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SOME PRELIMINARIES 
 
MAPLE TECHNICAL ISSUES  
 
Installing Maple - Expand the Mac (OSX), LINUX or PC (Windows) zip archive in 
www.perplex.ethz.ch\thermo_course\maple. Follow the instructions in the Maple installation text file!  
 
Display settings – if you wish to keep the format of your scripts similar to those on the course web-page and you 
are not using “Classic” Maple, then: under Tools->Options->Display set Input display to Maple Notation and 
Typsetting level to Maple Standard, these minimize complications caused by invisible formatting characters; 
and under Tools->Options->Interface set Default format for new worksheets to Worksheet. 
 
Maple tutorial – this course does not require much skill with Maple and I will attempt to provide you with the 
essential syntax. However, if you want a better understanding of its syntax and capabilities, then the tutorial 
present in www.perplex.ethz.ch\thermo_course\maple may be useful. 
 
Classic vs Java scripts – the Maple scripts prepared for this course were prepared in the Classic Maple version 
(file type *.mws). These scripts can be used in the Java version of Maple, but if you do so please save them as 
Java version files (file type *.mw), Classic version files that have been manipulated in the Java version become 
illegible if saved as Classic version files. 
 
A word to the wise – Save your work frequently; do not rely on the auto-backup function.  
 
PROBLEM SETS 
 
The problem sets may be solved as a group effort. If you solve a problem set as a group, then please submit one 
copy of the solved problems for the entire group. In the first half of the semester, the problem sets are due within 
two weeks of their assignment. 
 
If you do a problem with Maple, then I am happy to accept an e-mail copy of your Maple script rather than a 
hand-written answer. However, be sure that the script can be executed sequentially, to verify this, type “restart;” 
or press the Maple menu restart button and then step through the script. Just as in a handwritten problem set, 
maple scripts should be documented by explanatory comments, preferably inserted as text (the “T” menu 
button). In particular, it is essential that the units be given for any dimensional results. Some firewalls do not 
allow Maple scripts as attachments; therefore, it is best to enclose the Maple script in a zip file. 
 
If necessary, then I will offer a tutorial for the more complicated problem sets, probably on Thursday’s, 14:15-
16:15. The penalty for solving problems in the tutorial is that the note for a perfect solution is 5. If you attend a 
tutorial, then please indicate this on your problem set. 
 
THE FIRST LECTURE AND THE CORRESPONDING PROBLEM SET 
 
To illustrate the purpose and goals of this course, in the first lecture I will begin at the end by considering how 
phase diagrams are constructed from thermodynamic models. There is no script for this lecture, but a short 
review of the basic concepts is in p 12-16 of www.perplex.ethz.ch\thermo_course\chapter_0\potenza.pdf. The 
problem set for this lecture consists of the four problems outlined in the maple scripts at 
...\thermo_course\chapter_0. 

http://www.perplex.ethz.ch/thermo_course/chapter_0/potenza.pdf
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1: THERMODYNAMIC PROCESSES AND 
LAWS 
“Thermodynamics is the science of the impossible. 
It enables you to tell with certainty what cannot 
happen. Thermodynamics is noncommittal about 
the things that are possible. Thermodynamics is at 
its best when nothing can happen, a condition 
called equilibrium. The concept of equilibrium has 
been fruitfully extended to reversible processes. 
Here everything is impossible except one very 
specific process and even this process is on the 
verge of being impossible.” 
 – An anonymous, slightly inaccurate, wit. 
 
Chemical thermodynamics is a theory developed to 
predict and understand the consequences of 
processes. In principle it can be used to predict any 
process, but it is mainly used to understand the 
processes of heat and mass transfer and isostatic 
dilation (i.e., a change of volume (V) in an 
isotropic stress field). This restriction is implicit in 
the remainder of these notes. In this context, energy 
is referred to as the internal energy (U) to 
emphasize that it is only the energy accessible 
through the processes of interest. For a body of 
matter, i.e., a system, composed of k independently 
variable kinds of mass (M1, …, Mk), there are thus 
k+2 independent processes. Intuitively one expects 
that any of these processes will change the energy 
of a system on which they operate. The first law of 
thermodynamics is a formal statement of this 
intuition. Specifically, the first law states that 
energy of a system may only change if the system 
does work on its environment. Moreover, the first 
law states that energy (U) is conservative, i.e.,  
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where Q is the heat gained by the system and Wi is 
the work done by the system in the ith process, 
where d is used to indicate an inexact (path 
dependent) differential. The sign convention in Eq 
1.1 is by no means universal; in particular, in many 
textbooks W represents work done on the system in 
which case the work and heat differentials have the 
same sign.  
 
Properties that are not path dependent are said to be 
state functions and the importance of the first law 
is that it establishes energy as a state function. It 

follows that the integral of a state function along a 
closed path, i.e., a path that returns the system to its 
initial state must be zero. Thus an alternative 
statement of the first law is 

d 0U =∫ . 1.2 

But to define a closed path you must first define 
state. Early thermodynamicists understood that a 
system could only do work by changing its volume 
or mass, therefore the properties V, M1, …, Mk are 
state functions that define mechanical and chemical 
state. Furthermore, temperature (T) was assumed 
to be a state function although the relationship 
between temperature and heat was not entirely 
clear. 
 
If a system loses heat, it can be considered to have 
done positive thermal work, accordingly Eq 1.1 can 
be written more compactly  
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Early thermodynamicists were concerned primarily 
with the construction of steam engines, which 
convert heat to mechanical work; thus they had the 
prejudiced view that mechanical work was useful 
and that thermal work was useless except to the 
extent that it could be converted to useful work. 
While this attitude is no longer appropriate, it is 
sometimes useful to isolate heat as a special kind of 
work in order to understand the perspective of the 
early thermodynamicists who were responsible for 
thermodynamic theory. 

A MECHANICAL ANALOGY 

Although mechanics is more complex than 
chemical thermodynamics in that it involves kinetic 
energy and vectors, it is familiar via elementary 
physics. Therefore it is helpful to introduce a 
mechanical analogy to Eq 1.1, specifically the 
potential energy U of a stationary ball as a function 
of its horizontal position x along a frictionless 1-
dimensional surface with height H(x) in a gravita-
tional field (Fig 1.1). The potential energy of the 
ball is proportional to the height H of the surface, 
i.e., U ∝ H(x) and by the first law (Eq 1.1)  
d d 0U W+ =  1.3 
the ball can do work if it lowers its potential energy 
by moving. In mechanics this work is  
d dW f x=  1.4 

where f is the force resisting the movement dx, thus  
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d dU f x= −  1.5 

In this particular case, the work differential happens 
to be exact because there is only one process (path) 
possible.  
 
Eqs 1.3 and 1.4 can be considered, although it is not 
conventional, to define force as the negative spatial 
gradient in potential energy 

d
d
Uf
x

≡ − . 1.6 

The ball will have no tendency to move if this 
gradient is zero, thus the gradient can be viewed as 
the potential for the only process (displacement of 
the ball) possible in the system in the absence of 
external influence. For this reason spatial gradients 
in energy are often referred to as potentials for 
work 

d
d
U
x

θ ≡  

thus forces may be regarded as the negative of 
potentials for work and 1.5 may also be written 
d dU x= θ . 1.7 
The topographic highs and lows of the surface (Fig 
1.1) are the only points at which a stationary ball is 
in mechanical equilibrium, i.e., in force balance. 
We may further characterize these equilibria as 
being stable or unstable if they correspond to 
maxima or minima, it being apparent that an 
equilibrium at a maximum is unstable with respect 
to small perturbations. 
 
For the case of a single ball we have the trivial 
result that the condition for equilibrium, i.e., a state 
where no processes are possible is that θ = 0. At 
this point the example is not especially relevant to 
thermodynamics because no processes are possible 
within the system. Therefore, consider now a 
system consisting of two balls that are constrained 
to remain in contact. In this system, we have the 
possibility of an internal process in that one ball can 
push the other. In this case, the condition for 
equilibrium is not that the balls are at the same 
height, but rather that the potentials of the balls 
must be equal in magnitude and opposite in sign. 
The necessity for the opposing signs is that in 
mechanics forces have direction and this is the only 
real distinction to thermodynamics where the forces 
or potentials are scalar. Thus in thermodynamics a 
requirement for equilibrium with respect to a 

process that changes a property Ψ, is that the 
potential  

U∂
θ ≡

∂Ψ
 1.8 

for the process is uniform throughout the system.  
 
Integrating Eq 1.5 at constant force  
U x= θ  1.9 
and the differential of Eq 1.9 is then 
d d dU x x= θ + θ . 1.10 
Comparison of 1.5 and 1.10, leads to the conclusion 
that the exactness of 1.5 requires  

d 0x θ = , 1.11 
which is the mathematical statement that changing 
the potential of a system does not affect the systems 
energy if the system does no work. 

THERMODYNAMIC WORK 

Just as in the foregoing mechanical example where 
the work differential can be written variously 

dd d d d
d
UW x x f x
x

= − = −θ = . 

The work differentials in Eq 1.1 can be written 
2 2 2

2 2 2,

d d = d
j i

k k k

i i i i
i i ii Q

UW
≠

+ + +

= = =Ψ

 ∂
= − Ψ − θ Ψ ∂Ψ 

∑ ∑ ∑  1.12 

where the work differentials are now inexact 
because more than one process is possible and the 
thermodynamic potential θi is defined as the partial 

x

U

f=- U∂ /∂ θx=

Fig 1.1 Energy of a stationary ball along a 1-d 
surface, the force that would induce the ball to 
roll is the negative of the gradient in the 
energy along the surface. A spatial gradient in 
energy is usually referred to as a potential. The 
potential is a measure of the amount of work 
that can be extracted from the ball by a 
displacement (d ) in the along the surface. If 
the system consists of only one ball it can be in 
equilibrium only if the potential of the ball is 
zero. However, if the system of interest 
consists of two balls, it will be in mechanical 
equilibrium when the potential of each ball is 
equal in magnitude (but opposite in sign).

x
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derivative of energy with respect to property Ψi for 
an adiabatic system (d 0)Q = at constant j i≠Ψ . In Eq 

1.13 the potentials are differential coefficients 
defined, at least in the adiabatic case, entirely in 
terms of state functions, therefore it follows that the 
potentials are also state functions. Using explicit 
notation, the differential coefficient on volume is 
known from mechanics to be pressure, i.e., the 
“force” that resists dilational work, thus  
d VW PdV=  1.14 

and pressure can be defined thermodynamically as 
the negative of the potential for volume 

, i kQ M M

UP
V

∂ ≡ −  ∂ 


. 

In contrast, chemical work is entirely a thermody-
namic concept and defined in terms of a potential 
for chemical work 

, , j i

i
i Q V M

U
M

≠

 ∂
µ ≡  ∂ 

 

such that  
d

iM iW dM= µ . 

Making use of these definitions, Eq 1.1 is  

1
d d d d

k

i i
i

U Q P V M
=

= − + µ∑  1.15 

The peculiar mixture of forces and potentials 
reflects the historical fact the dilational work term 
had been defined in mechanics in terms of pressure, 
whereas chemical work was not defined prior to the 
work of Gibbs on chemical thermodynamics.  

EXACT DIFFERENTIALS 

After reading thermodynamic textbooks one could 
easily be forgiven for concluding that the true 
statement of the 1st law is that energy is an exact 
first order homogeneous differential, rather than 
that these mathematical qualities are a consequence 
of energy conservation. I suspect this confusion, of 
which I was a victim, results from emphasis on 
mathematical rather than physical concepts, so to 
allay this confusion here let us consider illustrations 
of the inexactness (i.e., path dependence) of heat 
and work and the mathematical requirement for 
exactness (we leave an explanation of “first order 
homogeneity” for later).  
 
For the first illustration (Fig 1.2), consider a system 
composed of a constant amount of a pure monatom-
ic ideal gas for which  

PV = nRT. 1.16 
Since the system is pure and at constant mass, its 
energy is a function of two inexact functions, heat 
and dilational work 
d d d VU Q W= − . 

Now let us devise a set of paths involving work and 
heat that ultimately leave the gas in its original 
state. First, we thermally insulate the system and 
allow it to expand. During this part of the cycle the 
system can neither gain nor lose heat (i.e., it is 
adiabatic, d 0)Q ≡ and the pressure of the gas at 

any point can be shown to be 
( )5/3

0 0P P V V= ,  1.17 

where the zero subscripts denote initial conditions. 
From Eqs 1.14 and 1.17, the change in energy and 
work done in this segment is 

( )
1

0

5/3
1 1 0 0 d

V

V

U W P V V V∆ = − = −∫  1.18 

Fig 1.2 Illustration of a closed path for a fixed mass of
an ideal gas initially at V0=1 J/bar and T0=1 K (P0=1
bar). The path consists of 4 segments: adiabatic
decompression to V1=10 J/bar, isochoric (constant
volume) heating back to T0, adiabatic compression
back to V0, and isochoric cooling back to T0. The
mechanical work done along any segment is the area
under the path from its initial to its final volume
coordinate, thus the gas does no work in the isochoric
segments and the amount of work done in the
adiabatic segments is not equal. This partitioning
demonstrates that work and heat are path dependent
functions, however the first law requires that these
functions sum to zero for closed path as the total
energy of the gas must be conserved.

P(bar)

nR=1 J/K

V(J/bar)
1

0

4

10

adiabatic ( =0) 
decompression ( >0)

Q
W

1

1

adiabatic ( =0) 
compression ( <0)

Q
W
3

3

isochoric ( =0) 
cooling ( )

W4

Q4<0

isochoric ( =0) 
heating ( )

W2

Q2>0
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which is negative of the area under the path in a V-
P diagram (Fig 1.2). From Eq 1.16 the gas must 
cool during this work to 

1 1
1

PVT
nR

=  

as a consequence of its expansion. Next, we remove 
the insulation and heat the gas at constant volume 
back to its original temperature T0. As the gas does 
not change its volume it does no mechanical work, 
but its pressure increases to 

0
2

1

nRTP
V

= . 

We now adiabatically compress the gas back to its 
original volume and restore the gas to its original 
state by isochoric (constant volume) cooling. Thus, 
we have a closed path for which energy conserva-
tion requires  

d 0U U∆ = =∫  

yet because the V-P paths during compression and 
decompression are different it is evident that  

1 2d 0VW W W W∆ = = + ≠∫ , 

i.e., that work is not a state function in that the net 
amount of work done is dependent on the amount 
of heating done during the isochoric segments of 
the path.  
 
The path independence of exact differentials 
attracted much attention in science and mathemat-
ics during the 1700’s because the existence of such 
perfection was construed as evidence for the hand 
of god. To illustrate the mathematical requirement 
for exactness, consider the total differential of 
f(x,y)  

d d df ff x y
x y

∂ ∂
= +

∂ ∂
. 1.19 

If this differential is exact, its integral must be the 
same regardless of path, so let us consider the two 
alternate paths defined by small, but finite, 
increments δx and δy (Fig 1.2). Because the 
increments are small, we approximate f by a first 
order Taylor series as  

,0 0,0
0,0

x
ff f x
xδ

∂
= + δ

∂
 

or  

0, 0,0
0,0

y
ff f y
yδ

∂
= + δ

∂
 

where the subscripts indicate the x-y coordinates at 
which the function, or its derivatives are evaluated. 

Applying this approximation successively for the 
two possible paths, the result can only be independ-
ent of path if 

0, 0,0,0 0,0 yx

f f f f
y y x x

x y
δδ

∂ ∂ ∂ ∂− −
∂ ∂ ∂ ∂

=
δ δ

. 

The Taylor series approximation is exact in the 
infinitesimal limit (δx, δy → 0) in which case we 
obtain the result  

2 2f f
y x x y

∂ ∂
=

∂ ∂ ∂ ∂
 

that the cross derivatives of an exact function must 
be independent of the order of differentiation. This 
result is known Euler’s criterion (the Euler 
formerly on the 10 CHF note) for exactness. 

Fig 1.3 Proof that the cross derivatives of two variable
function f(x,y) must be equal if the differential of the
function is exact. If the differential is exact, then the
value of the function must be independent of path,
therefore consider two alternative paths involving
finite increments of x and y. The value of the function
after each increment is approximated by a first order
Taylor series. If the value of the function is the same
at path endpoints, then variation in the x-derivative
with a finite y increment must equal the change in the
y-derivative with a finite x increment; in the limit of
infinitesimal increments this equality reduces to
Euler’s Criterion.

x

y

0f

1 0
0,0

ff f y
y

∂′= + δ
∂

2 0
0,0,0 y

f ff f y x
y x δ

∂ ∂′ = + δ + δ
∂ ∂

1 0
0,0

ff f x
x

∂
= + δ

∂

2 0
0,0 ,0x

f ff f x y
x y δ

∂ ∂
= + δ + δ

∂ ∂

2 2

0 0
0,0 0,,0 0,0

0, 0,0,0 0,0

2 2
0, 0,0,0 0,0

, 0

if then

lim

yx

yx

yx

x y

f f

f f f ff x y f y x
x y y x

f f f f
y y x x

x y

f f f f
y y x x f f

x y y x x y

δδ

δδ

δδ

δ δ →

′=

∂ ∂ ∂ ∂
+ δ + δ = + δ + δ

δ δ ∂ ∂

∂ ∂ ∂ ∂− −
∂ ∂ ∂ ∂

=
δ δ

 ∂ ∂ ∂ ∂− − ∂ ∂ ∂ ∂ ∂ ∂ = = = δ δ ∂ ∂ ∂ ∂
  
 
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Ordinarily in thermodynamics the partial deriva-
tives that are differential coefficients of a 
differential equation are given special names, e.g., 

U M∂ ∂ = µ  or U V P∂ ∂ = −  as in Eq 1.15. 

