and resolution for X(Fe3), imod = 1 -> asymmetric transform subdivision 0. 1. 0.1 0 | range and resolution for X(Fe), imod = 0 -> cartesian subdivision begin_excess_function W(mctd fctd) 4d3 0 0 W(mctd ctdo) 1d3 0 0 W(fctd ctdo) 5d3 0 0 end_excess_function 2 1 site entropy model 2 1. 2 species on M1b, site multiplicity = 1. z(Fe) = 1 fctd 2 0.5 2 species on M1a, site multiplicity = 0.5 z(Fe3) = 1 ctdo end_of_model -------------------------------------------------------- begin_model Ti-Fe-Fe3-Mg-Mn Staurolite, White et al., JMG 32:261-286, 2014. This model requires the make definitions: msto = 1 andr -1 gr + 1 mst 9d3 0 0 mstt = 1 mst - 1 cor +3/2 ru 13d3 0 0 JADC, 4/14 Missing DQF for mst added by Mark Caddick. JADC, 1/26/2014 mnst added, vacancy on Al site disassociated from Ti, by Felix Gervais. JADC, 1/26/2014 St(W) abbreviation St full_name staurolite 2 model type: simplicial composition space 5 5 endmembers mstt msto fst mnst mst 0 0 0 0 0 | endmember flags 0. 0.1 0.1 0 | range and resolution for X(Ti), imod = 1 -> asymmetric transform subdivision 0. 0.1 0.1 0 | range and resolution for X(Fe3), imod = 1 -> asymmetric transform subdivision 0. 1. 0.1 0 | range and resolution for X(Fe), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(Mn), imod = 0 -> cartesian subdivision begin_excess_function W(mst fst) 16d3 0 0 W(mst mnst) 12d3 0 0 W(mst msto) 2d3 0 0 W(mst mstt) 20d3 0 0 W(fst msto) 18d3 0 0 W(fst mnst) 8d3 0 0 W(fst mstt) 36d3 0 0 W(mnst msto) 14d3 0 0 W(mnst mstt) 32d3 0 0 W(msto mstt) 30d3 0 0 end_excess_function 2 2 site entropy model 3 4. 3 species, site multiplicity of 4 z(Fe) = 1 fst z(Mg) = 1 mst +1 mstt + 1 msto | corrected from just 1 mst by Felix Gervais, 4/9/2015. JADC 4 2. 4 species, site multiplicity of 2, not clear if the vacancy is associated with Ti z(Ti) = 3/4 mstt z(Fe3) = 1 msto z(vac) = 1/4 mstt begin_dqf_corrections dqf(mst) -8000 0 0 dqf(mnst) -190 0 0 | corrected from 0.19 by Felix Gervais, 4/9/2015. JADC end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Fe2+-Fe3+-Mg-Al-Ca Orthopyroxene, White et al., JMG 32:261-286, 2014. This model requires the make definitions: mots1 = 1 mgts + 1/2 andr - 1/2 gr 2d3 0 0 mnopx = 2 pxmn 6.68d3 0 0 JADC, 4/14 Al site fraction of T "corrected" to (mots1 + mgts)/8 by Mark Caddick. JADC, 1/26/2015 Mn added by Felix Gervais, 1/28/2015. This model is as implemented in THERMOCALC. The implementation is irrational because Mn is assumed to remain disordered across M1 and M2, while Al, Fe, Fe3+ and Ca order. The model should only be used with the site_check set to true in perplex_option.dat JADC, 1/28/2015 The correction on 1/26/15 was NOT what is done in thermocalc, apparently the correct form is to compute the true disordered tetrahedral site fraction (mots1 + mgts)/2, but apply a fake multiplicity of 1/4. JADC, 6/10/2016 odi replaced by a internal dqf on di JADC, 30/11/2016 reformulated as a prismatic + orphan vertex model. JADC, 10/5/2018 Site: M1 M2 T ____________________ Mutliplicity: 1 1 1/4 <- fake ____________________ 1 en Mg Mg Si Species: 2 fs Fe2+ Fe2+ Si 3 mnopx Mn Mn Si independent orphan 4 mgts Al Mg AlSi 5 fets Al Fe2+ AlSi dependent 7 mots1 Fe3+ Mg AlSi 8 feots Fe3+ Fe2+ AlSi dependent 10 di Mg Ca Si 11 fdi Fe Ca Si dependent ___________________ Internal: 13 opx Mg Fe2+ Si Dependent: fets = mgts + opx - en feots = mots1 + opx - en fdi = di + opx - en ---------------------------------------------------- Opx(W) | solution name. abbreviation Opx full_name orthopyroxene 9 | model type: O/D, prismatic + orphan vertexes 2 | prismatic vertex consists of two simplicies with a common vertex 2 4 | 2 components {Fe2+, Mg} on simplex 1, 4 components {Al, Si, Fe3+, Ti} on simplex 2 1 | number of orphan vertices | endmembers on the prismatic vertex mots1 feots di fdi mgts fets_d en fs | endmembers on orphan vertices mnopx 1 | ordered species definition opx = 1/2 en + 1/2 fs Delta(enthalpy) = -6.95d3 begin_limits opx = - 2 fs - 1 opx delta = 2 z(M2,Fe) opx = -2 + 2 fs + 1 opx delta = 2 z(M1,Fe) opx = - 2 en - 2 di - 1 opx delta = 2 z(M1,Mg) end_limits 3 | dependent endmembers fets_d = 1 mgts + 1 opx - 1 en feots = 1 mots1 + 1 opx - 1 en fdi = 1 di + 1 fs - 1 opx | corrected march 17, 2017, formerly di - opx + fs 0 0 0 0 0 0 0 0 0 | endmember flags, indicate if endmember is part of the solution (i.e. iend = 0). | subdivision model for prism simplex 1: 0. 1. .1 0 | range and resolution of X(Mg), subdivision scheme: imod = 0 -> cartesian | subdivision model for prism simplex 2 0. .2 .1 0 | range and resolution of X(Fe3+), subdivision scheme: imod = 1 -> assymetric transform 0. .2 .1 0 | range and resolution of X(un-Ts), subdivision scheme: imod = 1 -> assymetric transform 0. .3 .1 0 | range and resolution of X(Ts), subdivision scheme: imod = 1 -> assymetric transform | independent (1d) simplex 0. .1 .1 0 | range of mn on independent simplex begin_excess_function W(en fs) 7d3 0 0 W(en opx) 4d3 0 0 W(en mgts) 13d3 0 -0.15 W(en mots1) 11d3 0 -0.15 W(en mnopx) 5d3 0 0 W(en di) 32.2d3 0 0.12 W(fs opx) 4d3 0 0 W(fs mgts) 13d3 0 -0.15 W(fs mots1) 11.6d3 0 -0.15 W(fs mnopx) 4.2d3 0 0 W(fs di) 25.54d3 0 0.084 W(opx mgts) 17d3 0 -0.15 W(opx mots1) 15d3 0 -0.15 W(opx mnopx) 5.1d3 0 0 W(opx di) 22.54d3 0 0.084 W(mgts mots1) 1d3 0 0 W(mgts mnopx) 12d3 0 -0.15 W(mgts di) 75.4d3 0 -0.94 W(mots1 mnopx) 10.6d3 0 -0.15 W(mots1 di) 73.4d3 0 -0.94 W(di mnopx) 24.54d3 0 0.084 end_excess_function 3 | 3 site (M1, M2, T) configurational entropy model 5 1. | 5 species on M1, 1 site per formula unit. z(m1,fe) = 1 fs z(m1,al) = 1 mgts z(m1,fe3+) = 1 mots1 z(m1,mn) = 1 mnopx 4 1. | 4 species on M2, 1 site per formula unit. z(m2,fe) = 1 fs + 1 opx z(m2,ca) = 1 di z(m2,mn) = 1 mnopx 2 0.25 | 2 species on "1/4" T site z(T,al) = 1/2 mgts + 1/2 mots1 begin_van_laar_sizes alpha(en) 1.0 0. 0. alpha(fs) 1.0 0. 0. alpha(opx) 1.0 0. 0. alpha(mgts) 1.0 0. 0. alpha(mots1) 1.0 0. 0. alpha(di) 1.2 0. 0. alpha(mnopx) 1.0 0. 0. end_van_laar_sizes begin_dqf_corrections dqf(di) = -100 + 0.211 *T 0.005 *P end_dqf_corrections end_of_model -------------------------------------------------------- begin_model BIOTITE model after White et al., JMG 32:261-286, 2014. NOTE: this model requires make definitions for fbi and tbi in the thermodynamic data file: tbi = 1 phl - 1 br + 1 ru 55e3 0 0 fbi = 1 east - 1/2 gr + 1/2 andr -3e3 0 0 Modified model entered by Tim Johnson, Apr 7, 2014. enthalpy of ordering for obi corrected, Mark Caddick, JADC 1/26/2015. Mn added and Ti occupancy corrected by Felix Gervais, 1/28/2015. This model is as implemented in THERMOCALC. The implementation is irrational because Mn is assumed to remain disordered across M1 and M2, while Al, Fe, Fe3+ and Ti order. The model should only be used with the site_check set to true in perplex_option.dat JADC, 1/28/2015 M1 M2 T1 H ____________________________ Mutliplicity 1 2 2 2 ____________________________ Dependent: ffbi Fe3+ Fe AlAl OH fbi Fe3+ Mg AlAl OH Dependent: ftbi Ti Fe AlSi O tbi Ti Mg AlSi O Dependent: Sdph Al Fe AlAl OH East Al Mg AlAl OH Species: Ann Fe Fe AlSi OH Phl Mg Mg AlSi OH mnbi Mn Mn AlSi OH independent orphan __________________________ Ordered: Obi Fe Mg AlSi OH Bi(W) | solution name. abbreviation Bio full_name biotite 9 | model type: O/D, prismatic + orphan vertexes 2 | prismatic vertex consists of two simplicies with a common vertex 2 4 | 2 components {Fe2+, Mg} on simplex 1, 4 components {Al, Si, Fe3+, Ti} on simplex 2 1 | number of orphan vertices | endmembers on the prismatic vertex ffbi_i fbi ftbi_i tbi sdph_i east ann phl | endmembers on orphan vertices mnbi 1 | ordered species: obi = 2/3 phl + 1/3 ann enthalpy_of_ordering = -2d3 begin_limits obi = -3 + 3 ann + 1 obi delta = 3 z(M2,Fe) obi = - 3 phl - 3 tbi - 3 east - 2 obi delta = 3 z(M2,Mg) obi = - 3/2 ann - 1/2 obi delta = 3/2 z(M1,Fe) obi = -3/2 + 3/2 phl + 1 obi delta = 3/2 z(M1,Mg) end_limits 3 | number of dependent endmembers sdph_i = 1 east + 1 ann - 1 obi ffbi_i = 1 fbi + 1 ann - 1 obi ftbi_i = 1 tbi + 1 ann - 1 obi 0 0 0 0 0 0 0 0 0 | endmember flags: 0 -> endmember is considered to be part of the solution. | subdivision model for first simplex of the prismatic vertex 0. 1. .1 0 | range and resolution of X(Fe) | subdivision model for the second simplex of the prismatic vertex 0. .2 .1 0 | range and resolution of X(Fe3+) 0. .3 .1 0 | range and resolution of X(Ti) 0. 1. .1 0 | range and resolution of X(Al) | independent (1d) simplex 0. .1 .1 0 | range of mn on independent simplex begin_excess_function W(phl ann) 12d3 0. 0. W(phl obi) 4d3 0. 0. W(phl east) 10d3 0. 0. W(phl tbi) 30d3 0. 0. W(phl fbi) 8d3 0. 0. W(phl mnbi) 9d3 0. 0. W(ann obi) 8d3 0. 0. W(ann east) 15d3 0. 0. W(ann tbi) 32d3 0. 0. W(ann fbi) 136d2 0. 0. W(ann mnbi) 63d2 0. 0. W(obi east) 7d3 0. 0. W(obi tbi) 24d3 0. 0. W(obi fbi) 5.6d3 0. 0. W(obi mnbi) 8.1d3 0. 0. W(east tbi) 40d3 0. 0. W(east fbi) 1d3 0. 0. W(east mnbi) 13d3 0. 0. W(tbi fbi) 40d3 0. 0. W(tbi mnbi) 30d3 0. 0. W(fbi mnbi) 116d2 0. 0. end_excess_function 4 | Configurational entropy: 4 sites, M1, M2, T1 H. 6 1. | 5 species on M1, 1 site per formula unit. z(m1,fe) = 1 ann + 1 obi z(m1,mg) = 1 phl z(m1,Fe3+) = 1 fbi z(m1,mn) = 1 mnbi z(m1,Ti) = 1 tbi 3 2. | 2 species on M2, 2 sites per formula unit. z(m2,fe) = 1 ann z(m2,mn) = 1 mnbi 2 2. | 2 species on T1, 2 site per formula unit. z(t1,al) = 1/2 + 1/2 east + 1/2 fbi 2 2. | 2 species on H, 2 site per formula unit. z(h,o) = 1 tbi begin_dqf_corrections dqf(ann) -3000 0 0 dqf(mnbi) -7890 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model non-ideal CORDIERITE model after White et al., JMG 32:261-286, 2014 with Mn added M H ________________ Mutliplicity 2 1 ________________ 1 mncrd Mn Vac Species: 2 fcrd Fe Vac 3 crd Mg Vac 4 hmncrd Mn H2O dependent 5 hfcrd Fe H2O dependent 6 hcrd Mg H2O _______________ Dependent: hfcrd = hcrd + (fcrd - crd) Modified model entered by Tim Johnson, Apr 7 2014. w(fcrd hcrd) changed from w(crd hcrd), May 16, 2014. Felix Gervais. w(mncrd ...)'s and mncrd DQF added. Felix Gervais, Jan 28, 2015. Crd(W) abbreviation Crd full_name cordierite 7 model type: reciprocal 2 2 reciprocal sites 3 2 3 species on site 1, 2 on site 2 mncrd fcrd crd hmncrd_i hfcrd_i hcrd 2 2 dependent endmembers hfcrd_i = 1 hcrd + 1 fcrd - 1 crd hmncrd_i = 1 hcrd + 1 mncrd - 1 crd 1 0 0 1 0 0 | endmember flags | Note restricted range on X(Mn) 0. .2 .1 0 | range and resolution for X(Mn) on M site, imod = 1 -> asymmetric transform subdivision 0. 1. .1 0 | range and resolution for X(Fe) on M site, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for 1-X(H2O) on H site, imod = 0 -> cartesian subdivision begin_excess_function W(crd fcrd) 8d3 0. 0. W(fcrd hcrd) 9d3 0. 0. W(crd mncrd) 6d3 0. 0. W(fcrd mncrd) 4d3 0. 0. W(hcrd mncrd) 6d3 0. 0. end_excess_function 2 2 site entropy model. 3 2. 3 species on M, 2 sites per formula unit. z(m,mg) = 1 crd + 1 hcrd z(m,fe) = 1 fcrd 2 1. 2 species on H, 1 sites per formula unit. z(H,H2O) = 1 hcrd begin_dqf_corrections dqf(mncrd) -4210 0. 0. end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Sapphirine, O/D non-ideal, Wheller & Powell (JMG, 32, 287–299, 2014) Modified JADC model entered by Tim Johnson, 7 April 2014. 1 2 3 M3 M456 T _________________ Mutliplicity 1 3 1 _________________ 1 spr4 Mg Mg Si Species: 2 fspr Fe Fe Si 3 spr5 Al Mg Al 4 fsp5_d Al Fe Al dependent 5 ospr Fe3+ Mg Al 6 fospr_d Fe3+ Fe Al dependent 7 spro Fe Mg Si ordered Dependent endmember: FeMg-1_M456 = (fspr-spro)/3 fsp5_d = spr5 + fspr - spro fospro_d = ospr + fspr - spro Sa(WP) abbreviation Sap full_name sapphirine 8 | model type: order-disorder, prismatic composition space 2 | 2 independent mixing sites 2 3 | 2 components {Fe2+, Mg} for composition 1, 3 components {Al, Si, Fe3+} for composition 2. | endmember names spr4 fspr spr5 fsp5_d ospr fospr_d 1 | 1 ordered species: spro = 3/4 spr4 + 1/4 fspr enthalpy_of_ordering = -3.5d3 begin_limits spro = - 4/3 fspr - 4/3 ospr - 1/3 spro delta = 4/3 z(M3,Mg) spro = - 4/3 fspr - 1/3 spro delta = 4/3 z(M3,Fe) spro = -4 - 4 fspr + 1 ospr - 4 spr5 + 1 spro delta = 4 z(M456,Mg) end_limits 2 | 2 dependent endmembers fsp5_d = 1 spr5 + 1 fspr - 1 spro fospr_d = 1 spr5 + 1 fspr - 1 spro 0 0 0 0 0 0 | endmember flags, indicate if endmember is part of the solution (i.e. iend = 0). | subdivision model for (binary) site 1 (M2): 0. 1. .1 0 | range and resolution of X(Mg), subdivision scheme for site 1: imod = 0 -> cartesian | subdivision model for (ternary) site 2 0. 1. .1 0 | range and resolution of X(Ts), subdivision scheme for site 3, species 1: imod = 0 -> cartesian 0. 1. .1 0 | range and resolution of X(un-Ts), subdivision scheme for site 3, species 2: imod = 0 -> cartesian begin_excess_function W(spr4 spr5) 10d3 0. -0.02 W(spr4 fspr) 16d3 0. 0. W(spr4 spro) 12d3 0. 0. W(spr4 ospr) 8d3 0. -0.02 W(spr5 fspr) 19d3 0. -0.02 W(spr5 spro) 22d3 0. -0.02 W(spr5 ospr) 1d3 0. 0. W(fspr spro) 4d3 0. 0. W(fspr ospr) 17600 0. -0.02 W(spro ospr) 20d3 0. -0.02 end_excess_function 3 | 3 site (M3, M456, T) configurational entropy model 2 3. | 2 species on M46, 3 sites per formula unit z(m456,fe) = 1 fspr 4 1. | 4 species on M3, 1 sites per formula unit. z(m3,Al) = 1 spr5 z(m3,Fe3) = 1 ospr z(m3,mg) = 1 spr4 2 1. | 2 species on T, 1 sites per formula unit. z(T,si) = 1 spr4 + 1 fspr + 1 spro begin_dqf_corrections dqf(fspr) -2d3 0. 0. end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Orthopyroxene with compound formation, PH '99 Am Min. JADC 3/03 site population limits added Feb 20, 2011, JADC. added ferric iron, Jul 24, 2012. JADC. NOTES: * This model will only function for the FASH subsystem if MGO is present as a component in VERTEX. 1 2 M1 M2 _____________ Mutliplicity 1 1 _____________ 1 en Mg Mg Species: 2 fs Fe2+ Fe2+ 3 mgts Al Mg 4 fets Al Fe2+ 5 mots Fe3+ Mg 6 feots Fe3+ Fe2+ _____________ Internal: 7 opx Mg Fe2+ Dependent: fets = mgts + opx - en feots = mots + opx - en Opx(HP) | solution name. abbreviation Opx full_name orthopyroxene 8 | model type: order-disorder, prismatic composition space 2 | 2 independent composition spaces 2 3 | 2 dimensions on first space, 3 on second | endmembers: mgts fets_d en fs mots feots 1 | ordered species definition opx = 1/2 en + 1/2 fs Delta(enthalpy) = -6.95d3 begin_limits opx = - 2 fs - 1 opx delta = 2 z(M2,Fe) opx = -2 + 2 fs + 1 opx delta = 2 z(M1,Fe) opx = - 2 en - 1 opx delta = 2 z(M1,Mg) end_limits 2 | 2 dependent endmembers fets_d = 1 mgts + 1 opx - 1 en feots = 1 mots + 1 opx - 1 en 0 0 0 0 0 0 | endmember flags, indicate if endmember is part of the solution (i.e. iend = 0). | subdivision model for (binary) site 1 (M2): 0. 1. .1 | range and resolution of X(Mg) 0 | subdivision scheme for site 1: imod = 0 -> cartesian | subdivision model for (ternary) site 2 0. 1. .1 0 | range and resolution of X(Ts), subdivision scheme for site 3, species 1: imod = 0 -> cartesian 0. 1. .1 0 | range and resolution of X(un-Ts), subdivision scheme for site 3, species 2: imod = 0 -> cartesian begin_excess_function w(en fs) 68d2 0. 0. w(fs mgts) -1d3 0. 0. w(en opx) 45d2 0. 0. w(fs opx) 45d2 0. 0. w(mgts opx) 12d2 0. 0. w(en mots) -14d3 0. 0. w(fs mots) 6d3 0. 0. w(opx mots) 6d3 0. 0. end_excess_function 2 | 2 site (M1, M2) configurational entropy model 4 1. | 3 species on M1, 1 site per formula unit. z(m1,fe) = 1 fs z(m1,al) = 1 mgts z(m1,fe3+) = 1 mots 2 1. | 2 species on M2, 1 site per formula unit. z(m2,mg) = 1 en + 1 mgts + 1 mots end_of_model -------------------------------------------------------- begin_model Ti-Fe3+ Biotite from Tajcmanova et al., JMG 2009; extended for Mn solution after Tinkham et al. 2001. Model entered by Lucie Tajcmanova, December, 2008. NOTE this model requires the following make definitions in the thermodynamic data file: tbit = 1 phl - 1 br + 1 ru 84e3 -11.5 0 fbit = 1 east - 1/2 cor + 1/2 hem 6e3 0 0 site population limits added Feb 20, 2011, JADC. reformulated as a prismatic + orphan vertex model. JADC, 10/5/2018 Site: M1 M2 T1 H ____________________________ Mutliplicity 1 2 2 2 endmember ____________________________ type _________ _________ ffbit Fe3+ FeFe AlAl OH dependent fbit Fe3+ MgMg AlAl OH ftbit Fe TiFe AlSi O dependent tbit Mg TiMg AlSi O sdph Al FeFe AlAl OH dependent east Al MgMg AlAl OH mnbi Mn MnMn AlSi OH independent orphan ann Fe FeFe AlSi OH phl Mg MgMg AlSi OH obi Fe MgMg AlSi OH ordered Bio(TCC) | model name abbreviation Bio full_name biotite 9 | model type: O/D with prism + orphan vertex composition space 2 | prismatic vertex consists of two simplexes with a common vertex 2 4 | 2 components {Fe2+, Mg} on simplex 1, 4 components {Al, Si, Fe3+, Ti} on simplex 2 1 | number of orphan vertices | endmembers on the prismatic vertex ffbit fbit ftbit tbit sdph east ann phl | orphan vertex mnbi 1 | number of ordered species: obi = 2/3 phl + 1/3 ann enthalpy_of_ordering = -6.8d3 begin_limits obi = -3 + 3 ann + 1 obi delta = 3 z(M2,Fe) obi = - 3 phl - 3/2 tbit - 3 east - 2 obi delta = 3 z(M2,Mg) obi = - 3/2 ann - 1/2 obi delta = 3/2 z(M1,Fe) obi = -3/2 + 3/2 tbit + 3/2 phl + 1 obi delta = 3/2 z(M1,Mg) end_limits 3 | number of dependent endmembers sdph = 1 east + 1 ann - 1 obi ffbit = 1 fbit + 1 ann - 1 obi ftbit = 1 tbit + 1/2 ann + 1/2 obi - 1 phl 0 0 0 0 0 0 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution of X(Mg, M2), mod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(Fe3+,*), mod = 0 -> cartesian subdivision 0. .5 .1 0 | range and resolution of X(Ti, *), mod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(Al, *), mod = 0 -> cartesian subdivision 0. .5 .1 0 | range and resolution of mnbi, mod = 0 -> cartesian subdivision begin_excess_function W(phl ann) 12000. 0. 0. | excess parameters from Holland & Powell, JMG, 2006 W(phl east) 10000. 0. 0. W(phl obi) 4000. 0. 0. W(ann east) 3000. 0. 0. W(ann obi) 8000. 0. 0. W(obi east) 7000. 0. 0. end_excess_function 4 | Configurational entropy: 4 sites, M1, M2, T1 H. 5 1. | 5 species on M1, 1 site per formula unit. z(m1,fe) = 1 ann + 1 obi z(m1,mg) = 1 phl + 1 tbit z(m1,mn) = 1 mnbi z(m1,Fe3+) = 1 fbit 4 2. | 4 species on M2, 2 sites per formula unit. z(m2,fe) = 1 ann z(m2,Ti) = 1/2 tbit z(m2,mn) = 1 mnbi 2 2. | 2 species on T1, 2 site per formula unit. z(t1,al) = 1/2 + 1/2 east + 1/2 fbit 2 2. | 2 species on H, 2 site per formula unit. z(h,o) = 1 tbit end_of_model -------------------------------------------------------- begin_model Ti-Biotite model after White, Powell & Holland (JMG, 2007) Model entered by Lucie Tajcmanova, May 11, 2007. DQF corrections to annite added, Mark Caddick, Nov, 2007. NOTE: this model requires make defintions for fbi and tbi in the thermodynamic data file. 1 2 3 4 M1 M2 T1 H ____________________________ Mutliplicity 1 2 2 2 ____________________________ Dependent: 1 ffbi Fe3+ Fe AlAl OH 2 fbi Fe3+ Mg AlAl OH Dependent: 3 ftbi Ti Fe AlSi O 4 tbi1 Ti Mg AlSi O Dependent: 5 Sdph Al Fe AlAl OH 6 East Al Mg AlAl OH Species: 7 Ann Fe Fe AlSi OH 8 Phl Mg Mg AlSi OH __________________________ Ordered: 9 Obi Fe Mg AlSi OH Bio(WPH) | solution name. abbreviation Bio full_name biotite 8 | model type: order-disorder, prismatic composition space 2 | 2 4 | 2 species on site 1, 4 species on site 2. | M2 and M1 can be identified as sites 1 and 2, respectively. the | species that mix on site 1 are Mg-Fe and the species that mix on | site 2 are M2+, Al, Ti. Fe3+. The identity of M2+ on site 2 is determined by | the identity of the M2+ cation on site 1 ffbi_i fbi ftbi_i tbi1 sdph_i east ann phl 1 | ordered species: obi = 2/3 phl + 1/3 ann enthalpy_of_ordering = -10.73d3 begin_limits obi = -3 + 3 ann + 1 obi delta = 3 z(M2,Fe) obi = - 3 phl - 3 tbi1 - 3 east - 2 obi delta = 3 z(M2,Mg) obi = - 3/2 ann - 1/2 obi delta = 3/2 z(M1,Fe) obi = -3/2 + 3/2 phl + 1 obi delta = 3/2 z(M1,Mg) end_limits 3 | 3 dependent endmembers sdph_i = 1 east + 1 ann - 1 obi ffbi_i = 1 fbi + 1 ann - 1 obi ftbi_i = 1 tbi1 + 1 ann - 1 obi 0 0 0 0 0 0 0 0 0 | endmember flags: if 0 the endmember is considered to be part of the solution. | subdivision model for (binary) site 1 (M2): 0. 1. .1 0 | range and resolution of X(Fe) | subdivision model for (quinary) site 2 (M1) 0. .2 .1 0 | range and resolution of X(Fe3+,M1) 0. .2 .1 0 | range and resolution of X(Ti,M1) 0. 1. .1 0 | range and resolution of X(Al,M1) begin_excess_function | current preferred thermocalc values, Caddick, Nov '07 W(phl ann) 9000. 0. 0. W(phl east) 10000. 0. 0. W(phl obi) 3000. 0. 0. W(ann east) -1000. 0. 0. W(ann obi) 6000. 0. 0. W(ann fbi) 8000. 0 0 W(ann tbi1) 10000. 0 0 W(obi east) 10000. 0. 0. | values from White et al paper and earlier Perple_X verions. | W(phl ann) 12000. 0. 0. | W(phl east) 10000. 0. 0. | W(phl obi) 4000. 0. 0. | W(phl fbi) 0. 0. 0. | W(phl tbi1) 0. 0. 0. | W(ann east) 3000. 0. 0. | W(ann obi) 8000. 0. 0. | W(ann fbi) 8000. 0 0 | W(ann tbi1) 10000. 0 0 | W(obi east) 7000. 0. 0. end_excess_function 4 | Configurational entropy: 4 sites, M1, M2, T1 H. 5 1. | 5 species on M1, 1 site per formula unit. z(m1,fe) = 1 ann + 1 obi z(m1,mg) = 1 phl z(m1,Fe3+) = 1 fbi z(m1,Ti) = 1 tbi1 2 2. | 2 species on M2, 2 sites per formula unit. z(m2,fe) = 1 ann 2 2. | 2 species on T1, 2 site per formula unit. z(t1,al) = 1/2 + 1/2 east + 1/2 fbi 2 2. | 2 species on H, 2 site per formula unit. z(h,o) = 1 tbi1 begin_dqf_corrections dqf(ann) -3000 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Orthopyroxene with compound formation, PH '99 Am Min. JADC 3/03 Modified for ideal Cr, additionally a temperature dependence of -16 J/K has been assigned adhoc to W(mgts-en) and W(mgts-opx) in order to increase the Al-content of opx for upper mantle compositions and conditions. A better way of accomplishing the same result would be to increase the entropy of mgts. PGP Workshop 4/12/06. (folk.uio.no/ninasim/Cr_results.html) site population limits added Feb 20, 2011, JADC. NOTES: * This model should not be used for crustal rocks/conditions! * This model will only function for the FASH subsystem if MGO is present as a component in VERTEX. * Added ferric iron. JADC, 3/29/13. 1 2 M1 M2 _____________ Mutliplicity 1 1 _____________ 1 en Mg Mg Species: 2 fs Fe2+ Fe2+ 3 mgts Al Mg 4 fets Al Fe2+ 5 mots Fe3+ Mg 6 feots Fe3+ Fe2+ 7 crts Cr Mg 8 fcrts Cr Fe _____________ Internal: 9 opx Mg Fe2+ Dependent: fets = mgts + opx - en feots = mots + opx - en fcrts = crts + opx - en CrOpx(HP) | solution name. abbreviation Opx full_name orthopyroxene 8 | model type: Reciprocal with speciation 2 | 2 independent composition spaces 2 4 | 2 dimensions on first space, 3 on second | endmembers: crts fcrts_d mgts fets_d en fs mots feots 1 | ordered species definition opx = 1/2 en + 1/2 fs Delta(enthalpy) = -6.95d3 begin_limits opx = - 2 fs - 1 opx delta = 2 z(M2,Fe) opx = -2 + 2 fs + 1 opx delta = 2 z(M1,Fe) opx = - 2 en - 1 opx delta = 2 z(M1,Mg) end_limits 3 | 3 dependent endmembers fets_d = 1 mgts + 1 opx - 1 en feots = 1 mots + 1 opx - 1 en fcrts_d = 1 crts - 1/2 en + 1/2 fs 0 0 0 0 0 0 0 0 | endmember flags, indicate if endmember is part of the solution (i.e. iend = 0). | subdivision model for (binary) site 1 (M2): 0. 1. .1 0 | range and resolution of X(Mg),subdivision scheme for site 1: imod = 0 -> cartesian | subdivision model for (ternary) site 2 0. 1. .1 0 | range and resolution of X(Cr), subdivision scheme for site 3, species 1: imod = 0 -> cartesian 0. 1. .1 0 | range and resolution of X(Ts), subdivision scheme for site 3, species 2: imod = 0 -> cartesian 0. 1. .1 0 | range and resolution of X(un-Ts), subdivision scheme for site 3, species 3: imod = 0 -> cartesian begin_excess_function w(en fs) 68d2 0. 0. w(fs mgts) -1d3 -14. 0. w(en opx) 45d2 0. 0. w(fs opx) 45d2 0. 0. w(mgts opx) 12d2 -14. 0. w(en mots) -14d3 0. 0. w(fs mots) 6d3 0. 0. w(opx mots) 6d3 0. 0. end_excess_function 2 | 2 site (M1, M2) configurational entropy model 5 1. | 5 species on M1, 1 site per formula unit. z(m1,fe) = 1 fs z(m1,al) = 1 mgts z(m1,fe3+) = 1 mots z(m1,cr) = 1 crts 2 1. | 2 species on M2, 1 site per formula unit. z(m2,mg) = 1 en + 1 mgts + 1 mots + 1 crts site_check_override end_of_model -------------------------------------------------------- begin_model Mg-Fe-Ca-Al-Cr Garnet Hybrid Holland & Powell + Simon/PGP Cr Workshop (folk.uio.no/ninasim/Cr_results.html) CrGt abbreviation Gt full_name garnet 7 | model type: reciprocal 2 | 2 chemical site model 3 2 | 3 endmembers mix on site 1, 2 endmembers mix on site 2 uv_d fuv_d knor gr alm py 2 | 2 dependent endmembers uv_d = 1 gr + 1 knor - 1 py fuv_d = 1 alm + 1 knor - 1 py 0 0 0 0 0 0 | endmember flags 0 include it 1 drop it 0. 1. .1 0 | range and resolution for XCa on A 0. 1. .1 0 | range and resolution for XFe on A 0. 1. .1 0 | range and resolution for XCr on B begin_excess_function w(py gr) 33d3 0. 0. w(py knor) 3d3 0 0 | corrected as in erratum to ziberna et al 2013 (2014) | w(py py gr) 59304. -10.5 .036 Ganguly excess paramters | w(py gr gr) 25860. -10.5 .174 end_excess_function 2 2 site entropy model 3 3. 3 species, site multiplicity of 3 z(Ca) = 1 gr + 1 uv_d z(Mg) = 1 py + 1 knor 2 2. 2 species, site multiplicity of 2 z(Al) = 1 gr + 1 alm + 1 py reach_increment 0 end_of_model -------------------------------------------------------- begin_model Garnet model of Malaspina et al. 2009 the andradite endmember should be excluded from calculations when this model is use. JADC, 6/2010 Cr added as in Simon/PGP Cr Workshop, folk.uio.no/ninasim/Cr_results.html. JADC, 3/29/13 For Cr garnet it's probably better to use CrGt. JADC, 23/1/15. M1 M2 _____________ Mutliplicity 3 2 _____________ skiag Fe Fe3+ Dependent: kho Mg Fe3+ Dependent: andr Ca Fe3+ Dependent: fuv_d Fe Cr knor Mg Cr Dependent: uv_d Ca Cr alm Fe Al py Mg Al gr Ca Al Gt(MPF) abbreviation Gt full_name garnet 7 | model type: macroscopic with dependent endmembers 2 | number of independent mixing sites, reciprocal solution 3 3 | 3 species on site M1, 2 species on site M2. alm py gr | endmember names skiag kho andr uv_d fuv_d knor 4 | number of dependent endmembers andr = 1 gr + 1 skiag - 1 alm kho = 1 py + 1 skiag - 1 alm uv_d = 1 gr + 1 knor - 1 py fuv_d = 1 alm + 1 knor - 1 py 0 0 0 0 0 0 0 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xfe) on M1 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xmg) on M1 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision x(al) on M2 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision x(fe3+) on M2 begin_excess_function w(py knor) 30000. 0. 0. w(alm gr) 15000. 0. 0. w(py gr) 80000. 0. 0. | HP (33000. 0. 0.) w(alm py) 2500. 0. 0. | HP w(alm skiag) -37053.18 0. 0. | Skiag end_excess_function 2 |2 site entropy model 3 3. |3 species, site multiplicity 3 z(x,fe) = 1 alm + 1 skiag z(x,Mg) = 1 py 3 2. |2 species, site multiplicity 2 z(y,al) = 1 alm + 1 py + 1 gr z(y,cr) = 1 knor end_of_model -------------------------------------------------------- begin_model ad hoc pumpellyite, assumes fe-mg occupy two octahedral (M1) sites and al-fe3 occupy 5 (M2). JADC, Sep 17, 2017 Pu abbreviation Pu full_name pumpellyite 7 | model type: macroscopic with dependent endmembers 2 | number of independent mixing sites, reciprocal solution 2 2 | 2 species on site M1, 2 species on site M2. mpm fpm | endmembers mjgd jgd 1 | number of dependent endmembers mjgd = 1 jgd + 1 mpm - 1 fpm 0 0 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xfe) on M1 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xmg) on M1 ideal 2 |2 site entropy model 2 1. |2 species, M1 site multiplicity 1 z(M1,Mg) = 1 mpm 2 5. |2 species, M2 site multiplicity 5 z(M2,Fe3) = 1 jgd end_of_model -------------------------------------------------------- begin_model Sack & Ghiorso (1989 CMP 102:41-68) for Fe-Mg olivine. [an astoundingly complex presentation] JADC 7/03 O(SG) abbreviation Ol full_name olivine 2 model type macroscopic 2 2 endmembers fo fa 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution of X(mg), imod = 0 -> cartesian subdivision begin_excess_function w(fo fa) 20314. 0. 3e-2 end_excess_function 1 1 site entropy model (m) 2 2. 2 species on m2, mutiplicity = 2 z(m,mg) = 1 fo end_of_model -------------------------------------------------------- begin_model Holland and Powell (2001) J.Petrol 426, 673-683 (KNCASH) White et al (2001) JMG 19: 139-153 (FM+KNCASH). Calculations with this model can be sped up significantly by restricting the subdivsion ranges specified below. JADC 3/03 Changed DQF terms to account for modifications of faL and foL (White et al 2007). Mark Caddick, Nov, 07. Zr8L added. Jeff Marsh, Jan 10, 2012. reformulated as ordinary configurational entropy model. JADC 12/18. WARNING 2: the endmembers q8L, fa8L, fo8L, and sil8L must be "made" in the thermodynamic data file. See the header section of hp02ver.dat for details on the "make" structure. WARNING 3: the (stabilizing) dqf corrections made to the fo8L, fa8L, and sil8L enedmembers make the haplogranite melt model inapplicable to melts where these endmembers are present in high concentrations, to model such situations or to reproduce the published fo-fa-q or sil-q melting phase relations, the dqf corrections (below) should be set to zero. WARNING 4: different versions of the HP data base may result in significant variations in the predicted position of the wet-solidus (Powell, pers comm.). WARNING 5: The melt model incorrectly predicts a high pressure-low temperature stability field for water-silica rich melts. at 10 kb this field extends to ca 750 K and at 3 kb to ca 550 K. To eliminate this artifact set T_melt in perplex_option.dat. melt(HP) abbreviation Melt full_name liquid 2 model type: simplicial composition space 9 number of endmembers fo8L fa8L abL sil8L anL kspL zr8L q8L h2oL 0 0 0 0 0 0 0 0 0 | endmember flags. | RESTRICTED(!) subdivision ranges and model | the ranges must be extended if calculations | are to be done in subsystems like fo-fa-h2o, | Ab-H2O etc etc; these numbers seem about right | for pelite melting. 