make g a symbolic function of pressure and temperature:

in my notation below dxdyz is the derivative of x with respect to y at constant z given that we know s and v only as a function of P and T our main problem is to express the derivatives in terms of the four derivatives of s and v that we can evaluate, i.e.,

>
$$dsdpt := diff(S, P); dsdtp := diff(S, T); dvdpt := diff(V, P); dvdtp := diff(V, T);$$

$$dsdpt := -\frac{\partial^{2}}{\partial P \partial T} G(P, T)$$

$$dsdtp := -\frac{\partial^{2}}{\partial T^{2}} G(P, T)$$

$$dvdpt := \frac{\partial^{2}}{\partial P^{2}} G(P, T)$$

$$dvdtp := \frac{\partial^{2}}{\partial P \partial T} G(P, T)$$
(2)

to avoid having to recognize the inverse of these derivatives we can also assign them here:

with the above partial derivatives we can now evaluate any thermodynamic partial derivative from equations 4.43-4.46, e.g., isobaric expansivity (1/V*diff(V,T)) is:

> alpha :=
$$1/V*diff(V,T)$$
;
$$\alpha := \frac{\frac{\partial^2}{\partial P \partial T} G(P,T)}{\frac{\partial}{\partial P} G(P,T)}$$
(4)

or in problem 4.5 we have:

>
$$v_phi := \operatorname{sqrt}(Ks/\operatorname{rho});$$

> $Ks := -V*dpdvs;$

$$v_phi := \sqrt{\frac{Ks}{\rho}}$$

$$Ks := -\left(\frac{\partial}{\partial P} G(P, T)\right) dpdvs$$
(5)

a somewhat ill-advised strategy for expressing Ks in terms of G would be to first invert d[dvs and then use rule 4.42 $((\partial f/\partial x)_x = (\partial f/\partial x)_y - (\partial f/\partial y)_x (\partial y/\partial x)_x (\partial z/\partial x)_y)$ mapping v->f, p->x and s->z to expand dvdps

$$dpdvs = \frac{1}{dvdps};$$

$$dpdvs = \frac{1}{dvdps}$$

$$> \#dvdps := ...$$

$$> v_phi;$$

$$\sqrt{-\frac{\left(\frac{\partial}{\partial P} G(P, T)\right) dpdvs}{\rho}}$$

$$(6)$$