Adopting this shorthand Eq 1.19 is 
d d df p x q y= +   

and Euler’s criterion yields 
2p f q

y x y x
∂ ∂ ∂

= =
∂ ∂ ∂ ∂

. 1.20 

if f is exact. 
 
From a thermodynamic perspective, the important 
feature of an exact differential is that its integrals 
can be evaluated given only knowledge of initial 
and final states, i.e.,  

( ) ( )

,

,

d
f f

i i

x y

f i
x y

f f f f i i i i

f f f f

p x q y p x q y

= − ≡ ∆

= + − +

∫   

Where, if necessary, the differential coefficients 
may be evaluated as explicit functions of x and y, 
e.g.,  

,i i

i
x y

fp
x

∂
=

∂
. 

From the foregoing considerations, it is apparent 
that it would be desirable to decompose the inexact 
heat differential in Eq 1.15 into the product of an 
exact differential and a differential coefficient, just 
as the work differentials were decomposed into the 
product of the differential of a state function and an 
integrating factor. The decomposition of the heat 
differential was accomplished by Rudolf Clausius 
while he was a professor at the ETH. 

THE SECOND LAW 

In the mid-19th 

 century it was realized that heat flow occurs as a 
consequence of a gradient in temperature T. 
However, the property in heat transfer analogous to 
mass or volume for chemical and mechanical work 
was not understood. This problem was resolved by 
Clausius’ (1850, 1865) formulation of the second 
law of thermodynamics, which introduced the 
state function entropy S as 

dd QS
T

≥ . 1.21 

and substituting 1.21 into 1.15 a combined 
statement of the first and second laws is 

1
d d d d

k

i i
i

U T S P V M
=

≤ − + µ∑  1.22 

The equalities in 1.21 and 1.22 apply for any real 
process and the equalities correspond to the 
theoretical limit that the processes of are non-
dissipative, in thermodynamics this type of 
behavior is said to be reversible.  
 
Unlike the macroscopic properties energy, mass 
and volume, entropy is unique to thermodynamics 
and therefore non-intuitive. Entropy is best 
understood as a macroscopic measure of disorder. 
In the specific case of heat transfer this disorder 
may simply be an increase in atomic vibrational 
energy. From the first law, dissipation cannot affect 
the energy of a system, rather it is a lowering of the 
quality of the energy. This reduction in quality is 
manifest by an increase in disorder. In this regard, 
the second law is pessimistic in that it implies that 
any real process increases the net disorder of the 
universe. A simple illustration is the heating of a 
system at constant mass and volume, if the heating 
is reversible 

, ,f rev f rev i iQ T S T S∆ = −  

where the subscripts i and f designate the initial and 
final states; if instead the same amount of heat is 
added irreversibly 

, ,f irrev f irrev i iQ T S T S∆ < −  

and subtracting the equality from the inequality and 
rearranging the result 

, , , ,f rev f rev f irrev f irrevT S T S< . 

However, as the energy in both cases is identical  

, , , ,

, , , ,

f rev f rev f rev i f rev i

f irrev f irrev f irrev i f irrev i

T S P V M
T S P V M

− + µ =

− + µ
  

ergo 
, , , ,f rev i f rev i f irrev i f irrev iP V M P V M− + µ > − + µ . 

Thus, the irreversible heat exchange causes a net 
lowering in the capacity of the system to do work 
by mechanical and chemical processes, should the 
constant mass and volume constraints be relaxed. In 
other words, the capacity of the system to do useful 
work has been dissipated by irreversible processes. 
It may be noted that this attitude is prejudicial with 
regard to what processes constitute useful work, 
i.e., it neglects the fact that the irreversible process 
has increased the amount of energy that can be 
drawn out of the system as heat.  
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Another illustration of dissipation is provided by 
the mechanical analogy mentioned earlier (Fig 1.1). 
Previously we discounted the fact that the "work" 
the ball does is translation (a process that is not 
usually considered in thermodynamics), i.e., the 
balls potential energy (U) is converted into kinetic 
energy in which case the total energy of the ball is 

2 2E U v= + . 1.23 

Taking 1.23 as truth together with the first law, 
implies that if we place a ball above a minimum, 
then the ball will oscillate back and forth across the 
minimum forever (a perpetual motion machine). 
The second law says that this, and therefore 1.23 
cannot be true. Rather Eq 1.23 but must be 
extended to 

2 2E U v TS= + +  1.24 

and that every motion of the ball must increase its 
entropy (temperature), an effect usually attributed 
to friction but which may also arise as a conse-
quence of deformation. Consequently the potentials 
for potential (height) and kinetic (velocity) 
processes will dissipate until the ball settles to the 
minimum. Of course, this process heats the ball 
raising the potential for thermal work. 
 
Although the designation of energy derivatives as 
potentials follows Gibbs, it is nonetheless uncon-
ventional in thermodynamic literature. More 
commonly U itself, and free energy functions 
derived from U that will be introduced later, are 
referred to as thermodynamic potential functions. 
The logic of this usage is that the functions measure 
the total energy that can be extracted from a 
system. For example, in the previous mechanical 
analogy (Fig 1.1) U is a direct measure of the 
height of the ball, and the possible variation in the 
height along the surface is therefore a direct 
measure of the potential of the ball to do work. In 
contrast, potentials as defined here (1.8) are a 
measure of the potential for individual processes 
within a system. 
 
The thermodynamic potentials {T, −P, µ1, …, µk 
} corresponding to the differential coefficients of 
1.22 can only be defined for a system in a non-
arbitrary way if they are uniform in all parts of the 
system. For example, imagine a two part system 
with distinct temperatures. What is the temperature 
of the entire system? There are numerous ways we 

may compute an average temperature, and thus 
there is no unique answer. In contrast, if the 
temperature is uniform, it is defined by a reversible 
variation in entropy at constant mass and volume, 
i.e.,  

UT
S

∂
≡

∂
. 

As the same argument can be made for any of the 
potentials in 1.22, it follows that for any reversible 
process the potentials must be uniform throughout 
the system. Thus, for a system to be heated 
reversibly it is necessary that temperature remain 
uniform during heating. Since rates of heat 
conduction, mass transport and dilation are finite, 
this requirement leads to the conclusion that 
reversible processes must be infinitely slow and 
manifest by infinitesimal potential gradients. In this 
regard, the form of 1.22 is deceptive as the 
coefficients cannot be defined for an irreversible 
process. For this reason, a restricted statement of 
the first and second laws known as the Gibbs 
differential 

1
d d d d

k

i i
i

U T S P V M
=

= − + µ∑  1.25 

is preferred for reversible processes.  
 
The Gibbs differential defines the fundamental 
variables of thermodynamics as entropy, volume 
and mass, i.e., U(S, V, M1, …, Mk). Knowledge of 
these variables must provide a complete definition 
of any thermodynamic system; in other words, any 
attribute of a system that cannot be defined from 
these variables is not a thermodynamic attribute of 
the system. All other thermodynamic properties are 
derived, and specifically  

i
i

UT
S
UP
V
U
M

∂
≡

∂
∂

− ≡
∂
∂

µ ≡
∂

 1.26 

Thus, the thermodynamic potentials that we are 
accustomed to thinking of as independent variables 
are dependent parameters in the context of the 
Gibbs differential, i.e., T(S, V, M1, …, Mk), etc. As 
the Gibbs differential is simply a summation of 
reversible work differentials, it is analogous to the 
mechanical system discussed earlier. This analogy 
can be made more succinct by introducing the 
general notation 
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2

1
d d

k

i i
i

U
+

=

= θ Ψ∑  1.27 

where 

i
i

U∂
θ ≡

∂Ψ
. 1.28 

Eq 1.28 defines a special relationship between each 
fundamental variable and its potentials, properties 
related in this manner are said to be conjugate, e.g., 
T is conjugate to S, θi is conjugate Ψi. Just as in 
mechanical systems, where force balance defines 
the conditions of a mechanical equilibrium, the 
uniformity of thermodynamic potentials define 
conditions of thermodynamic equilibrium, a state 
in which no reversible processes may take place in 
a system without external influence. Equilibrium 
processes are thus processes that occur entirely in 
response to external influence since any system 
described by 1.25 must be in internal equilibrium 
(Fig 1.2).  
 
As in the case of the mechanical system (1.9), 1.25 
may be integrated holding the potentials constant to 
obtain 

1

k

i i
i

U TS PV M
=

= − + µ∑  1.29 

or 
2

1

k

i i
i

U
+

=

= θ Ψ∑  1.30 

and as the total differential of 1.30 is  
2 2

1 1
d d d

k k

i i i i
i i

U
+ +

= =

= θ Ψ + Ψ θ∑ ∑  1.31 

comparison of 1.31 and 1.27, requires  
2

1
d 0

k

i i
i

+

=

Ψ θ =∑  1.32 

or in non-general form 

1
d d d 0

k

i i
i

S T V P M
=

− + µ =∑  1.33 

Eq 1.33 is known as the Gibbs-Duhem relation 
and has the profound implication that only k+1 
potentials of an equilibrium system are capable of 
independent variation. Thus the variation of one 
thermodynamic potential during a reversible 
process can always be expressed as a function of 
the remaining potentials.  

SECOND THOUGHTS: THE 0TH AND 3RD LAWS 

It is often difficult to distinguish what is assumed in 
thermodynamics from what is axiomatic. The 0th 
law is an example of this, as it was only realized by 

Caratheodory (1909) after the second law was 
postulated that temperature was not formally 
defined. Caratheodory’s statement of the 0th law, 
which was designated as such by Fowler (1956), 
was that if two bodies are in thermal equilibrium 
with a third body, then they are in thermal equilib-
rium with each other. The 0th law is necessary for 
legalistic arguments about temperature, but of little 
practical importance because it is usually implicitly 
assumed.  
 
The third law, or Nernst’s Law, is of greater 
practical importance because it establishes an 
absolute scale for entropy. A weak form of this law 
is the statement that the entropy of a system at zero 
Kelvin is zero. This form is “weak” because it is 
strictly correct only for a perfect crystal, but the 
statement is adequate for present purposes. A more 
robust statement is that no real processes are 
possible at absolute zero. Ergo, from the second 
law if no real processes are possible, the entropy 
change of any process must be zero at absolute 
zero.  

ALTERNATIVE STATEMENTS 

http://en.wikiquote.org/wiki/Thermodynamics 

READING MATERIAL 

I do not recommend any particular text for this 
course because I have only been able to convince 
myself that I understand anything of thermodynam-
ics by looking at many different texts. In this 
regard, texts can be broadly categorized as theoreti-
cal books that explain principles but presume 
practical applications are trivial; or as "how to" 
books that explain the "trivia" but neglect or restrict 
theory in a way that hinders a general understand-
ing. A few examples of each genre are: 

Basic principles 

Thermodynamics. N. A. Gokcen, R. G. Reddy 
Thermodynamics and an introduction to thermosta-

tistics. H. B. Callen 
Thermodynamics : an advanced treatment for 

chemists and physicists. E. A. Guggenheim 
Twenty lectures on thermodynamics. H.A. Buch-

dahl  
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How to 

Applied mineralogical thermodynamics: selected 
topics. N. D. Chatterjee 

The elements of physical chemistry. Peter Atkins 
(an excellent P-Chem text) 

The Principles of chemical equilibrium: with 
applications in chemistry and chemical engi-
neering. Kenneth George Denbigh  

Thermodynamics of natural systems. Greg Ander-
son (this book is geologically oriented, but best 
for hydrothermal geochemistry) 

Geochemical thermodynamics. Darrell Kirk 
Nordstrom, James L. Munoz (easy reader text) 

PROBLEMS 

In this course, if you do a problem with Maple, then 
I am happy to accept an e-mail copy of your Maple 
script rather than a hand-written answer. Because 
some firewalls do not allow Maple scripts, it is best 
to enclose scripts in a zip file or send a pdf of the 
script. 
 
1.1) For the function 2( )f x ax bx c= + + use Maple 

(preferably the classic version) to a) solve for the 
roots of the function with the solve command, b) 
integrate and differentiate the function using the int 
and diff commands, and c) plot the function, its 
definite integral from zero to x, and its derivative in 
a single plot with the plot and subs commands for 
a=1, b=2, c=3. 
 
1.2) Evaluate the amount of work done by the ideal 
gas during the closed cycle illustrated by Fig 1.2. 
Use the First Law to compute the heat gained by 
the gas. Note: to evaluate a definite integral in 
Maple use the command “int(1/x,x=x0..x1);”. In 
some cases Maple will tell you that it cannot 
evaluate the integral because it is unable to 
determine if 0 is between x0 and x1, in such cases 
modify the command using the assuming qualifier 
as in: “int(1/x,x=x0..x1) assuming x0>0, x1>0;”. 
Beware: variable ranges are indicated in Maple by 
two values separated by two periods, e.g., x0..x1, if 
you use actual rather than symbolic numbers for 
such a range and inadvertently separate the 
numbers by an ellipsis (“…”) Maple interprets the 
third dot as a decimal point, e.g., Maple interprets 
the range 1…10 to be from 1 to 0.1.  
 

1.3) a) Use Euler's criterion (Eq 1.20) to determine 
which of the differentials 1d d df P V V P= − and 

2d d df P V V P= + are exact. b) If 
2 1 2

3d d d= +f P V V P  is exact, then how does V 

depend on P? c) Write the total differential (Eq 
1.19) of 2 3

4f y x y= + , is it exact? d) f(x,y) is 

single-valued (i.e., formally a function of x and y), 
is its differential exact? Note: it is easiest to solve 
a-c analytically; it is possible, but exceedingly 
painful, to solve the problems as outlined in Fig 
1.3; and it is nearly impossible to solve the 
problems in Maple (i.e., do not waste your time 
trying). 
 
1.4) A constant mass system is composed of an 
ideal gas (P = MRT/V) and is in thermal equilibri-
um with an infinite heat reservoir at temperature T. 
If the system does work by expanding, then heat 
must flow into the system (in response to infinites-
imal temperature gradients) to maintain thermal 
equilibrium with the reservoir. For this process we 
may define the differential of a function known as 
the Helmholtz free energy A, such that dA ≡ dU – 
dQ = −PdV + µdM, which represents the maximum 
amount of work that can be extracted from the 
system. Evaluate the change in the Helmholtz 
energy of the system if it expands isothermally 
from V0 to 10 V0 by integrating −PdV + µdM. Is this 
result identical to ∆A the obtained by evaluating the 
difference in the integrated form of the Helmoltz 
energy (A = −PV + µM) between the initial and 
final state of system (the Gibbs-Duhem relation, Eq 
1.33, may be helpful in this regard)?  
 
NOTE: a dimensional numerical result is not an 
answer without units. You should always indicate 
appropriate units for answers to problems in this 
course. You can make Maple work with units, but 
unless you are fanatical I do not recommend this.  
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2: THERMODYNAMIC VARIABLES AND 
HETEROGENEOUS SYSTEMS 
The variables of the Gibbs differential {S, V, M1, 
…, Mk} characterize all thermodynamic processes 
of interest. As such they are the determinative 
parameters of any real system, i.e., the parameters 
that we, as masters of the universe, control. Any 
one of these properties may be used as a measure of 
the size of a system. It follows that the properties 
{U, S, V, M1,…, Mk} must vary linearly with the 
size or extent, such properties are said to be 
extensive. Thus, if the size of the system is changed 
by a factor q, then  

( )1, , , , kqU U qS qV qM qM=  . 2.1 

A function with this character is a first order 
homogeneous function in all its variables. Euler’s 
theorem on homogeneous functions states that if f is 
a homogeneous function of order o in x = {x1, …, 
xn} then 

( )f o f= ⋅∇x x . 2.2 

Thus for U(S, V, M1,…, Mk) and  

1

1

k

i
i i

k

i i
i

U U UU S V M
S V M

TS PV M

=

=

∂ ∂ ∂
= + +

∂ ∂ ∂

= − + µ

∑

∑
 2.3 

a result previously obtained by integration with the 
unstated assumption that U, S, V and M are 
extensive properties. That U and M must be 
extensive follows from the fact that they are 
conservative properties by the first law and 
conservation of mass (an implicit law in thermody-
namics due to Lomonosov, 1747). The second law 
defines entropy as a conservative property for 
reversible processes. Thus it must be conservative 
in the absence of any processes. Oddly, volume is 
not conservative. Therefore that volume is exten-
sive follows only from the unstated assumption that 
matter is continuous within any system. In mechan-
ics this assumption is referred to as the continuity 
constraint.  
 
Since all extensive properties are proportional to 
the size of a system, size is defined by any exten-
sive property. However, for practical purposes it is 
preferable to choose properties that are conserva-
tive, i.e., for which  
d 0Ψ =  2.4 
for all processes that are possible in the system 
other than a change in size.  

 

A process that changes only the size of a system, 
changes all the systems extensive attributes by a 
common factor. Any other process must change the 
relative proportions of the extensive attributes; such 
a process changes the state of the system. Thus 
state is defined by the relative proportions of 
extensive properties and is independent of extent. 
An attribute of matter that is independent of size is 
said to be intensive. As it is only possible to form 
k+1 independent ratios from the k+2 independent 
extensive properties of a system, e.g.,  
V S V
M M S

=  2.5 

it is evident that a thermodynamic system can have 
only k+1 independent intensive properties. 
 