0.0 0.1 0.1 0 | range and resolution of X(fo), 0 => cartesian subdivision 0.0 0.1 0.1 0 | range and resolution of X(fa), 0 => cartesian subdivision 0.0 0.4 0.1 0 | range and resolution of X(ab), 0 => cartesian subdivision 0.0 0.2 0.1 0 | range and resolution of X(sil), 0 => cartesian subdivision 0.0 0.1 0.1 0 | range and resolution of X(an), 0 => cartesian subdivision 0.0 0.4 0.1 0 | range and resolution of X(ksp), 0 => cartesian subdivision 1e-5 1e-4 0.4 1 | max resolution, max concentration, 1/(no of points), X(zr), 1 => asymmetric subdivision 0.0 0.7 0.1 0 | range and resolution of X(q), 0 => cartesian subdivision begin_excess_function | the excess parameters used for the haplo- | granite melt model vary between papers (notably w(an-sil)), | the values here are from the thermocalc | model file 'thdmloss.txt' and appear largely | consistent with the white et al paper. w(q8L anL) -10d3 0. 0. w(q8L sil8L) 12d3 0. 0. w(q8L abL) 12d3 0. -0.4 w(q8L kspL) -2d3 0. -0.5 w(q8L h2oL) 15d3 0. 0. w(q8L fo8L) 12d3 0. -0.4 w(q8L fa8L) 14d3 0. 0. w(abL sil8L) 12d3 0. 0. w(abL kspL) -6d3 0. 3. w(abL fo8L) 10d3 0. 0. w(abL fa8L) 2d3 0. 0. w(abL h2oL) 1d3 0. -0.2 w(kspL anL) 0 0. -1. w(kspL sil8L) 12d3 0. 0. w(kspL h2oL) 11d3 0. -0.45 w(kspL fo8L) 12d3 0. 0. w(kspL fa8L) 12d3 0. 0. | w(anL sil8) is 12 kJ in the Holland & Powell J Pet paper | but appears to have accidentally been set to zero | for the calculations published in the White et al. JMG | paper. To restore this parameter delete the comment | marker "|" on the following line: | w(anL sil8) 12d3 0. 0. w(anL h2oL) 9d3 0. -0.85 w(sil8L fo8L) 12d3 0. 0. w(sil8L fa8L) 12d3 0. 0. w(sil8L h2oL) 16d3 0. 0. w(fo8L fa8L) 18d3 0. 0. w(fo8L h2oL) 11d3 0. -0.5 w(fa8L h2oL) 12d3 0. 0. w(q8L zr8L) 14d3 0. 0. w(abL zr8L) 12d3 0. 0. w(kspL zr8L) 12d3 0. 0. w(zr8L fo8L) 12d3 0. 0. w(zr8L fa8L) 12d3 0. 0. w(zr8L h2oL) 25d3 0. 0. end_excess_function 3 | Configurational entropy: two non-temkin sites (Water, Melt) | and one temkin site (olvine). hp assume a fsp = ab + or "molecule"" | with mixing on a temkin M site, but the math works out the same as | the endmembers are treated as separate endmembers and the M site | dropped. 2 1. | water-vacancy site z(H) = 1 h2oL 2 0. | temkin olivine site n(Mg) = 4 fo8L n(Fe) = 4 fa8L 8 0. | silicate species site, HP assume a fsp = ab + or "molecule"" | with mixing on the M site, but the math works out the same as | the endmembers are treated as separate endmembers and the M site | dropped. z(w) = 1 h2oL z(q) = 1 q8L z(ksp) = 1 kspL z(ab) = 1 abL z(sil) = 1 sil8L z(an) = 1 anL z(zr) = 1 zr8L z(ol) = 1 fo8L + 1 fa8L | there's a case to be made that zr8l should be incorporated in "olivine" begin_dqf_corrections dqf(fo8L) -10d3 0 0 dqf(fa8L) -9d3 0 -1.3 dqf(sil8L) -10d3 0 0 | pre-white et al '07 value: dqf(fo8L) -15d3 0 0 | pre-white et al '07 value: dqf(fa8L) -15d3 0 0 | pre-white et al '07 value: dqf(sil8L) -10d3 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Ghiorso et al (2002) G3 v. 3 (n. 5) model for mantle melting, 1-3 GPa. Read cautionary notes in Ghirso for applications beyond this pressure range. Calculations with this model can be sped up significantly by restricting the subdivsion ranges specified below. This is a reduced version of the pMELTS model that excludes the Cr-, Ni-, Co-, and P-bearing melt components. The melt endmember names have been changed from those used in the pMELTS paper. This model should be applied with solid phase data and solution models from the MELTS program. The melt endmember data converted to PERPLE_X format is in the file pMELTSver.dat. The PERPLE_X solid phase data files b92ver.dat and hp98ver.dat also include this data and therefore can be used with the pMELTS model, however using these files will almost certainly result in inconsistencies with published pMELTS results. JADC 7/03 WARNING 3: the subdivision ranges below may not span the entire range of validity for the pMELT model. Check these ranges, and adjust them as necessary before using this model. ==================================================== Modified to use pure water at P and T standard state (the H2O endmember) as opposed to the h2oGL endmember of Ghiorso et al. (2003), which so far as I understand should be equivalent. NOTE: Use of H2O as an endmember requires the user specify an equation of state for H2O when running BUILD. To be strictly consistent with Ghiorso et al the Sterner and Pitzer EoS for water should be used for this purpose, but it is not presently included in perplex. JADC May 23, 2004. Added TiO2 endmember. JADC Feb 7, 2012. converted to an ordinary temkin model. JADC, 12/18. pMELTS(G) abbreviation Melt full_name liquid 2 model type: ordinary simplicial 9 number of endmembers H2O foGL faGL woGL kalGL nasGL coGL tiGL qGL 1 0 0 0 0 0 0 0 0 | endmember flags | NOTE restricted compositional ranges! 0.0 1.0 0.1 0 | range and resolution of X(h2o), 0 => cartesian subdivision 0.0 0.5 0.1 0 | range and resolution of X(fo), 0 => cartesian subdivision 0.0 0.2 0.1 0 | range and resolution of X(fa), 0 => cartesian subdivision 0.0 0.2 0.1 0 | range and resolution of X(wo), 0 => cartesian subdivision 0.0 0.6 0.1 0 | range and resolution of X(kal), 0 => cartesian subdivision 0.0 0.6 0.1 0 | range and resolution of X(nas), 0 => cartesian subdivision 0.0 0.2 0.1 0 | range and resolution of X(co), 0 => cartesian subdivision 0.0 0.2 0.1 0 | range and resolution of X(Ti), 0 => cartesian subdivision begin_excess_function w( coGL qGL ) -296975.2 0. 0. w( faGL qGL ) -18841.4 0. 0. w( foGL qGL ) -33833.5 0. 0. w( woGL qGL ) -34232.9 0. 0. w( nasGL qGL ) -59822.7 0. 0. w( kalGL qGL ) -102706.5 0. 0. w( H2O qGL ) -45181.6 0. 0. w( faGL coGL ) -200788.1 0. 0. w( foGL coGL ) -192709.0 0. 0. w( woGL coGL ) -270700.8 0. 0. w( nasGL coGL ) -205068.6 0. 0. w( kalGL coGL ) -114506.5 0. 0. w( H2O coGL ) -161944.4 0. 0. w( foGL faGL ) -28736.4 0. 0. w( woGL faGL ) -28573.8 0. 0. w( nasGL faGL ) -4723.9 0. 0. w( kalGL faGL ) 22245.0 0. 0. w( H2O faGL ) 9769.4 0. 0. w( woGL foGL ) 574.1 0. 0. w( nasGL foGL ) 9272.3 0. 0. w( kalGL foGL ) 36512.7 0. 0. w( H2O foGL ) 24630.1 0. 0. w( nasGL woGL ) 7430.3 0. 0. w( kalGL woGL ) 19927.4 0. 0. w( H2O woGL ) -1583.7 0. 0. w( kalGL nasGL) -1102.3 0. 0. w( H2O nasGL) 13043.1 0. 0. w( H2O kalGL) 35572.8 0. 0. w(coGL tiGL) 144804.9 0. 0. w(faGL tiGL) 9324.2 0. 0. w(foGL tiGL) 16355.6 0. 0. w(woGL tiGL) 9471.5 0. 0. w(nasGL tiGL) 22194.2 0. 0. w(kalGL tiGL) 3744.0 0. 0. end_excess_function | the configurational entropy for this model is unclear | eq 1 of ghiorso et al. (2002) is almost certainly wrong | the model below follows ghioro and sack 1995 & Nicholls 1980 CMP 74:211 2 | 2 sites 9 0 | melt site, 9 species z(h2o) = 1 H2O z(foGL) = 1 foGL z(faGL) = 1 faGL z(woGL) = 1 woGL z(kalGL) = 1 kalGL z(nasGL) = 1 nasGL z(coGL) = 1 coGL z(tiGL) = 1 tiGL z(qGL) = 1 qGL 2 1 | water vacancy site z(h2o) = 1 H2O end_of_model -------------------------------------------------------- begin_model mMELTS(G) is a chopped down version of pMELTS(G) with Cr added to model lunar melting without changing dimensioning. Ghiorso et al (2002) G3 v. 3 (n. 5) model for mantle melting, 1-3 GPa. Read cautionary notes in Ghirso for applications beyond this pressure range. Calculations with this model can be sped up significantly by restricting the subdivsion ranges specified below. This is a reduced version of the pMELTS model that excludes the Cr-, Ni-, Co-, and P-bearing melt components. The melt endmember names have been changed from those used in the pMELTS paper. This model should be applied with solid phase data and solution models from the MELTS program. The melt endmember data converted to PERPLE_X format is in the file pMELTSver.dat. The PERPLE_X solid phase data files b92ver.dat and hp98ver.dat also include this data and therefore can be used with the pMELTS model, however using these files will almost certainly result in inconsistencies with published pMELTS results. JADC 7/03 WARNING 1: This model can only be used for hydrous systems if H2O is specified as a thermodynamic component (i.e., if H2O is specified as a saturated component, VERTEX will reject the h2oG(L) endmember and the model will be applicable only to dry melts). WARNING 2: this model uses an internal routine to compute the entropy of the melt that assumes h2oG(l) is the first endmember. WARNING 3: the subdivision ranges below may not span the entire range of validity for the pMELT model. Check these ranges, and adjust them as necessary before using this model. ==================================================== Modified to use pure water at P and T standard state (the H2O endmember) as opposed to the h2oGL endmember of Ghiorso et al. (2003), which so far as I understand should be equivalent. NOTE: Use of H2O as an endmember requires the user specify an equation of state for H2O when running BUILD. To be strictly consistent with Ghiorso et al the Sterner and Pitzer EoS for water should be used for this purpose. JADC May 23, 2004. Added TiO2 endmember. JADC Feb 7, 2012 reformulated as ordinary solutiub model. JADC 12/18. mMELTS(G) abbreviation Melt full_name liquid 2 model type: internal entropy routine 8 number of endmembers H2O foGL faGL woGL crGL coGL tiGL qGL 1 0 0 0 0 0 0 0 0 | endmember flags | NOTE restricted compositional ranges! 0.0 1.0 0.1 0 | range and resolution of X(h2o), 0 => cartesian subdivision 0.0 1.0 0.1 0 | range and resolution of X(fo), 0 => cartesian subdivision 0.0 1.0 0.1 0 | range and resolution of X(fa), 0 => cartesian subdivision 0.0 1.0 0.1 0 | range and resolution of X(wo), 0 => cartesian subdivision 0.0 1.0 0.1 0 | range and resolution of X(kal), 0 => cartesian subdivision 0.0 1.0 0.1 0 | range and resolution of X(co), 0 => cartesian subdivision 0.0 1.0 0.1 0 | range and resolution of X(Ti), 0 => cartesian subdivision begin_excess_function w( coGL qGL ) -296975.2 0. 0. w( faGL qGL ) -18841.4 0. 0. w( foGL qGL ) -33833.5 0. 0. w( woGL qGL ) -34232.9 0. 0. w( H2O qGL ) -45181.6 0. 0. w( faGL coGL ) -200788.1 0. 0. w( foGL coGL ) -192709.0 0. 0. w( woGL coGL ) -270700.8 0. 0. w( H2O coGL ) -161944.4 0. 0. w( foGL faGL ) -28736.4 0. 0. w( woGL faGL ) -28573.8 0. 0. w( H2O faGL ) 9769.4 0. 0. w( woGL foGL ) 574.1 0. 0. w( H2O foGL ) 24630.1 0. 0. w( H2O woGL ) -1583.7 0. 0. w(coGL tiGL) 144804.9 0. 0. w(faGL tiGL) 9324.2 0. 0. w(foGL tiGL) 16355.6 0. 0. w(woGL tiGL) 9471.5 0. 0. w(coGL crGL) -269339.7 0. 0. w(faGL crGL) -74759.0 0. 0. w(foGL crGL) -3638.5 0. 0. w(woGL crGL) 48337.5 0. 0. w(tiGL crGL) -22455.8 0. 0. end_excess_function | the configurational entropy for this model is unclear | eq 1 of ghiorso et al. (2002) is almost certainly wrong | the model below follows ghioro and sack 1995 & Nicholls 1980 CMP 74:211 2 | 2 sites 8 0 | melt site, 8 species multiplicity 1 z(h2o) = 1 H2O z(foGL) = 1 foGL z(faGL) = 1 faGL z(crGL) = 1 crGL z(woGL) = 1 woGL z(coGL) = 1 coGL z(tiGL) = 1 tiGL z(qGL) = 1 qGL 2 1 | water vacancy site z(h2o) = 1 H2O end_of_model -------------------------------------------------------- begin_model Ghiorso & Sack (1995) CMP 119:197-212 (the MELTS model) Read cautionary notes in Ghirso. Calculations with this model can be sped up significantly by restricting the subdivsion ranges specified below. This is a reduced version of the MELTS model that excludes the Cr- and P-bearing melt components. The melt endmember names have been changed from those used in the MELTS paper. This model should be applied with solid phase data and solution models from the MELTS program. The melt endmember data converted to PERPLE_X format is in the file pMELTSver.dat. The PERPLE_X solid phase data files b92ver.dat and hp98ver.dat also include this data and therefore can be used with the MELTS model, however using these files will almost certainly result in inconsistencies with published MELTS results. JADC 7/03 WARNING 3: the subdivision ranges below may not span the entire range of validity for the MELT model. Check these ranges, and adjust them as necessary before using this model. MELTS(GS) abbreviation Melt full_name liquid 2 model type: simplicial 8 number of endmembers h2oGM foGM faGM woGM kalGM nasGM coGM qGM 0 0 0 0 0 0 0 0 | endmember flags 0.0 0.3 0.04 0 0.3 0.7 0.04 0 0.0 0.3 0.04 0 0.0 0.2 0.04 0 0.0 0.4 0.04 0 0.0 0.2 0.04 0 0.0 0.3 0.04 0 | (restricted) subdivision ranges and model begin_excess_function w( coGM qGM ) -39120. 0. 0. w( faGM qGM ) 23661. 0. 0. w( foGM qGM ) 3421. 0. 0. w( woGM qGM ) -864. 0. 0. w( nasGM qGM ) -99039. 0. 0. w( kalGM qGM ) -33922. 0. 0. w( h2oGM qGM ) 30967. 0. 0. w( faGM coGM ) -30509. 0. 0. w( foGM coGM ) -32880. 0. 0. w( woGM coGM ) -57918. 0. 0. w( nasGM coGM ) -130785. 0. 0. w( kalGM coGM ) -25859. 0. 0. w( h2oGM coGM ) -16098. 0. 0. w( foGM faGM ) -37257. 0. 0. w( woGM faGM ) -12971. 0. 0. w( nasGM faGM ) -90534. 0. 0. w( kalGM faGM ) 23649. 0. 0. w( h2oGM faGM ) 28874. 0. 0. w( woGM foGM ) -31732. 0. 0. w( nasGM foGM ) -41877. 0. 0. w( kalGM foGM ) 22323. 0. 0. w( h2oGM foGM ) 35634. 0. 0. w( nasGM woGM ) -13247. 0. 0. w( kalGM woGM ) 17111. 0. 0. w( h2oGM woGM ) 20375. 0. 0. w( kalGM nasGM) 6523. 0. 0. w( h2oGM nasGM) -96938. 0. 0. w( h2oGM kalGM) 10374. 0. 0. end_excess_function 2 8 0. | melt site, 8 species, temkin multiplicity 1 z(h2o) = 1 h2oGM z(fo) = 1 foGM z(fa) = 1 faGM z(wo) = 1 woGM z(kal) = 1 kalGM z(nas) = 1 nasGM z(co) = 1 coGM z(q) = 1 qGM 2 1. | water vacancy site z(h2o) = 1 h2oGM end_of_model -------------------------------------------------------- begin_model holland and powell '98 non-ideal cz-fep solution 1 2 M1 M3 _____________ Mutliplicity 1 1 _____________ 1 cz Al Al Species: 2 fep Fe Fe _____________ Ordered Cpd: 3 ep Al Fe Ep(HP) abbreviation Ep full_name epidote 6 | model type: speciation 2 | 2 endmembers cz fep | endmember names 1 | ordered species definition ep = 1/2 fep + 1/2 cz Delta(enthalpy) = -13.05d3 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(cz), imod = 0 -> cartesian subdivision begin_excess_function w(cz fep) 15400.0 0. 0. w(fep ep) 3000.0 0. 0. end_excess_function 2 | 2 site (M1, M3) configurational entropy model 2 1. | 2 species on M1, 1 site per formula unit. z(fe,m1) = 1 fep 2 1. | 2 species on M3, 1 site per formula unit. z(al,m3) = 1 cz end_of_model -------------------------------------------------------- begin_model Phengite as http://www.esc.cam.ac.uk/astaff/holland/ds5/muscovites/mu.html This model assumes M2 (multiplicity 2) is split into 1 M2a site on which tri- and di-valent cations mix, and an M2b site occupied solely by Al. JADC 2/03 config entropy corrected, D Tinkham, 5/6/03 A M2a T1 _________________________ Mutliplicity 1 1 2 _________________________ 1 mu K Al Al_Si Species: 2 cel K Mg Si_Si 3 fcel K Fe Si_Si 4 pa Na Al Al_Si this model makes a dqf correction for paragonite (meaning that this model is not valid for Na-rich compositions). Pheng(HP) | solution name abbreviation Mica full_name white-mica 2 | model type: endmember fractions 4 | 4 species pa | endmember names cel fcel mu | endmember names 1 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for x(pa), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for x(cel), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for x(fcel), imod = 0 -> cartesian subdivision begin_excess_function w(mu pa) 12d3 0. 0.4 w(cel pa) 14d3 0. 0.2 w(fcel pa) 14d3 0. 0.2 end_excess_function 3 | 3 sites (A, M2, T1) configurational entrpoy model 2 1. | 2 species on A, 1 site per formula unit. z(A,Na) = 1 pa 3 1. | 3 species on M2a, 1 sites per formula unit. z(m2,Mg) = 1 cel z(m2,Fe) = 1 fcel 2 2. | 2 species on T1, 2 sites per formula unit. z(T1,Si) = 1/2 mu + 1/2 pa begin_dqf_corrections | for endmember "name" the dqf correction is | entered as | dqf(name) num1 num2 num3 | where the dqf correction to the endmembers | Gibbs energy is computed as | Gdqf(J/mol) = num1 + T[K]*num2 + P[bar]*num3 dqf(pa) 1420 0 0.4 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Osumilite, ideal, Holland et al Contrib Mineral Petrol (1996) 124: 383-394 1 2 3 M1 T1 T2 _________________ Mutliplicity 2 3 2 _________________ Species: osm1 Mg Al Al osm2 Mg MgAl2 AlSi fosm Fe Al Al Osm(HP) abbreviation Osm full_name osumilite 2 model type: endmember fractions. 3 number of endmembers osm1 osm2 fosm endmember names 0 0 0 endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision ideal 3 | 3 site (M1, T1, T2) configurational entropy model 2 2. | 2 species on M1, 2 sites per formula unit z(m1,fe) = 1 fosm 2 3. | 2 species on T1, 3 sites per formula unit. z(t1,mg) = 1/3 osm2 2 2. | 2 species on T2, 2 sites per formula unit. z(t2,si) = 1/2 osm2 end_of_model -------------------------------------------------------- begin_model primitive non-inverse spinel model with gahnite end-member. Interaction parameters after Nichols et al.(1992), CMP 111, 362-377. Jiri Konopasek GaHcSp abbreviation Sp full_name spinel 2 model type macroscopic 3 3 endmembers gah herc sp endmember names - this order implies: x(1) = x(Zn),x(2) = x(Fe), x(3) = x(Mg) 0 0 0 endmember flags 0.0 0.2 0.1 0 | range and resolution for X(Zn), imod = 1 -> asymmetric transform subdivision 0.0 1. 0.1 0 | range and resolution for X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(gah herc) -3800. 0. 0. w(herc sp) 1960. 0. 0. w(gah sp) -2600. 0. 0. end_excess_function 1 one site configurational entropy model 3 1. 3 species on M site with multiplicity 1 z(M,mg) = 1 sp z(M,fe) = 1 herc end_of_model -------------------------------------------------------- begin_model | Fluid, Connolly & Trommsdorff CMP 1991. | The EoS used for this model is chosen by the user | when BUILD is run (the value of IFUG in the problem definition file). | If this choice is identified as a hybrid EoS, then the EoS used | for the individual species are controlled by the hybrid_EoS_XXX option. F abbreviation F full_name fluid 0 | solution model type: internal EoS. See explanation in the header of | this file for a list of model types 2 | number of endmembers CO2 H2O 0 0 | endmember flags, 1 -> the endmember composition is not considered part of the solution, otherwise 0 0.0 1.0 0.1 0 | subdivision scheme for CO2, see commentary in the header of this file ideal | the ideal tag indicates excess properties are computed internally 0 | zero indicates a molecular configurational entropy model end_of_model -------------------------------------------------------- begin_model F(salt) | H2O-CO2-NaCl Fluid from andreas's thesis abbreviation F full_name fluid 26 | model type internal EoS. 3 | three endmembers hltL H2O CO2 0 0 0 0.0 1.0 0.1 0 | range and increment for x(hlt), imod = 0 -> cartesian subdivision 0.0 1.0 0.1 0 | range and increment for x(H2O), imod = 0 -> cartesian subdivision ideal | internal excess function 0 | internal config entropy model reach_increment 1 end_of_model -------------------------------------------------------- begin_model Scapolite. Presumably from Barbara Kuhn's thesis. M T2a T2b ______________________ Mutliplicity 4 1 2 ______________________ 1 me Ca Al Al independent Species: 2 coma Na3Ca Si Si independent _____________________________________ 3 mizz NaCa3 Si Al ordered enthalpy of ordering changed to match thermocalc phase eq, rather than the incorrect enthalpy that follows from table 6.4. JADC, Dec 30, 2013. Scap | solution name abbreviation Scp full_name scapolite 6 | model type: compound formation 2 | 2 endmembers me coma 1 | ordered species definition mizz = 2/3 me + 1/3 coma enthalpy_of_ordering = -29000 0 0 | endmember flags 0.0 1. 0.1 0 begin_excess_function w(me coma) 20000. 0. 0. w(me mizz) 20000. 0. 0. w(coma mizz) 30000. 0. 0. end_excess_function 3 | 3 site (M1, T2a, T2b) conigurational entropy model 2 4. | 2 species on M, 4 sites per formula unit. z(m,na) = 1/4 mizz + 3/4 coma 2 1. | 2 species on T2a, 1 site per formula unit. z(t2a,al) = 1 me 2 2. | 2 species on T2b, 1 site per formula unit. z(t1a,si) = 1 coma end_of_model -------------------------------------------------------- begin_model St(HP) | Mn-Fe-Mg Staurolite abbreviation St full_name staurolite 2 model type: Ideal or macroscopic 3 3 endmembers mnst fst mst 1 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Mn), imod = 1 -> asymmetric transform subdivision 0. 1. 0.1 0 | range and resolution for X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(mst fst) -8d3 0. 0. end_excess_function 1 1 site entropy model 3 4. 3 species, site multiplicity of 4 z(Fe) = 1 fst z(Mg) = 1 mst end_of_model -------------------------------------------------------- begin_model Mn-Fe-Mg Ctd Ctd(HP) abbreviation Ctd full_name chloritoid 2 | model type: simplicial composition space 3 | 3 endmembers mnctd fctd mctd 1 0 0 | endmember flags | Note restricted range on X(Mn) 0. .2 .1 0 | range and resolution for X(Mn), imod = 1 -> asymmetric transform subdivision 0. 1. .1 0 | range and resolution for X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(mctd fctd) 1000. 0. 0. end_excess_function 1 1 site entropy model 3 1. 3 species, site multiplicity = 1. z(Fe) = 1 fctd z(Mg) = 1 mctd end_of_model -------------------------------------------------------- begin_model Carp | Carpholite abbreviation Crp full_name carpholite 2 | model type: simplicial composition space. 2 | 2 endmembers mcar fcar 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision ideal 1 1 site entropy model 2 1. 2 species, site multiplicity = 1. z(Mg) = 1 mcar end_of_model -------------------------------------------------------- begin_model ideal anhydrous/hydrous mg/fe HP cordierite model. hfcrd_i stoichiometry corrected, L. Baumgartner, 5/6/03 M H ________________ Mutliplicity 2 1 ________________ 1 mncrd Mn Vac Species: 2 fcrd Fe Vac 3 crd Mg Vac 4 hmncrd Mn H2O dependent 5 hfcrd Fe H2O dependent 6 hcrd Mg H2O _______________ Dependent: hfcrd = hcrd + (fcrd - crd) hCrd abbreviation Crd full_name cordierite 7 model type: reciprocal 2 2 reciprocal sites 3 2 3 species on site 1, 2 on site 2 mncrd fcrd crd hmncrd_i hfcrd_i hcrd 2 2 dependent endmembers hfcrd_i = 1 hcrd + 1 fcrd - 1 crd hmncrd_i = 1 hcrd + 1 mncrd - 1 crd 1 0 0 1 0 0 | endmember flags | Note restricted range on X(Mn) 0. .2 .1 0 | range and resolution for X(Mn) on M site, imod = 1 -> asymmetric transform subdivision 0. 1. .1 0 | range and resolution for X(Fe) on M site, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for 1-X(H2O) on H site, imod = 0 -> cartesian subdivision ideal 2 2 site entropy model. 3 2. 3 species on M, 2 sites per formula unit. z(m,mg) = 1 crd + 1 hcrd z(m,fe) = 1 fcrd 2 1. 2 species on H, 1 sites per formula unit. z(H,H2O) = 1 hcrd end_of_model -------------------------------------------------------- begin_model | ideal model for mg-fe sudoite assuming | mg fe and al are distributed over | 4 m1 sites. Sud(Livi) abbreviation Sud full_name sudoite 2 | Macroscopic 2 | 2 endmembers fsud sud 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision ideal 1 | 1 independent mixing site, M1. 3 4. | 3 species on M1, 4 sites per formula unit. z(Mg) = 1/2 sud z(Fe) = 1/2 fsud end_of_model -------------------------------------------------------- begin_model | ideal model for mg-fe sudoite assuming | mg and fe are distributed over | 2 sites. Sud abbreviation Sud full_name sudoite 2 | model type: simplicial composition space 2 | 2 endmembers fsud sud 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision ideal 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(Mg) = 1 sud end_of_model -------------------------------------------------------- begin_model HP '98 Non-ideal amphibole Cumm abbreviation Cumm full_name clinoamphibole 2 | model type: macroscopic 2 cumm grun 0 0 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function W(cumm grun) 17500. 0. 0. end_excess_function 1 1 site entropy model 2 7. 2 species, site multiplicity = 7. z(mg) = 1 cumm end_of_model -------------------------------------------------------- begin_model anthophyllite Anth abbreviation oAmph full_name orthoamphibole 2 | model type: macroscopic 2 isp fanth anth 0 0 endmember flags 0. 1. 0.1 0 subdivision ranges and model ideal 1 1 site entropy model 2 7. 2 species, site multiplicity = 7. z(mg) = 1 anth end_of_model -------------------------------------------------------- begin_model "anthophyllite" a compromise model using the clinoamphibole Fe-endmember, cumm and fap should be excluded. A abbreviation oAmph full_name orthoamphibole 2 | model type: Macroscopic 2 grun ap 0 0 0. 1. 0.1 0 | subdivision ranges, imod = 0 -> cartesian subdivision ideal 1 1 site entropy model 2 7. 2 species, site multiplicity = 7. z(mg) = 1 ap end_of_model -------------------------------------------------------- begin_model Gl abbreviation Gl full_name clinoamphibole 2 | model type: Macroscopic 2 gl fgl 0 0 endmember flags 0. 1. 0.1 0 | subdivision ranges and model, imod = 0 -> cartesian subdivision ideal 1 1 site entropy model 2 3. 2 species, site multiplicity = 3 z(gl) = 1 gl end_of_model -------------------------------------------------------- begin_model Tr | Tremolite abbreviation Tr full_name clinoamphibole 2 | model type: Macroscopic 2 ftr tr 0 0 endmember flags 0. 1. 0.1 0 | subdivision ranges, imod = 0 -> cartesian subdivision ideal 1 1 site entropy model 2 5. 2 species, site multiplicity = 5. z(mg) = 1 tr end_of_model -------------------------------------------------------- begin_model | ternary feldsar (fuhrman & lindsley, am min, 1988) | for binary plagioclse this model is identical | to that of Newton et al. 1980, and for binary | alkali feldspar it is identical to Haselton et al. (1983). CORRECTED FOR TYPO IN ORIGINAL PAPER. feldspar abbreviation Fsp full_name ternary-feldspar 2 | model type: simplicial composition space 3 | 3 endmembers abh an san 0 0 0 | endmember flags = 0 if the endmember is part of the solution. 0. 1. 0.1 0 | range and resolution for albite, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for anorthite, imod = 0 -> cartesian subdivision begin_excess_function w(abh abh san) 27320. -10.3 .394 w(abh san san) 18810. -10.3 .394 w(an an san) 52468. .0 .0 w(an san san) 47396. .0 -.12 w(an an abh) 28226. .0 .0 w(an abh abh) 8471. .0 .0 w(an abh san) 100045.5 -10.3 -0.76 end_excess_function 2 | 2 site (O-site and T-site) entropy model 3 1. | 3 species on O-site, 1 site per formula unit. z(Na) = 1 abh z(Ca) = 1 an 2 2. | 2 species on T-site, 2. sites per formula (al-avoidance model) z(Al) = 1/2 + 1/2 an reach_increment 3 end_of_model -------------------------------------------------------- begin_model | ternary feldspar (Benisek et al, CMP 160:327-337, 2010) | for T > 973 K. | Entered by Vratislav Hurai, May 10, 2011. feldspar_B abbreviation Fsp full_name ternary-feldspar 2 | model type: simplicial composition space 3 | 3 endmembers abh an san 0 0 0 | endmember flags = 0 if the endmember is part of the solution. 0. 1. .1 0 | range and resolution for albite, cartesian subdivision 0. 1. .1 0 | range and resolution for anorthite, cartesian subdivision begin_excess_function w(abh abh san) 17711. -10.3 .461 w(abh san san) 22945. -10.3 .327 w(an an san) 90600. 0.0 -.257 w(an san san) 60300. 0.0 -.21 w(an an abh) 40000. -16.4 .069 w(an abh abh) 14000. -4.7 -.049 w(an abh san) 210078. -114.75 -.2965 end_excess_function 2 | 2 site (O-site and T-site) entropy model 3 1. | 3 species on O-site, 1 site per formula unit. z(Na) = 0 + 1 abh z(Ca) = 0 + 1 an 2 2. | 2 species on T-site, 2. sites per formula (al-avoidance model) z(Al) = 1/2 + 1/2 an reach_increment 3 end_of_model -------------------------------------------------------- begin_model Pl(h) | Newton et al 1981 abbreviation Pl full_name binary-feldspar 2 | model type: simplicial composition space 2 | 2 endmembers abh an 1 0 | endmember flags 0. 1. .1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(abh abh an) 8477.00 0. 0. w(an an abh) 28246.0 0. 0. end_excess_function 2 | 2 sites (O, T) kerrick and darkens Al-avoidance model: 2 1. | 2 species on O site, multiplicity = 1. z(Na) = 1 abh 2 2. | 2 species on T, mutiplicity = 2. z(Al) = 1/2 + 1/2 an reach_increment 3 end_of_model -------------------------------------------------------- begin_model | Waldbaum and Thompson 1968. This model is just the San | model with the low structural state endmembers. Kf abbreviation Mic full_name binary-feldspar 2 | model type: Macroscopic 2 | 2 endmembers mic ab 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(mic ab ab) 32098.0 -16.1356 0.469020 w(mic mic ab) 26470.0 -19.3810 0.387020 end_excess_function 1 | 1 site mixing model 2 1. | 2 species on O-site, 1 site per formula unit. z(Na) = 1 ab reach_increment 3 end_of_model -------------------------------------------------------- begin_model San | Waldbaum and Thompson 1968. abbreviation San full_name binary-feldspar 2 | model type: Macroscopic 2 | 2 endmembers san abh 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(san abh abh) 32098.0 -16.1356 0.469020 w(san san abh) 26470.0 -19.3810 0.387020 end_excess_function 1 | 1 site mixing model 2 1. | 2 species on O-site, 1 site per formula unit. z(Na) = 1 abh reach_increment 3 end_of_model -------------------------------------------------------- begin_model San(TH) | Thompson and Hovis 1979. abbreviation San full_name binary-feldspar 2 | model type: Macroscopic 2 | 2 endmembers san abh 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(san abh abh) 17062.4 0. 