Thermodynamic potentials, the ratio of two 
differentials of extensive properties, are, of course, 
also intensive. 

UGLY REALITY: COMPOSITIONAL, SPECIFIC AND 

MOLARVARIABLES 

In practice it is often desired to separate variations 
in extent from variations in state, where the latter 
are usually the variations subject of interest, e.g., 
phase diagrams show phase relations only as a 
function of state. This separation is accomplished 
by defining specific variables  

,i
i

UuΨ
ψ ≡ =

α α
 2.6 

where α is an arbitrary linear combination of 
extensive properties chosen to define the extent or 
amount of matter (e.g., total mass or volume). In 
other words, α is an arbitrarily defined extensive 
property. As 2.6 is a linear transformation, 1.29 
yields the integral form of the specific energy 

1

k
i ii

u Ts Pv m
=

= − + µ∑  2.7 

such that 

 Thermodynamic Variables 
 

Extensive 

Intensive 
 Potentials/ 

−forces 
Specific/ 
Molar/ 
Compositional 

Thermal S T s 
Mechanical V −P v 
Chemical Mi µi m 
General Ψi θi ψi 
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( ), ,U S V M u= α  2.8 

The desired separation of state and extent is then 
obtained from the differential of 2.8 
d d dU u u= α + α  2.9 
as α is solely a function of extent and u solely a 
function of state. The ugliness alluded to in the 
section title arises because only k+1 of the k+2 
specific variables on the right hand side of 2.7 are 
independent; but unfortunately without prior 
knowledge of the definition of α, the explicit 
dependence of the specific energy can only be 
written in general form as ( )1 1... ku +ψ ψ , i.e., by 

making use of a relation such as 2.5 to ob-
tain ( )2 1 1...k kf+ +ψ = ψ ψ . This form is not only ugly 

because of its vagueness, but also for its asymmetry 
with respect to the extensive properties.  
For the sake of clarity equations for specific 
properties are written here in terms of k+2 varia-
bles, with the implicit understanding that only k+1 
of these variables are independent, e.g., ( ), ,u s v m . 

 
To illustrate the difficulties arising from the 
definition of specific variables, three explicit 
formulations for ( )1 1... ku +ψ ψ  are outlined below. 

Gibbs’ Form 

Not surprisingly, the most logical form is due to 
Gibbs, who defined amount  

kMα ≡  

Noting that differential of a specific property ψi is 

2

d dd i
i i

Ψ α
ψ = − Ψ

α α
, 2.10 

then the variation in the specific internal energy of 
a system due to a change in state at constant 
amount is  

1

1
d d d d

−

=

= − + µ∑
k

i i
i

u T s P v m  2.11 

in only k+1 differentials. The disadvantage of this 
form is that in graphical analysis (e.g., phase 
diagrams), the specific variables of a state in which 
Mk = 0 are infinite.  

Molar Specific Variables  

For historical reasons, in applied chemical thermo-
dynamics an indirect measure of mass, known as a 
mole, is used in place of mass. A mole of any 
consists of Avogadro's number (NA) of the 
constituent entities of that substance and is thus 

directly proportional to the mass of the constituent 
entity (mi). Any equation written in terms of mass 
may be written equivalently in terms of moles via 

N m
i

i
A i

MN =  

where roman face font is used to denote constants. 
Thus, in terms of moles 1.29 is 

1

k

i i
i

U TS PV N
=

= − + µ∑ . 2.12 

Molar variables are specific variables formed by 
defining amount as the total number of moles 

1
e

i

k

i N
i

N
=

α ≡ ∑  2.13 

where 
iNe is a unit quantity of Νi, introduced so that 

the molar variables remain dimensionally consistent 
with the chemical potentials of 2.12. The resulting  
molar variables n1, …, nk are the mole fractions of 
the different kinds of mass and subject to the 
constraint 

1
e 1

i

k

i N
i

n
=

=∑ , 

which implies 
1

d d
k i

k

k n i n
i

n e n e
−

= − ∑  2.14 

As 2.10 requires that for a variation in state at 
constant extent (dα=0) 

1
d d d d

k

i i
i

u T s P v n
=

= − + µ∑  2.15 

substitution of 2.14 into 2.15 yields 
( )1 1, , ,..., ku s v n n − , i.e., 

1

1
d d d dk

i

k
n

i k i
i n

e
u T s P v n

e

−

=

 
= − + µ − µ  

 
∑ . 2.16 

Thus 

i

k

n
i k

i n

u T
s
u P
v

eu
n e

∂
=

∂
∂

= −
∂
∂

= µ − µ
∂

 2.17 

from which it is apparent, that unlike Gibbs’ form 
(2.11), 2.16 does not maintain the relationships 
between specific variables and potentials present in 
the Gibbs differential. The virtue of molar variables 
is that it is always possible to choose mass variables 
so that  
0 1im≤ ≤  
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is true for all possible chemical compositions. 
Consequently, the chemical states of the system can 
be represented within k−1 dimensional simplex (a 
polygon with k vertices in k−1 dimensions), the 
triangular (k=3) and tetrahedral (k=4) representa-
tions of which are familiar to petrologists. 

General Compositional Variables 

The definition of molar variables treats mass 
differently than volume or entropy, however there 
is no fundamental reason for such a distinction. 
Indeed for certain types of systems it is desirable to 
define specific variables that define the complete 
physicochemical composition of a system. To this 
end, amount is defined 

2

i

k

i
i

e
+

Ψα ≡ Ψ∑  2.18 

so that it is symmetric with respect to all the 
extensive properties. All the specific variables are 
then analogous to mass fractions, as used in 
chemistry, in that 
0 1i≤ ψ ≤  

and  
2

1
i

k

i
i

e
+

ψψ =∑ . 2.19 

As in the case of molar variables, from 2.19, the 
dependent differential in can be expressed as 

2

1

2 k i

k

k i
i

d e d e
+

+

+ ψ ψψ = − ψ∑  2.20 

so that the total differential of the specific energy 
becomes 

1

1
d dk

i

k

i k i
i

e
u

e

+
ψ

= ψ

 
= θ − θ ψ  

 
∑ . 2.21 

The virtue of this form is that all possible states of a 
system can be represented within k + 1 dimensional 
simplex, the vertices of which represent limiting 
states. Although specific properties defined in this 
was may seem exotic, their physical significance is 
not difficult to understand. For example, for a 
system containing only one kind of mass, dropping 
the unit factors for transparency, 2.6 in combination 
with 2.18 yields 

Uu
S V M

=
+ +

 

Ss
S V M

=
+ +

 

Vv
S V M

=
+ +

 

Mm
S V M

=
+ +

 

and from 2.19 
1v s m= − −  

For this system, all states can be plotted within a 
ternary simplex (Fig 2.1). If the system has a 
composition such that m = 1 the system is infinitely 
dense (v = 0) and infinitely cold (s = 0). By varying 
entropy or volume from this state we can achieve 
all possible thermal and mechanical states (i.e., 
states of lower pressure or higher temperature).  

HETEROGENEOUS SYSTEMS 

A system is heterogeneous if it consists of matter 
in two or more states (e.g., vapor and liquid). 
Although a heterogeneous system may be com-
posed of many parts (e.g., liquid droplets dispersed 
in a vapor) thermodynamics is only concerned with 
those parts of the system that differ in state. All the 
parts of a system that are in the same state are 
grouped together and considered to comprise a 
phase of the system. A heterogeneous system is in 
internal equilibrium if there is no process possible 
among the existing phases of the system (Fig 1.1). 
Since potentials are the thermodynamic forces that 
enable a process, it follows that a system is in 
internal equilibrium if each potential has the same 
value in all p phases of the system, i.e.,  

1

1

1

1

1 2

1

p
i i

p

p

p
i i

i k

T T
P P

i k

θ = = θ = +

= =

= =

µ = = µ =

 





 

 

M

S

s

v

T

µ -P

V

Fig 2.1 Ternary composition space for an 
isolated system composed of one kind of mass.
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Thus, in contrast to specific properties, in equilibri-
um, systems potentials do not distinguish phase 
states and are only characteristic of a system as a 
whole. The extensive attributes of the system are 

sys sys sys
1 1

sys sys sys
1 1

sys sys sys
1 1

sys sys sys
1 1

sys sys sys
1 1

= =

= =

= =

= =

= =

Ψ = Ψ = α ψ = α ψ

= = α = α

= = α = α

= = α = α

= = α = α

∑ ∑
∑ ∑
∑ ∑
∑ ∑
∑ ∑

p pj j j
i i i ij j

p pj j j
j j

p pj j j
j j

p pj j j
j j

p pj j j
i i i ij j

U U u u

S S s s

V V v v

M M m m

  2.22 

where αj is the absolute amount of the phase. Given 
that  

sys
1

p j
j=

α = α∑  

the left-most equality in 2.22 can be rearranged as 
sys

1

sys
1

sys
1

sys
1

sys
1

=

=

=

=

=

ψ = ψ

=

=

=

=

∑
∑
∑
∑
∑

p j j
i ij

p j j
j

p j j
j

p j j
j

p j j
i ij

x

x u u

x s s

x v v

x m m

 2.23 

where xj is the relative or fractional amount of the 
jth phase 

sysj jx = α α  2.24 

subject to the constraint 

1
1p j

j
x

=
=∑ . 2.25 

THE PHASE RULE 

Ordinarily the phase equilibrium problem is to find 
the relative amounts and specific properties of the 
phases in an equilibrium system. However, if the 
specific properties of the phases are known in 
advance, then the equations of state for each phase 
provide p equations of the form 

1

k
j j j j

i i
i

u Ts Pv m
=

= − + µ∑  2.26 

Viewed from this perspective the equations 
comprise a system of p equations in k+2 unknown 
potentials, i.e. in matrix form 

1 1 1 1
k

p p p p
k

k

T
s v m u

P

s v m u

−
=

µ



    





 2.27 

or 

1 1 1
1 2 1

1 2 2

k

p p p
k k

u

u

+

+ +

ψ ψ θ
=

ψ ψ θ



    



. 2.28 

While the system of equations need not be of full 
rank (i.e., p = k+2), it is evident that it cannot have 
a solution if p > k+2. It follows that in an equilibri-
um system 
p ≤ k+2,  2.29 
a deduction known as the phase rule. Phase 
equilibria are often characterized by the number of 
potentials that can be varied without causing a 
change of phase, i.e., the variance of an equilibri-
um. In a system consisting of one phase there are 
thus k+1 independent variables of state. Since the 
equation of state of each phase adds one constraint 
(i.e., 2.26), it follows that the variance of a system 
or equilibrium is 

2f k p= + − , 2.30 

which is the most common expression of the phase 
rule. 

PHASE PROPORTIONS: THE LEVER RULE 
The constraints of 2.23 are simply a statement that 
the parts of the system must sum to the whole. If 
the equilibrium compositions of a system and its 
constituent phases are known, these statements 
furnish k+2 constraints on the p ≤ k+2 relative 
amounts 1, , px x of the phases. Thus it is always 
possible to determine the relative amounts of the 
phases, by making use of any subset of p of the k+2 
constraints, e.g., if p ≤ k+2 then  

1
1

1

1

p sys

p sys

p
p sys

k k k

s s s
x

v v v

x
m m m

=







   



 2.31 

can be solved for 1, , px x . The geometric 
expression of this logic is referred to as the lever 
rule in the analysis of phase diagrams. 

PROBLEMS 
2.1) a) Given the following properties for molar 
quantities of the aluminosilicate polymorphs 
 
 andalusite kyanite sillimanite 
u(J) -2330280 -2334497 -2327357 
s(J/K) 251.065 241.994 253.916 
v(J/bar) 5.19585 4.45214 5.01131 
n(mol) 1 1 1 
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use Eq 2.27 compute the P-T-µ condition at which 
all 3 polymorphs coexist. b) The 3 polymorphs 
coexist in an isolated system that contains 1 mol of 
Al2SiO5, and has an entropy of 246 J/K and a 
volume of 4.7 J/bar, use Eq 2.31to compute the 
molar and volume fractions of the polymorphs  
[hint: the easiest way to get the volume proportions 
is to express the specific properties of the system 
and its phases per unit volume, rather than as per 
mole Al2SiO5 as in the above table]. c) Eq 2.31 can 
be used for either absolute or relative proportions. 
The relative proportions sum to unity, use this 
constraint to formulate the previous problem as a 
system of two equations in two unknowns. d) 
Construct an s-v phase diagram of the triple point, 
shade (or indicate) the physically accessible range 
of entropy and volume for this system [hint: if you 
wish to make the plot in Maple see “Plotting Points 
in Maple” below]. 

SOLVING MATRIX PROBLEMS IN MAPLE 

The Maple commands listed below may be helpful 
(a template for these commands is in 
../chapter_2/problems_chapter_2_setup.zip): 
a) Load the linear algebra package by typing: 
“with(linalg);”. 
b) Create an n x n-dimensional matrix A by typing: 
“A := matrix (n, n, [a11, a12,…, a1m,…, an1…, anm]);” 
where the elements aij may be numeric or symbolic. 
c) Create the transpose of A by typing: “At := 
transpose(A);”. 
c) Create an n-dimensional b vector by typing: “b 
:= vector (n, [b1,…, bn]);”. 
d) Solve for the n-dimensional x vector by typing: 
“linsolve (a, x);” 
e) Concatenate 3 vectors a, b, c by typing: “d := 
concat (a,b,c);” 

POINT PLOTS IN MAPLE 

To plot an array of points in Maple the following 
commands may be helpful: 
a) To create an array of pairs of x-y points: “pts := 
[[x1,y1],...,[xn,yn]];”.  
b) To make the default plot (points connected by 
lines): “plot(pts);” 
c) To make a fancier plot in which the individual 
points are marked and connected by lines and the 
axes are labeled and bound the entire range of 
points: “plot ([pts,pts], style=[line,point], col-

or=[blue,red], symbol=cross, axes=boxed, thick-
ness=2, labels=["X-axis","Y-axis"]);” 
d) To overlay two, or more, plots assign them 
“handles” and use the “display” command, e.g., 
“a_plot := plot(y,x); b_plot := plot(z,x); dis-
play({a_plot,b_plot});” 
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3: STABILITY AND SPONTANEOUS 
PROCESSES 
Thermodynamics admits a special class of process-
es known as spontaneous processes that occur 
without any external influence. In an equilibrium 
system no internal processes are possible between 
the phases of the system, therefore the only possible 
spontaneous process is the formation of a new 
phase. If the state of a system is such that no 
spontaneous processes are possible, then the system 
is in a stable equilibrium 
state.

Fig 3.1 A spontaneous process in an isolated 
system, i.e., a bomb exploding to form a gas 
(or plasma). Experience suggests that the 
reverse process will not occur.  From the first 
law the energy of the system must be 
unchanged by the process, but by the second 
law the specific entropy must increase after the 
process. The second law is simply the formal 
statement of the experience that the if the 
bomb has exploded spontaneously, the gas will 
never condense back into its bomb-like form, 
i.e.,  that all spontaneous processes are 
unidirectional (i.e., irreversible) and proceed in 
the direction that increases the net entropy of 
the universe. 

∆U V M

S

 =  =  = 0

 > 0

∆ ∆

∆

 
 
In the event of a spontaneous process, entropy can 
no longer be equated with heat (Q), because the 
spontaneous process may also create entropy. 
Explicitly the second law states that for any real 
process system 

d
d

Q
S

T
> . 3.1 

It follows that a spontaneous process may occur in 
an isolated system (i.e., dQ = dU = dV = dM = 0) if 
there is a state of greater entropy possible for the 
system (Fig 3.1). Thus a system is in a state of 
stable equilibrium, i.e., no internal or spontaneous 
processes may occur, if its entropy is a maximum. 
For any variation from a stable equilibrium, which 
is by definition impossible, 

dSU,V,M < 0 3.2 
where the subscripts are added to emphasize that 
the variation is constrained to occur at constant U, 
V and M.  
 
An odd feature, resulting from the historical 
development of thermodynamics, is that 3.2 is 
rarely used as a stability criteria, rather 3.1 is 
substituted into 1.25 to obtain 

1
d d dk

i ii
U T S PdV M

=
< − + µ∑ .  3.3 

Condition 3.3 can be viewed as a general criterion 
for possible processes, i.e., it must be true for any 
real process. It follows, that if a system is in stable 
equilibrium, then a variation, again by definition 
impossible, to any other real physical state must 
satisfy 
 

1
d d dk

i ii
U T S PdV M

=
> − + µ∑ , 3.4 

which is therefore a general stability criterion. 
Taken literally, 3.4 implies Gibb’s second, and oft 
cited, second criterion for the stability of an isolated 
system 
dUS,V,M > 0. 3.5 
The problem (Fig 3.2) with this criterion is that 
there is no spontaneous process in an isolated 
system at constant entropy or, more importantly, at 
variable energy. The problem with employing the 
criterion 3.5 is somewhat metaphysical, if we have 
an isolated system and there is another state of the 
system such that dSU,V,M > 0, then it is apparent that 
the current state is metastable, and that the system 
would be more stable in this alternative state. 
However if we have an isolated system and there is 
another state of the system such that dUS,V,M < 0, 
then it is indeed true that the system cannot be 
stable, but the alternative state is not a possible 
state of the system since the energy of an isolated 
system must remain constant (i.e., the first law of 
thermodynamics). 
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Fig 3.2 S U, -  diagrams illustrating the 
extremal character of entropy for a stable 
system. 

S V, S M- -

Accessible states correspond to 
physically real states, inaccessible states are 
states that cannot be achieved by any real 
process. If a system is on the boundary 
between the these regions, then the system has 
the maximum entropy consistent with its 
energy and the minimum energy consistent 
with its entropy, i.e., the system is in a stable 
equilibrium state. This argument generalizes to 
any extensive property  as: for a stable 
system, any property will be at a minimum 
if /T is < 0 and at a maximum if /T is > 0.

Ψ
Ψ

θ θ

i

i 

i i 

accessible states

inaccessible states S

M

max S
states

max  at
 = 

S
M M1

M1 d < 0SUMV 

d  > 0MSUV

constant ,U V

accessible states

inaccessible states S

V

max S
states

max  at
 = 

S
V V1

V1 d < 0SUMV 

d  > 0VSMU

constant ,M U

accessible states

inaccessible states S

U

max S
states

max  at
 = 

S
U U1

why is /∂U ∂ ≥S  0?

U1 d < 0SUMV 

d  > 0USMV

constant ,M V Condition 3.5 has had the unfortunate consequence 
that people often think of spontaneous processes as 
processes that minimize the energy of a system, 
which is, of course, nonsense. The same logic used 
to derive 3.5, can be used to derive any number of 
equally valid, and misleading, criteria, e.g.: 
 
 "real" process  stability crit. 
 dU<TdS−PdV+µdM dS<0 
const. S,V,M  dU<0  dU>0 
const. U,S,M 0<−PdV or dV<0 dV>0 
const. U,S,V 0<µdM or dM<0 dM>0 
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4: OPEN SYSTEMS: RULES OF THE GAME 
In general isolated systems, with a few minor 
exceptions such as the universe, are not of interest, 
so it would be useful to be able to apply our 
stability criteria to systems that are able to interact 
with their environment in some limited way. The 
problem is that in thermodynamics we are only 
allowed (or, more accurately, we only want to) 
observe the system. This means that we can only 
derive a stability criterion for a specified system if 
all the interactions between the system and its 
environment are reversible. If this were not the 
case, it would always be possible for a spontaneous 
process to alter the entropy of the system in some 
way that we cannot predict without looking at the 
environment as well. 

ISOTHERMAL-ISOBARIC CHEMICALLY CLOSED 

SYSTEMS 

Given these rules consider a system that can 
exchange entropy and volume with its surround-
ings, but is closed with respect to mass (dM = 0, Fig 
4.1). From the Gibbs differential (1.25), if the 
exchange of volume and entropy with the environ-
ment is reversible we have: 
dU = TdSexternal −P dV 4.1 
and from Eqs 3.1 and 2.16: 
dU − TdSexternal +P dV ≤ TdSinternal 4.2 
where dSexternal is the entropy derived by reversible 
heat exchange with the environment, and dSinternal is 
the positive S production due to a spontaneous 
internal process. Technically, the assumption that 
heat exchange and dilation are reversible requires 
that the system is perfectly transparent to heat and 
has no viscous resistance to deformation. A system 
with these attributes is diathermal (infinite thermal 
conductivity) and inviscid (lacking viscosity). No 
such system exists (with the possible exception of 
superfluid Helium), but the model is a reasonable 
approximation for systems where the time scale for 
chemical equilibration is long compared to the 
time-scales for changes in pressure and tempera-
ture. The occurrence of high-pressure-temperature 
minerals on the earth's surface demonstrates that 
such a model is often appropriate for geological 
processes. 
 
Rearrangement of 4.1 yields the differential of a 
function G, such that 

( )external internald  = d d  d d  

d d d

− + +

= − +

G U T S S P V

U T S P V
  4.3 

Integrating 4.3 yields 
G = U − TS + PV 4.4  
and combining 4.4 and 1.29 

1

k
i ii

G M
=

= µ∑   4.5 

The total differential of G is obtained by taking the 
differential of 4.4 and combining this with the 
Gibbs differential (1.25) 

1

1

d d d( ) d( ) d

d d d d d

d d d

k
i ii

k
i ii

G U TS PV M

U T S S T P V V P

M S T V P

=

=

= − + + µ

= − − + +

= µ − +

∑

∑
 4.6 

From which we deduce the independent variables 
for G, the well-known Gibbs function, are {M1...Mk, 
−P, T}. Since 4.6 is an exact differential 

, , j i

i
i P T M

G
M

≠

 ∂
= µ ∂ 

  4.7 

,P M

G S
T

∂  = − ∂ 
  4.8 

,T M

G V
P

∂  = ∂ 
  4.9 

the variables held constant during differentiation 
are indicated by subscripts to emphasize that they 
are not the same as when the Gibbs differential is 
differentiated. G may either increase or decrease 
with changes in the environmental P-T conditions, 
but if the P and T of our system are kept constant, 
then for any real process, from 4.2 and 4.6 

nternal
, ,d d 0i

P T MG T S= − <   4.10 

Fig 4.1 Schematic isobaric-isothermal closed 
chemical system. If a (spontaneous) process 
occurs within the system, the pressure and 
temperature of the system are buffered by the 
transfer of volume and entropy from (infinite) 
reservoirs at the temperature and pressure of 
the system.

−P

T

S

V d =0M
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So if an isobaric-isothermal chemically closed 
system is in stable equilibrium, then for any 
variation in the state of the system 

, ,d 0P T MG >    4.11 

A change in Gibbs "energy" as described by 4.10 
does not arise through a change in the energy of the 
system, but rather in an internal change in the 
entropy of the system. However, such a change 
does lower the potentials for useful work in the 
system, and thus it would be more difficult to 
extract energy from a system with lower G. It may 
be worth noting that the condition 

, , 0P T MG∆ =   4.12 

is NOT a stability criterion, but rather a criterion 
for equilibrium, specifically that of a reaction. 
 
The Gibbs energy is often referred to as a free 
energy because it is a measure of the fraction of the 
internal energy of a system that is available to do 
work if the work occurs at constant pressure and 
temperature.  

Heterogeneous Closed Systems 

In an isobaric-isothermal heterogeneous closed 
chemical system consisting of p phases, the specific 
gibbs energy of each phase provides an equation of 
the form 

1

k
j j

i i
i

g m
=

= µ∑  4.13 

and must satisfy 
1 1 1
1 1

1

k

p p p
k k

m m g

m m g

µ
=

µ



    



. 4.14 

Taken at face value, 4.14 implies that the maximum 
number of phases in a closed chemical system is p 
≤ k at an arbitrarily chosen pressure temperature 
condition. Goldschmidt (1911) combined this 
observation with the observation that the many 
minerals, particularly in skarns, have such restricted 
compositions that they can be regarded as stoichi-
ometric compounds (i.e., that the specific masses 
are constants) to postulate that in closed chemical 
systems p = k. This restricted statement of the phase 
rule (2.29) is known as Goldschmidt's mineralogi-
cal phase rule.  
 
In principle, it is possible to vary the pressure and 
temperature of an isochemical system to obtain a 
condition at which p > k phases coexist. However 

such a variation is not arbitrary and in fact the 
probability of observing such an equilibrium is zero 
for a perfectly diathermal and inviscid system, as 
would be required if the variations in pressure and 
temperature is to be truly reversible, which of 
course they are never. The reason for the vanishing 
probability is that in a pressure-temperature 
coordinate frame the dimension of the stability field 
of p > k phases is equal to the variance (2.30) of the 
equilibrium. Thus, univariant and invariant 
equilibria are geometrically degenerate 1- and 0- 
dimensional fields in the 2-dimensional P-T field. 
As such they occupy zero area of the 2-d field and 
as the probability of encountering a given field is 
proportional to its area (e.g., see the P-T diagram of 
Fig 4.2). 

A

S

K

A+K

A+K
K

+S

A=K+S

A
+K

=S

K
+S

K
+S

A+S

A+S

A+S

A=S

K
=S

A=K

Fig 4.2 Phase diagrams for the aluminosilicate 
( =1) system (A-andalusite, K-kyanite, S-
sillimanite) as a function of the variables of the 
Gibbs ( =1), enthalpy ( =2), Helmholtz 
( =2) and Internal ( 3) specific free 
energy functions. Phase fields of  > 
degenerate to singularities (heavy solid lines) 
at which the state of the system cannot be 
determined from the state function for the 
phase diagram variables. These singularities 
are referred to as reactions. Constant pressure-
temperature-mass reactions (A=K, A=S, K=S) 
conserve mass and Gibbs energy, constant 
pressure-entropy-mass reactions conserve 
entropy, mass and enthalpy (A=K+S), constant 
temperature-volume-mass reactions conserve 
volume, mass and Helmholtz energy. Only the 
internal energy ( = +2) is capable of resolving 
all the phase relations of a thermodynamic 
system. For this reason the internal energy 
provides the only general equation of state for 
heterogeneous systems. 

k

g, c u, c
a, c u, c=

p c 

c k

−P

v v

−Pg P T( , )−

a v T( , ) u v s( , )

h P s( , )−

T

T s

s
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S S
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The Stefan Problem 

The geometric degeneracy of univariant and 
invariant phase fields as a function has profound 
consequences, known as the Stefan problem, for 
modeling heat and deformation in real systems. 
These arise because although g is an equation of 
state for a single phase, it is not an equation of state 
for an equilibrium system consisting of p > k phases 
(Fig 4.2). This failing can be understood by 
observing that for such an assemblage, 4.14 must 
be true for any permutation of k of the p > k phases. 
Therefore, in an invariant equilibrium, the chemical 
potentials cannot depend on the proportions of the 
phases and the specific Gibbs energy of the system  

1

k
sys sys

i i
i

g m
=

= µ∑  

must remain constant during heating or compres-
sion, which is constrained to occur at constant 
pressure and temperature. However, if g does not 
vary as a function of the proportions of the phases it 
cannot define the state of the system; ergo it is not 
an equation of state. Likewise, for a univariant 
equilibrium, g must remain constant for isobaric 
heating or isothermal compression and therefore 
cannot resolve either process. In contrast, the 
natural variables of the specific internal energy 
resolve equilibria of any variance. 

GENERALIZATION OF OPEN SYSTEMS 

The foregoing derivation of a criterion for the 
stability of an isobaric-isothermal-isochemical 
system can be made general for a system that is 
closed with respect to the c-extensive properties 
Ψ1...Ψc, i.e., dΨ1 =...= dΨc = 0 (Fig 4.3). From the 
Gibbs differential (1.25) and Gibbs' minimum 
energy criterion (3.5), if the exchange of 
Ψc+1... Ψk+2 with the environment is reversible 

2

1
d d 0k

i ii c
U +

= +
− θ Ψ ≤∑   4.15 

From which we can define the differential of a 
function Ω, such that 

2

1
d d dk

i ii c
U +

= +
Ω = − θ Ψ∑   4.16 

Integrating 4.16 at constant yields 
2

1

k
i ii c

U +

= +
Ω ≡ − θ Ψ∑   4.17 

and combining 4.17 and the integrated form of the 
Gibbs differential (1.6) 

1

c
i ii=

Ω = θ Ψ∑ . 4.18 

The exact differential of Ω is obtained from the 
differential of 4.17 combined with the Gibbs 
differential (1.25) 

2

1
2

1 1

d d d( )

d d

k
i ii c

c k
i i i ii i c

U +

= +

+

= = +

Ω = − Ψ θ

= θ Ψ − Ψ θ

∑
∑ ∑

, 4.19 

from which we deduce the independent variables 
for Ω are Ψ1...Ψc, θc+1...θk+2. Since 4.19 is exact 

1 2, ...

1
j i c k

i
i

i c
≠ + +Ψ θ θ

 ∂Ω
= θ = ∂Ψ 

  4.20 

1... ,

1 2
c j i

i
i

i c k
≠Ψ Ψ θ

 ∂Ω
=−Ψ = + + ∂θ 

   4.21 

The function Ω measures the maximum amount of 
energy that can be extracted from a system if the 
extraction is constrained to occur at constant 
θc+1...θk+2. As such it may be viewed as an extremal 
work function or a general free energy function. 
 
The free energy function Ω may either increase or 
decrease with changes in the environmental 
variables θc+1...θk+2, but if these variables are kept 
constant, then from 4.15, for any real process 

1 1 2... , ...d 0
c c k+ +Ψ Ψ θ θΩ <  4.22 

So for a system subject to the constraints dΨ1 =...= 
dΨc = dθc+1 = … = dθk+2 = 0 at stable equilibrium, 
then for any variation in the state of the system 

1 1 2,d 0
c c k+ +Ψ Ψ θ θΩ >

 

 4.23 

which is a general criterion for stability. 
 
The foregoing may be stated more succinctly: If a 
system is closed with respect to the properties 
{Ψ1...Ψc}, then we may derive a function 
Ω(Ψ1...Ψc, θc+1...θk+2) 

2

1

1

k
i ii c

c
i ii

U +

= +

=

Ω = − θ Ψ

= θ Ψ

∑
∑

  4.24 

and 
2

1 1
d d dc k

i i i ii i c

+

= = +
Ω = θ Ψ − Ψ θ∑ ∑  4.25 

such that for any variation from a stable equilibri-
um at constant θc+1...θk+2 

1 1 2,d 0
c c k+ +Ψ Ψ θ θΩ >

 

. 4.26 

The transformation of U to Ω is known as a 
Legendre transformation, such transformations 
are commutative, i.e., it is possible to change any 
potential with its extensive conjugate (as defined by 
1.28), or any extensity with its intensive conjugate.  
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Natural Variables and Partial Differential 
Notation 

The Gibbs differential and its Legendre transforms 
define state functions each of which has a specific 
set of independent variables. These variables are 
referred to natural variables of the function, e.g., 
the natural variables of the Gibbs function are −P, 
T, M1, …, Mk. However, there is no fundamental 
reason that the resulting function cannot be 
expressed in terms of any arbitrary choice of 
independent state functions. For example, the 
specific internal energy, can be expressed legiti-
mately as u(T,v), i.e.,  

( )vdu u T dT Pdv= ∂ ∂ − ;  4.27 

where the partial derivative is a quantity that is 
often measured experimentally known as the 
isochoric heat capacity 

( )v vc u T≡ ∂ ∂ . 

Comparing 4.27 to the form of specific energy 
derived from the Gibbs differential  
du Tds Pdv= −  
at constant volume yields 

d dv
v v

cs T
T

=  

from which it follows  
( ) ( )T Su v u v∂ ∂ ≠ ∂ ∂ . 

Thus in thermodynamics it is important to distin-
guish the variables that are held constant during 
partial differentiation. Throughout the remainder of 
this text, partial differential notation is made 
compact by dropping the subscripts on partial 
derivatives and differential of thermodynamic 
functions, if the differential or partial derivative is 
taken with respect to a natural variable of the 
function holding all other natural variables 
constant. Thus, it is to be understood that  

( ) ,S MU V U V∂ ∂ = ∂ ∂  

or  
( )

, 1 2, ,...,j j i c ki i
≠ + +Ψ θ θ

∂Ω ∂Ψ = ∂Ω ∂Ψ  

and  

1 1 2... , ...d d
c c k+ +Ψ Ψ θ θΩ = Ω . 

Although the choice of variables used to express a 
given free energy function is in principle arbitrary, 
thermodynamic stability criteria (4.23) are only 
valid for spontaneous processes that occur at 
constant values of the natural variables for the free 
energy function, i.e., it is not possible to formulate 
a stability criterion in terms of differentials such as 
dUT,V,M or dGS,P,M. 

Common Free Energy Functions 

There are several well-known thermodynamic 
functions that were derived by Gibbs from the 
Gibbs differential (1.25) for closed chemical 
systems by Legendre transformations. The most 
important of these is the Gibbs energy for isobaric-
isothermal chemically closed systems that we have 
derived previously (4.1-4.11). The additional 
functions are: the enthalpy function H(S, −P, M) 
for adiabatic-isobaric systems 

( ) 1

k
i ii

H U PV TS M
=

≡ − − = + ∑ µ  4.28 

1
d d d dk

i ii
H T S V P M

=
= + + ∑ µ  4.29 

and the Helmholtz energy A(T, V, M) for diather-
mal isochoric systems 

1

k
i ii

A U TS PV M
=

≡ − = − + µ∑   4.30 

1
d d d dk

i ii
A S T P V M

=
= − − + µ∑   4.31 

For adiabatic systems, the optimal stability criterion 
is always the maximum entropy criterion 

1, , 1 1, , 2, , 0
c c k

dS
− + +Ω Ψ Ψ θ θ >

 

 4.32 

whereas for diathermal systems the optimal 
stability criterion (4.26) provided by minimizing 
the appropriate free energy function. 

Fig 4.3 A schematic system closed with 
respect to { ,..., } and open with respect to  
{ ,..., } at constant {   If a 
(spontaneous) process occurs within the 
system, the values of  
system are buffered by the transfer of 

 from (infinite) reservoirs into the system.
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KORZHINSKII'S PHASE RULE 

We have established that for a system closed with 
respect to Ψ1...Ψc at constant θc+1...θk+2 we 
minimize the function Ω to determine the stable 
phase assemblages. In such a system consisting, the 
specific free energy of each phase provides an 
equation of the form 

1

c
j j

i i
i=

ω = θ ψ∑  

and must satisfy  
1 1 1
1 1

1

c

p p p
c c

ψ ψ θ ω
=

ψ ψ θ ω



    



 4.33 

or in matrix notation 
p c c c× = ωψ θ  4.34 

from which we deduce that in a system that is 
closed with respect to c extensive properties the 
maximum number of phases is p ≤ c. Various 
authors have made similar observations and 
suggested restricted statements of the phase rule. 
Notably, Korzhinskii (1957) states (among other 
variations) that for an isobaric-isothermal system 
open to q kinds of matter (designated mobile 
components) the phase rule should be p ≤ k–q. 
Such statements are subject to qualifications and 
obscure the fundamental meaning of the phase rule 
as originally formulated by Gibbs.  