0.360661 w(san san abh) 30978.3 -21.7568 0.360661 end_excess_function 1 | 1 site mixing model 2 1. | 2 species on O-site, 1 site per formula unit. z(Na) = 1 abh reach_increment 3 end_of_model -------------------------------------------------------- begin_model Connolly and Cesare C-O-H Fluid this model is for X(O) = 0-1 | The EoS used for this model is chosen by the user | when BUILD is run (the value of IFUG in the problem definition file). | If this choice is identified as a hybrid EoS, then the EoS used | for the individual species are controlled by the hybrid_EoS_XXX option. GCOHF abbreviation F full_name fluid 0 | model type: Internal EoS 2 O2 H2 0 0 endmember flags 1d-5 0.999999 0.1 0 | subdivision ranges, imod = 0 -> cartesian subdivision ideal 0 reach_increment 3 end_of_model -------------------------------------------------------- begin_model | Ternary C-O-H Fluid | see: perplex.ethz.ch/perplex/faq/calculations_with_unbuffered_COH_fluids.txt COHF abbreviation F full_name fluid 41 | model type: Internal EoS 3 gph O2 H2 1 0 0 | endmember flags 1d-5 0.67 0.1 0 | subdivision ranges, imod = 0 -> cartesian subdivision 1d-5 0.999999 0.1 0 | subdivision ranges, imod = 0 -> cartesian subdivision ideal 0 reach_increment 0 end_of_model -------------------------------------------------------- begin_model Non-ideal margarite-paragonite to fit field data of Bucher-Nurminen et al (1983) and Frank (1983), critical T = 972 K, X(Ma) = 33%. JADC, 4/08. MaPa | margarite-paragonite abbreviation Ma full_name white-mica 2 | macroscopic 2 pa ma 0 0 endmember flags 0. 1. 0.1 0 subdivision ranges and model begin_excess_function w(pa pa ma) 18201. 0. 0. w(ma ma pa) 9101. 0. 0. end_excess_function 1 | 1 site mixing model 2 1. | 2 species on O-site, 1 site per formula unit. z(Na) = 1 pa reach_increment 3 end_of_model -------------------------------------------------------- begin_model | non-ideal hybrid model for K-Na phengitic mica | mixes Chaterjee and Froese (1975) with ideal phengite model | this configurational entropy is that of HP '98, see Phen(HP) config entropy corrected, D Tinkham, 5/6/03 A M2a T _________________________ Mutliplicity 1 1 2 _________________________ Species: 1 cel K Mg Si_Si 2 fcel K Fe Si_Si 3 mu K Al Al_Si 4 pa Na Al Al_Si Mica(CF) | solution name abbreviation Mica full_name white-mica 2 | model type: simplicial composition space 4 | endmembers cel fcel mu pa 0 0 0 0 | endmember flags | subdivision schemes for cel, fcel, and pa, | see commentary in the header of this file for further explanation 0. 0.1 0.1 0 | cel subdivision range 0. 0.1 0.1 0 | fcel subdivision range 0. 1.0 0.1 0 | pa subdivision range begin_excess_function W(mu pa pa) 19456.0 1.65440 -.456100 W(mu mu pa) 12230.0 0.710440 0.665300 end_excess_function 3 | 3 site (M2a, T2, A) entropy model 3 1. | 3 species on M2a, 1 sites per formula unit. z(m,mg) = 1 cel z(m,fe) = 1 fcel 2 2. | 2 species on T2, 2 sites per formula unit. z(t,al) = 1/2 mu + 1/2 pa 2 1. | 2 species on A, 1 site per formula unit. z(a,k) = 1 mu + 1 cel + 1 fcel reach_increment 0 3 end_of_model -------------------------------------------------------- begin_model Mica(CHA1): Reciprocal version of white mica model Mica(CHA) after: Coggon & Holland (JMG, 2002, 20:683-696) Auzanneau et al. (CMP 159:1-24, 2010) Coggon & Holland model orginally entered by Mark Caddick, Aug 30, 2005. This model allows Tschermaks and Ti substitution in both the Na and Ca mica subsytems. When these substitutions are insignificant, use of the reduced version of the model used in Mica(CHA) is much more efficient. This model requires the make definition: tip = 1 fcel + 1 geik - 1/2 fs -482876. -14.694 .84 in the thermodynamic data file (e.g., hp02ver.dat) for Ti-phengite (tip). MODIFICATION/CORRECTION HISTORY: 1) van laar size terms added Nov 25, 2005. JADC. 2) ma t12 site occupancy corrected from AlSi to AlAl, D. Dolejs. Mar 23, 2006 3) endmember order corrected from: mu pa ma cel npa nfpa fcel nfma nma to: mu pa ma cel npa nma fcel nfpa nfma JADC, May 4, 2006. 4) van Laar size terms for potassic endmembers corrected from 0.67 to 0.63. L. Tajcmanova, Jan 6, 2010. 5) extended from Mica(CH1) to include Ti-substitution afer Auzanneau et al (2010). N.B., the Coggon and Holland mica model predicts a significantly narrower mu-pa solvus than Chatterjee and Froese's model (1975), so far as I know both models are based on Chartterjee and Froese's experimental determination of the solvus. JADC, 5/17/13 A M2a M2b T12 M1 ___________________________________ Mutliplicity 1 1 1 2 1 ___________________________________ 1 mu K Al Al AlSi _ 2 pa Na Al Al AlSi _ 3 ma Ca Al Al AlAl _ 4 cel K Mg Al SiSi _ 5 npa Na Mg Al SiSi _ dependent 6 nma Ca Mg Al AlSi _ dependent 7 fcel K Fe Al SiSi _ 8 nfpa Na Fe Al SiSi _ dependent 9 nfma Ca Fe Al SiSi _ dependent 10 tip K Mg Ti AlSi _ 11 ntip Na Mg Ti AlSi _ dependent 12 ctip Ca Mg Ti AlAl _ dependent 13 ftip K Fe Ti AlSi _ dependent 14 nftip Na Fe Ti AlSi _ dependent 15 cftip Ca Fe Ti AlAl _ dependent ___________________________________ Mica(CHA1) abbreviation Mica full_name white-mica 7 | model type: Macroscopic 2 | number of independent mixing sites 3 5 | 3 species on site 1, 5 species on site 2. cel npa nma fcel nfpa nfma tip ntip ctip ftip nftip cftip mu pa ma 9 | dependent end-members nma = 1 cel + 1 ma - 1 mu npa = 1 cel + 1 pa - 1 mu nfpa = 1 fcel + 1 pa - 1 mu nfma = 1 fcel + 1 ma - 1 mu ntip = 1 tip + 1 pa - 1 mu ctip = 1 tip + 1 ma - 1 mu ftip = 1 tip + 1 fcel - 1 cel nftip = 1 tip + 1 fcel - 1 cel + 1 pa - 1 mu cftip = 1 tip + 1 fcel - 1 cel + 1 ma - 1 mu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | endmember flags | subdivision model, site 1 (A): 0. 1. .1 0 | range and resolution of X(K) 0. 1. .1 0 | range and resolution of X(Na) | subdivision model, site 2 (M2) 0. .8 .1 0 | range and resolution of X(MgAl,M2) 0. .5 .1 0 | range and resolution of X(FeAl,M2) 0. .5 .1 0 | range and resolution of X(MgTi,M2) 0. .3 .1 0 | range and resolution of X(FeTi,M2) begin_excess_function W(mu pa) 10120. 3.4 0.353 W(mu ma) 30000. 0. 0. W(mu cel) 0. 0. 0.2 W(mu fcel) 0. 0. 0.2 W(pa ma) 14500. 0. 0. W(pa cel) 52000. 0. 0. W(pa fcel) 52000. 0. 0. W(ma cel) 30000. 0. 0.2 W(ma fcel) 30000. 0. 0.2 W(tip cel) 10000. 0. 0. W(tip fcel) 10000. 0. 0. W(tip pa) 80000. 0. 0. | W(prl mu) 20000. 0. 0.2 | W(prl pa) 20000. 0. 0.2 | W(prl ma) 30000. 0. 0.2 | W(prl cel) 25000. 0. 0.2 | W(prl fcel) 25000. 0. 0.2 | W(prl tip) 40000. 0. 0. end_excess function 4 | Configurational entropy: 4 sites, A, M2a, M2b, T1. 3 1. | 3 species on A, 1 site per formula unit. z(a,k) = 1 mu + 1 cel + 1 fcel z(a,na) = 1 pa 3 1. | 3 species on M2a, 1 site per formula unit. z(m2a,al) = 1 mu + 1 pa + 1 ma z(m2a,mg) = 1 cel + 1 tip 2 1. | 2 species on M2b, 1 site per formula unit. z(m2b,ti) = 1 tip 2 2. | 2 species on T1, 2 sites per formula unit. z(t,al) = 1/2 mu + 1/2 pa + 1/2 tip + 1 ma begin_van_laar_sizes alpha(mu) 0.63 0. 0. alpha(pa) 0.37 0. 0. alpha(ma) 0.37 0. 0. alpha(cel) 0.63 0. 0. alpha(tip) 0.63 0. 0. alpha(fcel) 0.63 0. 0. | alpha(prl) 0.5 0. 0. | alpha(phl) 0.63 0. 0. end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Mica(CHA): Non-reciprocal version of white mica model Mica(CHA1) after: Coggon & Holland (JMG, 2002, 20:683-696) Auzanneau et al. (CMP 159:1-24, 2010) The non-reciprocal version does not allow tschermaks or Ti substutions in the Ca- and Na-subsystems. If these substitutions are important use the more costly model Mica(CHA1) This model requires the make definition: tip = 1 fcel + 1 geik - 1/2 fs -482876. -14.694 .84 in the thermodynamic data file (e.g., hp02ver.dat) for Ti-phengite (tip). This version does not include the prl and phl endmembers considered by both Coggon & Holland (2002) and Auzanneau et al. (2010) (the data is commented below) as solution of these endmembers is usually unimportant. JADC, 1/18/10 N.B., the Coggon and Holland mica model predicts a significantly narrower mu-pa solvus than Chatterjee and Froese's model (1975), so far as I know both models are based on Chartterjee and Froese's experimental determination of the solvus. JADC, 5/17/13 A M2a M2b T1 M1 ___________________________________ Mutliplicity 1 1 1 2 1 ___________________________________ 1 mu K Al Al AlSi _ 2 pa Na Al Al AlSi _ 3 ma Ca Al Al AlAl _ 4 cel K Mg Al SiSi _ 5 fcel K Fe Al SiSi _ 6 tip K Mg Ti AlSi _ not included: ___________________________________ 7 prl _ Al Al SiSi _ 8 phl K Mg Mg AlSi Mg ___________________________________ Mica(CHA) abbreviation Mica full_name white-mica 2 | model type: macroscopic. 6 | 6 endmembers mu pa ma cel tip fcel | prl phl 0 0 0 0 0 0 0 0 | endmember flags | subdivision model 0. 1. .1 0 | range and resolution of X(mu), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(pa), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(ma), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(cel), imod = 0 -> cartesian subdivision 0. 0.3 .1 0 | range and resolution of X(tip), imod = 1 -> asymmetric transform subdivision begin_excess_function W(mu pa) 10120. 3.4 0.353 W(mu ma) 30000. 0. 0. W(mu cel) 0. 0. 0.2 W(mu fcel) 0. 0. 0.2 W(pa ma) 14500. 0. 0. W(pa cel) 52000. 0. 0. W(pa fcel) 52000. 0. 0. W(ma cel) 30000. 0. 0.2 W(ma fcel) 30000. 0. 0.2 W(tip cel) 10000. 0. 0. W(tip fcel) 10000. 0. 0. W(tip pa) 80000. 0. 0. | W(prl mu) 20000. 0. 0.2 | W(prl pa) 20000. 0. 0.2 | W(prl ma) 30000. 0. 0.2 | W(prl cel) 25000. 0. 0.2 | W(prl fcel) 25000. 0. 0.2 | W(prl tip) 40000. 0. 0. end_excess function 4 | Configurational entropy: 4 sites, A, M2a, M2b, T1. 3 1. | 3 species on A, 1 site per formula unit. z(a,k) = 1 mu + 1 cel + 1 fcel z(a,na) = 1 pa 3 1. | 3 species on M2a, 1 site per formula unit. z(m2a,al) = 1 mu + 1 pa + 1 ma z(m2a,mg) = 1 cel + 1 tip 2 1. | 2 species on M2b, 1 site per formula unit. z(m2b,ti) = 1 tip 2 2. | 2 species on T1, 2 sites per formula unit. z(t,al) = 1/2 mu + 1/2 pa + 1/2 tip + 1 ma begin_van_laar_sizes alpha(mu) 0.63 0. 0. alpha(pa) 0.37 0. 0. alpha(ma) 0.37 0. 0. alpha(cel) 0.63 0. 0. alpha(tip) 0.63 0. 0. alpha(fcel) 0.63 0. 0. | alpha(prl) 0.5 0. 0. | alpha(phl) 0.63 0. 0. end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Mica+(CHA): Non-reciprocal version of white mica model Mica(CHA1) after: Coggon & Holland (JMG, 2002, 20:683-696) Auzanneau et al. (CMP 159:1-24, 2010) extended from Mica(CHA) to allow the pyrophyllite substitution, renamed to prevent unintentional use. The non-reciprocal version does not allow tschermaks or Ti substutions in the Ca- and Na-subsystems. If these substitutions are important use the more costly model Mica(CHA1) This model requires the make definition: tip = 1 fcel + 1 geik - 1/2 fs -482876. -14.694 .84 in the thermodynamic data file (e.g., hp02ver.dat) for Ti-phengite (tip). This version does not include the prl and phl endmembers considered by both Coggon & Holland (2002) and Auzanneau et al. (2010) (the data is commented below) as solution of these endmembers is usually unimportant. JADC, 1/18/10 N.B., the Coggon and Holland mica model predicts a significantly narrower mu-pa solvus than Chatterjee and Froese's model (1975), so far as I know both models are based on Chartterjee and Froese's experimental determination of the solvus. JADC, 5/17/13 A M2a M2b T1 M1 ___________________________________ Mutliplicity 1 1 1 2 1 ___________________________________ 1 mu K Al Al AlSi _ 2 pa Na Al Al AlSi _ 3 ma Ca Al Al AlAl _ 4 cel K Mg Al SiSi _ 5 fcel K Fe Al SiSi _ 6 tip K Mg Ti AlSi _ 7 prl _ Al Al SiSi _ not included: ___________________________________ 8 phl K Mg Mg AlSi Mg ___________________________________ Mica+(CHA) abbreviation Mica full_name white-mica 2 | model type: macroscopic. 7 | # of endmembers mu pa ma cel tip prl fcel | phl 0 0 0 0 0 0 0 0 | endmember flags | subdivision model 0. 1. .1 0 | range and resolution of X(mu), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(pa), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(ma), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(cel), imod = 0 -> cartesian subdivision 0. 0.3 .1 0 | range and resolution of X(tip), imod = 1 -> asymmetric transform subdivision 0. 0.3 .1 0 | range and resolution of X(prl), imod = 1 -> asymmetric transform subdivision begin_excess_function W(mu pa) 10120. 3.4 0.353 W(mu ma) 30000. 0. 0. W(mu cel) 0. 0. 0.2 W(mu fcel) 0. 0. 0.2 W(pa ma) 14500. 0. 0. W(pa cel) 52000. 0. 0. W(pa fcel) 52000. 0. 0. W(ma cel) 30000. 0. 0.2 W(ma fcel) 30000. 0. 0.2 W(tip cel) 10000. 0. 0. W(tip fcel) 10000. 0. 0. W(tip pa) 80000. 0. 0. W(prl mu) 20000. 0. 0.2 W(prl pa) 20000. 0. 0.2 W(prl ma) 30000. 0. 0.2 W(prl cel) 25000. 0. 0.2 W(prl fcel) 25000. 0. 0.2 W(prl tip) 40000. 0. 0. end_excess function 4 | Configurational entropy: 4 sites, A, M2a, M2b, T1. 4 1. | 3 species on A, 1 site per formula unit. z(a,k) = 1 mu + 1 cel + 1 fcel z(a,na) = 1 pa z(a,V) = 1 prl 3 1. | 3 species on M2a, 1 site per formula unit. z(m2a,al) = 1 mu + 1 pa + 1 ma + 1 prl z(m2a,mg) = 1 cel + 1 tip 2 1. | 2 species on M2b, 1 site per formula unit. z(m2b,ti) = 1 tip 2 2. | 2 species on T1, 2 sites per formula unit. z(t,al) = 1/2 mu + 1/2 pa + 1/2 tip + 1 ma begin_van_laar_sizes alpha(mu) 0.63 0. 0. alpha(pa) 0.37 0. 0. alpha(ma) 0.37 0. 0. alpha(cel) 0.63 0. 0. alpha(tip) 0.63 0. 0. alpha(fcel) 0.63 0. 0. alpha(prl) 0.5 0. 0. | alpha(phl) 0.63 0. 0. end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model HP '98 olivine solution. O(HP) abbreviation Ol full_name olivine 2 model type: simplicial composition space 3 3 endmembers teph fo fa 0 0 0 | endmember flags | NOTE restricted compositional range for Mn 0.0 1.0 0.1 0 | range and resolution for X(Mn), imod = 1 -> asymmetric transform subdivision 0.0 1.0 0.1 0 | range and resolution for X(Mg), imod = 0 -> cartesian subdivision begin_excess_function W(fo fa) 8400. 0. 0. | corrected from 4.2 kJ Nov 15, 2004. end_excess_function 1 1 site entropy model 3 2. 3 species, site multiplicity = 2. z(mg) = 1 fo z(fe) = 1 fa end_of_model -------------------------------------------------------- begin_model ad hoc stilpnomelane Stlp abbreviation Stlp full_name stilpnomelane 2 model type: simplicial composition space 2 endmembers mstp fstp 0 0 | endmember flags 0.0 1.0 0.1 0 | range and resolution for X(Mg), imod = 0 -> cartesian subdivision ideal 1 1 site entropy model 2 5. 3 species, site multiplicity = 2. z(mg) = 1 mstp end_of_model -------------------------------------------------------- begin_model HP '98 olivine solution with an approximation to the T Kawasaki (J Min Pet Sci, 96:54-66, 2001) symetric fo-monticellite excess function, this is probably adequate a first order model for Ca solution in olivine. To reproduce the solvus or evaluate pressure effects refer to Kawasaki or Warner and Luth 1973 or find more recent work. JADC, Jul 10, 2016. O(HPK) abbreviation Ol full_name olivine 2 model type: simplicial composition space 4 3 endmembers mont teph fo fa 0 0 0 0 | endmember flags | NOTE restricted compositional range for Mn 0.0 1.0 0.1 0 | range and resolution for X(Ca), imod = 0 0.0 1.0 0.1 0 | range and resolution for X(Mn), imod = 0 0.0 1.0 0.1 0 | range and resolution for X(Mg), imod = 0 -> cartesian subdivision begin_excess_function W(fo fa) 8400. 0. 0. | corrected from 4.2 kJ Nov 15, 2004. W(fo mont) 34050. 0. 0. end_excess_function | this model is not incorrect because Ca partitions onto M1, i.e., | the model should be an o/d model, such a model has been published | (probably by Ghiorso or coworkers). 1 1 site entropy model 4 2. 4 species, site multiplicity = 2 z(mn) = 1 teph z(mg) = 1 fo z(fe) = 1 fa end_of_model -------------------------------------------------------- begin_model "Ordered" Jadeite-Diopside-Hedenbergite-CaTs, as: 1) Gasparik '85 (GCA) in the jd/di limit. 2) HP'98 in the di/hed limit 3) Assuming nonideality in the jd/hed limit is the same as for jd/di. 4) No ternary interactions. 5) Gasparik '85 (CMP) in the jd/cats limit. This should be Gaspariks preferred model. JADC Apr. 99. the configurational entropy model has been constructed to take into account that Gasparik uses an X^2 molecular model for CaTs-Di and an X molecular model for Jd-Di. This implies that there is no disorder associated with placing Na on M2 (i.e., it is associated with Al on M1), whereas Al on M1 is not assocated with Al on T. To get Gasparik's molecular formulation it is necessary to specify that Al mixes on only one of the two T-sites. Cpx(l) abbreviation Cpx full_name clinopyroxene 2 | model type: simplicial composition space 4 | 4 endmembers di hed cats jd 0 0 0 0 | endmember flags 0. 1. 0.1 0 0. 1. 0.1 0 0. 1. 0.1 0 | subdivision ranges and model begin_excess_function w(cats jd) 14810. -7.15 0. w(cats cats jd) -5070. 0.00 0. w(cats jd jd) 5070. 0.00 0. w(cats cats cats jd) -3350. 0.00 0. w(cats cats jd jd) 6700. 0.00 0. w(cats jd jd jd) -3350. 0.00 0. w(di jd jd) 12600. -7.6 0. w(di di jd) -12600. 7.6 0. w(di jd jd jd) -21400. 16.2 0. w(di di jd jd) 42800. -32.4 0. w(di di di jd) 21400. -16.2 0. w(di jd) 12600. -9.45 0. w(di hed) 2500. 0.0 0. w(hed hed jd) -12600. 7.6 0. w(hed jd jd jd) -21400. 16.2 0. w(hed jd) 12600. -9.45 0. w(hed jd jd) 12600. -7.6 0. w(hed hed jd jd) 42800. -32.4 0. w(hed hed hed jd) -21400. 16.2 0. end_excess_function 2 wierd entropy model, see above (maybe it's right). 3 1. M1, Al-Mg-Fe, 1 site z(fe,m1) = 1 hed z(mg,m1) = 1 di 2 1. T, Al-Si, this is fake to get gasparik's model. z(al,t) = 1 cats end_of_model -------------------------------------------------------- begin_model "disordered" Jadeite-Diopside-Hedenbergite-CaTs, as: 1) Gasparik '85 (GCA) in the jd/di limit. 2) HP'98 in the di/hed limit 3) Assuming nonideality in the jd/hed limit is the same as for jd/di. 4) No ternary interactions. 5) Gasparik '85 (CMP) in the jd/cats limit. JADC Apr. 99. the configurational entropy model has been constructed to take into account that Gasparik uses an X^2 molecular model for CaTs-Di and Jd-Di. See comments for Cpx(l) above. Cpx(h) abbreviation Cpx full_name clinopyroxene 2 4 di hed cats jd 0 0 0 0 | endmember flags 0. 1. 0.1 0 0. 1. 0.1 0 0. 1. 0.1 0 | subdivision ranges and model begin_excess_function w(cats jd) 14810. -7.15 0. w(cats cats jd) -5070. 0.00 0. w(cats jd jd) 5070. 0.00 0. w(cats cats cats jd) -3350. 0.00 0. w(cats cats jd jd) 6700. 0.00 0. w(cats jd jd jd) -3350. 0.00 0. w(di jd jd) 12430. -6.21 0. w(di di jd) -12430. 6.21 0. w(di jd jd jd) -22290. 23.19 0. w(di di jd jd) 44580. -46.38 0. w(di di di jd) -22290. 23.19 0. w(di jd) 12540. 12.63 0. w(di hed) 2500. 0.0 0. w(hed hed jd) -12430. 6.21 0. w(hed jd jd jd) -22290. 23.19 0. w(hed jd) 12540. 12.63 0. w(hed jd jd) 12430. -6.21 0. w(hed hed jd jd) 44580. -46.38 0. w(hed hed hed jd) -22290. 23.19 0. end_excess_function 3 msite 3 1. M1, Al-Mg-Fe, 1 site z(Fe,m1) = 1 hed z(Mg,m1) = 1 di 2 1. M2, Ca-Na, 1 site z(na,m2) = 1 jd 2 1. T, Al-Si, this is fake to get gasparik's model. z(al,t) = 1 cats end_of_model -------------------------------------------------------- begin_model HP '98 dolomite-ankerite solution Do(HP) abbreviation Do full_name carbonate 2 | macroscopic 2 | 2 endmembers dol ank 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(dol ank) 3000.0 0. 0. 0. 0. end_excess_function 1 | 1 site entropy model 2 1. z(Mg) = 1 dol end_of_model -------------------------------------------------------- begin_model HP '98 Magnesite/siderite modified by DMH to include rhc M(HP) abbreviation Mag full_name carbonate 2 model type: simplicial composition space 3 number of endmembers rhc mag sid endmember names 0 0 0 | endmember flags 0. 1. 0.1 0 | range X(Mn), imod = 1 -> asymmetric transform subdivision 0. 1. 0.1 0 | range X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(mag sid) 4000. 0. 0. | hp '98 give 4 kJ end_excess_function 1 1 site entropy model 3 1. 3 species, site multiplicity 1 z(Fe) = 1 sid z(Mg) = 1 mag end_of_model -------------------------------------------------------- begin_model A solution model for Dolomite from Anovitz & Essene 1987 J Pet 28:389-414; this model requires fictive do-structure endmembers that have a standard state G 20920 j > than the cc-structure endmember, these are made here by a "DQF" correction. Do(AE) abbreviation Do full_name carbonate 2 | model type: simplicial composition space 3 | 3 endmembers cc mag sid 1 1 1 | endmember flags 0. 1. 0.1 0 | subdivision range X(cc), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | subdivision range X(mag), imod = 0 -> cartesian subdivision begin_excess_function w(mag mag cc) -96850 36.23 0 w(mag cc cc) -55480 -22.85 0 w(sid sid cc) -155523 141.5 0 | this is a linearization of -1040 -T*(212.4 - 0.2027*T) at 873 K, JADC 5/08. w(sid cc cc) -16746 -89.2 0 | this is a linearization of -86740-T*(-71.18+.9184e-1*T) at 873 K, JADC 5/08. w(sid cc mag) -293520 -121.6 0 | this is a linearization of -185450-T*(369.2-.1418*T) at 873 K, JADC 5/08. end_excess_function 1 | 1 site entropy model 3 1. | 2 species, site multiplicity of 1? should check against source z(Mg) = 1 mag z(Fe) = 1 sid begin_dqf_corrections dqf(cc) 20920 0 0 dqf(mag) 20920 0 0 dqf(sid) 20920 0 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model A solution model for Magnesite from Anovitz & Essene 1987 J Pet 28:389-414. Cc(AE) abbreviation Cc full_name carbonate 2 | model type: simplicial composition space 3 | 2 endmembers mag cc sid 0 0 0 endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(cc cc mag) 24300 -7.743 0 w(cc mag mag) 23240 0. 0 w(sid sid cc) 28404 -2.5 0 | this is a linearization of 27313.2-5.9651e-6/T-1.43147e-3*T^2 at T = 873. JADC, 5/08. w(sid cc cc) 20624 -7.533 0 | this is a linearization of -70751.4 + 91.8848*T + 2.79244e7/T - 3.59552e-2 * T^2 at T = 873. JADC, 5/08. | missing the ternary interaction parameter estimated by Anovitz & Essene. end_excess_function 1 3 1. z(mg) = 1 mag z(fe) = 1 sid end_of_model -------------------------------------------------------- begin_model Magnesioferrite/magnetite (inverse) MF abbreviation Mt full_name spinel 2 | model type: simplicial composition space 2 1 isp(1), ist(1) mt mft 0 0 endmember flags 0. 1. .1 0 subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(mt mft) 8368. 0. 0. | Sack & Ghiorso, W_FeMg, CMP, 1991. end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity of 2 z(Fe) = 1 mt reach_increment 3 end_of_model -------------------------------------------------------- begin_model Sp(JR) Jamieson and Roeder '85 (iron + ol,1300 C) abbreviation Sp full_name spinel 2 | model type: simplicial composition space 2 | 2 endmembers sp herc 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(sp herc) -3102. 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity of 2 z(Fe) = 1 herc end_of_model -------------------------------------------------------- begin_model Ghiorso 1991, gives similar W=8638 Sp(GS) Ganguly and Saxena '87 (ol, 1200-1300 C, 1-5 kb) abbreviation Sp full_name spinel 2 | model type: simplicial composition space 2 | 2 endmembers sp herc 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(sp herc) 7703. 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity of 2 z(Fe) = 1 herc end_of_model -------------------------------------------------------- begin_model Sp(HP) HP '98: abbreviation Sp full_name spinel 2 | model type: simplicial composition space 2 | 2 endmembers sp herc 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(sp herc) 7d2 0. 0. end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity of 1 z(Fe) = 1 herc end_of_model -------------------------------------------------------- begin_model valid for T>800C<1300C Mt(W) Wood et al 1991 abbreviation Mt full_name spinel 2 | model type: simplicial composition space 2 | 2 endmembers usp mt 0 0 endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(usp mt mt) 42110. 0. 0. w(usp usp mt) 10580. 0. 0. end_excess_function 2 | 2 site model 3 2. | 3 species on O, 2 sites per formula unit. z(Ti,O) = 1/2 usp z(Fe3+,O) = 1/2 mt 2 1. | 2 species on T, 1 site per formula unit. z(Fe3+,T) = 1 mt end_of_model -------------------------------------------------------- begin_model The Andersen and Lindsley models (Am Min v 73, p 714, 1988) are for ilmenite coexisiting with magnetite, its performance at high T (ca 1200) has been criticized by Ghiorso, but this is probably the best model for T<800 C Jury-rigged for geik, JADC, 2/14/13 Ti only on B, Fe3+ disordered IlHm(A) abbreviation Ilm full_name ilmenite 2 | macroscopic 3 | 3 endmembers ilm hem geik 0 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(ilm hem hem) 126342.5 -100.6 0. term 1 w(ilm ilm hem) 44204.8 -12.274 0. term 2 w(geik hem hem) 126342.5 -100.6 0. term 1 w(geik geik hem) 44204.8 -12.274 0. term 2 end_excess_function 2 2 1. | B-site, Fe3+ and Ti z(Ti,B) = 1 ilm + 1 geik 3 1. | A-site, Fe2+, Fe3+ and Mg z(Mg,A) = 1 geik z(Fe2+,A) = 1 ilm end_of_model -------------------------------------------------------- begin_model Ideal ilmenite-geikielite-pyrophanite solution IlGkPy abbreviation Ilm full_name ilmenite 2 | model type: simplicial composition space 3 | 3 endmembers pnt geik ilm 0 0 0 | endmember flags | restricted mn range! 0. .2 0.1 0 | imod = 1 -> asymmetric transform subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision ideal 1 | 1 site entropy model 3 1. | 3 species, site multiplicity of 1 z(Mn) = 1 pnt z(Mg) = 1 geik end_of_model -------------------------------------------------------- begin_model MtUl(A) | Andersen and Lindsley 1988, Akimoto model abbreviation Mt full_name spinel | assumes Ti is only octahedral, Mg and Fe2+ | jury rigged for magnesio-ferrite, JADC 2/14/13 2 | model type: simplicial composition space 3 | 3 species usp mt mft 0 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(usp mt mt) 46175. -23.077 0. w(usp usp mt) 15748. 0. 0. w(usp mft mft) 46175. -23.077 0. w(usp usp mft) 15748. 0. 0. end_excess_function 2 | 2 site model, assumes Fe3+ is disorderd 4 2. | 4 species on O, 2 sites per formula unit. z(Ti,O) = 1/2 usp z(Fe3+,O) = 1/2 mt + 1/2 mft z(Mg,O) = 1/2 mft 3 1. | 2 species on T, 1 site per formula unit. z(Fe3+,T) = 1 mt + 1 mft z(Fe2+,T) = 1 usp end_of_model -------------------------------------------------------- begin_model Neph(FB) Ferry and Blencoe '78 abbreviation Neph full_name feldspathoid 2 | macroscopic 2 | 2 endmembers ne kals 0 0 endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(ne kals kals) 85057.0 -20.0500 -.550000 w(ne ne kals) 35945.0 23.7800 0.69 end_excess_function 1 | 1 site model 2 1. | 2 species, 1 sites per formula unit. z(na) = 1 ne reach_increment 3 end_of_model -------------------------------------------------------- begin_model Gt(B) Grossular-pyrope-almandine-spessartine, Berman '90, abbreviation Gt full_name garnet 2 | macroscopic 4 | 4 endmembers gr py alm spss 0 0 0 0 endmember flags 0.0 1. 0.1 0 | imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(gr gr py) 21560.0 -18.79 0.100000 term 1 w(gr py py) 69200.0 -18.79 0.10 term 2 w(gr gr alm) 20320 -5.08 0.17 term 3 w(gr alm alm) 2620.0 -5.08 0.09 term 4 w(py py alm) 230.0 0. 0.01 term 5 w(py alm alm) 3720.0 0. 0.06 term 6 w(gr py alm) 58825. -23.87 0.265 term 7 w(gr py spss) 45424. -18.7900 0.100000 term 8 w(gr alm spss) 11470.0 -18.7900 0.130000 term 9 w(py alm spss) 1975.00 0. 0.035000 term 10 end_excess_function 1 1 site entropy model 4 3. 4 species, site multiplicity 3 z(Fe) = 1 alm z(Mg) = 1 py z(Ca) = 1 gr end_of_model -------------------------------------------------------- begin_model Grossular-pyrope-almandine-spessartine garnet Ganguly, Cheng & Tirrone (1996) Contrib Mineral Petrol 126:137-151 The expansion of the Cheng & Ganguly (1994) GCA 58:3763-3767 model to the Perple_X excess function is in Maple file garnet_jiba_96.mws JADC Nov 23, 2010. Gt(GCT) abbreviation Gt full_name garnet 2 | model type: simplicial composition space 4 | endmembers gr py alm spss 0 0 0 0 | endmember flags 0.0 1. 0.1 0 | imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(gr py ) 47191.395 -17.34 .105 w(gr alm) 11468.955 -5.07 .045 w(alm spss) 1616.925 0. .075 w(gr spss) 1616.925 0. .075 w(py alm) 4217.895 0. .105 w(py spss) 36248.895 -23.01 .105 w(gr gr py ) -17689.569 0. .069 w(py py gr) 17689.569 0. -.069 w(gr gr alm) 8849.955 0. .045 w(alm alm gr) -8849.955 0. -.045 w(py py alm) -2132.895 0. -.105 w(alm alm py) 2132.895 0. .105 | these could be deleted: w(py py spss) .15e-1 0. -.015 w(spss spss py) -.15e-1 0. .015 w(alm alm spss) .45e-1 0. -.045 w(spss spss alm) -.45e-1 0. .045 w(gr gr spss) .45e-1 0. -.045 w(spss spss gr) -.45e-1 0. .045 end_excess_function 1 1 site entropy model 4 3. 4 species, site multiplicity 3 z(Fe) = 1 alm z(Mg) = 1 py z(Ca) = 1 gr end_of_model -------------------------------------------------------- begin_model hp '98 quaternary garnet model Gt(HP) abbreviation Gt full_name garnet 2 model type: simplicial composition space 4 number of endmembers spss alm py gr endmember names 1 0 0 0 | endmember flags 0. 0.2 0.1 0 | imod = 1 -> asymmetric transform subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision | NOTE restricted subdivision range on Mn (Species 1)! begin_excess_function w(py gr) 33000. 0. 0. w(alm py) 2500. 0. 0. | hp '98 give 2.4 kJ w(py spss) 4500. 0. 0. w(alm spss) 240. 0. 0. end_excess_function 1 1 site entropy model 4 3. 4 species, site multiplicity 3 z(Fe) = 1 alm z(Mg) = 1 py z(Ca) = 1 gr end_of_model -------------------------------------------------------- begin_model Mg-Fe-Ca-Al-Fe3 Garnet Hybrid Holland & Powell + Engi & Wersin The Engi & Wersin terms for the excess energy are suspect and should probably be set to zero. Gt(EWHP) abbreviation Gt full_name garnet 7 | model type: reciprocal 2 | 2 chemical site model 3 2 | 3 endmembers mix on site 1, 2 endmembers mix on site 2 gr alm py andr FA_d MA_d 2 | 2 dependent endmembers MA_d = -1 gr + 1 py + 1 andr FA_d = -1 gr + 1 alm + 1 andr 0 0 0 0 0 0 | endmember flags 0 include it 1 drop it 0. 1. .1 0 | range and resolution for XCa on A 0. 1. .1 0 | range and resolution for XFe on A 0. 1. .1 0 | range and resolution for XAl on B, imod = 0 -> cartesian begin_excess_function w(py gr) 33d3 0. 0. w(gr andr andr) 25812 0. -0.52 | eliminate this terms to make Fe3+ - Al exchange ideal w(andr gr gr) -93820 0. -0.11 | eliminate this terms to make Fe3+ - Al exchange ideal end_excess_function 2 2 site entropy model 3 3. 