PARTIAL DIFFERENTIAL RELATIONS 

In a variety of problems it is necessary or, at least, 
useful to relate thermodynamic function to 
properties that are not measured as a function of the 
natural variables for the function. To this end, the 
following rules are useful. For an exact differential 

( ) ( )y xdf f x dx f y dy= ∂ ∂ + ∂ ∂  4.35 

subsequent differentiation is independent of the 
order of differentiation, i.e. Euler’s criterion, 

( )( ) ( )( )∂ ∂ ∂ ∂ = ∂ ∂ ∂ ∂y x yx
f x y f y x  4.36 

Given a third variable z that is a function of x and y,  
as in e.g., P = g(V,T), the total differential of z is  

( ) ( )y xdz z x dx z y dy= ∂ ∂ + ∂ ∂ . 4.37 

Therefore at constant z (dz=0), 4.37 requires 
( ) ( )z zy xz x dx z y dy∂ ∂ = − ∂ ∂  

or 
( ) ( ) ( )z x yx y z y z x∂ ∂ = − ∂ ∂ ∂ ∂  4.38 

and making use of the identity 

( ) ( )1∂ ∂ = ∂ ∂z zx y y x  4.39 

equation 4.38 is rearranged to obtain Euler’s chain 
rule for differentiation 
( ) ( ) ( ) 1∂ ∂ ∂ ∂ ∂ ∂ = −y x zx z z y y x . 4.40 

Given f(x,y) and z(x,y), the partial derivatives of f at 
constant z are obtained by differentiation of 4.35 as 
( ) ( ) ( ) ( )z y x zf x f x f y y x∂ ∂ = ∂ ∂ + ∂ ∂ ∂ ∂ . 4.41 

These derivatives can be expressed entirely as 
derivatives at constant x and y, by substituting 4.38 
into 4.41 to obtain 
( ) ( ) ( ) ( ) ( )z y x x yf x f x f y y z z x∂ ∂ = ∂ ∂ − ∂ ∂ ∂ ∂ ∂ ∂

 4.42 
Finally, it may be useful to recollect that  
( ) ( ) ( )z z zf x g x f g∂ ∂ ∂ ∂ = ∂ ∂  4.43 

therefore  
( ) ( ) ( )T T Ts P v P s v∂ ∂ ∂ ∂ = ∂ ∂  

but  
( ) ( ) ( )T S Ts P v P s v∂ ∂ ∂ ∂ ≠ ∂ ∂ . 

This result reemphasizes the importance of keeping 
track of the variables that are held constant in 
thermodynamic partial derivatives. 
 
To illustrate the utility of 4.42, suppose we know 
the isochemical specific Gibbs energy as a function 
of pressure and temperature, g(P,T) and we require 
( )vg P∂ ∂ . Since we can only differentiate g(P,T) 

with respect to P and T , we cannot obtain 
( )vg P∂ ∂ directly, however given that v(P,T), 4.42 

allows us to write 
( ) ( ) ( ) ( ) ( )v T P P Tg P g P g T T v v P∂ ∂ = ∂ ∂ − ∂ ∂ ∂ ∂ ∂ ∂

where the derivatives of g on the right hand side are 
entirely involve only P and T. 
 
Applying 4.36 to the Gibbs Differential at constant 
mass yields 
( ) ( )∂ ∂ = − ∂ ∂S VT V P S  4.44 

the first of four relations known as the Maxwell 
relations. The remaining three Maxwell relations 
are obtained in the same manner from dA (4.31), 
dH (4.29), and dG (4.6). 

PROBLEMS 

4.1) Eq 4.44 is the first Maxwell relation, derive the 
three additional Maxwell relations from dA (4.31), 
dH (4.29), and dG (4.6). 
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4.2) Use the Legendre transform (4.24-4.26) to 
obtain the thermodynamic stability criterion for the 
chemical system Fe-O at constant pressure, 
temperature and chemical potential of oxygen. How 
many phases would you expect to be stable in this 
system at an arbitrary P-T-µO2 condition? List 4 
minerals that might occur in this system. 
 
4.3) Compute specific molar a-v diagrams for the 
aluminosilicate system at 500 and 1000 K (using 
the data for problem 2.1 and the definition of A, 
4.30). What phases are the possible stable phase 
assemblages in each diagram? Use 4.33 to calculate 
the pressure for each of the stable assemblages. Use 
your results (together with invariant point condi-
tions obtained in problem 2.1) to sketch P-T and v-
T phase diagrams for the aluminosilicate system. 
Balance the reaction that occurs in the v-T phase 
diagram. 
 
4.4) Thermodynamics deals with all reversible 
processes, elastic deformation is reversible and 
therefore described by thermodynamics. In the 
elastic limit, acoustic (sound) velocities through a 
crystal are entirely a function of thermodynamic 
properties, e.g., sound velocity is  

ρSK  4.45 

where KS is the adiabatic bulk modulus  

S
S

PK v
v

∂ ≡ −  ∂ 
, 4.46 

ρ is density  
ρ N v= , 4.47  

and N is the molar mass. In geophysics texts KS is 
usually expressed in terms of the isobaric expansiv-
ity α and heat capacity cP, the isothermal 
compressibility KT, and the Gruneisen thermal 
parameter γT as 

( )S 1 αγT TK K T= +  4.48 

where 

T
PK v
v

∂
≡ −

∂
 4.49 

1 v
v T

∂
≡

∂
α  

2
T

T
P T

K v
c T K v

α
γ

α
=

−
 

.P
hc
T

∂
≡

∂
 

Derive an expression for the sound velocity through 
a crystal in terms of the N, P, T, and g(P, T) and its 

pressure-temperature derivatives given the above 
relations. To express cP in terms of g observe that 
as ( )h u Pv≡ − − and ( )g u Ts Pv≡ − − − then 
h g Ts= + (and )s g T= − ∂ ∂ . This is problem is 

most easily done in Maple. See the paragraph 
“Using Derivatives in Maple” for additional hints. 
 
4.5) The danger in using derived expressions from 
the literature, such as Eq 4.48, is that they may have 
typographical errors or may assume secondary 
definitions that are different from what you expect. 
To avoid this danger, derive sound velocity as a 
function of N (molar mass), P, T, and g(P,T) and its 
pressure-temperature derivatives from Eqs 4.45-
4.47 without making use of Eq 4.48; i.e., use one or 
more of the rules given by Eqs 4.40-4.43 to derive 
an expression for ( )/ sP v∂ ∂ . This problem is 

partially solved in Maple script ../thermo_course 
/chapter4/problem_4_5 _setup.zip).  
 
4.6) The heat capacity of a material is the amount 
of heat that must be added to it to raise its tempera-
ture 1 K. The isobaric (constant pressure) heat 
capacity ( )P Pc h T= ∂ ∂  is different from the 

isochoric (constant volume) heat capacity 
( )v vc u T= ∂ ∂ because in the isobaric case the 

system can do work (expand) during heating. a) 
Beginning from the relations d d du T s P v= −  and 
d d dh T s v P= + derive cP − cV as a function of P, T, 
and g(P,T) and its pressure-temperature derivatives. 
b) Do you expect cV to be larger or smaller than cP? 
Why? The Maple setup script for problem 4.5 is 
useful for this problem as well.  
 
4.7) The convecting portion of the Earth’s mantle 
is, to a good approximation, adiabatic (i.e., 
isentropic). Consequently, given the temperature of 
the mantle at the base of the lithosphere, where 
convection begins, the mantle temperature at 
greater depth can be obtained by integrating the 
adiabatic gradient ( ) ( )s sT z T P∂ ∂ = ∂ ∂ ρg , where 

z is depth, the ρg term is the hydrostatic pressure 
gradient P z∂ ∂ , ρ is the density (Eq 4.47), and a 

bold-faced g is used to distinguish gravitational 
acceleration from the specific Gibbs energy. Derive 
the adiabatic gradient ( )sT z∂ ∂ as a function of N, 

P, T, and g(P, T) and its pressure-temperature 
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derivatives. The Maple setup script for problem 4.5 
is useful for this problem as well.  
 

4.8) In Chapter 3 we deduced that for an equation 
of state of the form u(s), a requirement for stability 
is that u(s) has positive curvature, i.e., 

2 2 0u s T s∂ ∂ = ∂ ∂ > . Likewise, states of matter 

represented by a two-dimensional equation of state 
u(s,v) are stable only if u(s,v) has positive curva-
ture. It can be shown that this is true if the 
determinant of the “Stiffness” matrix (Tisza, 1977) 

C = 
( )

( )

2 2

2 2

u s u v s

u s v u v

 ∂ ∂ ∂ ∂ ∂ ∂


 ∂ ∂ ∂ ∂ ∂ ∂ 
 

is greater than or equal to zero. Use this condition, 
i.e., det 0≥C , to deduce a relationship between 

the pressure-temperature derivatives of g(P, T) for  
stable states of matter. Although not required for 
this problem, it is possible to simplify the relation-
ship to constrain the relationship between the 
isobaric expansivity,  

1 1v g
v T g P P T

∂ ∂
α ≡ =

∂ ∂ ∂ ∂ ∂
, 

the isobaric heat capacity,  
2

2P
h gc T
T T

∂ ∂
≡ = −

∂ ∂
, 

and the isothermal bulk modulus 

2 2

1
T

P gK v
v P g P

∂ ∂
≡ − = −

∂ ∂ ∂ ∂
 

of the material. 

DERIVATIVES IN MAPLE 

In problem 4.4 and 4.5 you do not know the 
functional form of g, therefore to indicate that g is a 
function of P and T in maple you must type g(P, T). 
You can then indicate a derivative of g(P, T) by 
typing “diff(g(P, T),v1,v2…)” where v1, v2 are, in 
sequence, the variables of differentiation (i.e., P or 
T). For example,  

diff ( ( , ), )g g P T P
P

∂
=

∂
;  

and since  
g v
P

∂
=

∂
 

the thermal expansivity  
1 v
v T

∂
α ≡

∂
 

can be written in maple as 
alpha := 1/diff ( ( , ), )*diff ( ( , ), , );g P T P g P T P T  

The resulting expression can be simplified with 
alpha := simplify(alpha);  
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5: CALCULATION OF G(P, T) FOR AN 
ISOCHEMICAL SOLID 
For various reasons, most prominently that P and T 
are the variables most commonly controlled in 
experimental systems, empirical thermodynamic 
data bases are designed for computation of the 
specific (molar) Gibbs free energy g (3.4, 3.5). To 
this end, the differential  
d d dg s T v P= − +  5.1 

must be integrated from a reference condition Pr, Tr 
(normally 1 bar, 298.15 K) at which g, s and v is 
tabulated to the condition of interest. Here we are 
concerned with the properties of an isochemical 
phase, i.e., a phase with fixed composition, 
therefore the µdn differentials are zero by defini-
tion. By splitting the integration into an isothermal 
and an isobaric component it is possible to reduce 
the amount of empirical information on the pressure 
or temperature dependence of either s or v. Since 
calorimetric measurements are more complicated 
the integration path 

, ,

, ,

( , ) ( , ) ( , ) ( , )
r

r r r

P T P T

r r r
P T P T

g P T g P T s P T dT v P T dP= − +∫ ∫

 5.2 
which requires only s as a function of T, but v as a 
function of both P and T is invariably preferred. 
The immediate problem is to choose the empirical 
functions used to represent v(P, T) and s(T).  

V(P,T) 

Experimental measurements, e.g., X-ray diffraction, 
provide a direct means of extracting absolute 
volumes (e.g., v(Pr, Tr)) as well as the temperature 
and pressure derivatives 

T
T

PK v
v

∂ ≡ −  ∂ 
 5.3 

1
P

v
v T

∂ α ≡  ∂ 
 5.4 

which are known, respectively as the isothermal 
bulk modulus  and the isobaric expansivity. In 
some older tabulations the KT is replaced by its 
inverse 

1
T

T

v
v P

∂ β ≡ −  ∂ 
 

the isothermal compressibility. Because KT and α 
for minerals are relatively small, to a good first 
approximation at pressures below 104 bar, mineral 
volumes can be considered constant.  

 

For high pressure, or precise calculations, KT and α 
are given in tabulations as polynomial functions of 
pressure and temperature. Given these functions it 
is thus possible to formulate an equation of state 
(EoS), i.e.,  

1 ln
P P

v v
v T T

∂ ∂   α ≡ =   ∂ ∂   
 

ergo 
,

,

( , ) exp ( , )
( , )

r

r r

P T
r

r
r r P T

v P T P T dT
v P T

 
= α  

 
∫  5.5 

and likewise 
,

,

( , ) exp
( , ) ( , )

r

P T

r TP T

v P T dP
v P T K P T

 −
=   

 
∫ . 5.6 

However, as the integrals in 5.5 and 5.6 are small 
numbers, in which case a Taylor series expansion 
gives exp( ) 1x x≈ + , the combined integral is 

usually approximated (where it is also assumed that 
as each integral is small, the product of the two 
integrals is negligible) as 

, ,

, ,

( , ) ( , )

1 ( , )
( , )

r

r r r

r r

P T P T

r
TP T P T

v P T v P T

dPP T dT
K P T

≈

 
+ α −  

 
∫ ∫

 5.7 

In practice it is difficult to fit KT and α to arbitrary 
polynomials without leading to an EoS that violates 

a = vrepulsive 1c / n/3

a=arepulsive+a n mattractive     , > , ∂ ∂ −a v P/ =

a = vattractive − / m/3c2

v

a constant T

Fig 5.1 Schematic of the Mie-Grueneisen 
model of the specific isothermal Helmholtz 
free energy. The model assumes the energy can 
be expressed as the sum of a long-range (i.e., 
weak dependence on volume, 0) attractive 
term and a short range repulsive term (i.e., 
strong dependence on volume, > ). The 
derivative of the net function with respect to 
volume is the pressure, thus physically real 
states correspond to specific volumes less than 
the volume at the minimum value of  (i.e., at 
higher volumes <0). 

m

n

a
P

→

m
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the Maxwell relations. This difficulty can be 
avoided, or at least minimized, by adopting the 
structure of a theoretical equation of state. Such 
equations were a major focus of solid state physics 
in the early part of the 20th century. The formula-
tion used in Geoscience follows Mie-Grueneisen 
theory, which assumes that the energy of a solid at 
constant T (the specific Helmholtz energy a, 4.30) 
can be expressed as the sum of an attractive 
potential that holds the atoms together and repul-
sive potential that prevents the solid from 
collapsing 

1 2
3 3m n

c ca
v v

= − +   5.8 

where c1 and c2 are, respectively, constants 
characteristic of the attractive and repulsive 
potentials (Fig 5.1). Because the attractive forces 
are expected to be long range in comparison to the 
repulsive forces and interatomic distances are 
proportional to v1/3, we expect n > m. Thus, as 
pressure is 

T

aP
v

∂ = −  ∂ 
 5.9 

and, from 5.9 and 5.3, differentiation of 5.8 yields 
( ) ( )3 3 3 33 ( , ) m nT rK P TP f f

m n
+ + = − −

 5.10 

( ) ( ) ( ) ( ) ( )3 3 3 3,
( , ) 3 3m nT r

T

K P T
K P T m f n f

m n
+ + = + − + −

 5.11 
where  

( ) ( ), / ,rf v P T v P T=  

is volumetric strain. Additionally differentiation of 
4.9 with respect to pressure at Pr (i.e., for f = 1) 
gives 

( ) ( ) ( )6 / 3T r
r

T

K P
K P m n

P
∂ 

′ = = + + 
∂ 

 5.12 

Experimentally it is found that for solids K ′ is, for 
practical purposes (i.e., for P < 106 bar), a constant 
which is usually near 4; thus for n > m, 3 < n < 6. 
For various choices of the exponents m and n, 5.10 
has the same low pressure limiting behavior as 
semi-empirical equations of state derived from 
finite-strain theory. In particular, for m = 2 and n = 
4 

( )
( )( )

5 3 2 3

2 3

3 ( , ) 1
8
3 12 16 3

T rP K P T f f

K f K

= −

′ ′− + −
 5.13 

is identical to the widely used (truncated) form of 
the Birch-Murnaghan EoS. A complication with 

5.13 is that is not explicit in volume, therefore to 
evaluate the integral it is necessary to change 
variables as in 

, ,
,

, ,

( , ) ( , )
r r

r r

P T v T
P v
P v

P T v T

v P T dP P v T dv Pv= − ∫ ∫  5.14 

The complication in evaluating the in this form is it 
first necessary to solve (by iteration) for the volume 
at the pressure and temperature of interest, before 
the integral can be evaluated. This is, in fact, what 
is done for high pressure calculations, but for m=−3 
5.10 gives a volume explicit form  

( )

( )
( ) ( )

( )
1

,

( , ) ,

,
1

, ,
r r

r

K P T
r r

T r r r

V P T V P T

K P T P
K P T K P T P

′

=

′ 
− ′+  



 5.15 

that is adequate at pressures below about 105 bar 
and is identical to Murnaghan equation. To use 
5.15, it is necessary to have KT and v as functions of 
T, the former is usually supplied as a polynomial, 
whereas the latter is obtained by integration, i.e.,  

,

,

( , ) ( , ) 1 ( , )
r

r r

P T

r r r r
P T

V P T V P T P T dT
 

≈ + α  
 

∫  5.16 

S(T) 

The experiment used to obtain s(T) is to measure 
the energy required to raise the temperature of the 
material of interest as a function of temperature. 
Such calorimetric experiments may be done 
constant volume or constant pressure; the latter case 
is of direct relevance. Reversible heat at constant 
pressure is enthalpy (4.28), therefore the isobaric 
experiment yields the temperature dependence of 
the enthalpy which is known as the isobaric heat 
capacity, i.e.,  

p
P

hc
T

∂ ≡  ∂ 
1 5.17 

which is usually provided as a polynomial in T. The 
isochemical differential of enthalpy is 
dh Tds vdP= −  5.18 
therefore at constant pressure 

dhds
T

=  5.19 

                                                           
 
 
1 Heat capacity (specific heat) is formally defined 
as an intensive, i.e., molar or specific (e.g., per unit 
mass or volume) property.  