3 species, site multiplicity of 3 z(Ca) = 1 gr + 1 andr z(Mg) = 1 py 2 2. 2 species, site multiplicity of 2 z(Al) = 1 gr + 1 alm + 1 py end_of_model -------------------------------------------------------- begin_model Ca-Fe2+-Mg-Al-Fe3+ Garnet model after White, Powell & Holland (JMG, 2007, 25:511-527) Model entered by Lucie Tajcmanova, May 11, 2007. w(alm py) value and reference corrected, Thomas Wagner, June 22, 2007. Interaction parameters (W terms) updated to the current THERMOCALC "preferred" values, Van Laar size parameters, added spessartine, Mark Caddick, Nov, 07. Deleted the unused kho_i interaction term, JADC, Nov 07. alphas and w's updated to current TC values, Lucie Tajcmanova, April 14, 2010. NOTE: the more recent Smye et al. (2011) models [Mica(SGH), Carp(SGH), and Ctd(SGH)]are calibrated in terms of the Gt(WPPH) model for garnet. JADC, Oct 27, 2011. X Y _____________ Mutliplicity 3 2 _____________ Dependent: fkho_i Fe Fe3+ Dependent: kho_i Mg Fe3+ Dependent: fmn_i Mn Fe3+ andr Ca Fe3+ spss Mn Al alm Fe Al py Mg Al gr Ca Al ____________ Gt(WPH) abbreviation Gt full_name garnet 7 | model type: simplicial composition space 2 | the number of independent subcompositions, reciprocal solution if > 1. 4 2 | 4 species on site 1, 2 species on site 2. | M2 and M1 can be identified as sites 1 and 2, respectively. the | species that mix on site 1 are Mn-Mg-Fe-Ca and the species that mix on | site 2 are Al-Fe3+. spss alm py gr | endmember names fmn_i fkho_i kho_i andr 3 | number of dependent endmembers fmn_i = 1 andr + 1 spss -1 gr fkho_i = 1 andr + 1 alm -1 gr kho_i = 1 andr + 1 py -1 gr 0 0 0 0 0 0 0 0 | endmember flags 0. .2 0.1 0 | imod = 0 -> cartesian subdivision (xmn) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xfe) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xmg) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision x(fe3+) on Y begin_excess_function | commented values are from White et al. (2007): w(alm gr) 10000. 0. 0. | w(alm gr) 15000. 0. 0. w(py gr) 45000. 0. 0. | w(py gr) 33000. 0. 0. w(alm py) 2500. 0. 0. | w(alm py) 2500. 0. 0. w(py andr) 90000. 0. 0. | w(py andr) 160000. 0. 0. w(alm andr) 75000. 0. 0. | w(alm andr) 135000. 0. 0. end_excess_function 2 |2 site entropy model 4 3. |4 species, site multiplicity 3 z(x,mn) = 1 spss z(x,fe) = 1 alm z(x,Mg) = 1 py 2 2. |2 species, site multiplicity 2 z(y,al) = 1 spss + 1 alm + 1 py + 1 gr begin_van_laar_sizes | commented values are from White et al. (2007): alpha(py) 1 0.0 0.0 alpha(alm) 1 0.0 0.0 alpha(spss) 1 0.0 0.0 alpha(gr) 3 0.0 0.0 | 9 alpha(andr) 3 0.0 0.0 | 9 end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model berman and brown 1984, cao-al2o3-sio2 melt model. reformulated as macroscopic Aug 21, 2007. casmelt abbreviation Melt full_name liquid 2 | model type: macroscopic 3 | 3 species SIO2 AL2O3 CAO | endmember names 0 0 0 | endmember flags 0. 1. 0.1 0 | cartesian 0. 1. 0.1 0 begin_excess_function w(SIO2 AL2O3 AL2O3 AL2O3) 63617.2 -23.7400 0. term 1 w(SIO2 SIO2 AL2O3 AL2O3) 0.164266d7 -763.870 0. term 2 w(SIO2 SIO2 SIO2 AL2O3) -106635. 28.1300 0. term 3 w(SIO2 CAO CAO CAO) -898693. 240.770 0. term 4 w(SIO2 SIO2 CAO CAO) -350208. -48.6200 0. term 5 w(SIO2 SIO2 SIO2 CAO) -14081.8 -35.4900 0. term 6 w(AL2O3 CAO CAO CAO) -455634. 2.47000 0. term 7 w(AL2O3 AL2O3 CAO CAO) -725166. 255.390 0. term 8 w(AL2O3 AL2O3 AL2O3 CAO) -240215. 26.7000 0. term 9 w(SIO2 SIO2 AL2O3 CAO) -.284791d7 1046.35 0. term 10 w(SIO2 AL2O3 AL2O3 CAO) -.214904d7 641.840 0. term 11 w(SIO2 AL2O3 CAO CAO) 209109. -313.360 0. term 12 end_excess_function 1 1 site molecular entropy model 3 1. 3 species, site multiplicity 1 z(SIO2) = 1 SIO2 z(AL2O3) = 1 AL2O3 end_of_model -------------------------------------------------------- begin_model A-phase ideal phase A abbreviation phA full_name alphabet-phase 2 | macroscopic 2 phA fphA 0 0 endmember flags 0. 1. 0.1 0 | subdivision range, imod = 1 -> asymmetric transform subdivision ideal 1 | 1 site entropy model 2 7. | 2 species, 7 sites pfu z(mg) = 1 phA end_of_model -------------------------------------------------------- begin_model Chum abbreviation Chu full_name clinohumite 2 | macroscopic 2 chum fchum 0 0 endmember flags 0. 1. 0.1 0 | subdivision range, imod = 1 -> asymmetric transform subdivision ideal 1 | 1 site entropy model 2 9. | 2 species, 9 sites pfu z(mg) = 1 chum end_of_model -------------------------------------------------------- begin_model B abbreviation Br full_name brucite 2 | macroscopic 2 isp(1) br fbr 0 0 endmember flags 0. 1. 0.1 0 | subdivision range, imod = 1 -> asymmetric transform subdivision ideal 1 | 1 site entropy model 2 1. | 2 species, 1 site pfu z(mg) = 1 br end_of_model -------------------------------------------------------- begin_model Ternary feldspars (Holland and Powell, 2003, CMP, p.492-501) Van Laar Versions. USE THIS MODEL WITH EXTREME CAUTION (AND DON'T USE THE MODEL IF YOU DON'T UNDERSTAND THE IMPLICATIONS OF THIS WARNING): The model has the following difficulties for the Ab-An binary and they undoubtedly cause problems in the ternary: 1) The I1/C1 models are not (and cannot be used to) predict the stable structural state, the I1 model is always more stable than the C1; thus the "stable" state is supposed to be chosen by assuming the C1 model is valid at X(Ab) > 1 - (0.12+0.00038*TK). 2) The model assigns a large positive interaction term for I1 plagioclase, as a result the I1 model gives a solvus that closes at ~ 910 K. At temperatures below the critical temperature plagioclases in vicinity of the prescribed I1/C1 transition (as defined in 1, above), that in principle is supposed to be stable, is metastable with respect to a mixture of I1 and C1 plagioclase. JADC 1/04 MORE NOTES: * These models use the asymmetric formalism as outlined by H & P. * They are complicated by the C1/I1 transition across the plag. join. * Model parameters for the C1 field (Ab-rich plag. component) Wabsan = 25100 - 10.8*T + 0.343*P Wansan = 40000 Wanab = 3100 a-san = 1.0 a-ab = 0.643 a-an = 1.0 Ian = 7030 - 4.66*T * Model parameters for the I1 field (An-rich plag. component) Wabsan = 25100 - 10.8*T + 0.343*P Wansan = 40000 Wanab = 15000 a-san = 1.0 a-ab = 0.643 a-an = 1.0 Iab = 570 - 4.12*T D.Tinkham, 12-18-2003 reformatted and compositional ranges chosen given the following considerations (JADC 12/03): * On the Ab-An join C1 is not stable below ~ 800 K, and has X(An) < 0.4 and I1 is not stable for X(An) < 0.6 * On the Ab-Or join C1 is always stable, with critical composition X(Ab) ~ 0.34 * The above considerations suggest the I1 model could be effectively represented by a binary An-Ab (with X(Ab)>0.2) model; and the C1 model should be split into a model with X(ab) < 0.33 with extensive ternary solution; and a model with X(Ab) > 0.33 with very limited ternary solution. Assuming these relationships are valid the ternary feldspar phase relations are well represented by three solutions models. When these conditions are not met, the HP feldpsar models should not be used. Pl(I1,HP) | solution name. abbreviation Pl full_name ternary-feldspar 2 | model type 3 | number of endmembers san abh an 0 0 0 | endmember flags 0. 1. 0.1 0 | compositional range and resolution of san 0. 1. 0.1 0 | compositional range and resolution of abh begin_excess_function w(san abh) 25100. -10.8 0.343 w(san an) 40000. 0. 0. w(abh an) 15000. 0. 0. end_excess_function 1 | 1 site entropy model 3 1. | 3 species, site multiplicity of 1 z(Ca) = 1 an z(K) = 1 san | van laar volumes follow: begin_van_laar_sizes alpha(san) 1.0 0.0 0.0 alpha(abh) 0.643 0.0 0.0 alpha(an) 1.0 0.0 0.0 end_van_laar_sizes begin_dqf_corrections dqf(abh) 570 -4.12 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model | See WARNING above for HP ASF Ternary Feldspar Fsp(C1) abbreviation Fsp full_name ternary-feldspar 2 | model type 3 | number of endmembers an san abh 0 0 0 | endmember flags 0. 1.0 0.1 0 | compositional range and resolution of an 0. 1.0 0.1 0 | compositional range and resolution of san begin_excess_function w(san abh) = 25100. -10.8 * TK + 0.343 * Pb w(san an) = 40000. w(abh an) = 3100. end_excess_function 1 | 1 site entropy model 3 1. | 3 species, site multiplicity of 1 z(Ca) = 1 an z(K) = 1 san begin_van_laar_sizes alpha(san) = 1.0 alpha(abh) = 0.643 alpha(an) = 1.0 end_van_laar_sizes begin_dqf_corrections dqf(an) = 7030 - 4.66 * T_K end_dqf_corrections reach_increment 0 end_of_model -------------------------------------------------------- begin_model HP '03 CMP van Laar Calcite-Magnesite with Dolomite compound formation. oCcM(HP) abbreviation Do full_name carbonate 2 model type 3 number of endmembers cc mag odo 0 0 0 endmember flags 0. 1. 0.1 0 | range and increments on X(cc) 0. 1. 0.1 0 | range and increments on X(mag) begin_excess_function w(cc mag) 35000. 0. 0. w(cc odo) 10250. 0. 0. w(mag odo) 14950. 0. 0. end_excess_function 2 2 site (m1 m2) entropy model 2 0.5 2 species on m2, mutiplicity = 1/2 z(m2,Ca) = 1 cc + 1 odo 2 0.5 2 species on m1, mult. = 1/2 z(m1,Ca) = 1 cc begin_van_laar_sizes alpha(cc) 0.5 0.000546 0.0 alpha(mag) 1.0 0. 0.0 alpha(odo) 0.7 0. 0.0 end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Tourmaline model with no Li formulated as a hexary solution. NOTE: ffoit, mfoit, drav and shrl are linearly dependent 1 2 3 x y z _________________________ Mutliplicity 1 3 6 _________________________ Species: 1 drav Na Mg3 Al6 2 uvit Ca Mg3 MgAl5 3 mfoit vac Mg2Al Al6 4 shrl Na Fe3 Al6 5 olen Na Al3 Al6 6 ffoit vac Fe2Al Al6 ________________________ Vincent van Hinsberg Tour(V) | solution name. abbreviation Tour full_name tourmaline 2 | model type: simplicial composition space 6 | 6 species mix on the chemical mixing site drav uvit mfoit | endmember names shrl olen ffoit | 0 0 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0. 1. .1 0 | range drav 0. .2 .1 0 | restricted range uvit 0. 1. .1 0 | range mfoit 0. 1. .1 0 | range shrl 0. 1. .1 0 | range olen ideal 3 | configurational entropy: 3 sites 3 1. | 3 species on X, 1 site per formula unit. z(na,x) = 1 drav + 1 shrl + 1 olen z(ca,x) = 1 uvit 3 3. | 3 species on Y, 3 sites per formula unit. z(mg,y) = 1 drav + 1 uvit + 2/3 mfoit z(al,y) = 1/3 mfoit + 1 olen + 1/3 ffoit 2 6. | 2 species on Z, 6 site per formula unit. z(al,z) = 1 drav + 5/6 uvit + 1 mfoit + 1 shrl + 1 olen + 1 ffoit end_of_model -------------------------------------------------------- begin_model dolomite order disorder model Site: 1 2 M1 M2 ____________ Mutliplicity 1 1 ____________ 1 adol Ca Mg Species: 2 bdol CaMg CaMg ___________ DoDo abbreviation Do full_name carbonate 2 model type simplicial composition space 2 number of endmembers adol bdol 0 0 endmember flags 0. 1. 0.1 0 | range and increments on X(cc) ideal 2 2 site (m1 m2) entropy model 2 0.5 2 species on m2, mutiplicity = 1/2 z(m2,Ca) = 1/2 bdol 2 0.5 2 species on m1, mult. = 1/2 z(m1,Mg) = 1/2 bdol end_of_model begin_model magnesio-wuestite solution, after fabrichnaya '99 Wus(fab) abbreviation Wus full_name wuestite 2 model type: simplicial composition space 2 2 endmembers per wus 0 0 | endmember flags 0.0 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(per wus) 24d3 -0. 0. | was 24d3 end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity = 1. z(mg) = 1 per end_of_model -------------------------------------------------------- begin_model akimotoite (ilmenite-structure) solution, after fabrichnaya '99 Aki(fab) abbreviation Aki full_name ilmenite 2 model type: simplicial composition space 3 number of endmembers cor aki faki 1 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(aki cor) 60000.0 0. 0. W(faki cor) 60000.0 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 aki z(fe) = 1 faki 2 1. 2 species on T site multiplicity = 1. z(al) = 1 cor end_of_model -------------------------------------------------------- begin_model | perovskite solution, after fabrichnaya '99 Pv(fab) abbreviation Pv full_name perovskite 2 model type: simplicial composition space 3 3 endmembers aperov perov fperov 0 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(perov aperov) 49000.0 0. 0. W(fperov aperov) 49000.0 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 perov z(fe) = 1 fperov 2 1. 2 species on T site multiplicity = 1. z(al) = 1 aperov end_of_model -------------------------------------------------------- begin_model | perovskite solution, after oganov. the fppv and | appv endmembers are henry's law ss. Ppv(og) abbreviation Ppv full_name postperovskite 2 model type: simplicial composition space 3 number of endmembers appv ppv fppv 0 0 0 | endmember flags 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision ideal 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 ppv z(fe) = 1 fppv 2 1. 2 species on T site multiplicity = 1. z(al) = 1 appv end_of_model -------------------------------------------------------- begin_model olivine solution O(stx) abbreviation Ol full_name olivine 2 model type: simplicial composition space 2 2 endmembers fo fa 0 0 | endmember flags 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(fo fa) 14400.0 0. 0. | was 7200. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 fo end_of_model -------------------------------------------------------- begin_model Wad(stx) abbreviation Wad full_name wadleysite 2 | model type: simplicial composition space 2 | 2 endmembers wad fwad 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(wad fwad) 3000. 0. 0. | was 1500. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 wad end_of_model -------------------------------------------------------- begin_model Ring(stx) abbreviation Ring full_name ringwoodite 2 model type: simplicial composition space 2 2 endmembers ring fring 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(ring fring) 7800. 0. 0. | was 3900. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 ring end_of_model -------------------------------------------------------- begin_model Spinel solution, fixed order! Sp(stx) abbreviation Sp full_name spinel 2 model type: simplicial composition space 2 2 endmembers sp herc 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(sp herc) 28800. 0. 0. | was 7200. end_excess_function 2 2 site entropy model 3 8. 3 species, site multiplicity = 8. z(B,mg) = 1/8 sp z(B,fe) = 1/8 herc 3 4. 3 species, site multiplicity = 4. z(B,mg) = 3/4 sp z(B,fe) = 3/4 herc end_of_model -------------------------------------------------------- begin_model From Stixrude's endmember notation (parenthesis used to indicate disordered site populations), it appears the B site should be split into two M-sites for the 05 paper. Gt(stx) abbreviation Gt full_name garnet 2 model type: simplicial composition space 4 4 endmembers gr alm maj py 0 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution for X(gr), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(alm), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(py), imod = 0 -> cartesian subdivision ideal 3 3 site entropy model 3 3. 3 species, A site multiplicity = 3. z(A,ca) = 1 gr z(A,fe) = 1 alm 2 1. 2 species, M1 site multiplicity = 1. z(M1,Mg) = 1 maj 2 1. 2 species, M2 site multiplicity = 1. z(M1,Si) = 1 maj end_of_model -------------------------------------------------------- begin_model C2/c(stx) abbreviation C2/c full_name C2/c-pyroxene 2 model type: simplicial composition space 2 2 endmembers c2/c fc2/c 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision ideal 1 1 site entropy model 2 4. 2 species, site multiplicity = 4. z(mg) = 1 c2/c end_of_model -------------------------------------------------------- begin_model From Stixrude's endmember notation (parenthesis used to indicate disordered site populations), it appears disorder is assumed across all 4 M sites, for the 05-07 papers. Opx(stx) abbreviation Opx full_name orthopyroxene 2 model type: simplicial composition space 3 3 endmembers en fs ts 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution for X(en) 0. 1. .1 0 | range and resolution for X(fs) ideal 1 1 site entropy model 3 4. 3 species, M site multiplicity = 4. z(M,al) = 1/2 ts z(M,fe) = 1 fs end_of_model -------------------------------------------------------- begin_model Cpx solution, entropy model not specified by stixrude, additionally there is some ambiguity about his excess term, here i assume its Gex = X(M1,Ca)*X(M1,M)*W. Cpx(stx) abbreviation Cpx full_name clinopyroxene 2 model type: simplicial composition space 3 3 endmembers di hed mdi 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution for X(di) 0. 1. .1 0 | range and resolution for X(hed) begin_excess_function W(mdi di) 52000.0 0. 0. W(mdi hed) 52000.0 0. 0. end_excess_function 2 2 site entropy model 2 2. 2 species, M1 site multiplicity = 2. z(M1,Mg) = 1 mdi 2 2. 2 species, M2 site multiplicity = 2. z(M2,Fe) = 1 hed end_of_model -------------------------------------------------------- begin_model Stixrude pers com (10/07) indicates Gex = X(M1,Ca)*X(M1,Mg)*W. JADC 12/07 Corrected excess function to include W(mdi hed), 9/08, JADC. Cpx(stx7) abbreviation Cpx full_name clinopyroxene 2 model type: simplicial composition space 3 3 endmembers di hed mdi 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution for X(di) 0. 1. .1 0 | range and resolution for X(hed) begin_excess_function W(mdi di) 52600.0 0. 0. W(mdi hed) 52600.0 0. 0. end_excess_function 2 2 site entropy model 2 2. 2 species, M1 site multiplicity = 2. z(M1,Mg) = 1 mdi 2 2. 2 species, M2 site multiplicity = 2. z(M2,Fe) = 1 hed end_of_model -------------------------------------------------------- begin_model HP '96 Am Min, Non-ideal quasi ordered omphacite, i.e., compound formation only occurs for omph. The value of wdh appears discrepant with the value in HP '98. The interaction parameters here are from the Omphacite model distributed with the '00 Thermocalc program. JADC 2/03 Added ideal acm+cats, JADC, 1/06. CORRECTIONS: enthalpy of ordering corrected from -16 kJ to -3.5 kJ. JADC, Aug 20, 2003. Modified for non-ideal cats after Zeh et al. (2005) JMG, v. 23, p. 1-17. T. Wagner 2/18/06. Site: 1 2 3 4 5 M2a M2b M1a M1b T1 ____________________________________ Mutliplicity 1/2 1/2 1/2 1/2 1 ____________________________________ 1 Diopside Ca Ca Mg Mg Si Species: 2 Jadeite Na Na Al Al Si 3 Hedenbergit Ca Ca Fe2+ Fe2+ Si 4 Ca-Tschermaks Ca Ca Al Al Al 5 Acmite Na Na Fe3+ Fe3+ Si ___________________________________ Ordered Cpd: 6 Omphacite Na Ca Al Mg Si Omph(HP) abbreviation Cpx full_name clinopyroxene 6 model type: o/d, simplicial composition space 5 number of disordered endmembers di jd cats acm hed 1 | ordered species definition omph = 1/2 jd + 1/2 di enthalpy_of_ordering = -35d2 0 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution of X(di) 0. 1. 0.1 0 | range and resolution of X(jd) 0. 1. 0.1 0 | range and resolution of X(cats) 0. 1. 0.1 0 | range and resolution of X(acm) begin_excess_function w(di jd) 26000. 0. 0. w(omph jd) 16000. 0. 0. w(omph di) 16000. 0. 0. w(omph hed) 17000. 0. 0. w(hed jd) 24000. 0. 0. w(di hed) 4000. 0. 0. | hp 98 give 2.5 kJ w(cats di) 7d3 0. 0. w(cats hed) 4d3 0. 0. end_excess_function 5 | 4 site entropy model (m1a, m1b, m2b, m2a) 2 0.5 | 2 species on m2a, mutiplicity = 1/2 | WARNING! fractions can only be used in the site | fraction definitions, do not use fractions to specify | site multiplicities in the above line. z(m2a,ca) = 1 di + 1 hed + 1 cats 2 0.5 2 species on m2b, mult. = 1/2 z(m2a,na) = 1 jd + 1 acm 4 0.5 4 species on m1a, mult = 1/2 z(m1a,mg) = 1 di z(m1a,fe2+) = 1 hed z(m1a,fe3+) = 1 acm 4 0.5 4 species on m1b, mult = 1/2 z(m1b,al) = 1 jd + 1 cats z(m1a,fe2+) = 1 hed z(m1a,fe3+) = 1 acm 2 1.0 2 species on T1 (perhaps Al should be disordered over T1-T2?) z(t1,al) = 1 cats end_of_model -------------------------------------------------------- begin_model HP '96 Am Min, Non-ideal disordered cpx Note HP '98 give Wdh = 2500 j/mol. Configurational entropy model changed (corrected) from 1 site two 2 site model and model reformatted. D. Tinkham, 1/04. Added ideal acm+cats, JADC, 1/06. Modified for non-ideal cats after Zeh et al. (2005) JMG, v. 23, p. 1-17. T. Wagner 2/18/06. Added ideal Cr, PGP Workshop 4/12/06. (folk.uio.no/ninasim/Cr_results.html) Corrected z(m1,al) = 1 jd to z(m1,al) = 1 jd + 1 cats M. Caddick, 5/8/08. Cpx(HP) abbreviation Cpx full_name clinopyroxene 2 | model type 7 | number of endmembers esn ccrts cats jd acm hed di 0 0 0 0 0 0 0 | endmember flags | NOTE RESTRICTED RANGES: 0. 1. .1 0 | range and resolution of X(esn): imod = 1 -> assymmetric stretching 0. 1. .1 0 | range and resolution of X(ccrts): imod = 1 -> assymmetric stretching 0. 1. .1 0 | range and resolution of X(cats): imod = 1 -> assymmetric stretching 0. 1. .1 0 | range and resolution of X(jd) 0. 1. .1 0 | range and resolution of X(acm): imod = 1 -> assymmetric stretching 0. 1. .1 0 | range and resolution of X(hed) begin_excess_function w(jd di) 26d3 0. 0. w(jd hed) 24d3 0. 0. w(di hed) 4d3 0. 0. w(cats di) 7d3 0. 0. w(cats hed) 4d3 0. 0. end_excess_function 3 | 3 site (M1, M2, T1) configurational entropy model 5 1. | 5 species on M1, 1 site per formula unit. z(m1,fe) = 1 hed z(m1,al) = 1 jd + 1 cats z(m1,fe3+) = 1 acm + 1 esn z(m1,cr) = 1 ccrts 2 1. | 2 species on M2, 1 site per formula unit. z(m2,na) = 1 jd + 1 acm 2 1. | 2 species on T1, ccrts not counted intentionally. z(t1,al) = 1 cats + 1 esn reach_increment 0 end_of_model -------------------------------------------------------- begin_model Chromite/Spinel, Klemme et al. 2010. To use this model, the fcrm endmember must be excluded from thermodynamic stability calculations. A B _____________ Mutliplicity 1 2 _____________ 1 sp Mg Al Species: 2 herc Fe Al 3 mcrm Mg Cr 4 fcrm_d Fe Cr 5 mft Fe3+ MgFe3+ 6 mt Fe3+ FeFe3+ Ad-hoc incorporation of Fe3+ made here by assuming Mt remains inverse and the associated divalent Mg and Fe is disordered on B. An alternative model would be to assume the divalent B cation is associated with Fe3+. Model lacks excess function for mt-crm, which could be estimated if the solvus is known. JADC, 3/29/13 CrSp | solution name. abbreviation Sp full_name spinel 7 | model type: Reciprocal 2 | 2 independent subcompositions 2 3 | 2 dimensions on each site mcrm fcrm_d sp herc mft mt 1 | 1 dependent endmember fcrm_d = 1 herc + 1 mcrm - 1 sp 0 0 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. | subdivision model for (binary) site 1 (A): 0. 1. .1 0 | range and resolution of X(Mg): imod = 0 -> cartesian | subdivision model for (binary) site 2 (B) 0. 1. .1 0 | range and resolution of X(Cr): imod = 0 -> cartesion 0. 1. .1 0 begin_excess_function w(sp herc) 7d2 0 0 w(mcrm sp sp) 4208. 1.501 .321e-1 | from Oka et al CMP '84 w(mcrm sp) 19686 0.463 0.0183 | 19686 + 0.0183*P + 0.463*T; w(mcrm herc) 20d3 0. 0. | guessed solvus end_excess_function 2 | 2 site (a, b) configurational entropy model 3 1. | 3 species on a, 1 site per formula unit. z(a,fe) = 1 herc z(a,mg) = 1 sp + 1 mcrm 5 2. | 5 species on b, 2 site per formula unit. z(b,cr) = 1 mcrm z(b,al) = 1 sp + 1 herc z(b,fe3+) = 1/2 mt + 1/2 mft z(b,mg) = 1/2 mft reach_increment 3 end_of_model -------------------------------------------------------- begin_model Eskolaite from Chaterjee et al '82 Am Min. added at PGP Workshop on 4/12/06 (folk.uio.no/ninasim/Cr_results.html). notes: w(esk cor cor) corrected to w(esk esk cor). this error was noted by J. A. Padron-Navarta, 3/30/12, but left uncorrected until 11/24/2015; the thermodynamic data in cr_hp02ver.dat as used by Klemme et al. 2009 and Ziberna et al. 2013; to reproduce the calculations in those papers the error must be reinstated. added ideal hem. JADC, 3/29/13 Eskol(C) abbreviation Esk full_name ilmenite 2 | model type: simplicial composition space 3 | number of endmembers esk cor hem | endmember names 0 0 0 | endmember flags 0. 1. .1 0 | X(Cr), cartesian 0. 1. .1 0 | X(Al), cartesian begin_excess_function w(esk esk cor) -5755. .385 -.38e-1 | Chattejee et al '82 Am Min w(esk cor) 37484 4.334 0.0386 | Chattejee et al '82 Am Min end_excess_function 1 1 site entropy model 3 2. 2 species, site multiplicity 2 z(Al) = 1 cor z(Cr) = 1 esk end_of_model -------------------------------------------------------- begin_model magnesio-wuestite solution, stixrude EPSL 07 also xu et al EPSL 08 Wus(stx7) abbreviation Wus full_name wuestite 2 model type: simplicial composition space 2 2 endmembers per wus 0 0 | endmember flags 0.0 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(per wus) 13d3 0. 0. end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity = 1. z(mg) = 1 per end_of_model -------------------------------------------------------- begin_model akimotoite (ilmenite-structure) solution, stixrude EPSL 07 Aki(stx7) abbreviation Aki full_name ilmenite 2 model type: simplicial composition space 3 3 endmembers cor aki faki 1 0 0 | endmember flags 0.0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function | Stixrude pers com (10/07) states | Gex = X(One_Site,Al)*X(One_Site,Mg)*W | JADC 12/07 W(aki cor) 66000. 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 aki z(fe) = 1 faki 2 1. 2 species on T site multiplicity = 1. z(al) = 1 cor end_of_model -------------------------------------------------------- begin_model | perovskite solution, stixrude epsl 07 also xu et al epsl 08 Pv(stx7) abbreviation Pv full_name perovskite 2 model type: simplicial composition space 3 3 endmembers aperov perov fperov 0 0 0 | endmember flags 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function | Stixrude pers com (10/07) | Gex = X(Big_Site,Al)*X(Big_Site,Mg)*W | JADC 12/07 W(perov aperov) 12000 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 perov z(fe) = 1 fperov 2 1. 2 species on T site multiplicity = 1. z(al) = 1 aperov end_of_model -------------------------------------------------------- begin_model O(stx7) abbreviation Ol full_name olivine 2 model type: simplicial composition space 2 2 endmembers fo fa 0 0 | endmember flags 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(fo fa) 10.6d3 0 0. 0. | was 5.3 kJ/molar site end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 fo end_of_model -------------------------------------------------------- begin_model Wad(stx7) abbreviation Wad full_name wadleysite 2 | model type: simplicial composition space 2 | 2 endmembers wad fwad 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(wad fwad) 12.2d3 0. 0. | 6.1 kJ/site end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 wad end_of_model -------------------------------------------------------- begin_model Ring(stx7) abbreviation Ring full_name ringwoodite 2 model type: simplicial composition space, macroscopic 2 2 endmembers ring fring 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(ring fring) 7d3 0. 0. | 3.5 kJ/site end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 ring end_of_model -------------------------------------------------------- begin_model Spinel solution, fixed order! Sp(stx7) abbreviation Sp full_name spinel 2 model type: simplicial composition space, macroscopic 2 2 endmembers sp herc 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(sp herc) 20d3 0. 0. | was 5 kJ/site end_excess_function 2 2 site entropy model 3 8. 3 species, site multiplicity = 8. z(B,mg) = 1/8 sp z(B,fe) = 1/8 herc 3 4. 3 species, site multiplicity = 4. z(B,mg) = 3/4 sp z(B,fe) = 3/4 herc end_of_model -------------------------------------------------------- begin_model Spinel after White, RW, Powell, R & Clarke, GL (JMG, 2002) This model has two fake sites, each with a mulitplicity of one. Fe3+ Al and Ti mix on the fake A site, and Mg-Fe2+ mix on the fake B site Replaces Sp(WPH), JADC Mar 5, 2009. A B _____________ Mutliplicity 1 1 _____________ 1 sp Al Mg Species: 2 herc Al Fe2+ 3 usp Ti Fe2+ 4 mt Fe3+ Fe2+ Sp(WPC) abbreviation Sp full_name spinel 2 | model type: simplicial composition space 4 | 4 endmembers sp herc usp mt 0 0 0 0 | endmember flags 0. 1. .1 0 | X(sp) subdivision range, imod = 0 -> cartesian 0. 1. .1 0 | X(herc) subdivision range, imod = 1 -> assymmetric stretching 0. 1. .1 0 | X(usp) subdivision range, imod = 1 -> assymmetric stretching begin_excess_function W(herc mt) 18.5d3 0 0 W(herc usp) 27d3 0 0 W(sp mt) 40d3 0 0 W(sp usp) 30d3 0 0 end_excess_function 2 2 site entropy model, see comments above 3 1. 3 species, site multiplicity of 1 z(a,Fe3+) = 1 mt z(a,Ti) = 1 usp 2 1. 2 species, site multiplicity of 1 z(b,Mg) = 1 sp end_of_model -------------------------------------------------------- begin_model CPX in CMASCH marbles (di-en-cats), hence enstatite endmember added. Entered by A Proyer, Aug 27, 2008. based on: HP '96 Am Min, Non-ideal disordered cpx Note HP '98 give Wdh = 2500 j/mol. Configurational entropy model changed (corrected) from 1 site two 2 site model and model reformatted. D. Tinkham, 1/04. Modified for non-ideal cats after Zeh et al. (2005) JMG, v. 23, p. 1-17. T. Wagner 2/18/06. Cpx(m) abbreviation Cpx full_name clinopyroxene 2 | model type sf. 3 | number of endmembers en cats di 0 0 0 | endmember flags | NOTE RESTRICTED RANGES 0. 1. .1 0 | range and resolution of X(en): imod = 1 -> assymmetric stretching 0. 1. .1 0 | range and resolution of X(cats): imod = 1 -> assymmetric stretching begin_excess_function w(en cats) 24d3 0. 0. w(en di) 24d3 0. 0. w(cats di) 7d3 0. 0. end_excess_function 2 | 2 site (M1, M2) configurational entropy model 2 1. | 2 species on M1, 1 site per formula unit. z(m1,al) = 1 cats 2 1. | 2 species on M2, 1 site per formula unit. z(m2,mg) = 1 en begin_dqf_corrections dqf(en) 8100 -4.5 0 end_dqf_corrections end_of_model -------------------------------------------------------- begin_model Olivine in marble; from TC-solution model: Ca only on M2 Entered by A Proyer, Aug 27, 2008. Ol(m) abbreviation Ol full_name olivine 2 | model type: simplicial composition space 2 | 2 endmembers fo mont 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function w(fo mont) 24000. 