 

 25 

and  
1 Pcs h

T T T T
∂ ∂

= =
∂ ∂

 5.20 

The third law of thermodynamics (also known as 
Nernst’s law) states that at 0 K the entropy of a 
perfect crystal is zero, thus the absolute or “third 
law” entropy of a solid is, in principle, obtained as  

( )
,

0

,0

,
r

r

P T
P

r
P

cs P T dT
T

= ∫  5.21 

where the superscript 0 is used to denote specifical-
ly the “third law” entropy obtained by this 
integration. Unfortunately, crystals are not perfect 
and often are not perfectly ordered at 0 K because 
the kinetics of ordering (particularly displacive 
transformations that involve moving atoms within 
the crystal structure) is too slow to occur on the 
time scale of experimental observation so that at 0 
K the crystal contains residual entropy (disorder). 
Moreover some potentially important ordering 
transformations occur near 0 K, where it is not 
possible to make heat capacity measurements. Thus 
the true entropy of a crystal is 

( )
,

,0

,
r

r

P T
conf P

r
P

cs P T s dT
T

= + ∫  5.22 

where sconf represents the contribution from 
irreversible disorder, a subject we will return to 
later. Eq 5.2 requires only integration from the 
reference temperature, i.e.,  

( ) ( )
,

,

, ,
r

r r

P T
P

r r r
P T

cs P T s P T dT
T

= + ∫  5.23 

and therefore it is to be hoped that s(Pr, Tr) includes 
any non-third law contributions to the entropy. 
Sadly, this pious hope is not always justified, thus 
configurational entropy represents a potential 
source of inaccuracy in thermodynamic calcula-
tions. 
 
We have treated entropy without regard to micro-
scopic Mie-Grueneisen theory which has many 
interesting implications for temperature dependent 
properties. In particular, in combination with Debye 
(an enthusiastic Nazi) theory, it justifies the 
Dulong-Petit limiting law that states that the 
isochoric heat capacity  

V
V

uc
T

∂ ≡  ∂ 
 5.24 

reaches a limiting value of 3NoR at high tempera-
tures. Debye theory defines high temperature in this 

context as what is now known as the Debye 
temperature Θ, which for most minerals is on the 
order of 1000 K. While this greatly simplifies 
calculations for the inner portions of the earth, the 
isobaric heat capacity which is related to cV by 

2
p V Tc c vK T= + α  5.25 

does not have a limiting value, although for the 
conditions likely within the earth it is unlikely to 
exceed 3NoR by more than 10%. Eq 5.25 has the 
important consequence that the calorimetric 
component of an EoS is not independent of the 
volumetric component. An interdependence that is 
often neglected in low pressure geological data 
bases.  

PERVERSE FORMULATIONS OF 5.2 

For traditional reasons, in the geosciences the 
isobaric portion of 5.2  

,

,

( , ) ( , ) ( , )
r

r r

P T

r r r r
P T

g P T g P T s P T dT= − ∫  5.26 

is often perversely written by making use of the 
identity g h Ts= − as 

,

,

( , ) ( , ) d ( , )
r

r r

P T

r r r P r
P T

g P T h P T c T Ts P T= + −∫  

which, in combination with 5.17 and 5.23, be-
comes: 

( ) ( )
, ,

, ,

( , ) , ,

d d
r r

r r r r

r r r r r

P T P T
P

P
P T P T

g P T h P T Ts P T

cc T T T
T

= −

+ −∫ ∫
 5.27 

Both 5.26 and 5.27 are valid, but depending on the 
conventions (see section 4.5) used to define the 
reference state constants g(Pr, Tr), h(Pr, Tr) and 
s(Pr, Tr) they may yield different values for g(Pr, 
T), therefore the two integration schemes should 
not be mixed. 

NON-DISPLACIVE PHASE TRANSFORMATIONS 

Crystalline phases may undergo subtle phase 
transformations that involve only slight distortions 
of the crystal lattice, most notably the α/β trans-
formation in quartz. These transformations may be 
gradational, i.e., occur over a range of P-T condi-
tions, but are kinetically so fast that their effects 
cannot be isolated experimentally. Thus, it is 
essentially impossible to measure the properties of 
α-quartz in the stability field of β-quartz, and worse 
still, near the “transition” α-quartz consists of a 
microscopic mixture of α- and β-quartz like 
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domains. There is a vast literature devoted to such 
transformations in solid-state physics; however in 
geological data bases there are only two types of 
treatment. The first, and most common, is to 
approximate such transformations as discontinuous. 
The second, more elegant, approach consists of 
adding a term to the base function 5.2, that accounts 
for the local effects of the phase transformation. For 
example, for the stable state of quartz at any 
pressure and temperature Holland & Powell (1998) 
use 

( , ) ( , ) ( , )g P T g P T P T′ = + λ  

where λ accounts for the rapid, but continuous 
effects of the α/β transformation. Because λ 
involves conditionals, and is relatively small, we 
will not incorporate the term in the exercises of this 
course, but the term should be incorporated for real 
applications of this database, which is currently the 
most widely used thermodynamic database for 
minerals at pressures below 105 bar. 

G(PR, TR) - CONVENTION 

The final issue to be resolved for the evaluation of 
5.2 is reference state energy. In thermodynamic 
calculations, absolute energies are never used (or 
almost never, a possible exception being first 
principles calculations in mineral physics). Thus, in 
practice energies are always relative energies 
defined via an arbitrary convention. The most 
widely used convention is the  “Gibbs energy of 
formation from the elements” gf in this conven-
tion the stable forms of the pure elements are 
assigned a g of zero at all pressures and tempera-
tures. The molar gf for a phase is thus in reality the 
change in g for the stoichiometric reaction between 
1 mol of the phase and its constituent elements in 
their stable states at the pressure and temperature of 
interest, e.g., for enstatite (MgSiO3) 

2Oenstatite enstatite Mg Si
f

3
2

g g g g g= − − −   5.28 

Such conventions always involve the arbitrary 
assignment of energies to a set of c phases (or 
entities) the compositions of which are capable of 
forming a basis for the chemical composition space 
of interest. That these assignments have no 
influence on the computational results is apparent 
by considering the energy change for the reaction 
of enstatite to clinoenstatite 

clinoenstatite enstatite
f f
clinoenstatite enstatite

g g g
g g

∆ = −

= −
 

Because databases may have different conventions 
(e.g., g of formation from oxides vs elements) it is 
wise to be cautious when mixing data from 
different sources.  
 
The “Gibbs energy of formation from the elements” 
convention does not imply that the entropies and 
volumes of the elements are arbitrary. Thus, to 
obtain gf(P,T) for a phase from 5.2 it would be 
necessary to integrate the volume and entropy 
changes for the reaction forming the phase from its 
constituent elements, rather than the intrinsic 
volume and entropy of the phase. There is no 
reason to add this complexity and therefore, 
provided it is done consistently, 5.2 leads to 
consistent relative energies. To emphasize that such 
relative energies are not equivalent to gf(P,T), even 
if they are computed from the integration constant 
gf(Pr,Tr), the molar Gibbs energy obtained from is 
sometimes referred to as an “apparent Gibbs 
energy of formation from the elements”.  

G(PR, TR) – EXPERIMENTAL BASIS I 

The classical experiment for direct determination of 
relative energies involves the measurement of the 
amount of energy required to decompose the phase 
to its constituent elements. Because such calorimer-
ic experiments often require extreme conditions 
they are usually done adiabatically rather than 
isothermally, consequently the property obtained is 
the enthalpy of formation, which is then related to 
the Gibbs energy via 

f f fg h Ts= −  

For geological materials, calorimetric measure-
ments are extremely difficult to make with any 
accuracy and instead indirect measurements from 
phase equilibrium experiments are preferred. A 
subject reserved for the next chapter.  

EXTRACTING OTHER FUNCTIONS FROM G(P,T) 

Although 5.2 is based solely on s(Pr, T) and v(P, T) 
it is valid for all P-T conditions. Thus, properties 
that we do not know as general functions (e.g., s(P, 
T), α(P, T)) which we do not “know” from our 
calibration are readily obtained from elementary 
thermodynamic relations, e.g.,  
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( ) ( ),
,

P

g P T
s P T

T
∂ 

= − 
∂ 

 5.29 

( ) ( )
( )

( ) ( )1

,1,
,

, ,

P

TT P

v P T
P T

v P T T

g P T g P T
T

PP

−

∂ 
α =  

∂ 

 ∂  ∂ 
 = ∂ ∂    ∂∂     

 5.30 
indeed a useful trick for testing the correctness of 
the integrations in 5.2 is to verify that the values for 
s(Pr, Tr) and v(Pr, Tr) derived by differentiation of 
g(P, T) are in fact identical to the values used as 
input for the calculation. 
 
Additionally, the values of any state function 
derived by Legendre transformations are trivially 
obtained as, e.g.,  

( ) ( ) ( ), ,
,

P T

u g Ts Pv
g P T g P T

g P T T P
T P

= + −

∂ ∂   
= − −   

∂ ∂   

 5.31 

Such constructions are perfectly valid, but have the 
unfortunate consequence that they yield explicit 
functions in terms of the natural variables of G, i.e., 
{P, T}. Thus, to obtain the value of the derived 
functions in terms of its own natural variables 
iteration is required. For example, 5.31 gives us 
u(P, T), so to obtain u at a specific value of s and v, 
it would be necessary to vary P and T to obtain the 
desired values of s and v at which u is required. 
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PROBLEMS 

5.1) Complete the Maple script provided in 
thermo_course/chapter5/problem_5_1_setup.mws 

to compute g(P,T). Calculate the g of forsterite at P 
= 40000 bar, T = 1000 K; if your script is correct 
you should obtain a g = −2,001,593.99 J/mol. Use 
the script to compute the following thermodynamic 
properties for forsterite at P = 40000 bar, T = 1000 
K: a) v, b) s (5.29), c) density (ρ, in kg/m3, the 
molar mass of forsterite, Nfo, is 0.14073 kg/mol), d) 
isobaric heat capacity (cP, 5.20), e) isobaric 
expansivity (α, 5.30), f) isothermal compressibility 
(β, i.e., the inverse of the isothermal bulk modulus 
KT, 5.3).  
 
5.2) Using your results from problems 5.1 and 4.5-
8: a) Compute the isentropic and isothermal speed 
of sound through forsterite, whose properties are an 
excellent proxy for those of the upper mantle, at P 
= 40000 bar, T = 1000 K (the isothermal speed is 
computed using the isothermal bulk modulus, KT, 
rather than the adiabatic modulus, KS, in 4.45). b) 
The heat capacity ratio (cP/cV) of forsterite at P = 
40000 bar, T = 1000 K. c) The adiabatic geothermal 
gradient in forsterite at P = 40000 bar, T = 1000 K. 
d) Use the relation derived in problem 4.8 to test 
whether the equation of state for forsterite from 
problem 5.1 is valid at 2800 K and 1400 kbar, 
conditions representative of the core-mantle 
boundary.  
 
Be sure to indicate the units where appropriate. 
Maple can be made to assign and propagate units 
through calculations to give dimensional results. As 
I do not use this functionality myself, I certainly do 
not expect you to use it. However, you may find the 
convert/units commands helpful, e.g., convert(1, 
units, (kg/mol)*(m/s^2)/(J/K/mol), K/km) converts  
1 (kg/mol)(m/s2)/(J/K/mol) to K/km.  
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6: COMPONENTS, COMPOSITION, 
− Xω DIAGRAMS AND FREE ENERGY 

MINIMIZATION 
We have established that d 0Ω > is a general 
condition for stability in a system in which the c 
extensive properties Ψ1...Ψc are conserved and the 
k+2–c environmental properties θc+1...θk+2 are held 
constant. Further, we have deduced that for an 
arbitrary choice of the environmental properties 
θc+1...θk+2 that p, the maximum number of phases 
possible in a system, is identical to c, the number of 
conservative independently variable extensive 
properties. Since Ψ1...Ψc are conservative proper-
ties they are the intrinsic physical attributes of the 
system and it is natural to regard these properties as 
the systems components. For example, we can 
imagine composing an isolated system by mixing a 
specific amount of S2, V, and M (for simplicity 
consider chemically homogeneous matter). The 
stable state of the system (e.g., P and T) is deter-
mined entirely by the proportions of S, V, and M in 
the initial mixture, thus these properties are the 
components of the isolated system. In contrast, 
suppose we are interested in a system where P and 
T are determined by the environment (e.g., by the 
systems location in the lithosphere) but the masses 
M1...Mk are conserved by all processes that occur in 
the system. In this case M1...Mk are components, but 
S and V are determined by the amounts of the 
components and the environmental parameters P 
and T. S and V are thus no longer intrinsic proper-
ties of the system. It is apparent that a logical 
definition of components depends upon the 
character of the system of interest. Moreover, since 
the concept of composition is useful only if the 
composition defines the intrinsic attributes of a 
system (i.e., those attributes that do not depend 

                                                           
 
 
2 In chapter 2, for isolated systems, we identified 
Ψ1...Ψc with S, V, M1, …, Mk because conventional-
ly the Gibbs differential is written with U as the 
dependent variable. This formulation is unfortunate 
from a logical point of view because S is not 
conserved in an isolated system, but U is. However 
in practice we are primarily concerned with 
reversible processes and in an adiabatic system 
reversible processes are isentropic.  

upon environmental conditions), a useful composi-
tion must be defined in terms of these attributes.  
 
The foregoing suggests the following thermody-
namically rigorous definitions of components and 
composition in the context of phase equilibria: 
Thermodynamic components are the c independ-
ent extensive properties of a system Ψ1...Ψc that are 
conserved for all processes that occur at constant 
θc+1...θk+2, where the c independent extensive 
properties of a system are those extensive proper-
ties that are capable of independent variation 
among the phases of the system. At a given 
environmental condition θc+1...θk+2 the stable state 
of the system is uniquely determined by the 
proportions of the components X1...Xc. These 
proportions define the thermodynamic composi-
tion of the system. Recalling the definition of 
specific properties as discussed in Chapter 2, it is 
evident that the compositional variables X1...Xc are 
identical the specific variables ψ1...ψc defined by 
equation 2.8 provided the amount α is defined  

i

c

i
i

eΨα ≡ Ψ∑ . 6.1 

MOLAR PROPERTIES AND COMPOSITIONS IN 

HETEROGENEOUS SYSTEMS 

Until now, we have used molar properties to 
characterize the properties of a phase rather than 
the system itself. This makes sense because it is 
possible to define more or less rigorously what one 
mole of a phase is (i.e., Avogadro’s number of 
molecules of the phase, though the definition of a 
molecule is not unambiguous when it comes to 
solids and liquids), but in a system where phase 
changes are possible this definition becomes 
impossible. Consider as an example the system 
H2O, at low temperature most of the atoms are 
associated in H2O molecules, but at high tempera-
ture an appreciable amount of the H2O is 
dissociated to O2 and H2, what then is a mole of the 
system?  
 
A simple, but arbitrary, definition of a mole of 
system is that it the amount of a system that 
contains one mole of its thermodynamic compo-
nents. Regardless of whether this definition is 
adopted a mole of phase may not contain a mole of 
the systems components. This creates an annoying 
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inconsistency because the molar properties depend 
on the choice of components. For example, suppose 
that the molar formula unit of enstatite is chosen to 
be MgSiO3, then (neglecting the unit quantity 
divisors 

i
eΨ in the formal definition of amount, Eq 

6.1, for brevity) 
en en eng G N=  6.2 

corresponds to Gen at NMgSiO3 = 1 (Fig 6.1), but if 
we choose NMgO and NSiO2 as the components of a 
system composed entirely of enstatite, then 

( )2

en en en en
MgO SiOg G N N= +  6.3 

corresponds to Gen at NMgO + NSiO2 = 1, which is 
evidently half the value obtained by Eq 6.2. This 
inconsistency is inescapable because it is impossi-
ble to know in advance what components will be 
chosen to describe a particular system. In view of 
this difficulty, a bar character is introduced to 
denote specific properties and amount defined in 
terms of a systems components, i.e.,  

,i
i

UΨ
ψ ≡ ω =

α α
 6.4 

Specific properties defined for one definition of 
amount (α) to another ( α ), by observing that 

i i
α

ψ = ψ
α

. 6.5 
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Fig 6.2 Xω − diagram for the states of an isobaric-
adiabatic system with one chemical kind of matter
(i.e., k=1, c=2) and three states of matter described by
the equations of state 1( ),Sh X 2 ( )Sh X and

3 ( ).Sh X For this system Xω − and the

thermodynamic components correspond to S and M.
The 3rd law requires that all states degenerate at XS=0
(i.e., at T=0 K), but otherwise the illustration is
generic to c=2 systems. If a tangent to the

Xω − surface for any state of interest is extrapolated
to the Xi=1, the ω coordinate of the tangent is identical
to the value of the dependent potential θi. At

1
S SX X≤ , the stable (minimum enthalpy) state of the

system a single phase described by the equation of
state 1( )Sh X in which T increases continuously with

XS. For 1 2 ,S S SX X X≤ ≤ the system consists of 2 phases

with fixed specific entropies (i.e., 1
SX and 2 )SX whose

proportions vary according to the lever rule, but whose
T is independent of XS as indicated graphically by the
tangent construction.