0. 0. end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity of 1 z(Ca) = 1 mont end_of_model -------------------------------------------------------- begin_model Pl(stx8) | Xu et al. EPSL 08, to be used with the stx08ver.dat data generated from that paper. abbreviation Pl full_name binary-feldspar 2 | model type: simplicial composition space 2 | # of endmembers ab an 0 0 | endmember flags 0. 1. .1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(an ab) 26d3 0. 0. end_excess_function 1 | 1 site molecular model: 2 1. z(Na) = 1 ab end_of_model -------------------------------------------------------- begin_model Spinel solution, fixed order! Sp(stx8) abbreviation Sp full_name spinel 2 model type: simplicial composition space 2 2 endmembers sp herc 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(sp herc) 29.6d3 0. 0. end_excess_function 2 2 site configurational entropy model 3 8. 3 species, site multiplicity = 8. z(B,mg) = 1/8 sp z(B,fe) = 1/8 herc 3 4. 3 species, site multiplicity = 4. z(B,mg) = 3/4 sp z(B,fe) = 3/4 herc end_of_model begin_model -------------------------------------------------------- Po(HP) abbreviation Po full_name pyrrhotite 2 model type: simplicial composition space 2 2 endmembers trov trot 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(trov trot) = -3190 end_excess_function 1 1 site configurational entropy model 2 1. 2 species (Fe, V), site multiplicity = 1. z(M2,V) = 1/8 trov end_of_model -------------------------------------------------------- begin_model O(stx8) abbreviation Ol full_name olivine 2 model type: simplicial composition space 2 2 endmembers fo fa 0 0 | endmember flags 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(fo fa) 9d3 0 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 fo end_of_model -------------------------------------------------------- begin_model Wad(stx8) abbreviation Wad full_name wadleysite 2 | model type: simplicial composition space 2 | 2 endmembers wad fwad 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(wad fwad) -8.6d3 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 wad end_of_model -------------------------------------------------------- begin_model Ring(stx8) abbreviation Ring full_name ringwoodite 2 model type: simplicial composition space 2 2 endmembers ring fring 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(ring fring) 8d3 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 ring end_of_model -------------------------------------------------------- begin_model From Stixrude's endmember notation (parenthesis used to indicate disordered site populations), it appears disorder that in the '08 papers the M sites are now split. Opx(stx8) abbreviation Opx full_name orthopyroxene 2 model type: simplicial composition space 4 4 endmembers odi en fs ts 0 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution for X(odi) 0. 1. .1 0 | range and resolution for X(en) 0. 1. .1 0 | range and resolution for X(fs) begin_excess_function W(odi ts) 43.8d3 0. 0. W(odi en) 43.8d3 0. 0. end_excess_function 2 |2 site entropy model, Al on M2 is associated with Mg on M1 and |Ca on M1 is associated with Mg on M2, so reduce M2 site model to |a two species model? 3 2. 3 species, M1 site multiplicity = 2. z(M1,Ca) = 1 odi z(M1,Fe) = 1 fs 3 2. 3 species, M2 site multiplicity = 2. z(M2,Al) = 1 ts z(M2,Fe) = 1 fs end_of_model -------------------------------------------------------- begin_model Cpx(stx8) abbreviation Cpx full_name clinopyroxene 2 model type: simplicial composition space 5 # of endmembers jd di hed mdi cts 0 0 0 0 0 endmember flags 0. 1. .1 0 | range and resolution for X(jd) 0. 1. .1 0 | range and resolution for X(di) 0. 1. .1 0 | range and resolution for X(hed) 0. 1. .1 0 | range and resolution for X(mdi) begin_excess_function W(mdi di) 49d3 0. 0. | Mg-Ca W(mdi hed) 49d3 0. 0. W(mdi cts) 49d3 0. 0. W(jd di) 486d2 0. 0. | Na-Ca W(jd hed) 486d2 0. 0. W(jd cts) 486d2 0. 0. end_excess_function 2 2 site entropy model 3 2. 3 species, M1 site multiplicity = 2. z(M1,Mg) = 1 mdi z(M1,Na) = 1 jd 3 2. 3 species, M2 site multiplicity = 2. z(M2,Fe) = 1 hed z(M2,Al) = 1 jd + 1 cts end_of_model -------------------------------------------------------- begin_model akimotoite (ilmenite-structure) solution Aki(stx8) abbreviation Aki full_name ilmenite 2 model type: simplicial composition space 3 3 endmembers cor aki faki 1 0 0 | endmember flags 0.0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(aki cor) 42000. 0. 0. W(faki cor) 52000. 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 aki z(fe) = 1 faki 2 1. 2 species on T site multiplicity = 1. z(al) = 1 cor end_of_model -------------------------------------------------------- begin_model Garnet solution, from Xu et al '08. Gt(stx8) abbreviation Gt full_name garnet 2 model type: simplicial composition space 5 # of endmembers gr alm maj py jmaj 0 0 0 0 0 endmember flags 0. 1. .1 0 | range and resolution for X(gr), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(alm), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(maj), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(py), imod = 0 -> cartesian subdivision begin_excess_function W(gr maj) 45000. 0. 0. W(gr py) 45000. 0. 0. end_excess_function 2 # of sites for configurational entropy model 4 0. 4 independent species, A site multiplicity = 0 => variable multiplicity, means need molar amounts of all species n(A,ca) = 3 gr n(A,fe) = 3 alm n(A,na) = 2 jmaj n(A,mg) = 3 py + 3 maj 3 2. 3 species, B site multiplicity = 2, this is a peculiarity in stixrude's model because he sets r[Al,jmj,B]=2 z(B,Mg) = 1/2 maj z(B,Si) = 1/2 maj end_of_model -------------------------------------------------------- begin_model Ppv(stx8) abbreviation Ppv full_name postperovskite 2 model type: simplicial composition space 3 3 endmembers appv ppv fppv 0 0 0 | endmember flags 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(ppv appv) 21000. 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 ppv z(fe) = 1 fppv 2 1. 2 species on T site multiplicity = 1. z(al) = 1 appv end_of_model -------------------------------------------------------- begin_model Ca-Ferrite solution. CF(stx8) abbreviation CF full_name calcium-ferrite 2 model type: simplicial composition space 3 3 endmembers mfer ffer nfer 0 0 0 0. 1. .1 0 0. 1. .1 0 ideal 2 number of sites for the entropy model 3 1. 3 species, A site multiplicity = 1. z(A,fe) = 1 ffer z(A,mg) = 1 mfer 2 1. al-si mixing on only one "T" site. z(M,Si) = 1 nfer end_of_model -------------------------------------------------------- begin_model Fe2+-Fe3+-Mg pumpellyite Massonne & Willner (EJM, 2008) Ideal Pu(M) abbreviation Pu full_name pumpellyite 2 | model type: simplicial composition space 3 | 3 endmembers pump fpum ffpu 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Mg) 0. 1. 0.1 0 | range and resolution for X(Fe2), 0 -> cartesian ideal 1 1 site entropy model 3 1. 3 species, site multiplicity = 1. z(Fe) = 1 fpum z(Mg) = 1 pump end_of_model -------------------------------------------------------- begin_model Low Temperature Amphibole from Massonne & Willner (EJM, 2008) Act(M) abbreviation Amph full_name clinoamphibole 2 | model type: simplicial composition space 4 | 4 endmembers tr acti gl mrie 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Mn) 0. 1. 0.1 0 | range and resolution for X(Fe) 0. 1. 0.1 0 | range and resolution for X(Al) begin_excess_function w(tr gl) 27000. 0. 0. w(acti gl) 27000. 0. 0. w(tr mrie) 15000. 0. 0. w(gl mrie) 15000. 0. 0. end_excess_function 1 1 site entropy model 4 2. 4 species, site multiplicity = 2. z(Fe) = 0 + 1 acti z(Mg) = 0 + 1 tr z(Al) = 0 + 1 gl end_of_model -------------------------------------------------------- begin_model Fe2-Mg-Mn Stilpnomelane from Massonne & Willner (EJM, 2008) Stlp(M) abbreviation Stlp full_name stilpnomelane 2 | model type: simplicial composition space 3 | 3 endmembers stlp mstl mnsp 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Mg) 0. 1. 0.1 0 | range and resolution for X(Fe2) ideal 1 1 site entropy model 3 48. 3 species, site multiplicity = 48. z(Fe) = 0 + 1 stlp z(Mg) = 0 + 1 mstl end_of_model -------------------------------------------------------- begin_model Margarite-Muscovite-Paragonite from Massonne & Willner (EJM, 2008) Mica(M) abbreviation Mica full_name white-mica 2 | model type: simplicial composition space 3 | 3 endmembers ma mu pa 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Ca) 0. 1. 0.1 0 | range and resolution for X(K) begin_excess_function w(ma ma pa) 18200. 0. 0. w(pa pa ma) 10000. 0. 0. W(mu pa pa) 19456.0 1.65440 -.456100 W(mu mu pa) 12230.0 0.710440 0.665300 w(ma mu) 35000. 0. 0. end_excess_function 1 1 site entropy model 3 1. 2 species, site multiplicity = 1. z(Ca) = 0 + 1 ma z(K) = 0 + 1 mu end_of_model -------------------------------------------------------- begin_model Mn-Fe-Mg Carpholite from Massonne & Willner (EJM, 2008) Carp(M) abbreviation Carp full_name carpholite 2 | model type: simplicial composition space 3 | 3 endmembers mnca fcar mcar 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Mn) 0. 1. 0.1 0 | range and resolution for X(Fe) ideal 1 1 site entropy model 3 1. 3 species, site multiplicity = 1. z(Fe) = 0 + 1 fcar z(Mg) = 0 + 1 mcar end_of_model -------------------------------------------------------- begin_model fe-mg sudoite from Massonne & Willner (EJM, 2008) Sud(M) abbreviation Sud full_name sudoite 2 | model type: simplicial composition space 2 | 2 endmembers fsud sud 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Fe) ideal 1 1 site entropy model 2 3. 2 species, site multiplicity = 3. z(Fe) = 0 + 1 fsud end_of_model -------------------------------------------------------- begin_model Magnesite-Siderite-Calcite-Rhodochrosite Carb(M) abbreviation Cc full_name carbonate 2 | model type: simplicial composition space 4 | 4 endmembers cc mag sid rhc 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Ca) 0. 1. 0.1 0 | range and resolution for X(Mg) 0. 1. 0.1 0 | range and resolution for X(Fe) begin_excess_function w(cc mag) 35000. 0. 0. w(cc cc sid) 13500. 0. 0. w(cc sid sid) 21000. 0. 0. w(mag sid) 4000. 0. 0. | hp '98 give 4 kJ w(mag rhc) 20000. 0. 0. w(sid rhc) 4000. 0. 0. end_excess_function 1 1 site entropy model 4 1. 4 species, site multiplicity = 1. z(Ca) = 0 + 1 cc z(Mg) = 0 + 1 mag z(Fe) = 0 + 1 sid end_of_model -------------------------------------------------------- begin_model Ti-Fe-Mg-Mn-Biotite with compound formation, Powell and Holland '99 Am Min, extended for Mn-solution. reformulated as a prismatic + orphan vertex model. JADC, 10/5/2018 NOTES: * This model will only function for the MnASH and FASH subsystems if MGO is also used as a component. * Limits added 5/6/2011. JADC. 1 2 3 M1 M2 T2 _________________________ Mutliplicity 1 2 2 _________________________ Dependent: 2 ftbi Ti FeV AlSi 3 tbi Ti MgV AlSi Dependent: 5 Sdph Al Fe AlAl 6 East Al Mg AlAl 7 MnBi Mn Mn AlSi Species: 8 Ann Fe Fe AlSi 9 Phl Mg Mg AlSi ________________________ Ordered Cpd: 10 Obi Fe Mg AlSi | Comments can be placed before character data within a solution | model as long as they are preceded by the comment marker "|", | in general comments should not be placed before numerica data, | but they can be written following numeric data on the same line. Bio(HP) | solution name. abbreviation Bio full_name biotite 9 | model type: O/D, prism + orphan vertex composition space 2 | prismatic vertex consists of two simplexes with a common vertex 2 3 | 2 components {Fe2+, Mg} on simplex 1, 4 components {Al, Si, Fe3+, Ti} on simplex 2 1 | number of orphan vertices | endmembers on the prismatic vertex ftbi_i tbi sdph_i east ann phl | orphan vertex endmember mnbi 1 | ordered species: | model types 6 and 8 require data defining the | properties of an ordered "species". this species | is defined as a stoichiometric combination of | two independent endmembers and the enthalpy of | formation of the ordered species from the | these independent endmbers. the format for this | data is | name = num_1 * name_1 + num_2 * name_2 text = enthalpy | where name is the arbitrary name of the ordered | species, num_j is a number or fraction (i.e., two | numbers separated by a '/') and name_j is the | name of a valid endmember. text is arbitrary and | enthalpy is the enthalpy of formation of the ordered species. obi = 2/3 phl + 1/3 ann enthalpy_of_ordering = -10.73d3 begin_limits obi = -3 + 3 ann + 1 obi delta = 3 z(M2,Fe) obi = - 3 phl - 3/2 tbi -3 east -2 obi delta = 3 z(M2,Mg) obi = - 3/2 ann - 1/2 obi delta = 3/2 z(M1,Fe) obi = -3/2 + 3/2 tbi + 3/2 phl +1 obi delta = 3/2 z(M1,Mg) end_limits 2 | number of dependent endmembers | model types 7 and 8 (reciprocal solutions) use | internal endmembers that are defined as a | stoichiometric combination of the other endmembers. | the names of these endmembers are arbitrary, but | here dependent endmembers are highlighted by the | suffix "_i", this also serves to distinguish the | endmembers from real equivalents that may be | present in the thermodynamic data file. | the format of this data is | name = num_1 * name_1 + num_2 * name_2 | where num_j is a number or fraction (i.e., two | numbers separated by a '/') and name_j is the | name of a valid endmember. sdph_i = 1 east + 1 ann - 1 obi ftbi_i = 1 tbi + 1/2 ann - 1/2 obi 0 0 0 0 0 0 0 | endmember flags: if 0 the endmember is considered to be part of the solution. | subdivision model for simplex 1 (M2): 0. 1. .1 0 | range and resolution of X(Fe) | subdivision model for simplex 2 (M1) 0. 1. .1 0 | range and resolution of X(Ti,M1) 0. 1. .1 0 | range and resolution of X(Al,M1) 0. .2 .1 0 | range and resolution of mnbi, mod = 0 -> cartesian subdivision | the foregoing lines define the pseudocompound compositions generated | on each "chemical" mixing site of the solution (Sect 4 [READ 6] vdoc.pdf). | for each site the compositional "range" of c-1 species (c is the number of | species on the site as defined in READ 3) is specified as well as a scheme | for interpreting the range. each range is defined by 3 numbers XMIN, XMAX, | and XINC, and the scheme is specified by an integer (IMD) written after the | c-1 ranges. The simplest scheme is cartesian, in which case IMD = 0 and the | the XMIN, XMAX, and XINC indicate the range of compositions (from XMIN to XMAX) | of the respective c-1 species and the compositional spacing (XINC) of the | pseudocompounds. As entered above, the subdivision scheme will generate | pseudocompounds with X(Mn) on site 1 from 0 to 0.20 mol at 0.01 mol increments | for each X(Mn) isopleth, compounds will be generated with X(Fe) from 0 to 1-X(Mn), | where "0" and "1" correspond to XMIN and XMAX in the range for the second species | on site 1, and X(Mg) = 1 - X(Fe) - X(Mn). | Alternative subdivision shemes detailed in vdoc.pdf, may be useful for specialized | applications, e.g., creating models with variable compositional resolution. | By restricting the ranges specified in a model it is possible to focus pseudocompounds | over a particular portion of a solutions composition space, such focusing can be | computationally advantageous when it is known a priori that only a limited range of | compositions can be stable, but it should be undertaken with caution because the | results are not always easy to anticipate. | The primary difficulty in restricting compositional ranges is that the user | can explicitly control the composition of only c-1 compositions since the | cth composition is determined by difference. Additionally the subdivision ranges | are applied sequentially, with compositions that violate mass balance (sum of | compositions > 1) eliminated as they occur. Thus, in general, users have the greatest | control on the composition of the first species on a site and no direct control | on the composition of the last species. Since in most cases it is desired to | restrict the composition of dilute species, endmembers should be specified | (READ 4) so that the dilute species is not the last species. begin_excess_function | format is W(e1 e1 e2 ...) num1 num2 num3 | where the excess parameter = num1 + num2*T + num3*P | and is multiplied by y(e1)*y(e1)*y(e2)... W(phl ann) 9000. 0. 0. W(phl east) 10000. 0. 0. W(phl obi) 3000. 0. 0. W(phl tbi) -10000. 0. 0. W(ann east) -1000. 0. 0. W(ann obi) 6000. 0. 0. W(ann tbi) 12000. 0 0 W(obi east) 10000. 0. 0. end_excess_function 3 | Configurational entropy: 3 sites, M1, M2, T1. 5 1. | 4 species on M1, 1 site per formula unit. | If a mixing site involves n species, VERTEX | expects to find n-1 site fraction definitions | in terms of the endmember fractions. These | definitions have the general format: | text = num + num1 * name1 + num2 * name2 | where num is a number or fraction (i.e., two | numbers separated by a '/') and name is the | name of a valid endmember. | WARNING! fractions can only be used in the site | fraction definitions, do not use fractions to specify | site multiplicities in the above line. z(m1,fe) = 1 ann + 1 obi z(m1,mg) = 1 phl z(m1,mn) = 1 mnbi z(m1,al) = 1 east 4 2. | 4 species on M2, 2 sites per formula unit. z(m2,fe) = 1 ann z(m2,mn) = 1 mnbi z(m2,vac) = 1/2 tbi 2 2. | 2 species on T1, 2 site per formula unit. z(t1,al) = 1/2 + 1/2 east end_of_model -------------------------------------------------------- begin_model Mica(SGH): Non-reciprocal version of white mica model Mica(SGH1) after: Smye et al (JMG, 2011, 28:753-768) This model requires the make definition: fmu = 1 mu + 1/2 hem - 1/2 cor -30d3 0 0 ma_dqf = 1 ma 3d3 0 0 in the thermodynamic data file (e.g., hp02ver.dat), additionally the endmember "ma" must be exlcuded from any calculations that employ this model. WARNING! The computed phase relations in Fig 1 of Smye et al (2011) were computed by imposing the tetrahedral silica content. Thus it is unlikely that the model accurately predicts silica content. JADC, 19/09/11 A M2a M2b T1 M1 ___________________________________ Mutliplicity 1 1 1 2 1 ___________________________________ 1 mu K Al Al AlSi _ 2 pa Na Al Al AlSi _ 3 ma_dqf Ca Al Al AlAl _ 4 cel K Mg Al SiSi _ 5 fcel K Fe Al SiSi _ 6 fmu K Al Fe3+ AlSi _ Mica(SGH) abbreviation Mica full_name white-mica 2 | model type: simplex 6 | 6 endmembers mu pa ma_dqf cel fmu fcel 0 0 0 0 0 0 0 0 | endmember flags | subdivision model 0. 1. .1 0 | range and resolution of X(mu), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(pa), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(ma_dqf), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(cel), imod = 0 -> cartesian subdivision 0. 0.3 .1 0 | range and resolution of X(fmu) begin_excess_function W(mu pa) 10120. 3.4 0.353 W(mu ma_dqf) 35000. 0. 0. W(mu cel) 0. 0. 0.2 W(mu fcel) 0. 0. 0.2 W(pa cel) 45000. 0. 0.25 W(ma_dqf cel) 40000. 0. 0. W(pa fcel) 45000. 0. 0.25 W(ma_dqf fcel) 40000. 0. 0. W(pa ma_dqf) 15000. 0. 0. W(pa fmu) 30000. 0. 0. W(ma_dqf fmu) 35000. 0. 0. end_excess function 4 | Configurational entropy: 4 sites, A, M2a, M2b, T1. 3 1. | 3 species on A, 1 site per formula unit. z(a,k) = 1 mu + 1 cel + 1 fcel + 1 fmu z(a,na) = 1 pa 3 1. | 3 species on M2a, 1 site per formula unit. z(m2a,al) = 1 mu + 1 pa + 1 ma_dqf + 1 fmu z(m2a,mg) = 1 cel 2 1. | 2 species on M2b, 1 site per formula unit. z(m2b,fe) = 1 fmu 2 2. | 2 species on T1, 2 sites per formula unit. z(t,al) = 1/2 mu + 1/2 pa + 1/2 fmu + 1 ma_dqf begin_van_laar_sizes alpha(mu) 0.63 0. 0. alpha(pa) 0.37 0. 0. alpha(ma_dqf) 0.63 0. 0. alpha(cel) 0.63 0. 0. alpha(fmu) 0.63 0. 0. alpha(fcel) 0.63 0. 0. end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Mn-Fe-Mg-Fe3+ Chloritoid after: Smye et al (JMG, 2011, 28:753-768) This model requires the make definition: octd = 1 fctd + 1/4 hem - 1/4 cor 125d2 0 0 in the thermodynamic data file (e.g., hp02ver.dat). NOTE: this version is formulated with 5 Oxygen formula unit, NOT the 10 oxygen formula unit used by Smye et al (2011). JADC, 19/09/11 M1a M1b _______________ Mutliplicity 1/2 1 _______________ mctd Al Mg fctd Al Fe mnctd Al Mn octd Fe3+ Fe Ctd(SGH) abbreviation Ctd full_name chloritoid 2 | model type 4 | endmembers octd mnctd fctd mctd 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Fe3+), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(Mn), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(mctd fctd ) 500. 0. 0. w(mctd mnctd) 500. 0. 0. w(fctd mnctd) 500. 0. 0. end_excess_function 2 2 site entropy model 2 .5 2 species on M1a, site multiplicity = 1/2 z(Fe) = 1 octd 3 1. 3 species on M1b, site multiplicity = 1 z(Mn) = 1 mnctd z(Mg) = 1 mctd end_of_model -------------------------------------------------------- begin_model Mn-Fe-Mg-Fe3+ Carpholite after: Smye et al (JMG, 2011, 28:753-768) This model requires the make definitions: ocar = 1 fcar + 1/2 hem - 1/2 cor 45d3 0 0 mncar = 1 mcar + 1 mang - 1/2 cor 30d3 0 0 in the thermodynamic data file (e.g., hp02ver.dat). JADC, 19/09/11 M2 M1 _______________ Mutliplicity 1 1 _______________ mcar Al Mg fcar Al Fe mncar Al Mn ocar Fe3+ Fe Carp(SGH) abbreviation Crp full_name carpholite 2 | model type 4 | endmembers mncar ocar fcar mcar 0 0 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(mcar fcar ) 1d3 0. 0. w(mcar mncar) 1d3 0. 0. w(fcar mncar) 1d3 0. 0. end_excess_function 2 2 site entropy model 2 .5 2 species on M2, site multiplicity = 1 z(Fe) = 1 ocar 3 1. 3 species on M1, site multiplicity = 1 z(Mn) = 1 mncar z(Mg) = 1 mcar end_of_model -------------------------------------------------------- begin_model Ca-Fe2+-Mg-Al-Fe3+ Garnet model after White, Pomroy, Powell & Holland (JMG, 2005) In calculations that use this model, the andradite endmember ("andr") in the Holland and Powell data base must be excluded. This model also requires the following make definition for khoharite in the thermodynamic data file: kho = 1 py - 1 gr + 1 andr 40d3 0 0 1 2 X Y _____________ Mutliplicity 3 2 _____________ Dependent: fkho_i Fe Fe3+ Dependent: kho Mg Fe3+ Dependent: fmn_i Mn Fe3+ andr_i Ca Fe3+ spss Mn Al alm Fe Al py Mg Al gr Ca Al ____________ When originally entered 9/20/11, this model was formulated (incorrectly) in terms of andradite, it was corrected to use the khoharite endmember 10/24/11. JADC definition of andr_i corrected from 1 kho + 1 py - 1 gr to 1 kho - 1 py + 1 gr on 1/4/13. JADC Gt(WPPH) abbreviation Gt full_name garnet 7 | model type 2 | the number of independent subcompositions, reciprocal solution if > 1. 4 2 | 4 species on site 1, 2 species on site 2. | M2 and M1 can be identified as sites 1 and 2, respectively. the | species that mix on site 1 are Mn-Mg-Fe-Ca and the species that mix on | site 2 are Al-Fe3+. spss alm py gr | endmember names fmn_i fkho_i kho andr_i 3 | number of dependent endmembers andr_i = 1 kho - 1 py +1 gr fkho_i = 1 kho + 1 alm -1 py fmn_i = 1 kho + 1 spss -1 py 0 0 0 0 0 0 0 0 | endmember flags 0. .2 0.1 0 | imod = 0 -> cartesian subdivision (xmn) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xfe) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision (xmg) on X 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision x(fe3+) on Y begin_excess_function w(alm py) 2.5d3 0. 0. w(alm kho) 22.5d3 0. 0. w(py gr) 33d3 0. 0. w(gr kho) -7d3 0. 0. w(spss kho) 20d3 0. 0. end_excess_function 2 |2 site entropy model 4 3. |4 species, site multiplicity 3 z(x,mn) = 1 spss z(x,fe) = 1 alm z(x,ca) = 1 gr 2 2. |2 species, site multiplicity 2 z(y,al) = 1 spss + 1 alm + 1 py + 1 gr end_of_model -------------------------------------------------------- begin_model CLINOAMPHIBOLE: Diener et al, JMG 2011 25:631-656, modified from Diener et al, JMG 2008. -------------------------------------------------------- corrections/revisions 10/07 z(m2a,al) corrected. Y Y. Podladchikov 3/08 z(m1a,mg),z(m4,ca),z(m4,mg), and fged corrected, T1 multiplicity reduced to 1. Enthalpies of ordering corrected. JADC. 6/08 z(m1,mg) corrected to include mrb, second limit equations for cammo1 and cammo2 corrected accordingly. corrected enthalpies for cammo1 and cammo2. 8/31/11 2011 DP model revisions entered by MJC. 1/24/17 fgrk-grk exchange added 3/ 8/18 dqfs for cumm and grun moved from model to data file 11/2/18 reformulated as 2x2x5 prism, adding Ca-free parg and Ts, and Ca-bearing grk exchanges. JADC. -------------------------------------------------------- NOTE to use this model the following endmembers must be specified with make definitions in the thermodynamic data file ts_dqf parg_dqf gl_dqf cumm_dqf grun_dqf additionally the following endmembers should be excluded in the computational option file: ts parg gl cumm grun The model composition space is formulated as prism composed of 3 simplexes the first simplex is 1d (binary) and represents divalent Mg/(Fe+Mg), the second simplex is 1d (binary) and represents the exchange of divalent M (Fe and Mg) for Ca and the third simplex is 5d (hexary) and represents the generalized (M,Ca)-amphibole exchanges: (M,Ca)-Al_Tschermaks, (M,Ca)-Na_Pargasite, M-Riebeckite, M-Glaucophane, and (M,Ca)-Fe3+_tschermaks (Na-free riebeckite). Because some of the exchanges are not possible due to charge balance constraints, the impossible vertices of the simplex (Ca-riebeckite, Ca-glaucophane) are populated by replicating possible vertices. The current formulation is undesirable both because of these replicated vertices and and because the dependent (M,Ca)-Fe3+_tschermaks adds a dimension to the composition space. See comments for the Augite(G) model for further discussion. In the present model the independent prismatic variables (used for specifying) the subdivision of the composition space are: X(1,1) - Mg/(Fe+Mg) X(2,1) - Ca/M on M1, M = divalent Fe and Mg X(3,1) - (M,Ca)-Al_Tschermak X(3,2) - (M,Ca)-Na_Pargasite X(3,3) - M-Glaucophane X(3,4) - M-Riebeckite X(3,5) - (M,Ca)-Fe3+_tschermaks (Na-free riebeckite) -------------------------------------------------------- A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 1(4)* _________________________________________ 1 tr Vac Mg Mg Ca Si_Si independent 2 ftr Vac Fe Fe Ca Si_Si dependent 3 ts_dqf Vac Mg Al Ca Al_Si independent 4 fts Vac Fe Al Ca Al_Si dependent 5 parg_dqf Na Mg Mg_Al Ca Al_Si independent 6 fparg Na Fe Fe_Al Ca Al_Si dependent 7 gl_dqf Vac Mg Al Na Si_Si independent 8 fgl Vac Fe Al Na Si_Si dependent 9 cumm_dqf Vac Mg Mg Mg Si_Si independent 10 grun_dqf Vac Fe Fe Fe Si_Si independent 11 mrb Vac Mg Fe3+ Na Si_Si independent 12 frb Vac Fe Fe3+ Na Si_Si dependent 13 cammo1 Vac Mg Fe Fe Si_Si ordered 14 cammo2 Vac Fe Mg Fe Si_Si ordered dependent exchange grk V M Fe3 M Si_Al *T1 has a true multiplicity of 4, H&P previously used an effective multiplicity of 2; however in Diener et al. '07 the multiplicity has been reduced to 1. JADC 9/07. --------------------------------------------- cAmph(DP) | solution name abbreviation Amph full_name clinoamphibole 8 | model type: prismatic, two ordering parameters 3 | 3 simplices 2 2 6 | 2 binary and 1 hexary ts_dqf fcts_d mts_d fts_d | new parg_dqf fcparg_d mparg_d fparg_d | new gl_dqf fgl_d gl_d fgl_d1 mrb frb_d mrb_d frb_d1 mcgrk_d fcgrk_d | new mgrk_d fgrk_d tr ftr_d cumm_dqf grun_dqf 2 | 2 ordered species: cammo1 = 3/7 cumm_dqf + 4/7 grun_dqf enthalpy_of_ordering = -9.5d3 cammo2 = 2/7 cumm_dqf + 5/7 grun_dqf enthalpy_of_ordering = -11.7d3 | these enthalpies differ from the published values | becuase Thermocalc reactions are specified in terms of the | endmember without "DQF" corrections, while in Perple_X | endmember include any DQF corrections. begin_limits cammo1 = -7/3 grun_dqf - 4/3 cammo1 + 5/3 cammo2 - 5/3 cammo2 delta = 7/3 z(M2,Fe) cammo1 = -7/4 + 7/4 grun_dqf + 1 cammo1 + 1/2 cammo2 + 5/4 cammo2 delta = 7/4 z(M1,Fe) cammo1 = -7/3 + 7/3 tr + 7/6 parg_dqf + 7/3 cumm_dqf + 1 cammo1 + 5/3 cammo2 + 2/3 cammo2 delta = 7/3 z(M2,Mg) cammo1 = -7/3 + 7/3 cumm_dqf + 1 cammo1 - 2/3 cammo2 + 2/3 cammo2 delta = 7/3 z(M4,Mg) cammo1 = -7/3 grun_dqf - 4/3 cammo1 - 2/3 cammo2 - 5/3 cammo2 delta = 7/3 z(M4,Fe) cammo2 = -7/5 + 7/5 grun_dqf + 3/5 cammo1 + 4/5 cammo1 + 1 cammo2 delta = 7/5 z(M2,Fe) cammo2 = -7/2 grun_dqf + 2 cammo1 - 2 cammo1 - 5/2 cammo2 delta = 7/2 z(M1,Fe) cammo2 = -7/5 tr - 7/10 parg_dqf - 7/5 cumm_dqf + 3/5 cammo1 - 3/5 cammo1 - 2/5 cammo2 delta = 7/5 cammo2 = -7/2 + 7/2 cumm_dqf - 3/2 cammo1 + 3/2 cammo1 + 1 cammo2 delta = 7/2 cammo2 = -7/2 grun_dqf - 3/2 cammo1 - 2 cammo1 - 5/2 cammo2 delta = 7/2 end_limits 17 | # of dependent endmembers ftr_d = 1 tr + 2 grun_dqf - 1 cammo1 - 1 cammo2 fcparg_d = 1 parg_dqf + 3/2 grun_dqf - 1 cammo1 - 1/2 cammo2 fparg_d = 1 parg_dqf + 1/2 grun_dqf + 1/2 cammo2 - 1 tr mparg_d = 1 parg_dqf - 1 tr + 1 cumm_dqf fcts_d = 1 ts_dqf + 1 grun_dqf - 1 cammo1 fts_d = 1 ts_dqf - 1 tr + 1 cammo2 mts_d = 1 ts_dqf - 1 tr + 1 cumm_dqf gl_d = 1 gl_dqf fgl_d1 = 1 gl_dqf + 1 grun_dqf - 1 cammo1 mrb_d = 1 mrb frb_d1 = 1 mrb + 1 grun_dqf - 1 cammo1 fgl_d = 1 gl_dqf + 1 grun_dqf - 1 cammo1 frb_d = 1 mrb + 1 grun_dqf - 1 cammo1 mcgrk_d = 1 mrb + 1 ts_dqf - 1 gl_dqf mgrk_d = 1 mrb + 1 ts_dqf - 1 gl_dqf - 1 tr + 1 cumm_dqf fgrk_d = 1 mrb + 1 ts_dqf - 1 gl_dqf - 1 tr + 1 cammo2 fcgrk_d = 1 mrb + 1 ts_dqf - 1 gl_dqf - 1 cammo1 + 1 grun_dqf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | endmember flags. 0. 1. .1 0 | range and resolution for X(1,1) 0. 1. .1 0 | range and resolution for X(2,1) 0. 1. .1 0 | range and resolution for X(3,1) => ts quadrilateral 0. 1. .1 0 | range and resolution for X(3,2) => parg quadrilateral 0. 1. .1 0 | range and resolution for X(3,3) => rb quadrilateral 0. 1. .1 0 | range and resolution for X(3,4) => gl quadrilateral 0. 1. .1 0 | range and resolution for X(3,5) => grk quadrilateral begin_excess_function w(mrb tr) 52e3 0. 0. w(mrb ts_dqf) 20e3 0. 0. w(mrb parg_dqf) 40e3 0. 0. w(mrb cumm_dqf) 80e3 0. 0. w(mrb grun_dqf) 91e3 0. 0. w(mrb cammo1) 80e3 0. 0. w(mrb cammo2) 90e3 0. 0. w(cammo2 tr) 63e3 0. 0. w(cammo2 ts_dqf) 72.5e3 0. 0. w(cammo2 parg_dqf) 94.8e3 0. 0. w(cammo2 gl_dqf) 111.2e3 0. 0. w(cammo2 cumm_dqf) 23e3 0. 0. w(cammo2 grun_dqf) 8e3 0. 0. w(cammo2 cammo1) 20e3 0. 0. w(cammo1 tr) 57e3 0. 0. w(cammo1 ts_dqf) 70e3 0. 0. w(cammo1 parg_dqf) 94.8e3 0. 0. w(cammo1 gl_dqf) 100e3 0. 0. w(cammo1 cumm_dqf) 18e3 0. 0. w(cammo1 grun_dqf) 12e3 0. 0. w(grun_dqf tr) 75e3 0. 0. w(grun_dqf ts_dqf) 80e3 0. 0. w(grun_dqf parg_dqf) 106.7e3 0. 0. w(grun_dqf gl_dqf) 113.5e3 0. 0. w(grun_dqf cumm_dqf) 33e3 0. 0. w(cumm_dqf tr) 45e3 0. 0. w(cumm_dqf ts_dqf) 70e3 0. 0. w(cumm_dqf parg_dqf) 90e3 0. 0. w(cumm_dqf gl_dqf) 100e3 0. 0. w(gl_dqf tr) 65e3 0. 0. w(gl_dqf ts_dqf) 25e3 0. 0. w(gl_dqf parg_dqf) 50e3 0. 0. w(parg_dqf tr) 25e3 0. 0. w(parg_dqf ts_dqf) -40e3 0. 0. w(ts_dqf tr) 20e3 0. 0. end_excess_function 5 | 5 site (A, M1, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg_dqf 2 3. | 2 species on M1, 3 sites per formula unit z(M1,fe) = 1 grun_dqf + 1 cammo2 4 2. | 4 species on M2, 2 sites pfu z(M2,fe) = 1 grun_dqf + 1 cammo1 z(m2,al) = 1 ts_dqf + 1/2 parg_dqf + 1 gl_dqf z(m2,fe3+) = 1 mrb 4 2. | 4 species on M4, 2 sites pfu z(m4,na) = 1 gl_dqf + 1 mrb z(m4,mg) = 1 cumm_dqf z(m4,fe) = 1 grun_dqf + 1 cammo1 + 1 cammo2 2 1. | 2 species on T1, fake site multiplicity of 1. z(T1,Al) = 1/2 ts_dqf + 1/2 parg_dqf begin_van_laar_sizes alpha(tr) 1.0 alpha(parg_dqf) 1.7 alpha(ts_dqf) 1.5 alpha(gl_dqf) 0.8 alpha(cumm_dqf) 1.0 alpha(grun_dqf) 1.0 alpha(cammo1) 1.0 alpha(cammo2) 1.0 alpha(mrb) 0.8 end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model ORTHOAMPHIBOLE: Diener et al, JMG 2011 25:631-656, modified from Diener et al, JMG 2008 corrections/revisions 10/07 z(m2a,al) corrected. Y. Podladchikov. 3/08 z(m1a,mg),z(m4,ca),z(m4,mg), and fged corrected, T1 multiplicity reduced to 1. Enthalpies of ordering corrected. JADC. 8/08 Enthalpy of ordering corrected for HP dqfs. 10/31/11 2011 DP revisions entered by MJC. 11/ 2/2018 reformulated as a 2x2x6 prism adding Na-free riebeckite (grk) --------------------------------------------- NOTE to use this the following endmembers must be specified with make definitions in the thermodynamic data file mpa = 1 parg - 1 tr +1 anth dqf(25d3) ged_dqf = dqf(ged) 20000. 0. 0. ogl_dqf = dqf(gl) 15000. 0. 0. fanth_dq = dqf(fanth) 7000. 0. 0. omrb_dqf = 1 gl -2 jd -2 acm dqf(33d3) additionally the following endmembers should be excluded in the computational option file if they interfere with calculated phase relations: ged fanth gl The model composition space is formulated as prism composed of 3 simplexes the first simplex is 1d (binary) and represents divalent Mg/(Fe+Mg), the second simplex is 1d (binary) and represents the exchange of divalent M (Fe and Mg) for Ca and the third simplex is 5d (hexary) and represents the generalized (M,Ca)-amphibole exchanges: (M,Ca)-Al_Tschermaks, (M,Ca)-Na_Pargasite, M-Riebeckite, M-Glaucophane, and (M,Ca)-Fe3+_tschermaks (Na-free riebeckite). Because some of the exchanges are not possible due to charge balance constraints, the impossible vertices of the simplex (Ca-riebeckite, Ca-glaucophane) are populated by replicating possible vertices. The current formulation is undesirable both because of these replicated vertices and and because the dependent (M,Ca)-Fe3+_tschermaks adds a dimension to the composition space. See comments for the Augite(G) model for further discussion. In the present model the independent prismatic variables (used for specifying) the subdivision of the composition space are: X(1,1) - Mg/(Fe+Mg) X(2,1) - Ca/M on M1, M = divalent Fe and Mg X(3,2) - (M,Ca)-Na_oPargasite X(3,1) - (M,Ca)-Al_Tschermak (Gedrite) X(3,3) - M-oGlaucophane X(3,4) - M-oRiebeckite X(3,5) - (M,Ca)-Fe3+_oTschermaks (Na-free ortho-riebeckite) -------------------------------------------------------- A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 1(4)* _________________________________________ 1 tr Vac Mg Mg Ca Si_Si independent 3 ged_dqf Vac Mg Al Mg Al_Si independent 5 mpa Na Mg Mg_Al Mg Al_Si independent 7 ogl_dqf Vac Mg Al Na Si_Si independent 9 anth Vac Mg Mg Mg Si_Si independent 10 fanth_dq Vac Fe Fe Fe Si_Si independent 11 omrb_dqf Vac Mg Fe3+ Na Si_Si independent 13 ammo1 Vac Mg Fe Fe Si_Si ordered 14 ammo2 Vac Fe Mg Fe Si_Si ordered *T1 has a true multiplicity of 4, H&P previously used an effective multiplicity of 2; in Diener et al '07 the multiplicity has been reduced to 1. JADC 9/07. (AlMg-1,M2) = ged - anth (CaNa-1,M4) = tr + (ged - anth) - gl (CaMg-1,M4) = tr - anth (MgNa-1,M4) = ged - ogl (Fe3Al-1,M2) = mrb - ogl FeMg-1(M4) = (-fanth - anth + ammo1 + ammo2) oAmph(DP) | model name abbreviation oAmph full_name orthoamphibole 8 | model type 3 | 3 simplex prism 2 2 6 | 2 binary and 1 hexary cmpa_d cfpa_d | new mpa fpa_d cmged_d cfged_d | new ged_dqf fged_d ogl_dqf fgl_d ogl_d fgl_d1 omrb_dqf frb_d omrb_d frb_d1 mcgrk_d fcgrk_d | new mgrk_d fgrk_d | new tr ftr_d anth fanth_dq 2 | 2 ordered species: ammo1 = 3/7 anth + 4/7 fanth_dq enthalpy_of_ordering = -9.5d3 ammo2 = 2/7 anth + 5/7 fanth_dq enthalpy_of_ordering = -11.7d3 | these enthalpies differ from the published values | becuase Thermocalc reactions are specified in terms of the | endmember without "DQF" corrections, while in Perple_X | endmember include any DQF corrections. begin_limits ammo1 = -7/4 + 7/4 fanth_dq + 1 ammo1 + 1/2 ammo2 + 5/4 ammo2 delta = 7/4 ammo1 = -7/3 + 7/3 tr + 7/6 mpa + 7/3 anth + 1 ammo1 + 5/3 ammo2 + 2/3 ammo2 delta = 7/3 ammo1 = -7/3 + 7/3 mpa + 7/3 anth + 7/3 ged_dqf + 1 ammo1 - 2/3 ammo2 + 2/3 ammo2 delta = 7/3 ammo1 = - 7/3 fanth_dq - 4/3 ammo1 - 2/3 ammo2 - 5/3 ammo2 delta = 7/3 ammo1 = - 7/3 fanth_dq - 4/3 ammo1 + 5/3 ammo2 - 5/3 ammo2 delta = 7/3 ammo2 = -7/2 fanth_dq + 2 ammo1 - 2 ammo1 - 5/2 ammo2 delta = 7/2 ammo2 = -7/5 tr - 7/10 mpa - 7/5 anth + 3/5 ammo1 - 3/5 ammo1 - 2/5 ammo2 delta = 7/5 ammo2 = -7/2 + 7/2 anth + 7/2 mpa + 7/2 ged_dqf - 3/2 ammo1 + 3/2 ammo1 + 1 ammo2 delta = 7/2 ammo2 = - 7/2 fanth_dq - 3/2 ammo1 - 2 ammo1 - 5/2 ammo2 delta = 7/2 ammo2 = -7/5 + 7/5 fanth_dq + 3/5 ammo1 + 4/5 ammo1 + 1 ammo2 delta = 7/5 end_limits 17 | number of dependent endmembers ftr_d = 1 tr + 2 fanth_dq - 1 ammo1 - 1 ammo2 fpa_d = 1 mpa + 1/2 fanth_dq + 1/2 ammo2 - 1 anth cfpa_d = 1 mpa + 1 tr + 3/2 fanth_dq - 1 ammo1 - 1/2 ammo2 - 1 anth cmpa_d = 1 mpa + 1 tr - 1 anth cmged_d = 1 ged_dqf - 1 anth + 1 tr cfged_d = 1 ged_dqf - 1 anth + 1 tr + 1 fanth_dq - 1 ammo1 mgrk_d = 1 omrb_dqf + 1 ged_dqf - 1 ogl_dqf mcgrk_d = 1 omrb_dqf + 1 ged_dqf - 1 anth - 1 ogl_dqf + 1 tr fcgrk_d = 1 omrb_dqf + 1 ged_dqf - 1 ogl_dqf + 1 fanth_dq - 1 ammo1 fgrk_d = 1 omrb_dqf + 1 ged_dqf - 1 ogl_dqf - 1 anth + 1 ammo2 fged_d = 1 ged_dqf - 1 anth + 1 ammo2 ogl_d = 1 ogl_dqf fgl_d1 = 1 ogl_dqf + 1 fanth_dq - 1 ammo1 omrb_d = 1 omrb_dqf frb_d1 = 1 omrb_dqf + 1 fanth_dq - 1 ammo1 fgl_d = 1 ogl_dqf + 1 fanth_dq - 1 ammo1 frb_d = 1 omrb_dqf + 1 fanth_dq - 1 ammo1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | endmember flags. 0. 1. .1 0 | range and resolution for X(1,1) 0. 1. .1 0 | range and resolution for X(2,1) 0. 1. .1 0 | range and resolution for X(3,1) => ged quadrilateral 0. 1. .1 0 | range and resolution for X(3,2) => parg quadrilateral 0. 1. .1 0 | range and resolution for X(3,3) => rb quadrilateral 0. 1. .1 0 | range and resolution for X(3,4) => gl quadrilateral 0. 1. .1 0 | range and resolution for X(3,5) => grk quadrilateral begin_excess_function W(anth ged_dqf ) 25d3 W(anth mpa ) 25d3 W(anth ogl_dqf) 65d3 W(anth tr) 45d3 W(anth fanth_dq) 33d3 W(anth omrb_dqf) 52d3 W(anth ammo1) 18d3 W(anth ammo2) 23d3 W(ged_dqf mpa ) -40d3 W(ged_dqf ogl_dqf) 25d3 W(ged_dqf tr) 70d3 W(ged_dqf fanth_dq) 38.5d3 W(ged_dqf omrb_dqf) 20d3 W(ged_dqf ammo1) 29d3 W(ged_dqf ammo2) 34.6d3 W(mpa ogl_dqf) 50d3 0 0 W(mpa tr) 90d3 0 0 W(mpa fanth_dq) 45d3 0 0 W(mpa omrb_dqf) 40d3 0 0 W(mpa ammo1) 33.2d3 0 0 W(mpa ammo2) 36d3 0 0 W(ogl_dqf tr) 65d3 0 0 W(ogl_dqf fanth_dq) 81.2d3 0 0 W(ogl_dqf ammo1) 65.5d3 0 0 W(ogl_dqf ammo2) 78.4d3 0 0 W(tr fanth_dq) 75d3 0 0 W(tr omrb_dqf) 52d3 0 0 W(tr ammo1) 57d3 0 0 W(tr ammo2) 63d3 0 0 W(fanth_dq omrb_dqf) 65d3 0 0 W(fanth_dq ammo1) 12d3 0 0 W(fanth_dq ammo2) 8d3 0 0 W(omrb_dqf ammo1) 52d3 0 0 W(omrb_dqf ammo2) 63d3 0 0 W(ammo1 ammo2) 20d3 0 0 end_excess_function 5 | 5 site (A, M1, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 mpa 2 1. | 2 species on T1, fake site multiplicity of 1. z(T1,Al) = 1/2 ged_dqf + 1/2 mpa 2 3. | 2 species on M1, 3 sites per formula unit z(m1,fe) = 1 fanth_dq + 1 ammo2 4 2. | 4 species on M2, 2 sites pfu z(m2,fe) = 1 fanth_dq + 1 ammo1 z(m2,al) = 1 ged_dqf + 1/2 mpa + 1 ogl_dqf z(m2,fe3+) = 1 omrb_dqf 4 2. | 4 species on M4, 2 sites pfu z(m4,ca) = 1 tr z(m4,mg) = 1 mpa + 1 anth + 1 ged_dqf z(m4,na) = 1 ogl_dqf + 1 omrb_dqf begin_van_laar_sizes alpha(tr) 1.0 0. 0. alpha(ged_dqf ) 1.5 0. 0. alpha(mpa ) 1.7 0. 0. alpha(ogl_dqf) 0.8 0. 0. alpha(anth) 1.0 0. 0. alpha(fanth_dq) 1.0 0. 0. alpha(ammo1) 1.0 0. 0. alpha(ammo2) 1.0 0. 0. alpha(omrb_dqf) 0.8 0. 0. end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Green, ECR, Holland, TJB & Powell, R (2007) An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogite rocks. American Mineralogist, 92, 1181-1189. Originally this model had no DQF corrections. To use this model with ds5 versions (pre-2011) of the THERMOCALC data base, the DQF on acmite should be -4000 J/mol as specified by Diener & Powell (2011), entered by MJC, Oct 31, 2011. To use this model with ds6 versions (2011+) of the THERMOCALC data base, the DQF [specified at the end of this model] on acmite should be -7000 J/mol as specified by Green et al (2016) and noted by Felix Gervais. The DQF specification for acm moved from this solution model to the thermodynamic data file. March 7, 2018. JADC. --------------------------------------------- WARNING: The choice of independent ordered species (here, cfm, om, jac) has the conseqence that this model CANNOT be used for the following subcompositions: jd-hed, hed-acm, di-acm, hed-acm-jd, hed-acm-di to work in these joins either fom, hac, or dac must replace either om or/and cfm. Site: 1 2 3 4 M2a M2b M1a M1b ____________________________________ Mutliplicity 1/2 1/2 1/2 1/2 ____________________________________ 1 Diopside Ca Ca Mg Mg Species: 2 Jadeite Na Na Al Al 3 Hedenbergite Ca Ca Fe2+ Fe2+ 4 Acmite Na Na Fe3+ Fe3+ ___________________________________ Ordered Cpd: 5 om Na Ca Al Mg 6 cfm Ca Ca Mg Fe 7 jac Na Na Fe3+ Al Omph(GHP) abbreviation Cpx full_name clinopyroxene 6 | model type 4 | disordered endmembers di jd acm_dqf hed 3 | number of ordered species om = 1/2 jd + 1/2 di enthalpy_of_ordering = -2.9d3 cfm = 1/2 di + 1/2 hed enthalpy_of_ordering = -1.5d3 jac = 1/2 jd + 1/2 acm_dqf enthalpy_of_ordering = -1d3 | this differs from the published value of -3d3 J/mol | because Thermocalc reactions are specified in terms of the | endmember without "DQF" corrections, while in Perple_X | endmember include any DQF corrections. begin_limits om = -2 + 2 di + 2 hed delta = 2 om = -2 + 2 jd + 2 acm_dqf delta = 2 om = -2 + 2 di + 1 cfm delta = 2 om = -2 + 2 jd + 1 jac delta = 2 om = -2 + 2 acm_dqf + 2 jd + 2 hed + 1 cfm delta = 2 om = -2 + 2 acm_dqf + 2 di + 2 hed + 1 jac delta = 2 cfm = -2 di + 1 om delta = 2 cfm = -2 + 2 hed delta = 2 cfm = -2 hed delta = 2 cfm = -2 jd - 2 hed - 2 acm_dqf + 1 om delta = 2 jac = -2 acm_dqf delta = 2 jac = -2 jd + 1 om delta = 2 jac = -2 + 2 acm_dqf delta = 2 jac = -2 acm_dqf - 2 di - 2 hed + 1 om delta = 2 end_limits 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution of X(di) 0. 1. 0.1 0 | range and resolution of X(jd) 0. 1. 0.1 0 | range and resolution of X(acm) begin_excess_function W(jd di) 26d3 W(jd hed) 24d3 W(jd acm_dqf) 5d3 W(jd om) 15.5d3 W(jd cfm) 25.2d3 W(jd jac) 3d3 W(di hed) 4d3 W(di acm_dqf) 21d3 W(di om) 15.75d3 W(di cfm) 2d3 W(di jac) 24.65d3 W(hed acm_dqf) 20.8d3 W(hed om) 17.2d3 W(hed cfm) 2d3 W(hed jac) 24.6d3 W(acm_dqf om) 16.4d3 W(acm_dqf cfm) 22.2d3 W(acm_dqf jac) 3d3 W(om cfm) 18.45d3 W(om jac) 19.5d3 W(cfm jac) 24.55d3 end_excess_function 4 | 4 site entropy model (m1a, m1b, m2b, m2a) 4 0.5 | 4 species on m1b, mult = 1/2 z(m1b,al) = 1 jd + 1 jac z(m1b,fe2+) = 1 hed + 1 cfm z(m1b,fe3+) = 1 acm_dqf 2 0.5 | 2 species on m2a, mutiplicity = 1/2 z(m2a,ca) = 1 di + 1 hed + 1 cfm 2 0.5 | 2 species on m2b, mult. = 1/2 z(m2b,na) = 1 jd + 1 acm_dqf + 1 jac 4 0.5 | 4 species on m1a, mult = 1/2 z(m1a,mg) = 1 di + 1 cfm z(m1a,fe2+) = 1 hed z(m1a,fe3+) = 1 acm_dqf + 1 jac reach_increment 0 3 end_of_model -------------------------------------------------------- begin_model | preliminary BCC iron solution model FeSi(BCC) abbreviation BCC full_name alloy 2 | model type: simplicial composition space. 2 | 2 endmembers iron Si 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function W(iron Si) -100d3 0 0 end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity = 1. z(Fe) = 1 iron reach_increment 3 end_of_model -------------------------------------------------------- begin_model | FCC Fe-Si alloy after Lacaze and Sundman (1990) Metal. Trans 22A:1991-2211 FeSi(fcc) abbreviation FCC full_name alloy 2 | model type: simplicial composition space. 2 | 2 endmembers Fe-FCC Si-FCC 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function W(Fe-FCC Si-FCC) -125247.7 41.116 0d0 W(Fe-FCC Fe-FCC Si-FCC) -142707.6 0d0 0d0 W(Fe-FCC Si-FCC Si-FCC) 142707.6 0d0 0d0 W(Fe-FCC Fe-FCC Fe-FCC Si-FCC) 89907.3 0d0 0d0 W(Fe-FCC Fe-FCC Si-FCC Si-FCC) -179814.6 0d0 0d0 W(Fe-FCC Si-FCC Si-FCC Si-FCC) 89907.3 0d0 0d0 end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity = 1. z(Fe) = 1 Fe-FCC reach_increment 3 end_of_model -------------------------------------------------------- begin_model | BCC Fe-Si alloy after Lacaze and Sundman (1990) Metal. Trans 22A:1991-2211 | because the order/disorder formulation implemented in this model is thermodynamically | inconsistent, the model is implemented internally in Perple_X (function gbccfesi). | The information provided below is a stub for the internal implementation and should | not be modified (the compositional limits and subdivision scheme are an exception in | this regard). oFeSi(bcc) abbreviation BCC full_name alloy 29 2 Fe-BCC Si-BCC 0 0 0. 1. 0.1 0 | compositional limits and subdivision scheme ideal 0 end_of_model -------------------------------------------------------- begin_model FeSi_liq abbreviation Liq full_name liquid 2 2 Fe_LIQ Si_LIQ 0 0 0. 1. 0.1 0 begin_excess_function w(Fe_LIQ Si_LIQ) -164434.600 41.9773 0. w(Fe_LIQ Fe_LIQ Si_LIQ) 0.000 -21.523 0. w(Fe_LIQ Si_LIQ Si_LIQ) 0.000 21.523 0. w(Fe_LIQ Fe_LIQ Fe_LIQ Si_LIQ) -18821.542 22.070 0. w(Fe_LIQ Fe_LIQ Si_LIQ Si_LIQ) 37643.080 -44.14 0. w(Fe_LIQ Si_LIQ Si_LIQ Si_LIQ) -18821.542 22.07 0. w(Fe_LIQ Fe_LIQ Fe_LIQ Fe_LIQ Si_LIQ) 9695.8 0. 0. | 9695.8 w(Fe_LIQ Fe_LIQ Fe_LIQ Si_LIQ Si_LIQ) -29087.4 0. 0. w(Fe_LIQ Fe_LIQ Si_LIQ Si_LIQ Si_LIQ) 29087.4 0. 0. w(Fe_LIQ Si_LIQ Si_LIQ Si_LIQ Si_LIQ) -9695.8 0. 0. | 9695.8 end_excess_function 1 2 1. z(Fe) = 1 Fe_LIQ end_of_model -------------------------------------------------------- begin_model | Entered by Jeff Marsh, Jan 10, 2012. ZrRu | zr in rutile after Tomkins et al., 07 abbreviation Ru full_name ilmenite 2 | model type 2 2 | number of endmembers zrru ru 0 0 | endmember flags 1e-5 1e-4 0.1 1 | non-linear resolution of zrru begin_excess_function w(ru zrru) 10000 0 0 end_excess_function 1 | 1 site configurational entropy model 2 1. | 2 species, site multiplicity = 1. z(Ti) = 1 ru end_of_model -------------------------------------------------------- begin_model | Entered by Jeff Marsh, Jan 10, 2012. ZrGt(KP) | addition of Ca3Al2[Si2Zr]O12 end-mem after Kelsey & Powell '10 abbreviation Gt full_name garnet 2 | model type: simplicial composition space 4 | number of endmembers zrg alm py gr | endmember names 0 0 0 0 | endmember flags 1e-5 1e-4 0.1 1 | imod = 1 -> non-linear subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(py gr) 45000. 0. 0. w(alm py) 2500. 0. 0. w(alm gr) 10000. 0. 0. end_excess_function 2 2 site entropy model 3 3. 3 species, site multiplicity 3 z(Fe) = 1 alm z(Mg) = 1 py 2 2. |2 species, site multiplicity 2 z(Zr) = 1 zrg end_of_model -------------------------------------------------------- begin_model Silica Fluid this is a hybrid EoS, the EoS used for the individual species are controlled by the hybrid_EoS_XXX option. Si-Fluid abbreviation F full_name fluid 0 | model type: Internal EoS 2 O SIO 0 0 endmember flags 0.0 1.0 0.1 0 | subdivision ranges, imod = 0 -> cartesian subdivision ideal 0 reach_increment 3 end_of_model -------------------------------------------------------- begin_model COH-Fluid Generic Hybrid Fluid EoS with linear Subdivision, see COH-Fluid+ for the non-linear subdivision version of this model. See perplex.ethz.ch/Perple_X_generic_hyrbid_fluid_EoS.html for explanation of this type of fluid model. -------------------------------------------------------- COH-Fluid abbreviation F full_name fluid 39 | model type: Generic Hybrid EoS 9 CO2 CH4 H2S SO2 H2 CO N2 NH3 H2O 0 0 0 0 0 0 0 0 0 | endmember flags 0. 1. .1 0 | subdivision ranges, imod = 0 -> cartesian subdivision 0. 1. .1 0 | subdivision ranges, imod = 0 -> cartesian subdivision 0. 1. .1 0 | subdivision ranges, imod = 0 -> cartesian subdivision 0. 1. .1 0 | subdivision ranges, imod = 0 -> cartesian subdivision 0. 1. .1 0 | subdivision ranges, imod = 0 -> cartesian subdivision 0. 1. .1 0 | subdivision ranges, imod = 0 -> cartesian subdivision 0 1. .1 0 | subdivision ranges, imod = 0 -> cartesian subdivision 0. 1. .1 0 | subdivision ranges, imod = 0 -> cartesian subdivision ideal | the fluid is non-ideal, this tag means only no excess function 0 reach_increment 0 end_of_model -------------------------------------------------------- begin_model COH-Fluid+ Generic Hybrid Fluid EoS with non-linear Subdivision. see COH-Fluid for the linear subdivision version of this model. See the header of this file for an explanation of non-linear subdivision parameters. See perplex.ethz.ch/Perple_X_generic_hyrbid_fluid_EoS.html for explanation of this type of fluid model. -------------------------------------------------------- COH-Fluid+ abbreviation F full_name fluid 39 | model type: Generic Hybrid EoS 7 CO2 CH4 H2S SO2 H2 CO H2O 0 0 0 0 0 0 0 0 | endmember flags 1e-5 3e-1 .1 1 | subdivision ranges, imod = 1 -> non-linear subdivision 1e-5 1. .1 1 | subdivision ranges, imod = 1 -> non-linear subdivision 1e-5 1e-3 .1 1 | subdivision ranges, imod = 1 -> non-linear subdivision 1e-5 2.5e-5 .1 1 | subdivision ranges, imod = 1 -> non-linear subdivision 1e-5 1e-2 .1 1 | subdivision ranges, imod = 1 -> non-linear subdivision 1e-5 1e-2 .1 1 | subdivision ranges, imod = 1 -> non-linear subdivision ideal 0 reach_increment 0 end_of_model -------------------------------------------------------- begin_model See perplex.ethz.ch/Perple_X_generic_hyrbid_fluid_EoS.html for explanation of this type of fluid model. WADDAH abbreviation F full_name fluid 39 | model type: Generic Hybrid EoS 1 H2O 0 | endmember flags ideal 0 | ideal configurational entropy end_of_model -------------------------------------------------------- begin_model See perplex.ethz.ch/Perple_X_generic_hyrbid_fluid_EoS.html for explanation of this type of fluid model. C-H-Fluid abbreviation F full_name fluid 39 | model type: Generic Hybrid EoS 3 C2H6 CH4 H2 0 0 0 endmember flags 0.0 1.0 0.1 0 | subdivision ranges, imod = 0 -> cartesian subdivision 0.0 1.0 0.1 0 | subdivision ranges, imod = 0 -> cartesian subdivision ideal 0 | ideal configurational entropy reach_increment 3 end_of_model -------------------------------------------------------- begin_model See perplex.ethz.ch/Perple_X_generic_hyrbid_fluid_EoS.html for explanation of this type of fluid model. HOS-Fluid abbreviation F full_name fluid 39 | model type: Generic Hybrid EoS 4 H2S SO2 H2 H2O 0 0 0 0 | endmember flags 0.0 1.0 0.1 0 | subdivision ranges, imod = 0 -> cartesian subdivision 0.0 1.0 0.1 0 | subdivision ranges, imod = 0 -> cartesian subdivision 0.0 1.0 0.1 0 | subdivision ranges, imod = 0 -> cartesian subdivision ideal 0 | ideal configurational entropy reach_increment 3 end_of_model -------------------------------------------------------- begin_model majoritic garnet from stixrude '11 Maj abbreviation Gt full_name garnet 2 model type: simplicial composition space 4 number of endmembers maj alm py gr endmember names 1 0 0 0 | endmember flags 0. 0.2 0.1 0 | imod = 1 -> asymmetric transform subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision | NOTE restricted subdivision range on Mn (Species 1)! begin_excess_function w(py gr) 33000. 0. 0. w(alm py) 2500. 0. 0. | hp '98 give 2.4 kJ W(gr maj) 58d3 0. 0. W(py maj) 21.3d3 0. 0. end_excess_function 2 2 site entropy model 3 3. 3 species, A site multiplicity 3 z(Fe) = 1 alm z(Ca) = 1 gr 3 2. 2 species, B site multiplicity 2 z(Mg) = 1/2 maj z(Si) = 1/2 maj reach_increment 4 end_of_model -------------------------------------------------------- begin_model Wad abbreviation Wad full_name wadleysite 2 | model type: simplicial composition space 2 | 2 endmembers mwd fwd 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(mwd fwd) 16.5d3 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 mwd end_of_model -------------------------------------------------------- begin_model Ring abbreviation Ring full_name ringwoodite 2 | model type: simplicial composition space 2 | 2 endmembers mrw frw 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(mrw frw) 9.1d3 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(mg) = 1 mrw reach_increment 4 end_of_model -------------------------------------------------------- begin_model Wus abbreviation Wus full_name wuestite 2 model type: simplicial composition space 2 2 endmembers per fper 0 0 0.0 1.0 0.1 0 begin_excess_function W(per fper) 13d3 0. 0. end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity = 1. z(mg) = 1 per reach_increment 4 end_of_model -------------------------------------------------------- begin_model | akimotoite (ilmenite-structure) solution Aki abbreviation Aki full_name ilmenite 2 | model type: simplicial composition space 3 | 3 endmembers cor mak fak 0 0 0 | endmember flags 0.0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function W(mak cor) 66d3 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 mak z(fe) = 1 fak 2 1. 2 species on T site multiplicity = 1. z(al) = 1 cor end_of_model -------------------------------------------------------- begin_model Pv abbreviation Pv full_name perovskite 2 | model type: simplicial composition space 3 | 3 endmembers apv mpv fpv 0 0 0 0. 1. 0.1 0 0. 1. 0.1 0 begin_excess_function W(mpv apv) 116d3 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 mpv z(fe) = 1 fpv 2 1. 2 species on T site multiplicity = 1. z(al) = 1 apv begin_van_laar_sizes alpha(mpv) 1.0 0.0 0.0 alpha(apv) 0.39 0.0 0.0 alpha(fpv) 1.0 0.0 0.0 end_van_laar_sizes reach_increment 4 end_of_model ------------------------------------------------ begin_model FeSiC_liq abbreviation Liq full_name liquid 2 3 Fe_LIQ Si_LIQ C_LIQ 0 0 0 0. 1. 0.1 0 0. 1. 0.1 0 begin_excess function w(Fe_LIQ Si_LIQ C_LIQ) 995155.5667 -495.31 0. w(Fe_LIQ C_LIQ) -124320.0 28.5 0. w(Fe_LIQ Fe_LIQ C_LIQ) -19300.0 0. 0. w(Fe_LIQ C_LIQ C_LIQ) 19300.0 0. 0. w(Fe_LIQ Fe_LIQ Fe_LIQ C_LIQ) 49260.0 -19. 0. w(Fe_LIQ Fe_LIQ C_LIQ C_LIQ) -98520.0 38. 0. w(Fe_LIQ C_LIQ C_LIQ C_LIQ) 49260.0 -19. 0. w(Fe_LIQ Fe_LIQ Fe_LIQ Si_LIQ) -18821.542 22.07 0. w(Fe_LIQ Fe_LIQ Si_LIQ Si_LIQ) 37643.084 -44.14 0. w(Fe_LIQ Si_LIQ Si_LIQ Si_LIQ) -18821.542 22.07 0. w(Fe_LIQ Fe_LIQ Fe_LIQ Fe_LIQ Si_LIQ) 9695.8 0. 0. w(Fe_LIQ Fe_LIQ Fe_LIQ Si_LIQ Si_LIQ) -29087.4 0. 0. w(Fe_LIQ Fe_LIQ Si_LIQ Si_LIQ Si_LIQ) 29087.4 0. 0. w(Fe_LIQ Si_LIQ Si_LIQ Si_LIQ Si_LIQ) -9695.8 0. 0. w(Si_LIQ C_LIQ) -133000.0 30.97 0. w(Fe_LIQ Si_LIQ) -164434.6 41.9773 0. w(Fe_LIQ Fe_LIQ Si_LIQ) 0. -21.523 0. w(Fe_LIQ Si_LIQ Si_LIQ) 0. 21.523 0. w(Fe_LIQ Si_LIQ C_LIQ C_LIQ) -549415.5667 495.31 0. w(Fe_LIQ Fe_LIQ Si_LIQ C_LIQ) -0.1001220867d7 495.98 0. w(Fe_LIQ Si_LIQ Si_LIQ C_LIQ) 0.1550636433d7 -955.29 0. end_excess_function 1 3 1. z(Fe) = 1 Fe_LIQ z(Si) = 1 Si_LIQ reach_increment 6 end_of_model -------------------------------------------------------- begin_model Sapphirine, O/D non-ideal, Taylor-Jones & Powell (JMG, 2010, 28, 615-633) * requires the kel04ver.dat thermodynamic data file (for endmember spr5) Entered June 26, 2013. JADC. 1 2 3 M3 M456 T _________________ Mutliplicity 1 3 1 _________________ 1 spr4 Mg Mg Si Species: 2 fspr Fe Fe Si 3 spr5 Al Mg Al 4 fsp5_d Al Fe Al dependent 5 ospr Fe3+ Mg Al 6 fospr_d Fe3+ Fe Al dependent 7 spro Fe Mg Si ordered Dependent endmember: FeMg-1_M3456 = (fspr-spro)/3 fsp5_d = spr5 + fspr - spro fospro_d = spr5 + fspr - spro Sapp(TP) abbreviation Sap full_name sapphirine 8 | model type, should be 9 2 | 2 independent mixing sites, reciprocal solution 2 3 | 2 components {Fe2+, Mg} for composition 1, 3 components {Al, Si, Fe3+} for composition 2. | endmember names spr4 fspr spr5 fsp5_d ospr fospr_d 1 | 1 ordered species: spro = 3/4 spr4 + 1/4 fspr enthalpy_of_ordering = -10d3 begin_limits spro = - 4/3 fspr - 4/3 ospr - 1/3 spro delta = 4/3 z(M3,Mg) spro = - 4/3 fspr - 1/3 spro delta = 4/3 z(M3,Fe) spro = -4 - 4 fspr + 1 ospr - 4 spr5 + 1 spro delta = 4 z(M456,Mg) end_limits 2 | 2 dependent endmembers fsp5_d = 1 spr5 + 1 fspr - 1 spro fospr_d = 1 spr5 + 1 fspr - 1 spro 0 0 0 0 0 0 | endmember flags, indicate if endmember is part of the solution (i.e. iend = 0). | subdivision model for (binary) site 1 (M2): 0. 1. .1 0 | range and resolution of X(Mg), subdivision scheme for site 1: imod = 0 -> cartesian | subdivision model for (ternary) site 2 0. 1. .1 0 | range and resolution of X(Ts), subdivision scheme for site 3, species 1: imod = 0 -> cartesian 0. 1. .1 0 | range and resolution of X(un-Ts), subdivision scheme for site 3, species 2: imod = 0 -> cartesian begin_excess_function W(spr4 spr5) 10d3 0 0 W(spr4 fspr) 16d3 0 0 W(spr4 spro) 4d3 0 0 W(spr4 ospr) 10d3 0 0 W(spr5 fspr) 22d3 0 0 W(spr5 spro) 10d3 0 0 W(fspr spro) 12d3 0 0 W(fspr ospr) 22d3 0 0 W(spro ospr) 10d3 0 0 end_excess_function 3 | 3 site (M3, M456, T) configurational entropy model 2 3. | 2 species on M46, 3 sites per formula unit z(m456,fe) = 1 fspr 4 1. | 4 species on M3, 1 sites per formula unit. z(m3,Al) = 1 spr5 z(m3,Fe3) = 1 ospr z(m3,mg) = 1 spr4 2 1. | 2 species on T, 1 sites per formula unit. z(T,si) = 1 spr4 + 1 fspr + 1 spro begin_dqf_corrections dqf(fspr) -3d3 0. 0. end_dqf_corrections end_of_model -------------------------------------------------------- begin_model |Calcite-Magnesite with Dolomite/Ankerite compound formation. |Franzolin, Schmidt and Poli (2011) CMP 161:213-227, DOI: 10.1007/s00410-010-0527-x | WARNINGS: | This model requires make definitions in the thermodynamic data file for the | odo_ef and oank endmembers. JADC, 3/26/2012. oCcM(EF) abbreviation Do full_name carbonate 2 |model type 5 |number of endmembers mag cc odo sid oank 0 0 0 0 0 |endmember flags 0. 1. 0.1 0 |range and increments on X(cc) 0. 1. 0.1 0 0. 1. 0.1 0 0. 1. 0.1 0 |range and increments on X(mag) begin_excess_function w(mag cc) 28000 0 0 w(cc odo) 11200 0 0.0 w(mag odo) 14000 0 0 W(cc sid) 20503 0 0 w(oank sid) 73650 -50 0 w(oank cc) 12730 -10 0 w(mag sid) 10000 0 0 w(sid odo) 51190 -30 0 w(oank odo) -5000 0 0 w(oank mag) 30000 0 0 end_excess_function 3 |3 site (m1 m2a m2b) entropy model 3 0.5 |3 species on m1, mutiplicity = 1/2 z(m1,ca) = 1 cc + 1 odo + 1 oank z(m1,mg) = 1 mag 3 0.25 |3 species on m2a, mult. = 1/4 z(m2a,ca) = 1 cc z(m2a,mg) = 1 mag + 1 odo 3 0.25 |3 species on m2b, mult. = 1/4 z(m2b,ca) = 1 cc z(m2b,mg) = 1 mag + 1 odo + 1 oank begin_van_laar_sizes alpha(cc) 0.25 0.000929 0 alpha(mag) 1 0. 0.0 alpha(odo) 0.95 0.0 0 alpha(sid) 0.01 0.000666 0 alpha(oank) 0.929 0 0 end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model |Magnesite-Siderite melt, nathan kang, 4/2015. LIQ(NK) abbreviation Liq full_name liquid 2 |model type 2 |number of endmembers MGCO3L FECO3L 0 0 |endmember flags 0. 1. 0.1 0 |range and increments on X(Fe) begin_excess_function W(FECO3L MGCO3L MGCO3L) -7600. 0. 0. |W_sid-mag = W12 W(MGCO3L FECO3L FECO3L) -7600. 0. 0. |W_mag-sid = W21 end_excess_function 1 |1 site entropy model 2 1 |2 species, multiplicity = 1 z(fe) = 1 FECO3L end_of_model -------------------------------------------------------- begin_model LIQ(EF) abbreviation Liq full_name liquid 2 |model type 3 |number of endmembers CACO3L MGCO3L FECO3L 0 0 0 |endmember flags 0. 1. 0.1 0 0. 1. 0.1 0 | range and increments on X(cc) begin_excess_function W(CACO3L CACO3L FECO3L) -65000 0. 0. W(CACO3L FECO3L FECO3L) 2000 0. 0. W(MGCO3L MGCO3L CACO3L) 491900 -300. 0. W(MGCO3L CACO3L CACO3L) -142000. 0. 1.2 W(MGCO3L MGCO3L FECO3L) -5594.2 0. 0. W(MGCO3L FECO3L FECO3L) -5594.2 0. 0. W(CACO3L FECO3L MGCO3L) 0. 0. 0. end_excess_function 1 3 1 z(ca) = 1 CACO3L z(fe) = 1 FECO3L end_of_model -------------------------------------------------------- begin_model |EF disordered ternary carb dis(EF) abbreviation Cc full_name carbonate 2 |model type 3 |number of endmembers mag cc sid 0 0 0 | endmember flags 0. 1. 0.1 0 | range and increments on X(cc) 0. 1. 0.1 0 begin_excess_function w(mag cc) 28000 0 0 W(cc sid) 20503 0 0 w(mag sid) 10000 0 0 end_excess_function 1 |1 site entropy model 3 1 |3 species on m, mutiplicity = 1 z(ca) = 1 cc z(mg) = 1 mag begin_van_laar_sizes alpha(cc) 0.25 0.000929 0 alpha(mag) 1 0. 0.0 alpha(sid) 0.01 0.000666 0 end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Silicate gas, Lewis and Randal (Ideal) Mixing, the EoS used for the pure species is determined by the EoS flag specified for the species in the thermodynamic data file Si-vapor abbreviation gas full_name gas 2 7 number of endmembers | ENDMEMBER NAMES: SiO2 SiO Si O2 O MgO | Mg commented out so entropy model can be read without changing parameter m11 FeO | Fe 0 0 0 0 0 0 0 0 0 | endmember flags. 