In view of the fact that 1.... cψ ψ represent thermody-

namic composition, it is helpful to distinguish these 
properties with the notation 

, 1...i iX i c= ψ = . 6.6 

Thus, the integral and differentials of the specific 
form of Eqs 4.24 and 4.19 are, respectively, 

1

c
i ii
X

=
ω = θ∑  6.7 

2

1 1
d d dc k

i i i ii i c
X +

= = +
ω = θ − ψ θ∑ ∑  6.8 

or, making use of the constraint (Eq 2.19) 

1
1

i

c
ii

X eΨ=
=∑ ,  

1

1

c

i c

c
c

i c i
i

e
X

e e

−
Ψ

= Ψ Ψ

  θ
ω = θ − θ +  

 
∑  6.9 

1 2

1 1
d d dc

i

c k

i c i i i
i i c

e
X

e

− +
Ψ

= = +Ψ

 
ω = θ − θ + ψ θ  

 
∑ ∑ . 6.10 

For completeness, in terms of this notation the 
dependent potentials of a system composed of p = c 
phases satisfy  

XSiO2

MgO

MgSiO3

MgSiO3

Mg Si O0.5 0.5 1.5

SiO2

0

0 1

1

1

NMgO

NSiO2

Fig 6.1 Relationship between 2-dimensional
component space NMgO-NSiO2 and 1-dimensional
composition space for an isobaric-isothermal system.
For such a system gω = and if specific phase
properties are defined for an arbitrary molar unit, then

2MgO SiO( )g g n n= + , where MgOn and
2SiOn are the

specific quantities of the components. Thus if the
molar quantity of Enstatite is MgSiO3, then

En En 2.g g=
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1 1 1
1 1

1

c

p p p
c c

X X

X X

θ ω
=

θ ω



    



 6.11 

and the lever rule for the fractions of the phase is 
1 sys
1 1 1 1

1 sys

p

p
c c p c

X X x X

X X x X
=



    



. 6.12 

− Xω DIAGRAMS 
A unique virtue of using specific properties defined 
from Eq 6.1, is that in an Xω− diagram if a 
tangent to 1 1( ... )cX X −ω is extrapolated to Xi = 1, 
then the ω coordinate of the tangent is numerically 
identical to the value of θi for the state represented 
by the point of tangency. This follows, by observ-
ing the derivatives of the tangent and 

1 1( ... )cX X −ω are by definition identical at the point 

of tangency, thus the tangent is also described by 
Eq 6.9 and substituting Xi=1 (ergo, 0j iX ≠ = ) into 

6.9 yields 

1i

i

i X
eΨ =

θ
ω =  6.13 

For the remainder of this chapter we restrict 
consideration to phases that cannot change their 
thermodynamic composition, i.e., compounds. It is 
doubtful that true compounds exist, but the energy 
of many phases rises so rapidly away from a 
particular composition that these alternative 
compositions are not observed, thus such phases are 
well approximated as phases with fixed composi-
tions and specific free energies. Quartz and 
aluminosilicates are examples of phases that are 
commonly regarded as compounds in chemical 
systems (i.e., as “pure” phases), but via problems 
2.1 and 4.3 that they can be treated as compounds 
in systems that are described in terms of physical 
components (S, V) as well.  
 
The accessible states of a system composed entirely 
of compounds are those defined by positive linear 
combination of the Xω− states of the compounds 
possible in the system. It follows that the accessible 
states will be separated from inaccessible states by 
a piecewise linear c-dimensional hull, the mini-
mum free energy surface of the system as a 
function of its composition (Fig 6.3). Each facet of 
the hull is defined the Xω− coordinates of c 
compounds that may stably coexist. From the 
tangent construction (Eq 6.13) and the lever rule, or 
formally from Eqs 6.11 and 6.12, the state of the 
system is completely defined for any assemblage of 
p=c phases. A peculiarity of systems composed 
entirely of compounds is that the state of the system 
is undefined for an equilibrium of p<c phases, since 
such equilibria correspond to the discontinuities on 
the minimum energy surface of the system. For 
example, in the binary (c=2) Xω− diagram of Fig 
6.3, and if the system has the composition of pure γ, 
an infinitesimal variations in sys

2X may cause the 

potentials to vary anywhere between their values in 
the assemblages β+γ and γ+δ. While there is no 
theoretical argument against such behavior, in 
reality compounds are invariably an approximation 
for phases that show extremely limited solution. So 
at high enough resolution compositional, the two 
phase linear regions of the Xω− surface of Fig 6.2 
would be separated by non-linear one phase 
regions. Regardless of whether or not true com-
pounds exist in nature, the problem is of practical 

X2

Fig 6.3 Xω − diagram for a system in which all
possible phases are stoichiometric compounds, i.e.,

Xω − points. Whether true compounds exist is a
metaphysical issue, but many phases have such
strongly curved Xω − surfaces, a behavior illustrated
by the thin solid curves, that they can be regarded has
having fixed compositions. The minimum free energy
surface separates the accessible states of the system
from inaccessible states and defines the stable states of
the system. Because the surface of the system is a c-
dimensional piecewise linear hull, the potentials of the
system vary discontinuously and the state of the
system is undefined for p<c phases, this is illustrated
by the range of values for θ1 possible for the system
when it consists entirely of γ (of course it can be
argued that a system that consists of pure γ is a one
component system or that γ is not a true compound).
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relevance because many phases are assumed to be 
true compounds in phase equilibrium calculations.  

Petrologic Projections and the Legendre 
Transform 

While the notion that the thermodynamic composi-
tion of a system may not be identical to its chemical 
composition may seem unfamiliar, such distinctions 
are entirely commonplace in petrology. For 
example, if quartz is present in excess (i.e., 
saturated) in a rock, the compositional phase 
relations are often simplified by “projection” 
through the chemical component SiO2. Such 
projections consist of nothing more than simply 
removing SiO2 from the composition space. 
Similarly it is commonly assumed that the redox 
state of isobaric-isothermal geological systems is 
externally controlled, implying that the system is 
open with respect to O2. This external control is 
usually specified by derived thermodynamic 
quantities redox potential (Eh) or oxygen fugacity 
(fO2) that are simply alternative expressions for 
oxygen chemical potential (µO2). Consider then the 
problem of identifying the stable phase assemblage 

in the Fe-O2 system at constant pressure, tempera-
ture and µO2 as illustrated by Fig 6.4. For this 
system, the Legendre transform of 

2 2Fe Fe O Og X X= µ + µ  6.14 

where I neglect the unit divisors eFe and eO2 to make 
the equations easier to follow, yields the function to 
be minimized at constant µO2 

2 2O Og X′ω = − µ  6.15 

but ′ω  is for a specific amount of each phase 
containing XFe moles (or mass units) of iron, thus to 
obtain the free energy per mole of iron, ′ω  must be 
divided by XFe = 1-XO2, i.e.,  

2 2

2

O O

Fe O1
g X

X X
− µ′ω

ω = =
−

 6.16 

However, rearrangement of 6.14, shows that  

2 2

2

O O
Fe

O1
g X

X
− µ

µ =
−

. 

Therefore the function ω obtained by the Legendre 
transform is identical to the µFe (neglecting the unit 
divisor) obtained for each phase in a g X− dia-

gram (Fig 6.4) by the petrologic projection of its 
g X− coordinate from the imposed µO2 onto the XFe 

= 1 axis. Thus, for an imposed µO2 the stable phase 
(mt, in Fig 6.4) can be found equivalently by 
finding the phase (or more generally the phase 
assemblage) that minimizes ω , or doing the 
graphical projection to find the phase with the 
lowest µFe. Since the minimization of ω is a 1-
dimensional problem, and the projection is a 2-
dimensional problem, from a computational 
perspective the Legendre transform is advanta-
geous.  

FREE ENERGY MINIMIZATION FOR SYSTEMS 

COMPOSED ENTIRELY OF COMPOUNDS 

In a c-component system in which the only possible 
phases are compounds the stable phases assemblag-
es always consist of p=c phases. Thus, the stability 
of any non-degenerate assemblage can be deter-
mined by first computing the potentials θ1...θc 
from Eq 6.11, and then testing that the inequality  

1
0

c
j j

i i
i=

ω − θ ψ >∑  6.17 

for all phases that are not in the original assem-
blage. Graphically, this procedure corresponds to 
determining the Xω− plane defined by an 
assemblage of p=c phases and then checking that 
the Xω− plane lies below the coordinates of all 

Fig 6.4 Graphical illustration that the Legendre
transform of

2O( , , )g X P T (c=2) for the Fe-O2 (k=2)
system to

2O( , , )P Tω µ (c=1) is analogous to the

petrologic projection of phase relations through the
chemical component O2. For an externally imposed
µO2, the stable phase is that which minimizes ,ω ergo
for the illustrated condition mt is the stable phase. If
µO2 was varied continuously, the reactions in the
projected system would involve c+1=2 phases and
correspond to the assemblages along the faces if the
minimum

2Og X− surface. The unit quantity divisors

are omitted for clarity.

XO2

2 2

2

O O
Fe

O1
g X

X
− µ

ω = = µ
−
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other phases in the system. This latter requirement 
follows from the convex geometry of the minimum 
free energy surface. This procedure establishes the 
stability of an assemblage, but does not establish 
whether the assemblage is possible for a given 
composition. Thus, given an assemblage of known 
stability and a bulk composition, it is necessary to 
esatablish that amounts α1…αp of the phases are 
greater than zero by solving 

1 sys
1 1 1 1

1 sys

p

p
c c p c

ψ ψ α ψ
=

ψ ψ α ψ



    



 6.18 

before concluding that the assemblage is possible 
for the bulk composition of interest.  
 
The strategy outlined above for determining the 
stable phases for a system of specified composition 
is a trial and error method that is cumbersome in 
complex systems. Fortunately, the free energy 
minimization problem belongs to a category of 
problems known generally as optimization 
problems that are studied intensively in fields such 
as operations research (industrial engineering) and 
economics. In essence, optimization problems 
consist of finding the values of a set of variables 
that optimize (i.e., minimize or maximize) a 
function subject to a set of constraints, which may 
themselves be functions of the variables. The 
function to be optimized is referred to as the 
objective function. For the phase equilibrium 
version of the optimization problem, the variables 
are the amounts (αj) of the phases and the objective 
function is the free energy of the system expressed 
as 

system

1

j j

j

Π

=

Ω = α ω∑  6.19 

where Π is the total number of compounds that may 
occur in the system, as opposed to those which are 
actually stable. From thermodynamic argumenta-
tion we know that of these Π compounds only p=c 
can be stable and if a compound is stable its amount 
must be greater than zero, while the amounts of the 
unstable compounds must be zero. Thus the for the 
optimization problem the variables αj are subject to 
the linear inequality constraints 

0, 1j jα ≥ = Π . 6.20 

Additionally, as the amounts of the components in 
the stable phases must sum to the amounts of the 

components in the system, the optimization is 
subject to linear equality constraints 

system

1
, 1j j

i i
j

i c
Π

=

Ψ = α ψ =∑  . 6.21 

As formulated here by Eqs 6.19, 6.20 and 6.21, the 
phase equilibrium problem is a linear optimization 
or linear programming (LP) problem. The LP 
problem was famously solved by George Dantzig 
with the Simplex algorithm in 1947, which is 
widely used for resource allocation problems and is 
considered by many to the most important mathe-
matical advances of the twentieth century. From 
our perspective, this has the advantage that LP 
programming routines are available even in 
primitive (e.g., Excel) mathematical computer 
packages. Thus, we have no need to understand the 
details of the algorithm in order to use it.  
 
Up to this point in this section, free energy 
minimization problem has been formulated in terms 
of arbitrarily defined specific properties. This is 
possible we are merely concerned with the amounts 
of the compounds that add up to make the proper-
ties of the system. Thus amounts in Eqs 6.18-6.21 
need not be defined consistently. It is of course 
possible to use specific amounts defined consistent-
ly in terms of the amounts of a systems 
components. In this case, the minimization 
variables are the fractional amounts xj of the 
compounds subject to the constraint 

1
1j

j
x

Π

=

=∑ , 6.22 

and Eqs 6.19-6.21 become 
system

1

j j

j
x

Π

=

ω = ω∑  6.23 

0 1, 1jx j≤ ≤ = Π  6.24 

system

1
, 1j j

i i
j

X x X i c
Π

=

= =∑  . 6.25 

If all c constraints from Eq 6.25 are imposed 
explicitly for optimization then Eq 6.22 is satisfied 
automatically, but if only c−1 constraints from Eq 
6.25 are implemented, then Eq 6.22 must be 
implemented as an explicit constraint. Thus, either 
formulation (Eqs 6.19-6.21 or 6.22-6.25) involve 
Π+c explicit constraints, and the only reason to 
favor one over the other is whether relative or 
absolute amounts are of greater interest. 
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The free energy minimization strategy outlined here 
is strictly applicable only to systems composed 
entirely of compounds, in which case 

1( ... )cfω ≠ ψ ψ and the optimization problem is 

truly linear. In general, the thermodynamic 
composition of a phase may vary in which case it is 
a solution phase for which 1( ... )cfω = ψ ψ . In this 

case, Eqs 6.19-6.21 (or 6.22-6.25) still hold but the 
compositions of the phases must also be determined 
by optimization. Optimizations of this type are non-
linear, a subject we will return to later after 
consideration of the thermodynamics of solutions.  

PROBLEM 

6.1) Use the maple script at thermo_course/ 
chapter6/problem_6_1_setup.zip to construct the 
phase diagram for the CaO-Al2O3-SiO2 system (i.e., 
the ternary chemography) at 1000 bar and 1073 K 
considering the phases quartz, gehlinite, grossular, 
sillimanite, anorthite, rankinite, larnite, corundum, 
lime, and wollastonite. The script loads the 
requisite thermodynamic data into the function for 
g(P,T) that you should have obtained from Problem 
5.1. It then solves the optimization problem as 
expressed by Eqs 6.19-6.21.  
 
I will accept a qualitative sketch of the phase 
diagram for this exercise, i.e., you do not need to 
plot the diagram in maple (but you are welcome to 
do so).  
 
If you want to prove to yourself that you actually 
understand the script you might try modifying the 
script to solve Eqs 6.22-6.25. 
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7: REACTIONS  
Having just gone to great lengths to argue that the 
only meaningful statement of the phase rule is p = 
c, we will now consider violations of this rule that 
may occur when the environmental variables are 
not arbitrarily fixed, but rather chosen or varied in a 
special way. For illustration imagine that for the 
system shown in Fig 6.3 the only phase whose 
energy depends on 1c+θ is phase ε. Clearly then, if 

1c+θ is decreased or increased eventually the 
Xω− coordinate of ε will become co-linear with 

the β − γ Xω− line, this co-linearity defines a 
singularity in which the system has an infinite 
number of possible states that are energetically 
indistinguishable. In the special case that the 
singularity is defined by c + 1 phases, as in the 
present illustration, all the states are related by a 
reaction equation. The reaction equation is deduced 
from the consideration that the formation of new 
phase from the existing phases of a system by a 
phase transformation must satisfy the conservation 
constraints on the components. It follows that the 
composition vector of the new phase must be a 
linear combination of the composition vectors of 
the existing phases 

1 1 1 1 0c c c cv v v + +− φ − − φ − φ =  7.1 

where 

1
j

j

j
c

 ψ
 φ =  
 ψ 

  7.2 

and νj
 is the reaction coefficient of phase j. Since 

7.1 remains valid if multiplied by an arbitrary 
constant, one coefficient in 7.1 may be arbitrarily 
specified. Thus, setting νc+1 = 1, Eq 7.1 may be 
written 

1 1
1 1 1 1

1 1

c c

c c
c c c c

+

+

     ψ ψ −ν ψ
     =     
     ψ ψ −ν ψ     



    



 7.3 

and solved for the unknown reaction coefficients.  
 
Conventionally in chemical thermodynamics Eq 7.1 
is not written in the form of a conservation 
equation, but is rearranged to obtain a balanced 
reaction, where phases with positive coefficients 
(the products of the reaction) are moved to the 
right of the equals sign. This form results in an 
equation in which all the coefficients are positive 
(i.e., the coefficients of the reactants are negative 

and when multiplied by −1 become positive 
quantities, while the coefficients of the products are 
defined convention to be positive). This convention 
is of little value in geoscience and in essence 
amounts to defining the products of a reaction as 
those phases that have positive coefficients in Eq 
7.1. 
 