0.0 1.0 0.1 0 | range and resolution of X(SiO2), 0 => cartesian subdivision/1 => asymmetric subdivision 0.0 0.5 0.1 0 | range and resolution of X(SiO) 0.0 0.5 0.1 0 | range and resolution of X(Si) 0.0 0.5 0.1 0 | range and resolution of X(O2) 0.0 0.5 0.1 0 | range and resolution of X(O) 0.0 0.5 0.1 0 | range and resolution of X(MgO) | 0.0 0.5 0.1 0 | range and resolution of X(Mg) |0.0 0.5 0.1 0 | range and resolution of X(FeO) ideal 1 | molecular configurational entropy model 7 1. | 6 species, multiplicity 1 z(SiO2) = 1 SiO2 z(SiO) = 1 SiO z(O2) = 1 O2 z(O) = 1 O | z(Mg) = 1 Mg | z(Fe) = 1 Fe z(FeO) = 1 FeO z(MgO) = 1 MgO end_of_model -------------------------------------------------------- begin_model Silicate gas, Lewis and Randal (Ideal) Mixing, the EoS used for the pure species is determined by the EoS flag specified for the species in the thermodynamic data file CCO-vapor abbreviation gas full_name gas 2 7 number of endmembers | ENDMEMBER NAMES: CO2 CO O2 | xO(g) xMgO(g) xMg(g) xFeO(g) xFe(g) 0 0 0 0 0 0 0 0 0 | endmember flags. 0.0 1.0 0.1 0 | range and resolution of X(CO2), 0 => cartesian subdivision/1 => asymmetric subdivision 0.0 1.0 0.1 0 | range and resolution of X(CO) 0.0 0.5 0.1 1 | range and resolution of X(O2) |0.0 0.5 0.1 1 | range and resolution of X(O) 0.0 0.5 0.1 1 | range and resolution of X(MgO) 0.0 0.5 0.1 1 | range and resolution of X(Mg) 0.0 0.5 0.1 1 | range and resolution of X(FeO) ideal 1 | molecular configurational entropy model 7 1. | 6 species, multiplicity 1 z(CO2) = 1 CO2 z(CO) = 1 CO z(O2) = 1 O2 | z(O) = 1 xO(g) z(Mg) = 1 xMg(g) z(Fe) = 1 xFe(g) z(FeO) = 1 xFeO(g) end_of_model -------------------------------------------------------- begin_model Formally this need not be an ideal gas, but it assumes Lewis and Randall (Ideal) mixing, the EoS (e.g., ideal gas) used for the pure species is determined by the EoS flag specified for the species in the thermodynamic data file ideal_gas abbreviation gas full_name gas 2 | model type 6 | number of species | species O2(g) O(g) Mg(g) Fe(g) FeO(g) MgO(g) 0 0 0 0 0 0 | endmember flags. 0.0 1. 0.1 0 | range and resolution of X(O2), 0 => cartesian subdivision/1 0.0 1. 0.1 0 | range and resolution of X(O) 0.0 1. 0.1 0 | range and resolution of X(Mg) 0.0 1. 0.1 0 | range and resolution of X(Fe) 0.0 1. 0.1 0 | range and resolution of X(MgO) ideal 1 | molecular configurational entropy model 6 1. | 6 species, multiplicity 1 z(O2) = 1 O2(g) z(O) = 1 O(g) z(Mg) = 1 Mg(g) z(Fe) = 1 Fe(g) z(FeO) = 1 FeO(g) end_of_model -------------------------------------------------------- begin_model FeSiC-BCC abbreviation BCC full_name alloy 30 | model type: special prismatic (Lacaze & Sundman, 1991) 2 | number of independent mixing sites, reciprocal solution 2 2 | Fe-Si on site 1, Vacancy-C on site 2 Fe-BCC Si-BCC | endmember names FeC-BCC SiC-BCC 0 | number of dependent endmembers 0 0 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> Fe fraction on site 1 0. 1. 0.1 0 | imod = 0 -> vacancy fraction on site 2 ideal | internal excess model 0 | 0 site entropy model -> internal model reach_increment 3 end_of_model -------------------------------------------------------- begin_model FeSiC-FCC abbreviation FCC full_name alloy 31 | model type: special prismatic (Lacaze & Sundman, 1991) 2 | number of independent mixing sites, reciprocal solution 2 2 | Fe-Si on site 1, Vacancy-C on site 2 Fe-FCC Si-FCC | endmember names FeC-FCC SiC-FCC 0 | number of dependent endmembers 0 0 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> Fe fraction on site 1 0. 1. 0.1 0 | imod = 0 -> vacancy fraction on site 2 ideal | internal excess model 0 | 0 site entropy model -> internal model reach_increment 3 end_of_model -------------------------------------------------------- begin_model |FeCr-liquid solution model after Xiong et al., 2011 |G. Helffrich, April 2016 FeCr(liq) abbreviation Liq full_name liquid 2 |model type: simplicial composition space. 2 |2 endmembers Fe_LIQ Cr_LIQ 0 0 |endmember flags 0. 1. 0.1 0 |imod = 0 -> cartesian subdivision begin_excess_function Wk(Cr_LIQ Fe_LIQ) w0 = 0. wT = -5.983 w0 = -384.41 end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity = 1. z(Fe) = 1 Fe_LIQ reach_increment 3 end_of_model -------------------------------------------------------- begin_model |FeCr-FCC solution model after Xiong et al., 2011 |G. Helffrich, April 2016 FeCr-FCC abbreviation FCC full_name alloy 2 |model type: simplicial composition space. 2 |2 endmembers Fe-FCC Cr-FCC 0 0 |endmember flags 0. 1. 0.1 0 |imod = 0 -> cartesian subdivision begin_excess_function Wk(Cr-FCC Fe-FCC) w0 = 28871.89 wT = -22.318 w0 = 32711.42 wT = -18.180 end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity = 1. z(Fe) = 1 Fe-FCC reach_increment 3 end_of_model -------------------------------------------------------- begin_model |BCC Fe-Cr alloy after Xiong et al., 2011, with the contribution from magnetic ordering FeCr-BCC abbreviation BCC full_name alloy 32 |special solution model 2 |2 end-members Fe-BCC Cr-BCC 0 0 0. 1. 0.1 0 |compositional limits and subdivision scheme ideal 0 reach_increment 3 end_of_model -------------------------------------------------------- begin_model |FeCr-sigma solution model after Andersson & Sundman, |1987, which is based on 30 sites and mixing on 18. |This source defines no excess mixing for the soln., |but it is needed to stabilize the sigma phase. One |cause might be use of the Xiong et al. (2011) for |BCC Fe-Cr. As it is, this frankenstein-like mix |of parts from Andersson & Sundman '87 and Xiong |et al. '11 works concisely to reproduce the |subsolidus and melting relations. | G. Helffrich, ELSI, 8 Apr. 2016. FeCr-s abbreviation Sigma full_name alloy 2 |solution model type 2 |2 endmembers FeCr_sig CrFe_sig 0 0 |endmember flags 0. 1. 0.1 0 |imod = 0 -> cartesian subdivision begin_excess_function W(FeCr_sig CrFe_sig) -1936.273 -0.5671667 0 | original from Nastia: -11617.64 -3.403 0 end_excess_function 1 |1 site entropy model | Nastia's version: 2 0.5333 |2 species, 1 site multiplicity = 16/30 2 0.6 |2 species, 1 site, multiplicity = 18/30 z(Fe) = 1. FeCr_sig reach_increment 3 end_of_model -------------------------------------------------------- begin_model |solution model parameters after Brosh, 2013 FeCliq abbreviation Liq full_name liquid 2 |solution model type: simplicial composition space 2 |2 end-members Feliq Cliq 0 0 |end-member flags 0. 1. 0.1 0 |imod = 0 -> cartesian subdivision scheme begin_excess_function Wk(Feliq Cliq) w0 = -124320. wT = 28.5 wP = -1.53d-1 wP1 = 6d4 wP2 = 2.3d-1 w0 = 19300. w0 = 49260. wT = -19. end_excess_function 1 |one site entropy model 2 1. |two end-members mixing on one site and site multiplicity z(Fe) = 1 Feliq |site fraction of Fe on this site in terms of end-members reach_increment 10 end_of_model -------------------------------------------------------- begin_model | solution model parameters after Brosh, 2013 FeCfcc abbreviation FCC full_name alloy 2 2 FeA1 FeCA1 0 0 0. 1. 0.1 0 begin_excess_function Wk(FeA1 FeCA1) w0 = -34671. end_excess_function 1 2 1. z(C) = 1 FeCA1 reach_increment 10 end_of_model -------------------------------------------------------- begin_model |solution model parameters after Brosh, 2013 FeCbcc abbreviation BCC full_name alloy 2 2 FeA2 FeCA2 0 0 0. 1. 0.1 0 begin_excess_function Wk(FeA2 FeCA2) w0 = 0. wT = -190. end_excess_function 1 2 3. z(c) = 1 FeCA2 end_of_model -------------------------------------------------------- begin_model Ilmenite after White, RW, Powell, R, Holland, TJB & Worley, BA (2000, JMG), modified as described by White et al (2014). Green et al (2016) remark this modification "may be suspect" and use the original 2000 model, i.e., that obtained by excluding geikielite. A B _____________________ Mutliplicity 1 1 _____________________ 1 oilm Fe Ti Species: 2 dilm TiFe TiFe 3 hem Fe3+ Fe3+ 4 pnt Mn Ti 5 geik Mg Ti Previously present as a brute force model which did not allow the anti-ordered ilmenite configuration. Re-formulated as standard o/d model to remove this limitation, JADC Jan 14, 2017. NOTES: Requires that the endmember ilm_nol be created from the endmember ilm in the thermodynamic data file by eliminating the Landau transition from the ilm endmember, additionally the following make definitions must be present in the thermodynamic file. dilm = 1 ilm_nol | 1993 -2.1 0 => the TC DQF coeffecients, the values below are | smax*tc0*(q0^2-1/3*q0^6), -smax*q0^2, vmax*q0^2 + {DH,R*ln(4),0} 15789.27763 -12.19977769 .1836386612d-1 The ilm and ilm_nol endmembers should be excluded from calculations to avoid conflicts with this model. For Mg and Mn solution this model differs from the Thermocalc version in that Mg and Mn are confined to the A-site, in contrast in Thermocalc the "equipartition" assumption is used to allocate Mg and Mn to the B-site in proportion to the Ferrous iron intersite partitioning. Consequently, this model predicts lower Mn and Mg solubility in ilmenite than the Thermocalc version of the model. JADC, Oct 29, 2011. Added W(pnt oilm). Felix Gervais, Oct 29, 2011. Corrected to count Ti in A-site configurational entropy. JADC, Jun 16, 2013. Make definitions corrected from the raw thermocalc versions. JADC, Jun 19, 2013. Ilm(WPH) abbreviation Ilm full_name ilmenite 6 | model type 4 | 4 endmembers pnt geik hem dilm 1 | 1 ordered species: oilm = 1 dilm enthalpy_of_ordering = -15600 + 11.52565132 T_K begin_limits oilm = -2 + 1 dilm delta = 2 z(A,Ti) end_limits 0 0 0 0 | endmember flags 0. .2 0.1 0 | subdivision range, X(pnt), imod = 1 -> assymetric 0. .2 0.1 0 | subdivision range, X(geik), imod = 1 -> assymetric 0. 1. 0.1 0 | subdivision range, X(hem), imod = 0 -> cartesian subdivision begin_excess_function W(oilm dilm) 15600 W(oilm hem) 26600 W(dilm hem) 11000 W(oilm pnt) 1760 end_excess_function 2 | 2 site model 5 1. | A - Fe2+ Mn Fe3+ Mg Ti z(A,Mg) = 1 geik z(A,mn) = 1 pnt z(A,fe3+) = 1 hem z(A,ti) = 1/2 dilm 3 1. | B - Fe3+ Ti4+ Fe2+ z(b,fe3+) = 1 hem z(b,fe2+) = 1/2 dilm refine_endmembers end_of_model -------------------------------------------------------- begin_model Majoritic garnet, Holland et al., 2013; dx.doi.org/10.1093/petrology/egt035 * originally entered by Bob Myhill, 2018/02/13 * reformulated as a prismatic + orphan (nagt) vertex model. JADC, May 10, 2018 * added cnagt and fnagt and changed the orphan to maj. JADC, Nov 2, 2018. M1 M2 ____________ Multiplicity 3 2 ___________________ nagt Mg2/3Na1/3 AlSi independent fnagt Fe2/3Na1/3 AlSi dependent cnagt Ca2/3Na1/3 AlSi dependent py Mg AlAl independent alm Fe AlAl independent gr Ca AlAl independent fmaj_d Fe FeSi dependent cmaj_d Ca MgSi dependent cfmaj_d Ca FeSi dependent ___________________ Orphan maj Mg MgSi independent ___________________ 13 gfm Mg FeSi ordered (same as gfm_d, above) alternative dual prism 5d target formulation => ___________________ Prism I 5 maj Mg MgSi independent 7 cmaj_d Ca MgSi dependent 6 fmaj_d Fe FeSi dependent 11 cfmaj_d Ca FeSi dependent ___________________ Prism II 3 gr Ca AlAl independent 1 py Mg AlAl independent 2 alm Fe AlAl independent 4 cnagt Ca2/3Na1/3 AlSi dependent 4 nagt Mg2/3Na1/3 AlSi independent 4 fnagt Fe2/3Na1/3 AlSi dependent ___________________ 13 gfm Mg FeSi ordered (same as gfm_d, above) Gt(H) abbreviation Gt full_name High pressure garnet 9 | model type: prism + orphan 2 | number of simplexes in prism 3 3 | number of vertices on each simplex 1 | number of orphan vertices | endmembers on the prismatic vertex cnagt_d fnagt_d nagt | ternary 1 fmaj_d cfmaj_d cmmaj_d | ternary 2 gr alm py | ternary 3 maj | the orphan 1 | ordered species definition gfm = 1 maj - 1/3 py + 1/3 alm enthalpy_of_ordering = -10d3 begin_limits gfm = - 3 py - 2 nagt - 3 maj - 2 gfm delta = 3 (limits for Mg on X) gfm = -3 + 3 alm + 1 gfm delta = 3 (limits for Fe on X) gfm = -2 + 1 maj + 1 gfm delta = 2 (limits for Mg on Y) end_limits 5 | number of dependent endmembers fnagt_d = 1 nagt + 2/3 alm - 2/3 py cnagt_d = 1 nagt + 2/3 gr - 2/3 py fmaj_d = 1 gfm + 1 alm - 1 py cmmaj_d = 1 maj + 1 gr - 1 py cfmaj_d = 1 gfm + 1 gr - 1 py 0 0 0 0 0 0 0 0 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution of X(1,1) => X(Ca) in the ternaries 0. 1. 0.1 0 | range and resolution of X(1,2) => X(Fe) in the ternaries 0. 1. 0.1 0 | range and resolution of X(2,1) => X(M-nagt) 0. 1. 0.1 0 | range and resolution of X(2,2) => X(non-Mg-Ts) 0. 1. 0.1 0 | range and resolution of X(3,1) => X(maj), the orphan begin_excess_function w(py alm) 3d3 0. 0. w(py gr) 33d3 0. 0. w(py maj) 15d3 0. 0. w(py gfm) 13.5d3 0. 0. w(py nagt) 14d3 0. 0. w(alm gr) 5d3 0. 0. w(alm maj) 18d3 0. 0. w(alm gfm) 16.5d3 0. 0. w(alm nagt) 11.2d3 0. 0. w(gr maj) 48d3 0. 0. w(gr gfm) 46.5d3 0. 0. w(gr nagt) 30d3 0. 0. w(maj gfm) 0.5d3 0. 0. w(maj nagt) 8.5d3 0. 0. w(gfm nagt) 7.0d3 0. 0. end_excess_function 2 2 site entropy model 4 3. 4 species, X site multiplicity 3 z(Fe) = 1 alm z(Ca) = 1 gr z(Na) = 1/3 nagt 4 2. 4 species, Y site multiplicity 2 z(Mg) = 1/2 maj z(Fe) = 1/2 gfm z(Si) = 1/2 maj + 1/2 gfm + 1/2 nagt end_of_model -------------------------------------------------------- begin_model Ferropericlase, Holland et al., 2013; dx.doi.org/10.1093/petrology/egt035 [Bob Myhill, 2018/02/13] Notes: This model consists of symmetric mixing of Mg-Fe on 1 site with a multiplicity of 1 Fper(H) abbreviation Fper full_name ferropericlase 2 model type: Margules, macroscopic 2 2 endmembers per fper 0 0 0.0 1.0 0.1 0 begin_excess_function W(per fper) 18d3 0. 0. end_excess_function 1 1 site entropy model 2 1. 2 species, site multiplicity = 1. z(mg) = 1 per end_of_model -------------------------------------------------------- begin_model MgSi perovskite, Holland et al., 2013; dx.doi.org/10.1093/petrology/egt035 [Bob Myhill, 2018/02/13] Notes: Identical to CaSi perovskite, but with different dqfs for all the endmembers Requires the following make definitions in the endmember data file: mfpv = 1 fpv DQF(J/mol) = -9500 0 0 mcpv = 1 cpv DQF(J/mol) = 60000 0 0 mnpv = 1 npv DQF(J/mol) = 16000 0 0 This model consists of symmetric mixing on 2 sites, each with a multiplicity of 1: 1 2 M1 M2 ________________ Multiplicity 1 1 ________________ 1 mpv Mg Si Species: 2 mfpv Fe2+ Si 3 mcpv Ca Si 4 apv Al Al 5 mnpv Na1/2Al1/2 Si Mpv(H) abbreviation Mpv full_name MgSi Perovskite 2 | model type: Margules, macroscopic 5 | 5 endmembers mpv mfpv mcpv apv mnpv 0 0 0 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function w(mpv mfpv) 12d3 0. 0. w(mpv mcpv) 15d3 0. 0. W(mpv apv) 20d3 0. 0. W(mpv mnpv) 22d3 0. 0. w(mfpv mcpv) 10.5d3 0. 0. W(mfpv apv) 14d3 0. 0. W(mfpv mnpv) 15.4d3 0. 0. W(mcpv apv) 5d3 0. 0. W(mcpv mnpv) 7.5d3 0. 0. W(apv mnpv) 2.5d3 0. 0. end_excess_function 2 2 site entropy model 5 1. 5 species, M1 site multiplicity 1 z(Mg) = 1 mpv z(Fe) = 1 mfpv z(Ca) = 1 mcpv z(Na) = 1/2 mnpv 2 1. 2 species, M2 site multiplicity 1 z(Al) = 1 apv end_of_model -------------------------------------------------------- begin_model CaSi perovskite Holland et al., 2013; dx.doi.org/10.1093/petrology/egt035 [Bob Myhill, 2018/02/13] Notes: Identical to MgSi perovskite, but with different dqfs for all the endmembers Requires the following make definitions in the endmember data file: cmpv = 1 mpv DQF(J/mol) = 35000 0 0 cfpv = 1 fpv DQF(J/mol) = 24000 0 0 capv = 1 apv DQF(J/mol) = 45000 0 0 cnpv = 1 npv DQF(J/mol) = 25000 0 0 1 2 M1 M2 ________________ Multiplicity 1 1 ________________ 1 cmpv Mg Si Species: 2 cfpv Fe2+ Si 3 cpv Ca Si 4 capv Al Al 5 cnpv Na1/2Al1/2 Si Cpv(H) abbreviation Cpv full_name CaSi Perovskite 2 | model type: Margules, macroscopic 5 | 5 endmembers cmpv cfpv cpv capv cnpv 0 0 0 0 0 | endmember flags 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | imod = 0 -> cartesian subdivision begin_excess_function W(cmpv cfpv) 12d3 0. 0. W(cmpv cpv) 15d3 0. 0. W(cmpv capv) 20d3 0. 0. W(cmpv cnpv) 22d3 0. 0. W(cfpv cpv) 10.5d3 0. 0. W(cfpv capv) 14d3 0. 0. W(cfpv cnpv) 15.4d3 0. 0. W(cpv capv) 5d3 0. 0. W(cpv cnpv) 7.5d3 0. 0. W(capv cnpv) 2.5d3 0. 0. end_excess_function 2 2 site entropy model 5 1. 5 species, M1 site multiplicity 1 z(Mg) = 1 cmpv z(Fe) = 1 cfpv z(Ca) = 1 cpv z(Na) = 1/2 cnpv 2 1. 2 species, M2 site multiplicity 1 z(Al) = 1 capv end_of_model -------------------------------------------------------- begin_model Corundum Holland et al., 2013; dx.doi.org/10.1093/petrology/egt035 [Bob Myhill, 2018/02/13] Notes: Requires the following make definition in the endmember data file: fcor = 1 mcor + 1 fak - 1 mak DQF(J/mol) = -15d3 0 0 1 2 M T _____________ Multiplicity 1 1 _____________ 1 cor Al Al Species: 2 mcor Mg Si 3 fcor Fe2+ Si Cor(H) abbreviation Cor full_name Corundum 2 | model type: Margules, macroscopic 3 | 3 endmembers cor mcor fcor 0 0 0 0. 1. 0.1 0 0. 1. 0.1 0 begin_excess_function W(cor mcor) 12d3 0. 0. W(cor fcor) 10d3 0. 0. W(mcor fcor) 4d3 0. 0. end_excess_function 2 2 site entropy model 3 1. 3 species on M site multiplicity = 1. z(mg) = 1 mcor z(fe) = 1 fcor 2 1. 2 species on T site multiplicity = 1. z(al) = 1 cor end_of_model -------------------------------------------------------- begin_model High pressure calcium-ferrite structure phase, Holland et al., 2013; dx.doi.org/10.1093/petrology/egt035 Notes: * originally entered by Bob Myhill, 2018/02/13. * reformulated as a prismatic + orphan vertex model. JADC, 10/5/2018 * eliminated ordered dependent endmembers. JADC, 10/2018 * Requires the following make definition in the endmember data file nacfb = 1 nacf DQF(J/mol) = -9000 0 0 This dqf was presumably added by Holland et al. as a free parameter during inversion, and not reintegrated into their data table. * The M2 site has a fake multiplicity of 1 (true multiplicity would be 2). M3 M2 ____________ Multiplicity 1 1(2) ____________ Prism I: 1 macf Mg Al1/2Al1/2 independent 5 mscf Mg Mg1/2Si1/2 independent 7 cscf_d Ca Mg1/2Si1/2 dependent 2 facf_d Fe Al1/2Al1/2 dependent 10 fscf Fe Fe1/2Si1/2 independent 11 cfscf_d Ca Fe1/2Si1/2 dependent ____________ Orphans: 3 cacf Ca Al1/2Al1/2 independent 4 nacfb Na Al1/2Si1/2 independent (orphan) ____________ Ordered: 13 oscf Fe2+ Mg1/2Si1/2 (same as oscf_d above) CFer(H) abbreviation CFer full_name Ca-ferrite type 9 | model type: prismatic + orphan vertices, O/D 2 | number of simplexes comprising the prism 3 2 | vertices on each prism 2 | number of orphan vertices | endmembers on the prismatic vertex macf cscf_d mscf facf_d cfscf_d fscf | endmembers on the orphan vertices nacfb cacf 1 | ordered species definition oscf = 1/2 mscf + 1/2 fscf enthalpy_of_ordering = -3.5d3 begin_limits oscf = -2 + 2 macf + 2 mscf + 1 oscf delta = 2 (limits for Mg on M3) oscf = -2 fscf - 1 oscf delta = 2 (limits for Fe on M3) oscf = -2 mscf - 1 oscf delta = 4 (limits for Mg on M2) oscf = -4 + 2 fscf + 1 oscf delta = 4 (limits for Fe on M2) end_limits 3 | number of dependent endmembers facf_d = 1 macf + 1 oscf - 1 mscf cscf_d = 1 cacf + 1 mscf - 1 macf cfscf_d = 1 cacf + 1 fscf - 1 macf - 1 oscf + 1 mscf 0 0 0 0 0 0 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution of X(AlAl) 0. 1. 0.1 0 | range and resolution of X(CaM) 0. 1. 0.1 0 | range and resolution of X(Mg) 0. 1. 0.1 0 | range and resolution of nacfb 0. 1. 0.1 0 | range and resolution of cacf begin_excess_function w(macf cacf) 11d3 w(macf mscf) 7.5d3 w(macf fscf) 10.75d3 w(macf oscf) 11.5d3 w(macf nacfb) 24.5d3 w(cacf mscf) 18.5d3 w(cacf fscf) 14.45d3 w(cacf oscf) 15.2d3 w(cacf nacfb) 18.5d3 w(mscf fscf) 5d3 w(mscf oscf) 4d3 w(mscf nacfb) 15.5d3 w(fscf oscf) 1d3 w(fscf nacfb) 9.95d3 w(oscf nacfb) 10.7d3 end_excess_function 2 | 2 site entropy model (M1, M2) 4 1. | 4 species on M1, site multiplicity of 1 z(m1,ca) = 1 cacf z(m1,fe) = 1 fscf + 1 oscf z(m1,na) = 1 nacfb 4 1. | 4 species on M2, (fake) site multiplicity of 1 z(m2,al) = 1 macf + 1 cacf + 1/2 nacfb z(m2,mg) = 1/2 mscf + 1/2 oscf z(m2,fe) = 1/2 fscf end_of_model -------------------------------------------------------- begin_model NAL phase, Holland et al., 2013; dx.doi.org/10.1093/petrology/egt035 Notes: Originally entered by Bob Myhill, 2018/02/13. The M1 site has a fake multiplicity of 3 (6 apfu) Eliminated ordered dependent endmembers. JADC, 10/2018. M3 M2 M1 ___________________ Multiplicity 1 2 3*(6) ___________________ 1 nanal Na Mg Al5/6Si1/6 independent 3 canal Ca Mg Al independent 5 manal Mg Mg Al independent 9 msnal Mg Mg Mg1/2Si1/2 independent 2 nfnal_d Na Fe2+ Al5/6Si1/6 dependent 4 cfnal_d Ca Fe2+ Al dependent 8 fanal_d Fe2+ Fe2+ Al dependent 16 fsnal Fe2+ Fe2+ Fe1/2Si1/2 independent ___________________ Ordered: 9 o1nal Fe2+ Mg Mg1/2Si1/2 ordered 10 o2nal Fe2+ Fe2+ Mg1/2Si1/2 ordered NAl(H) abbreviation NAl full_name New aluminous phase 8 | prismatic composition space 2 | 2 simplices 2 4 | 1 binary and 1 quaternary nanal nfnal_d canal cfnal_d manal fanal_d msnal fsnal 2 | number of ordered species: o1nal = 5/6 msnal + 1/6 fsnal enthalpy_of_ordering = 2d3 o2nal = 1/2 msnal + 1/2 fsnal enthalpy_of_ordering = 6.5d3 begin_limits o1nal = -6/5 + 6/5 manal + 6/5 msnal + 1 o1nal - 3/5 o2nal + 3/5 o2nal delta = 6/5 (limits for Mg on M3) o1nal = - 6/5 fsnal - 1/5 o1nal - 3/5 o2nal - 3/5 o2nal delta = 6/5 (limits for Fe on M3) o1nal = -6 + 6 fsnal + 1 o1nal + 3 o2nal + 3 o2nal delta = 6 (limits for Fe on M2) o1nal = - 6 msnal - 5 o1nal - 3 o2nal - 3 o2nal delta = 12 (limits for Mg on M1) o1nal = -12 + 6 fsnal + 1 o1nal - 3 o2nal + 3 o2nal delta = 12 (limits for Fe on M1) o2nal = -2 + 2 manal + 2 msnal - 5/3 o1nal + 5/3 o1nal + 1 o2nal delta = 2 (limits for Mg on M3) o2nal = - 2 fsnal - 5/3 o1nal - 1/3 o1nal - 1 o2nal delta = 2 (limits for Fe on M3) o2nal = - 2 fsnal + 1/3 o1nal - 1/3 o1nal - 1 o2nal delta = 2 (limits for Fe on M2) o2nal = - 2 msnal - 1/3 o1nal - 5/3 o1nal - 1 o2nal delta = 4 (limits for Mg on M1) o2nal = -4 + 2 fsnal - 1/3 o1nal + 1/3 o1nal + 1 o2nal delta = 4 (limits for Fe on M1) end_limits 3 | number of dependent endmembers nfnal_d = 1 nanal - 1 o1nal + 1 o2nal | NM - FM + FF = NF cfnal_d = 1 canal - 1 o1nal + 1 o2nal | CM - FM + FF = CF fanal_d = 1 manal - 1 msnal + 1 o2nal | MM - MM + FF = FF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | endmember flags 0. 1. .1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(nanal) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(canal) on site 2, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for X(manal) on site 2, imod = 0 -> cartesian subdivision begin_excess_function W(nanal canal) 14.2d3 0 0 W(nanal manal) 20.2d3 0 0 W(nanal msnal) 20.2d3 0 0 W(nanal fsnal) 21.2d3 0 0 W(nanal o1nal) 15.4d3 0 0 W(nanal o2nal) 23.4d3 0 0 W(canal manal) 11d3 0 0 W(canal msnal) 33.5d3 0 0 W(canal fsnal) 36d3 0 0 W(canal o1nal) 30.2d3 0 0 W(canal o2nal) 38.2d3 0 0 W(manal msnal) 22.5d3 0 0 W(manal fsnal) 32.2d3 0 0 W(manal o1nal) 26.5d3 0 0 W(manal o2nal) 34.5d3 0 0 W(msnal fsnal) 15d3 0 0 W(msnal o1nal) 4d3 0 0 W(msnal o2nal) 12d3 0 0 W(fsnal o1nal) 11d3 0 0 W(fsnal o2nal) 3d3 0 0 W(o1nal o2nal) 8d3 0 0 end_excess_function 3 | 3 site (M3, M2, M1) entropy model | (note: occupancies should not include dependent endmembers, | but does include ordered endmembers) 4 1. | 4 species on M3, site multiplicity of 1 z(m3,na) = 1 nanal z(m3,ca) = 1 canal z(m3,mg) = 1 manal + 1 msnal 2 2. | 2 species on M2, site multiplicity of 2 z(m2,fe) = 1 fsnal + 1 o2nal 4 3. | 4 species on M1, (fake) site multiplicity of 3 (true multiplicity = 6) z(m1,mg) = 1/2 msnal + 1/2 o1nal + 1/2 o2nal z(m1,fe) = 1/2 fsnal z(m1,al) = 5/6 nanal + 1 canal + 1 manal end_of_model -------------------------------------------------------- begin_model Akimotoite, Holland et al., 2013; dx.doi.org/10.1093/petrology/egt035 [Bob Myhill, 2018/02/13] mixing on 2 sites, each with a fake site multiplicity of 1/2 (Al-avoidance). Note that this is different to the corundum model, which is assumed to mix on two independent sites. The properties of the aak endmember are assumed identical to corundum (cor): 1 2 M T _____________ Multiplicity 1/2*(1) 1/2*(1) _____________ 1 cor Al Al Species: 2 mak Mg Si 3 fak Fe2+ Si Aki(H) abbreviation Aki full_name Akimotoite 2 | model type: Margules, macroscopic 3 | 3 endmembers cor mak fak 0 0 0 0. 1. 0.1 0 0. 1. 0.1 0 begin_excess_function W(cor mak) 8d3 0. 0. W(cor fak) 6d3 0. 0. W(cor fak) 4d3 0. 0. end_excess_function 2 2 site entropy model 3 0.5 3 species on M site with fake multiplicity = 1/2 z(mg) = 1 mak z(fe) = 1 fak 2 0.5 2 species on T site with fake multiplicity = 1/2 z(al) = 1 cor end_of_model -------------------------------------------------------- begin_model Wadsleyite Holland et al., 2013; dx.doi.org/10.1093/petrology/egt035 [Bob Myhill, 2018/02/13] Notes: mixing of Mg-Fe on 1 site with a multiplicity of 2 Wad(H) abbreviation Wad full_name wadsleyite 2 model type: Margules, macroscopic 2 2 endmembers mwd fwd 0 0 | endmember flags 0.0 1.0 0.1 0 | range and resolution for X(Mg), imod = 0 -> cartesian subdivision begin_excess_function W(mwd fwd) 13000. 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(fe) = 1 fwd end_of_model -------------------------------------------------------- begin_model Ringwoodite Holland et al., 2013; dx.doi.org/10.1093/petrology/egt035 [Bob Myhill, 2018/02/13] Notes: mixing of Mg-Fe on 1 site with a multiplicity of 2 Ring(H) abbreviation Ring full_name ringwoodite 2 model type: Margules, macroscopic 2 2 endmembers mrw frw 0 0 | endmember flags 0.0 1.0 0.1 0 | range and resolution for X(Mg), imod = 0 -> cartesian subdivision begin_excess_function W(mrw frw) 4000. 0. 0. end_excess_function 1 1 site entropy model 2 2. 2 species, site multiplicity = 2. z(fe) = 1 frw end_of_model -------------------------------------------------------- begin_model High pressure C2/c clinopyroxene, Holland et al., 2013; dx.doi.org/10.1093/petrology/egt035 Notes: Originally entered by Bob Myhill, 2018/02/13 Eliminated ordered dependent endmembers. JADC, 10/2018. To use this the following endmembers must be specified with make definitions in the endmember data file hmgts = 1 mgts + 1 hen - 1 en DQF = -1000 odi = 1 di DQF = -100 + 0.211 * T_K + 0.005 * P_bar M1 M2 T _____________________ Multiplicity 1 1 1/2 _____________________ hen Mg Mg SiSi independent Species: odi Mg Ca SiSi independent hmgts Al Mg SiAl independent Species: hfs Fe Fe SiSi independent tsfs_d Al Fe SiAl dependent ofdi_d Fe Ca SiSi dependent _____________________ Internal: hfm Mg Fe SiSi Hpx(H) abbreviation Hpx full_name HP_clinopyroxene 8 | model type: Reciprocal with speciation 2 | 2 independent composition spaces 3 2 | 3 dimensions on first space, 2 on second | endmembers: hen odi hmgts hfs tsfs_d ofdi_d 1 | ordered species definition hfm = 1/2 hen + 1/2 hfs Delta(enthalpy) = -6d3 begin_limits hfm = - 2 hfs - 1 hfm delta = 2 z(M2,Fe) hfm = -2 + 2 hfs + 1 hfm delta = 2 z(M1,Fe) hfm = - 2 hen - 1 hfm delta = 2 z(M1,Mg) end_limits 2 | dependent endmember definitions ofdi_d = 1 odi + 1 hfs - 1 hfm tsfs_d = 1 hmgts + 1 hfm - 1 hen 0 0 0 0 0 0 0 0 0 | endmember flags, indicate if endmember is part of the solution (i.e. iend = 0). 0. 1. .1 0 | subdivision model for (ternary) site 1 (X_en): 0. 1. .1 0 | subdivision model for (ternary) site 1 (X_di): 0. 1. .1 0 | subdivision model for (binary) site 2 (XMg): begin_excess_function W(hen hfs) 5.2d3 0 0 W(hen hfm) 4d3 0 0 W(hen odi) 32.2d3 0 0.12 W(hen hmgts) 13d3 0 -0.15 W(hfs hfm) 4d3 0 0 W(hfs odi) 24d3 0 0 W(hfs hmgts) 7d3 0 -0.15 W(hfm odi) 18d3 0 0 W(hfm hmgts) 2d3 0 -0.15 W(odi hmgts) 75.4d3 0 -0.94 end_excess_function 3 | 3 site (M1, M2, T) configurational entropy model 3 1. | 3 species on M1, 1 site per formula unit. z(m1,fe) = 1 hfs z(m1,al) = 1 hmgts 3 1. | 3 species on M2, 1 site per formula unit. z(m2,ca) = 1 odi z(m2,fe) = 1 hfs + 1 hfm 2 0.5 | 2 species on 0.5 T sites (true multiplicity = 2) z(t,al) = 1/2 hmgts begin_van_laar_sizes alpha(hen) 1.0 0 0 alpha(hfs) 1.0 0 0 alpha(hfm) 1.0 0 0 alpha(odi) 1.2 0 0 alpha(hmgts) 1.0 0 0 end_van_laar_sizes end_of_model -------------------------------------------------------- begin_model Pyrrhotite, Saxena & Eriksson 2015 ECRG, 5/2018 Po(SE) | solution name. abbreviation Po full_name hT-pyrrhotite 2 | model type: Compound energy formalism 2 | number of endmembers APyrr SVa 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision begin_excess_function Wk(APyrr SVa) w0 = -225830.67 wT = 26.357836 wP0 = -0.400228 end_excess_function | wP0 is a coefft of P 1 | 1 site entropy model 2 1. | 2 species, site multiplicity of 1 z(SVa) = 1 SVa end_of_model -------------------------------------------------------- begin_model FeS-S fluid, Saxena & Eriksson 2015 ECRG, 5/2018 FeS_liq abbreviation Melt full_name liquid 42 | model type: modified QC with composition-dependent coordination, binary only. 2 | no. independent end-members FeLiq SLiq | endmember names 0 0 | endmember flags 0. 1. .1 0 | subdivision range, imod = 0 -> cartesian subdivision | dummy excess function begin_excess_function w(FeLiq SLiq) 0. 0. 0. end_excess_function 0 0 site entropy model | entropy function is hard-wired end_of_model -------------------------------------------------------- begin_model Green, ECR, et al. (JMG, 2016). NOTE: to use this the following endmembers must be specified with make definitions in the thermodynamic data file mrbG = 1 gl - 1 gr + 1 andr DQF = 0 kprg = 1 mu - 1 pa + 1 parg DQF = -7060 + 20 * T_K tts = -2 dsp + 2 ru + 1 ts DQF = 95000 to avoid cluttering thermodynamic data files with the new plague of TC DQF "corrections", the following simple DQF's are specified in the make_definition section at the end of this model: DQF(gl) = -3000 DQF(parg) = -10000 DQF(ts) = 10000 DQF(grun) = -3000 For (nonsensical, but common) positive DFQ's this approach may lead to interference between the phase relations of the solution model and the un-DQF'd endmember. If such interference occurs: the DQF'd endmember must be renamed; its definition placed in the thermodynamic data file; and the un-DQF'd endmember excluded from the calculation. Sites A M1 M2 M4 T1 OH _______________________________________ Multiplicity 1 3 2 2 1(4) 2 _______________________________________ Tr V Mg Mg Ca Si OH Ts V Mg Al Ca SiAl OH Parg Na Mg MgAl Ca SiAl OH Gl V Mg Al Na Si OH Cumm V Mg Mg Mg Si OH Grun V Fe Fe Fe Si OH mrbG V Mg Fe3 Na Si OH Kprg K Mg MgAl Ca SiAl OH Tts V Mg Ti Ca SiAl O A V Mg Fe Fe Si OH B V Fe Mg Fe Si OH dependent exchange Mgrk V M Fe3 M SiAl OH dependent exchange Mts V M Al M SiAl OH dependent exchange Mpg Na M MAl M SiAl OH dependent exchange MKpg K M MAl M SiAl OH dependent exchange MTts V M Ti M SiAl OH 2 CaMg-1(M4) = (Tr-Cumm) 3 FeMg-1(M1) = (grun - a) 2 FeMg-1(M2) = (grun - b) 2 FeMg-1(M4) = (-grun - cumm + a + b) cAmph(G)_I abbreviation Amph full_name clinoamphibole 8 | model type: order-disorder, prismatic composition space 2 | 2 site reciprocal space 2 9 |13 | 1 binary + 1 nonary ts fcts_d |mts_d fts_d |mprg_d fprg_d |mkprg_d fkprg_d |mtts_d ftts_d parg fcparg_d gl fgl_d cumm grun mrbG frb_d kprg fckprg_d tts fctts_d grk_d fgrk_d tr ftr_d 2 | ordered species definitions: a = 3/7 cumm + 4/7 grun enthalpy_of_ordering = -9486 | = DQF(A) -4/7 DQF(Grun) b = 2/7 cumm + 5/7 grun enthalpy_of_ordering = -11657 | = DQF(B) -5/7 DQF(Grun) begin_limits a = -7/4 + 7/4 grun + 1 a + 1/2 b + 5/4 b delta = 7/4 z(M1,Fe) a = -7/3 grun - 4/3 a + 5/3 b - 5/3 b delta = 7/3 z(M2,Fe) a = -7/3 + 7/3 tr + 7/6 parg + 7/6 kprg + 7/3 cumm + 1 a + 5/3 b + 2/3 b delta = 7/3 z(M2,Mg) only 1 m2 equation can be independent a = -7/3 + 7/3 cumm + 1 a - 2/3 b + 2/3 b delta = 7/3 z(M4,Mg) only 1 m4 equation can be independent a = -7/3 grun - 4/3 a - 2/3 b - 5/3 b delta = 7/3 z(M4,Fe) b = -7/2 grun + 2 a - 2 a - 5/2 b delta = 7/2 z(M1,Fe) b = -7/5 + 7/5 grun + 3/5 a + 4/5 a + 1 b delta = 7/5 z(M2,Fe) b = -7/5 tr - 7/10 parg - 7/10 kprg - 7/5 cumm + 3/5 a - 3/5 a - 2/5 b delta = 7/5 z(M2,Mg) b = -7/2 + 7/2 cumm - 3/2 a + 3/2 a + 1 b delta = 7/2 z(M4,Mg) b = -7/2 grun - 3/2 a - 2 a -5/2 b delta = 7/2 z(M4,Fe) end_limits 9 |17 | dependent endmember definitions: ftr_d = 1 tr + 2 grun - 1 a - 1 b fcts_d = 1 ts + 1 grun - 1 a fcparg_d = 1 parg + 3/2 grun - 1 a - 1/2 b fgl_d = 1 gl + 1 grun - 1 a frb_d = 1 mrbG + 1 grun - 1 a fckprg_d = 1 kprg + 3/2 grun - 1 a - 1/2 b fctts_d = 1 tts + 1 grun - 1 a grk_d = 1 mrbG + 1 ts + 1 cumm - 1 gl - 1 tr fgrk_d = 1 mrbG + 1 ts - 1 gl - 1 tr + 1 b |mts_d = 1 ts + 1 cumm - 1 tr |fts_d = 1 ts + 1 b - 1 tr |mprg_d = 1 parg + 1 cumm - 1 tr |fprg_d = 1 parg + 1/2 grun + 1/2 b - 1 tr |mkprg_d = 1 kprg + 1 cumm - 1 tr |fkprg_d = 1 kprg + 1/2 grun + 1/2 b - 1 tr |mtts_d = 1 tts + 1 cumm - 1 tr |ftts_d = 1 tts + 1 b - 1 tr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | endmember flags | imod = 0 -> cartesian subdivision | imod = 1 -> assymetric stretching subdivision 0. 1. .1 0 | range and resolution for X(Mg) on site 1, imod = 0 0. 1. .1 0 .25 | range and resolution for X(ts) on site 2, imod = 0 |0. .1 .1 0 | range and resolution for X(Mts) on site 2, imod = 0 |0. .1 .1 0 | range and resolution for X(MPg) on site 2, imod = 0 |0. .1 .1 0 | range and resolution for X(MKPg) on site 2, imod = 0 |0. .1 .1 0 | range and resolution for X(MTts) on site 2, imod = 0 0. 1. .1 0 .62 | range and resolution for X(pg) on site 2, imod = 0 0. 1. .1 0 0.05 | range and resolution for X(gl) on site 2, imod = 1 0. 1. .1 0 .85 | range and resolution for X(cumm) on site 2, imod = 0 0. 1. .1 0 .14 | range and resolution for X(mrb) on site 2, imod = 1 0. .1 .1 0 .05 | range and resolution for X(kprg) on site 2, imod = 1 0. .2 .1 0 .12 | range and resolution for X(tts) on site 2, imod = 1 0. .4 .1 0 .28 | range and resolution for X(grk) on site 2, imod = 1 begin_excess_function W(tr ts) 20d3 W(tr parg) 25d3 W(tr gl) 65d3 W(tr cumm) 45d3 W(tr grun) 75d3 W(tr a) 57d3 W(tr b) 63d3 W(tr mrbG) 52d3 W(tr kprg) 30d3 W(tr tts) 85d3 W(ts parg) -40d3 W(ts gl) 25d3 W(ts cumm) 70d3 W(ts grun) 80d3 W(ts a) 70d3 W(ts b) 72.5d3 W(ts mrbG) 20d3 W(ts kprg) -40d3 W(ts tts) 35d3 W(parg gl) 50d3 W(parg cumm) 90d3 W(parg grun) 106.7d3 W(parg a) 94.8d3 W(parg b) 94.8d3 W(parg mrbG) 40d3 W(parg kprg) 8d3 W(parg tts) 15d3 W(gl cumm) 100d3 W(gl grun) 113.5d3 W(gl a) 100d3 W(gl b) 111.2d3 W(gl kprg) 54d3 W(gl tts) 75d3 W(cumm grun) 33d3 W(cumm a) 18d3 W(cumm b) 23d3 W(cumm mrbG) 80d3 W(cumm kprg) 87d3 W(cumm tts) 100d3 W(grun a) 12d3 W(grun b) 8d3 W(grun mrbG) 91d3 W(grun kprg) 96d3 W(grun tts) 65d3 W(a b) 20d3 W(a mrbG) 80d3 W(a kprg) 94d3 W(a tts) 95d3 W(b mrbG) 90d3 W(b kprg) 94d3 W(b tts) 95d3 W(mrbG kprg) 50d3 W(mrbG tts) 50d3 W(kprg tts) 35d3 end_excess_function 6 | 6 site configurational entropy model (A, M1, M2, M4,T1, OH) 3 1 | 3 species on A, mult = 1 z(A,na) = 1 parg z(A,k) = 1 kprg 2 3 | 2 species on M1, mult = 3 z(M1,fe) = 1 grun + 1 b 5 2 | 5 species on M2, mult = 2 z(M2,fe) = 1 grun + 1 a z(M2,fe3) = 1 mrbG z(M2,al) = 1 ts + 1 gl + 1/2 kprg + 1/2 parg z(M2,ti) = 1 tts 4 2 | 4 species on M4, mult = 2 z(M4,mg) = 1 cumm z(M4,na) = 1 gl + 1 mrbG z(M4,fe) = 1 grun + 1 a + 1 b 2 1 | 2 species on T1, fake mutiplicity = 1 z(T1,Al) = 1/2 ts + 1/2 parg + 1/2 kprg + 1/2 tts 2 2 | 2 species on OH, mutiplicity = 2 z(OH,O) = 1 tts begin_van_laar_sizes alpha(tr) 1 alpha(ts) 1.5 alpha(parg) 1.7 alpha(gl) 0.8 alpha(cumm) 1 alpha(grun) 1 alpha(a) 1 alpha(b) 1 alpha(mrbG) 0.8 alpha(kprg) 1.7 alpha(tts) 1.5 end_van_laar_sizes begin_dqf_corrections DQF(gl) = -3000 DQF(parg) = -10000 DQF(ts) = 10000 DQF(grun) = -3000 end_dqf_corrections end_of_model -------------------------------------------------------- -------------------------------------------------------- begin_model Talc, ideal. 1 2 M1 M2 T2 ______________________ Mutliplicity 2 1 2 ______________________ 1 en Mg Mg SiSi Species: 2 fs Fe Fe SiSi 3 mgts Mg Al AlSi ______________________ reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). JADC 5/10/2018 T | solution name abbreviation Tlc full_name talc 2 | model type: simplicial, equipartition relict 3 | number of independent endmembers ta fta tats | endmember names 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0.0 1. 0.1 0 | range and resolution for ta, imod = 0 -> cartesian subdivision 0.0 1. 0.1 0 | range and resolution for fta, imod = 0 -> cartesian subdivision ideal 3 | 3 site (M1, M2, T2) conigurational entropy model 2 2. | 2 species on M1, 2 sites per formula unit. z(m1,mg) = 1 ta + 1 tats 2 2. | 2 species on T2, 2 sites per formula unit. z(t2,al) = 1/2 tats 3 1. | 3 species on M2, 1 site per formula unit. z(m2,mg) = 1 ta z(fe,m2) = 1 fta end_of_model -------------------------------------------------------- begin_model Antigorite with Tschermak's substitution (Padrón-Navarta et al., 2013, Lithos) reformulated from relict equipartion (model type 7) to simplicial composition space (model type 2). JADC 5/10/2018 M0 M1 T1 ______________________ Mutliplicity 44 4 8 ______________________ 1 atg Mg Mg SiSi Species: 2 fatg Fe Fe SiSi 3 atgts Mg Al AlSi ______________________ This model requires the following make definition in the thermodynamic data file: atgts = 4 clin + 9/17 atg - 24/17 br -2e3. 46.1 0 Atg(PN) | solution name abbreviation Atg full_name serpentine 2 | model type: simplicial composition space, equipartition relict 3 | number of endmembers atg fatg atgts | endmember names, this order implies: 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0. 1. .1 0 | range and resolution for atg, imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution for ftag, imod = 0 -> cartesian subdivision ideal 3 | 3 site (M0, M1, T1) configurational entropy model 2 44. | 2 species on M0, 2 sites per formula unit. z(m1,mg) = 1 atg + 1 atgts 2 8. | 2 species on T1, 2 sites per formula unit. z(t2,al) = 1/2 atgts 3 4. | 3 species on M1, 1 site per formula unit. z(m2,mg) = 1 atg z(fe,m2) = 1 fatg reach_increment 0 end_of_model -------------------------------------------------------- -------------------------------------------------------- begin_model Amphibole from Massonne & Willner (EJM, 2008) See notes for TrTsPg (above). GlTrTsMr abbreviation Amph full_name clinoamphibole 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 4 | 1 binary and 1 quaternary tr ftr mrie fmrie_i ts fts_i gl fgl_i 3 | number of dependent endmembers fmrie_i = 1 mrie + 3/5 ftr - 3/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr fgl_i = 1 gl + 3/5 ftr - 3/5 tr 0 0 0 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2 0. 1.0 0.1 0 | range and resolution for X(ts) on site 2 begin_excess_function W(gl tr) 77d3 0. 0. W(gl ftr) 83d3 0. 0. W(ts tr) 20d3 0. 0. W(ts ftr) -38d3 0. 0. W(tr ftr) 10d3 0. 0. end_excess_function 4 | 4 site (M1, M2, M4, T1) entropu model 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 0 + 1 ts 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 0 + 1 tr + 1 ts + 1 mrie + 1 gl 3 2. | 3 species on M2, 2 sites pfu z(m2,mg) = 0 + 1 tr z(m2,fe) = 0 + 1 ftr 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 0 + 1 gl begin_dqf_corrections dqf(ts) 10000 0 0 end_dqf_corrections site_check_override end_of_model -------------------------------------------------------- begin_model Dale et al, CMP 2000 140:353-362 amphibole model without Na, K, Ti or Mn solution. See Amph(DHP) or bAmph(DHP) for Na-Ca amphibole JADC 5/5/06. A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 2 _________________________________________ 1 tr Vac Mg Mg Ca Si_Si 2 ftr Vac Fe Fe Ca Si_Si 3 ts Vac Mg Al Ca Al_Si 4 fts Vac Fe Al Ca Al_Si 5 parg Na Mg Mg_Al Ca Al_Si 6 fparg Na Fe Fe_Al Ca Al_Si 9 mfets Vac Mg Fe3+ Ca Al_Si 10 ffets Vac Fe Fe3+ Ca Al_Si fparg = parg + 4/5 (ftr - tr) fts = ts + 3/5 (ftr - tr) Ca-Amph(D) | solution name abbreviation Amph full_name clinoamphibole 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 4 | 1 binary and 1 quinary tr ftr parg fparg_i ts fts_i mfets ffets_i 3 | number of dependent endmembers fparg_i = 1 parg + 4/5 ftr - 4/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr ffets_i = 1 mfets + 3/5 ftr - 3/5 tr 0 0 0 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 | range and resolution for X(Mg) on site 1 0 | subdivision scheme : imod = 0 -> cartesian for site 1 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2 0. 1. 0.1 0 | range and resolution for X(ts) on site 2 begin_excess_function W(parg tr) 29.3d3 0. 0. W(parg ts) 18.2d3 0. 0. W(parg ftr) 11.4d3 0. 0. W(ts tr) 20.8d3 0. 0. W(tr ftr) 11.4d3 0. 0. end_excess_function 4 | 4 site (A, M1, M2, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 1/2 ts + 1/2 parg + 1/2 mfets 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 mfets 4 2. | 4 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr z(m2,fe3+) = 1 mfets begin_dqf_corrections dqf(ts) 10000 0 0 end_dqf_corrections site_check_override end_of_model -------------------------------------------------------- begin_model Dale et al, CMP 2000 140:353-362 amphibole model without Ca, K, Ti or Mn solution. This model requires a fgl endmember, created as decribed by Powell's mdep paper. See Amph(DHP) for Na-Ca amphibole JADC 5/5/06. A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 2 _________________________________________ 7 gl Vac Mg Al Na Si_Si 8 fgl Vac Fe Al Na Si_Si 12 mrieb Vac Mg Fe3+ Na Si_Si 11 rieb Vac Fe Fe3+ Na Si_Si mrieb_i = 1 rieb + 3/5 tr - 3/5 ftr Na-Amph(D) | solution name abbreviation Amph full_name clinoamphibole 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 2 | 2 binaries gl fgl mrieb_i rieb 1 | number of dependent endmembers mrieb_i = 1 rieb + 1 gl - 1 fgl 0 0 0 0 | endmember flags. 0. 1.0 0.1 | range and resolution for X(Mg) on site 1 0 | subdivision scheme : imod = 0 -> cartesian for site 1 0. 1.0 0.1 | range and resolution for X(Al) on site 2 0 | subdivision scheme : imod = 0 -> cartesian for site 2 ideal 2 | 2 site (M1, M2) entropy model 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 gl 2 2. | 2 species on M2, 2 sites pfu z(m2,fe3+) = 1 rieb site_check_override end_of_model begin_model -------------------------------------------------------- begin_model Ideal orthoamphibole, this model assumes Al is present on only two tetrahedral sites and all five M2 sites. I have no idea if this is correct! fgedr endmember stoichiometry corrected, T. Wagner 2/18/06. M1 M2 T ______________________ Mutliplicity 2 5 2 ______________________ 1 anth Mg Mg SiSi Species: 2 fanth Fe Fe SiSi 3 ged Mg Mg3Al2 AlAl 4 fged Fe Fe3Al2 AlAl ______________________ Dependent: fged = ged + 5/7*(fanth - anth) o-Amph | solution name abbreviation oAmph full_name orthoamphibole 7 | model type: reciprocal, macroscopic 2 | 2 site reciprocal solution 2 2 | 2 species on each site anth fanth | endmember names, this order implies: ged fged_i | x(11)=x(mg); x(12) = x(fe); x(21) = x(si,t); x(22) = x(Al,t) 1 | 1 dependent endmember: fged_i = 1 ged + 5/7 fanth - 5/7 anth 0 0 0 0 | endmember flags, indicate if the endmember is part of the solution. 0. 1. .1 | range and resolution for X(Mg) on site 1 0 | subdivision scheme on site 2: imod = 0 -> cartesian 0. 1. .1 | range and resolution for 1-X(Tschermaks) on site 2 0 | subdivision scheme on site 2: imod = 0 -> cartesian ideal 3 | 3 site (M1, M2, T) conigurational entropy model 2 2. | 2 species on M1, 2 sites per formula unit. z(m1,mg) = 1 anth + 1 ged 2 2. | 2 species on T, 2 sites per formula unit. z(t,al) = 1 ged 3 1. | 3 species on M2, 1 site per formula unit. z(m2,mg) = 1 anth + 3/5 ged z(m2,fe) = 1 fanth site_check_override end_of_model -------------------------------------------------------- begin_model tr-ts-parg non-ideal model for holland and powell. assumes 2 M2 sites are coupled to 4 T1 sites. site multiplicity of the T1 site is reduced to 2, this is suggested by HP98 to account for charge balance constraints. but doesn't make a lot of sense for the tr-parg mixing. assume Na on the A-site is coupled to Al on M2. JADC Nov, 98. HP Am Min 99, 84:1-14 Oli Jagoutz revised april 9, 2002 in contrast to the earlier version of TrTsPg this version assumes the A site is decoupled from M2 JADC 4/03. fparg = parg + 4/5 (ftr - tr) fgl = gl + 3/5 (ftr - tr) fts = ts + 3/5 (ftr - tr) GlTrTsPg | solution name abbreviation Amph full_name clinoamphibole 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 4 | 1 binary and 1 quaternary tr ftr parg fparg_i ts fts_i gl fgl_i 3 | number of dependent endmembers fparg_i = 1 parg + 4/5 ftr - 4/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr fgl_i = 1 gl + 3/5 ftr - 3/5 tr 0 0 0 0 1 0 0 0 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(ts) on site 2, imod = 0 -> cartesian subdivision begin_excess_function | interaction parameters from | White, Powell & Phillips (2003, JMG) | and Wei, Powell, & Zhang (2003, JMG) | compiled by D. Tinkham. JADC 11/03 W(parg gl) 80d3 0. 0. W(parg tr) 30d3 0. 0. W(parg ftr) 38d3 0. 0. W(gl tr) 77d3 0. 0. W(gl ftr) 83d3 0. 0. W(ts tr) 20d3 0. 0. W(ts ftr) -38d3 0. 0. W(tr ftr) 10d3 0. 0. | earlier versions used (provenance unknown) | W(ts parg) -25000. 0. 0. | W(tr parg) 20000. 0. 0. | W(tr ts) 38000. 0. 0. end_excess_function 5 | 5 site (A, M1, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 1/2 ts + 1/2 parg 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 gl 3 2. | 3 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 1 gl begin_dqf_corrections dqf(ts) 10000 0 0 end_dqf_corrections site_check_override end_of_model -------------------------------------------------------- begin_model A M1 M2 M4 T1 _________________________________________ Mutliplicity 1 3 2 2 2 _________________________________________ 1 tr Vac Mg Mg Ca Si_Si 2 ftr Vac Fe Fe Ca Si_Si 3 ts Vac Mg Al Ca Al_Si 4 fts Vac Fe Al Ca Al_Si 5 parg Na Mg Mg_Al Ca Al_Si 6 fparg Na Fe Fe_Al Ca Al_Si 7 gl Vac Mg Al Na Si_Si 8 fgl Vac Fe Al Na Si_Si 9 mfets Vac Mg Fe3+ Ca Al_Si 10 ffets Vac Fe Fe3+ Ca Al_Si Dale et al, CMP 2000 140:353-362 amphibole model without K, Ti or Mn solution. JADC 9/05. fparg = parg + 4/5 (ftr - tr) fgl = gl + 3/5 (ftr - tr) fts = ts + 3/5 (ftr - tr) Amph(DHP) | solution name abbreviation Amph full_name clinoamphibole 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 5 | 1 binary and 1 quinary tr ftr parg fparg_i ts fts_i gl fgl_i mfets ffets_i 4 | number of dependent endmembers fparg_i = 1 parg + 4/5 ftr - 4/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr fgl_i = 1 gl + 3/5 ftr - 3/5 tr ffets_i = 1 mfets + 3/5 ftr - 3/5 tr 0 0 0 0 1 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(ts) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(gl) on site 2, imod = 0 -> cartesian subdivision begin_excess_function W(parg gl) 84.5d3 0. 0. W(parg tr) 29.3d3 0. 0. W(parg ts) 18.2d3 0. 0. W(parg ftr) 11.4d3 0. 0. W(gl tr) 35.3d3 0. 0. W(ts tr) 20.8d3 0. 0. W(tr ftr) 11.4d3 0. 0. W(gl ftr) 15d3 0. 0. W(gl ts) 15d3 0. 0. end_excess_function 5 | 5 site (A, M1, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 2. | 2 species on T1, fake site multiplicity of 2. z(T1,Al) = 1/2 ts + 1/2 parg + 1/2 mfets 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 gl + 1 mfets 4 2. | 4 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr z(m2,fe3+) = 1 mfets 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 1 gl begin_dqf_corrections dqf(ts) 10000 end_dqf_corrections reach_increment 1 site_check_override end_of_model -------------------------------------------------------- begin_model Dale et al, JMG 2005 23:771-791 amphibole model. JADC, 11/05. Margules parameters corrected from W(gl ftr) 393d3 0. 0. W(gl mfets) 459d3 0. 0. W(ftr mfets) 125d3 0. 0. to current values. M. Racek, 2/10/06. A M13 M2 M4 T1* _________________________________________ Mutliplicity 1 3 2 2 4(1) _________________________________________ 1 tr Vac Mg Mg Ca Si_Si 2 ftr Vac Fe Fe Ca Si_Si 3 ts Vac Mg Al Ca Al_Si 4 fts_d Vac Fe Al Ca Al_Si 5 parg Na Mg Mg_Al Ca Al_Si 6 fparg_d Na Fe Fe_Al Ca Al_Si 7 gl Vac Mg Al Na Si_Si 8 fgl_d Vac Fe Al Na Si_Si 9 mfets Vac Mg Fe3+ Ca Al_Si 10 ffets_d Vac Fe Fe3+ Ca Al_Si fparg_d = 1 parg + 4/5 ftr - 4/5 tr fts_d = 1 ts + 3/5 ftr - 3/5 tr fgl_d = 1 gl + 3/5 ftr - 3/5 tr ffets_d = 1 mfets + 3/5 ftr - 3/5 tr *Dale et al compute amphibole T1 site fractions assuming a site multiplicity of 4, but compute activities for a T1 site multiplicity of 1. In previous models H&P computed activities for a T1 site multiplicity of 2. Amph(DPW) | solution name abbreviation Amph full_name clinoamphibole 7 | model type: reciprocal, margules 2 | 2 site reciprocal solution 2 5 | 1 binary and 1 quinary tr ftr parg fparg_i ts fts_i gl fgl_i mfets ffets_i 4 | number of dependent endmembers fparg_i = 1 parg + 4/5 ftr - 4/5 tr fts_i = 1 ts + 3/5 ftr - 3/5 tr fgl_i = 1 gl + 3/5 ftr - 3/5 tr ffets_i = 1 mfets + 3/5 ftr - 3/5 tr 0 0 0 0 1 0 0 0 0 0 | endmember flags. 0. 1.0 0.1 0 | range and resolution for X(Mg) on site 1, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(tr) on site 2, imod = 0 -> cartesian subdivision 0. 1.0 0.1 0 | range and resolution for X(pg) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(ts) on site 2, imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for X(gl) on site 2, imod = 0 -> cartesian subdivision begin_excess_function W(tr ts) 20d3 0. 0. W(tr parg) 33d3 0. 0. W(tr gl) 65d3 0. 0. W(tr ftr) 10d3 0. 0. W(tr mfets) 20d3 0. 0. W(ts parg) -385d2 0. 0. W(ts gl) 25d3 0. 0. W(ts ftr) 125d2 0. 0. W(parg gl) 50d3 0. 0. W(parg ftr) -19d2 0. 0. W(parg mfets) -385d2 0. 0. W(gl ftr) 393d2 0. 0. W(gl mfets) 459d2 0. 0. W(ftr mfets) 125d2 0. 0. end_excess_function 5 | 5 site (A, M13, M2, M4, T1) entropy model 2 1. | 2 species on A (V, Na), 1 site per formula unit. z(A,Na) = 1 parg 2 1. | 2 species on T1, fake site multiplicity of 1. z(T1,Al) = 1/2 ts + 1/2 parg + 1/2 mfets 2 3. | 2 species on M1, 3 sites per formula unit z(m1,mg) = 1 tr + 1 ts + 1 parg + 1 gl + 1 mfets 4 2. | 4 species on M2, 2 sites pfu z(m2,mg) = 1 tr + 1/2 parg z(m2,fe) = 1 ftr z(m2,fe3+) = 1 mfets 2 2. | 2 species on M4, 2 sites pfu z(m4,na) = 1 gl begin_van_laar_sizes alpha(tr) 1.0 0. 0. alpha(ts) 1.5 0. 0. alpha(parg) 1.7 0. 0. alpha(gl) 0.8 0. 0. alpha(ftr) 1.0 0. 0. alpha(mfets) 1.5 0. 0. end_van_laar_sizes begin_dqf_corrections dqf(gl) 5d3 0 0 dqf(ts) 1d4 0 0 dqf(parg) 15d3 0 0 end_dqf_corrections site_check_override end_of_model -------------------------------------------------------- begin_model Sapphirine, ideal, holland and powell '98 config entropy corrected, P Goncalves/JADC, 10/1/03 the corrected model assumes (after the text on TJBH's saphhirine web page www.esc.cam.ac.uk/astaff/holland/ds5/sapphirines/spr.html) that: 1) a 14 cation unit formula 2) Si occupies T2, Al occupies T5, Si and Al mix on remaining 4 sites T1 T3 T4 T6 (the T site below) 3) Al occupies M7; only Fe and Mg may occupy sites M4, M5, M6 (Site MB below); Al, Mg, and Fe may occupy sites M1, M2, M3 and M8 (Site MA below) N.B. This model seems to differ from the Thermocalc format version on TJBH's web page in that it accounts for the configurational entropy arising from mixing on MB (i.e., the Thermocalc model looks like it was written for Fe-free sapphirine). Eliminate site MB to reproduce the TJBH web page Thermocalc model. 1 2 3 MA MB T _________________ Mutliplicity 4 3 4 _________________ 1 spr7 MgAl7 Mg SiAl7 Species: 2 fspr FeAl7 Fe SiAl7 3 spr4 MgAl3 Mg SiAl3 4 fsp4_i FeAl3 Fe SiAl3 Dependent endmember: fsp4_i = spr4 + 8/7 * (fspr - spr7) Sapp(HP) abbreviation Sap full_name sapphirine 7 model type 2 reciprocal solution 2 2 2 species on each site spr7 fspr spr4 fsp4_i 1 1 dependent endmember fsp4_i = 1 spr4 + 8/7 fspr - 8/7 spr7 0 0 0 0 endmember flags 0. 1. 0.1 0 | range and resolution for X(Mg), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for 1-X(Tschermaks), imod = 0 -> cartesian subdivision ideal 3 | 3 site (MA, MB, T) configurational entropy model 2 3. | 2 species on MB, 3 sites per formula unit z(mb,mg) = 1 spr4 + 1 spr7 3 4. | 3 species on MA, 4 sites per formula unit. z(ma,Al) = 3/4 + 1/8 spr7 + 1/8 fspr z(ma,fe) = 1/8 fspr 2 4. | 2 species on T, 4 sites per formula unit. z(T,Al) = 3/4 + 1/8 spr7 + 1/8 fspr site_check_override end_of_model -------------------------------------------------------- begin_model Sapphirine, non-ideal, Kelsey et al. (J. metamorphic Geol., 2004, 22, 559-578) NOTE: This model should be used in conjunction with a special high temperature version of the HP data base (kel04ver.dat). Model originally entered by Pulak Sengupta, 7/16/05. 1) Site populations corrected to correspond to those of Kelsey et al by P Goncalves, 10/12/2010. 1 2 3 M3 M46 T _________________ Mutliplicity 1 3 1 _________________ 1 spr4 Mg Mg Si Species: 2 fspr Fe Fe Si 3 spr5 Al Mg Al 4 fsp5_i Al Fe Al Dependent endmember: fsp5_i = spr5 + 3/4 * (fspr - spr4) Sapp(KWP) abbreviation Sap full_name sapphirine 7 model type 2 reciprocal solution 2 2 2 species on each site spr4 fspr spr5 fsp5_i 1 1 dependent endmember fsp5_i = 1 spr5 + 3/4 fspr - 3/4 spr4 0 0 0 0 | endmember flags 0. 1. 0.1 0 | range and resolution for X(Mg), imod = 0 -> cartesian subdivision 0. 1. 0.1 0 | range and resolution for 1-X(Tschermaks), imod = 0 -> cartesian subdivision begin_excess_function w(spr5 spr4) 10000 0 0 w(spr5 fspr) 12000 0 0 w(spr4 fspr) 8000 0 0 end_excess_function 3 | 3 site (M3, M46, T) configurational entropy model 2 3. | 2 species on M46, 3 sites per formula unit z(m46,mg) = 1 spr5 + 1 spr4 3 1. | 3 species on M3, 1 sites per formula unit. z(ma,Al) = 1 spr5 z(ma,fe) = 1 fspr 2 1. | 2 species on T, 1 sites per formula unit. z(T,si) = 1 spr4 + 1 fspr site_check_override end_of_model -------------------------------------------------------- begin_model | CHLORITE: extended from holland et al. 1998, EJM. NOTES: * This model will only function for the FASH subsystem if MGO is also used as a component in VERTEX. * This model was tested with the maple script complete_chl.mws * For normal aluminous chlorites there is little to be gained by considering the afchl endmember becuase the endmember has negligible contribution to the total energy of the solution (see fig 4 of holland et al). Exclude this endmember to save computational resources. For Al-poor systems exclude ames and retain afchl. JADC 4/03 | Despite this models complexity it can be | written as a simple ternary with one independent | ordering parameter, however perplex does not | yet have speciation models implemented for | solutions in which multiple endmembers are | characterized by a single ordering parameter. | hence the model is formulated here explicitly | in terms of the dependent endmembers with the | site occupancy table: 1 2 3 4 M1 M2+M3 M4 T2 ________________________________ Mutliplicity 1 4 1 2 ________________________________ 1 mame Al Mn Al Al_Al dependent 2 mafchl Mn Mn Mn Si_Si dependent 3 mnchl Mn Mn Al Al_Si 4 fames Al Fe Al Al_Al dependent 5 fafchl Fe Fe Fe Si_Si dependent 6 daph Fe Fe Al Al_Si 7 ames Al Mg Al Al_Al 8 afchl Mg Mg Mg Si_Si 9 clin Mg Mg Al Al_Si Dependent endmembers: fame = ames + 4/5 * (daph - clin) fafchl = afchl + 6/5 * (daph - clin) mame = ames + 4/5 * (mnchl - clin) mafchl = afchl + 6/5 * (mnchl - clin) | For normal aluminous chlorites there is little to be gained | by considering the afchl and fafchl endmembers | becuase the endmember has negligible | contribution to the total energy of the solution | (see fig 4 of holland et al) Chl(HP) abbreviation Chl full_name chlorite 7 | model type reciprocal, macroscopic formulation 2 3 3 mame_i mafchl_i mnchl fame_i fafchl_i daph ames afchl clin 4 | 4 dependent endmembers fame_i = 1 ames + 4/5 daph - 4/5 clin fafchl_i = 1 afchl + 6/5 daph - 6/5 clin mame_i = 1 ames + 4/5 mnchl - 4/5 clin mafchl_i = 1 afchl + 6/5 mnchl - 6/5 clin 0 0 0 0 0 0 0 0 0 |endmember flags | subdivision model for (ternary) site 1 (T2): 0. 1. .1 0 | range and resolution of X(Al_Si), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(Al_Al), imod = 0 -> cartesian subdivision | subdivision model for (ternary) site 2 (M2) 0. .2 .1 0 | range and resolution of X(Mn), imod = 1 => asymmetric subdivision 0. 1. .1 0 | range and resolution of X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(clin ames) 18000. 0. 0. w(clin afchl) 18000. 0. 0. w(ames afchl) 20000. 0. 0. w(clin daph) 2500. 0. 0. w(daph ames) 13500. 0. 0. w(daph afchl) 14500. 0. 0. end_excess_function 4 |4 site configurational entropy model: 4 1. |4 species on 1 M1 site z(al,M1) = 1 ames z(mn,M1) = 1 mnchl z(fe,M1) = 1 daph 3 4. |3 species on 4 M2+M3 sites z(mn,m2+m3)= 1 mnchl z(fe,m2+m3)= 1 daph 2 1. |3 species on 1 M4 site z(mg,m4) = 1 afchl 2 2. |2 species on 2 T2 sites z(al,T2)= 1 ames + 1/2 clin + 1/2 daph + 1/2 mnchl site_check_override end_of_model -------------------------------------------------------- begin_model | CHLORITE: extended from Holland et al. (1998) for sud substitution | Entered by Thomas Wagner, 5/12. LWV 7/12 | The reference for this model is Lanari, Wagner and Vidal, | CMP 2014 167:968 | the model is formulated here explicitly | in terms of the dependent endmembers with the | site occupancy table: 1 2 3 4 M1 M2+M3 M4 T2 ________________________________ Mutliplicity 1 4 1 2 ________________________________ 1 fames Al Fe Al Al_Al dependent 2 ames Al Mg Al Al_Al 3 clin Mg Mg Al Al_Si 4 daph Fe Fe Al Al_Si 5 fsud Va Al2_Fe2 Al Al_Si dependent 6 sud Va Al2_Mg2 Al Al_Si Dependent endmembers: fames = ames + 4/5 * (daph - clin) fsud = sud + 2/5 * (daph - clin) Chl(LWV) abbreviation Chl full_name chlorite 7 | model type reciprocal, macroscopic formulation 2 3 2 fames_i fsud_i daph ames sud_dqf clin 2 | 2 dependent endmembers fames_i = 1 ames + 4/5 daph - 4/5 clin fsud_i = 1 sud_dqf + 2/5 daph - 2/5 clin 0 0 0 0 0 0 |endmember flags | subdivision model for (ternary) site 1 (T2): 0. 1. .1 0 | range and resolution of X(Al_Si), imod = 0 -> cartesian subdivision 0. 1. .1 0 | range and resolution of X(Al_Al), imod = 0 -> cartesian subdivision | subdivision model for (ternary) site 2 (M2) 0. 1. .1 0 | range and resolution of X(Fe), imod = 0 -> cartesian subdivision begin_excess_function w(clin ames) 18000. 0. 0. w(clin daph) 2500. 0. 0. w(clin sud_dqf) 49100. 0. 0. w(daph ames) 13500. 0. 0. w(daph sud_dqf) 43400. 0. 0. w(ames sud_dqf) 43300. 0. 0. end_excess_function 3 |3 site configurational entropy model: 4 1. |4 species on 1 M1 site z(al,M1) = 1 ames z(mg,M1) = 1 clin z(fe,M1) = 1 daph 3 4. |3 species on 4 M2+M3 sites z(fe,m2+m3) = 1 daph z(mg,m2+m3) = 1 clin + 1 ames + 1/2 sud_dqf 2 2. |2 species on 2 T2 sites z(al,T2) = 1 ames + 1/2 clin + 1/2 daph + 1/2 sud_dqf site_check_override end_of_model 9 compositionally independent endmembers 1 ordered endmember the mbuf exchange is limited to {MgTi}/2{Fe} - {FeTi}/2{MgFe}/2 15 dependent endmembers 16 fillers of which 4 are utterly superfluous M1 M2 T ____________________________________ Multiplicity 1 1 1/2 <- fake T multiplicity ____________________________________ mkbuf_d MgTi K Si dependent mnbuf_d MgTi Na Si dependent mcbuf MgTi Ca AlSi mcbuf_d1 MgTi Ca AlSi filler ___ mkbuf_d1 MgTi K Si filler mnbuf_d1 MgTi Na Si filler mbuf_d MgTi Mg AlSi dependent mfbuf_d MgTi Fe AlSi dependent _________ crkjd_d Cr K Si dependent crjd_d Cr Na Si dependent crdi Cr Ca AlSi crdi_d1 Cr Ca AlSi filler ___ crkjd_d1 Cr K Si filler crjd_d1 Cr Na Si filler cren_d Cr Mg AlSi dependent crfs_d Cr Fe AlSi dependent _________ kess_d Fe3+ K Si dependent ness_d Fe3+ Na Si dependent cess Fe3 Ca AlSi cess_d1 Fe3 Ca AlSi filler ___ kess_d1 Fe3+ K Si filler ness_d1 Fe3+ Na Si filler mess_d Fe3 Mg AlSi dependent fess_d Fe3 Fe AlSi dependent _________ kjdh Al K Si jd Al Na Si cats Al Ca AlSi cats_d1 Al Ca AlSi filler ___ kjd_d1 Al K Si filler jd_d1 Al Na Si filler mats_d Al Mg AlSi dependent fats_d Al Fe AlSi dependent _________ kjd_d2 Al K Si filler jd_d2 Al Na Si filler di Mg Ca Si hed_d Fe Ca Si dependent ___ kjd_d3 Al K Si filler jd_d3 Al Na Si filler cenjh Mg Mg Si cfsg Fe Fe Si _______________________________________________