The change in any extensive property of the system 
as a consequence of forming νc+1 moles of the c+1th 
phase is 

1

1

c j j
i ij

v+

=
− ψ = ∆ψ∑   7.4 

where, by definition, ∆ψj = 0 for j = 1… c, but, in 
general, the ∆ψj for j = c+1… k+2 are finite. The 
reaction equation relates two possible states of the 
system that are compositionally and energetically 
indistinguishable at the equilibrium condition for 
the reaction. It follows that equilibrium is defined 
by the condition 

1

1
0c j j

ij
v+

=
− ω = ∆ω =∑  7.5 

and that if ∆ω is computed at any other condition, 
then ∆ω < 0 if the reaction products are stable, and 
greater than zero otherwise. 
 
Because ∆ψ1...∆ψc are zero by definition the 
complete differential of ∆ω is 

2

1
d dk

i ii c

+

= +
∆ω = − ∆ψ θ∑ . 7.6 

Eq 7.6 has two special uses. The first is that if we 
are at a condition at which we do not have equilib-
rium we can estimate the amount we need to 
change a particular potential by to attain equilibri-
um as 

i
i

∆ω
∆θ ≈ −

∆ψ
, 7.7 

which is exact if ( )i if∆ψ ≠ θ  and approximate 

otherwise. Alternatively, if we consider an assem-
blage at equilibrium, if i∆ψ  > 0, then we know that 
an increase in iθ will stabilize the phases character-

ized by positive reaction coefficients. The second 
use of 7.6 is to predict the trajectory of the equilib-
rium of a reaction as a function of two variables. 
Along this trajectory d 0∆ω = , therefore 7.6 implies 

1 2

2 1

d
d

c c

c c

+ +

+ +

θ ∆ψ
= −

θ ∆ψ
 7.8 

which is the general form of the Clausius-
Clapeyron relation. 
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PROBLEMS 

The Maple script in thermo_course/chapter7/ 
problem_7_1_2_setup.zip may be helpful for the 
problems listed below. 
 
7.1) At a prestigious mineralogical institute hidden 
high in the Swiss Alps, a brilliant, but mysterious, 
experimental petrologist named Elena Melekhova 
makes the following observations: 
 
P(bar) T(K) Stable minerals 
8000 825 forsterite + phase-A  
8000 840 phase-A + chondrodite 
18000 860 forsterite + phase-A 
18000 880 phase-A + chondrodite 
 
Sadly, before she can analyze her results she 
succumbs to Po-210 poisoning. a) Use her observa-
tions to estimate the Gibbs energy of formation and 
third law entropy of chondrodite from the thermo-
dynamic data in ../chapter5/thermo_data_ 
comma_delimited.txt (in this file the abbreviations 
for Chondrodite, phase-A, and forsterite are, 
respectively, chond, phaseA, and fo. b) Calculate 
the temperature of the reaction between forsterite, 
phase-A and chondrodite at 1000 bar. Hint #1: The 
compositions of forsterite (Mg2SiO4), chondrodite 
(Mg5Si2O8(OH)2), and phase-A (Mg7Si2O8(OH)6) 
lie along a line in the MgO-SiO2-H2O composition 
space (i.e., they are compositionally degenerate) 
such that they can be described by 2 independent 
chemical components. If you do not want to 
reformulate their compositions in terms of 2 
components, then you can balance the reaction 
between these phases by considering only the MgO 
and SiO2 components. Hint #2: If you evaluate ∆g 
for the reaction of chondrodite to forsterite + phase-
A) you obtain an expression of the form: 

( ) ( ) ( )chond chond chond

( , )

, ,r r r r r

g f P T

g P T T T s P T

∆ =

 +ν − − 
 

which must be zero at the equilibrium conditions of 
the reaction, where νchond is the reaction coefficient 
of chondrodite. Thus each pair of isobaric experi-
mental observations constrains the equilibrium 
temperature and gives you a linear equation in the 
unknown parameters ( )chond , ,r rg P T ( )chond , .r rs P T  

 
7.2) Sketch the Xω− diagram topology for each of 
the eight sectors of the Schreinemakers projection 

(Fig 7.1) of the univariant fields about an invariant 
field for a two component system (c = 2) in which 
the α, β, γ and δ are possible compounds. To solve 
this problem you must first deduce the relative 
compositions of the compounds. Which univariant 
equilibria can occur in a system that has a bulk 
composition intermediate between β and δ? 
  
7.3) a) Compute and plot the univariant curves 
emanating from the sapphirine (spr7) + enstatite 
(en) + sillimanite (sill) + pyrope (pyr) invariant 
point in the MgO-Al2O3-SiO2 system as a function 
of pressure and temperature assuming that the 
system is saturated with respect to quartz (i.e., 

SiO2µ =  ( )quartz ,g P T ). b) These curves divide the 

pressure temperature diagram into 8 sectors, sketch 
qualitatively (or plot quantitatively if you prefer) 
the Xω− diagram for each sector, where 

2 3 2MgO Al O SiO( , , , , ).n n P Tω µ  c) Sketch the (3) stable 

univariant curves of the pressure-temperature phase 
diagram section for this system 
if

2 3MgO MgO MgO Al O/( ) 0.8X n n n= + =  and compute 

the amounts of the phases that are stable in each of 
the three sectors.  

Fig 7.1 Schreinemakers projection of univariant (c+1)
phase fields, labeled by their associated reactions,
about a c+2 phase invariant point in a θc+1−θc+2

coordinate frame for a system with c=2 components.
The stable and metastable portions of the univariant
fields are indicated, respectively, by solid and dashed
lines.

θc+2

θc+1
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8: SIMPLE SOLUTION MODELS 
Phases of variable composition, i.e., solution 
phases, are invariably described as a mixture of s 
real or hypothetical endmembers, for which data is 
tabulated (i.e., as in the Holland & Powell ’98 data 
base). The problem is then to formulate a solution 
model that describes the Gibbs energy of such a 
solution phase in terms of these endmembers. Such 
models consist of three components  

mech conf exg g g g= + +  8.1 

where gmech is the energy arising from mechanically 
mixing of the endmembers, gconf is the energy 
expected to arise from theoretical entropic consid-
erations, and gex is a component that accounts for 
the energetic effects caused by distortions of the 
atomic structure (e.g., strain) of the chemical 
mixing process or, in some cases, simply error in 
gconf.  

NOTATION 

In general, we can expect that there may be several 
potentially stable solution phases in any given 
system. Additionally the possible compositions of 
these solutions may not span the entire range of 
compositions possible for the system, i.e., the t 
endmember compositions chosen to represent a 
particular solution may not be the same as the c 
components chosen to represent the systems 
composition. To avoid ambiguity from these 
formalities we adopt notation to discriminate 
between properties of a system in general and a 
specific solution. To wit, for systems we have 
written 

sys
sys

1
,

c

i i i
i i

Gg X
N=

∂
= µ µ ≡

∂∑  8.2 

whereas for a solution we will write 
sol

sol sol sol

1
,

t

i i i
i i

Gg g y g
N=

∂
= ≡

∂∑  8.3 

thus yi is the mole fraction of the ith endmember and 
sol
ig is its specific Gibbs energy defined relative to a 

mole of its endmembers. As it is always possible to 
define a system so that it consists of a single 
solution, any relationship that can be written in 
terms of the g X− µ − coordinates of 8.2 remains 
valid in the ig g y− −  coordinates of 8.3. In 

particular, it is pertinent to observe that in consider-
ing the phase relations of a single solution, which 
may nonetheless involve more than one phase (i.e., 

an immiscible solution), that the equality of sol
ig in 

all phases is an auxiliary condition of Gibbs’ 
stability criterion.  

THE GIBBS ENERGY OF MECHANICAL MIXING 

The Gibbs energy of mechanical mixing for a 
solution with t endmembers is  

mech

1

t

i i
i

g y g
=

= ∑   8.4 

where the superscript o denotes a property of the 
pure endmember. 
 
For a binary (t=2) solution, Eq 8.4 defines a line 
(and for t>2 a plane) connecting the Gibbs energies 
of the endmembers in a g−y diagram (Fig 8.1). 
Such a diagram is the exact analogy of a g X− di-

agram. As the mechanical mixing process is 
energetically neutral (i.e., there is no gain or loss in 
energy caused by mechanical mixing), if we are 
only concerned with the internal phase relations of 
a solution we may arbitrarily assign the Gibbs 
energies of the endmembers to be zero, in which 
case mechg is likewise zero. 

CONFIGURATIONAL GIBBS ENERGY/ENTROPY 

The loss of order, and hence increase in entropy, 
arising from mixing two or more chemically 
distinct endmembers is responsible for stabilizing 
solution phases. Because the configurational 
component by definition does not account for any 
distortions of the endmember structures during 
mixing it can be expressed as 

Fig 8.1. Schematic  diagram illustrating the 
three components of the specific Gibbs energy 
of a binary solution, the diagram is constructed 
with the assumption that the Gibbs energies of 
the endmembers are  zero.   

g y−

0 1

g

g2
°

gmech

gexcess

gconf

y2

g1
°
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conf confg T s= − ∆ . 8.5 

Classical thermodynamics does not provide a 
means for quantifying the entropy arising from 
mixing, but from statistical mechanics it can be 
shown that configurational entropy associated with 
a distinguishable object is 

conf k lnS W=  8.6 

where W is the number of distinguishable configu-
rations created by mixing a total of  objects and k 

is named Boltzman’s constant in honor of the 
Austrian physicist Ludwig E. Boltzman (1844-
1906), who was the student of Josef Stefan and 
Arrehenius and Nernst where among his many 
famous students. Boltzman suffered from bouts of 
extreme depression and hung himself in 1906, 
equation 8.6, Boltzman’s equation, is engraved on 
his tombstone in Vienna.  
 
If there are t kinds of distinguishable objects, so 
that  

1 ... t= + +    

the number of distinguishable configurations is 

1

!
!... !t

W =


 

. 8.7 

In thermodynamics, we are concerned with 
ensembles involving large numbers of objects (e.g., 
atoms or molecules), in which case substituting Eq 
8.7 in Eq 8.6 and applying Stirling’s approxima-
tion  
ln ! lnx x x x≈ −  8.8 
yields 

 conf

1
k ln

t
i i

i
S

=

= − ∑ 

 

 

where i  is the mole fraction yi of the ith object. 

Thus, in the simplistic limit of mixing between 
molecular endmembers, the molar entropy ( = NA, 

Avogadro’s number, and kNA=R, the Universal gas 
constant) of mixing is 

conf

1
R ln

t

i i
i

s y y
=

= − ∑  8.9 

Since 0 1iy≤ ≤  it is apparent from 8.9 that confs is 

always greater than zero and therefore that for any 
finite temperature confg stabilizes mixing (Fig 8.1). 

Eq 8.9 is appropriate for truly molecular solutions 
(e.g., some gases and liquids), but crystals tend to 
be somewhat more complex. To illustrate this 
complexity let us consider plagioclase as a binary 
mixture between albite (Na)M(AlSi)T2(Si2)T1O8 and 

anorthite (Ca)M(Al2)T2(Si2)T1O8 endmembers, where 
the superscripts indicate the identsites on which the 
various elements occur. Three complications 
resulting from this complexity are: i) mixing may 
occur independently on different identisites, i.e., Ca 
and Na mix on the octahedral M-site, whereas Al 
and Si mix on the tetrahedral T2-sites; ii) there may 
be more (or less) than one identisite of any given 
type for the formula unit chosen to define the 
endmember, i.e., the standard 8-oxygen formula 
unit for plagioclase has 1 M-site, but 2 T2 sites; iii) 
the endmembers may themselves have configura-
tional entropy, i.e., in albite Al and Si are 
disordered on T2. To account for these complica-
tions we need only recognize that the entropy 
arising from independent mixing the n identisites of 
a solution, by the same logic used to derive 8.9, is 

conf

1 1
R ln

imn

i ij ij
i j

s q z z
= =

= − ∑∑  8.10 

where qi is the number of sites of the ith type, mi is 
the number of kinds of atoms mixing on the ith type, 
and zij is the atomic fraction of the jth type of atom 
mixing on the ith identisite. The only difficulty in 
applying 8.10 is that it is necessary to express the 
atomic site fractions (zij) as a function of the 
independent compositional variables of the 
solution, i.e., the endmember mole fractions (yi). In 
plagioclase, taking yab as the independent composi-
tional variable (i.e., yan= 1− yab), these site fractions 
are 

M,Na ab

M,Ca ab

T2,Si ab

T2,Al ab

1
2

1 2

z y
z y
z y
z y

=

= −

=

= −

 

and M T2 M T22, 2, 2, 1, 2n m m q q= = = = = , thus 

8.10 simplifies to 
( ) ( )

( ) ( )

conf
plag ab ab ab ab

ab ab

R[2 ln 1 ln 1

2 ln 2 ln 4]

s y y y y

y y

= − + − −

+ − − −
. 8.11 

Eqs 8.10 and 8.11 yield the total configurational 
entropy of a solution, but our concern is the entropy 
change from the unmixed to the mixed state. To 
obtain this change we compute the configurational 
entropy that is present in a mechanical mixture of 
the endmembers 

mech conf

1

t

i i
i

s y s
=

= ∑  8.12 

and subtract this from the total entropy to obtain 
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conf conf

1 1 1
R ln

imn t

i ij ij i i
i j i

s q z z y s
= = =

∆ = − −∑∑ ∑  8.13 

where conf
is is the configurational entropy of pure 

endmember i, which is computed from 8.10 for the 
endmember composition. In plagioclase, this 
procedure yields conf

an 0s =  and conf
ab ln 4s R= , thus 

8.13 evaluates to 
( ) ( ) ( )

( ) ( ) ( )

conf
plag ab ab ab ab

ab ab ab

R[2 ln 1 ln 1

2 ln 2 1 ln 4]

s y y y y

y y y

∆ = − + − −

+ − − − −
 8.14 

The confg component of solution models is some-

times referred to as the “ideal” component, this 
terminology, while appropriate when the solution is 
a simple mixture of non-interacting molecules, is 
grotesquely misleading when applied to crystals 
because the assumptions regarding individual site 
populations are so uncertain as to be, in some cases, 
almost arbitrary. Taking plagioclase as an example, 
at low temperatures Al preferentially occupies only 
one of the T2 sites (low-albite), whereas at high 
temperatures Al may be present on all four of the 
tetrahedral sites (i.e., both the T1 and T2 sites, as in 
analbite). Moreover the transitions between these 
ordering schemes may be continuous. Worse still, 
in the low-plagioclase scenario, it is conceivable 
that Si on the T2 site is always located near an M-
site Na so as to maintain local (ionic) charge 
balance. In this scenario, the “ideal” plagioclase 
model, there is no independent tetrahedral disorder 
and the model reduces to the molecular model 8.9 

( ) ( )conf
plag ab ab ab abR ln 1 ln 1s y y y y∆ = − + − −   , 8.15 

which is drastically different from 8.11. It is also 
important to recognize that the endmembers chosen 
for a given solution model are derived using the 
same ordering scheme as assumed for the solution 
model. Thus, e.g., Holland and Powell (1998) 
provide three different endmembers for the albite 
composition, “ab” which is fully ordered, “abh” 
which has Al-Si disorder on T2 and “hab” in which 
Al and Si are disordered over both T1 and T2. 

THE EXCESS GIBBS ENERGY 

In theory the excess Gibbs energy term of a 
crystalline solution model accounts for strain 
induced by of foreign cations into an endmember 
crystal lattice. Intuitively, it is to be expected that 
this strain will be proportional to the difference in 
the foreign and endmember cation radii and that the 
strain energy will destabilize the solution. Both 

these expectations are often, but not invariably, 
met. Thus, it is to be expected, for example, that 
Mg2+ and Fe2+, which have comparable radii, mix 
nearly ideally; and that in general the excess energy 
component of a solution model is positive as 
illustrated in Fig 8.1. However, in liquids and gases 
atomic interactions tend to be more complex and 
negative excess energies are commonplace (e.g., 
H2O-NaCl). This complexity leads to yet another 
type of solution model formulation known as 
speciation models, which we will consider later. 
However for present purposes, we will confine 
ourselves to a macroscopic formulation appropriate 
for solids and simple fluids. While there are 
primitive theoretical models to predict the excess 
properties of trace-element solutions (e.g., Blundy 
& Wood, 1994), by and large, models for exg  are 

empirically calibrated and expressed as polynomi-
als in the endmember fractions yi. There is an 
enormous variety of polynomial forms (cf. Ganguly 
2001), but for most purposes the simplest possible 
model, known as the regular model is adequate. 
The regular model expresses exg as 

1
ex

1

t t

ij i j
i j i

g W y y
−

= +

= ∑ ∑  8.16 

the sum of pair-wise interactions between the 
endmembers, where the interactions are character-
ized by the Wij coefficients (Margules 
parameters), which are usually taken to be 
constants, but in some cases are allowed to vary as 
a function of pressure and temperature. For a binary 
solution, such as our plagioclase model, Eq 8.16 
yields a symmetric excess function (i.e., 

ex
ab-an ab ang W y y= as depicted in Fig 8.1) that is too 

simple to explain phase equilibrium observations. 
In such cases, higher order (subregular) expan-
sions such as 

ex
ab-an-an ab an an ab-ab-an ab ab ang W y y y W y y y= +    8.17 

are desirable. The necessity for high order excess 
functions is often an indication of a poor model for 

confg and because high order models may extrapo-

late poorly they are best avoided whenever 
possible.  

SOLVII 

We have shown previously that the condition for 
the stability of a homogeneous isobaric-isothermal 
system is that its g X−  surface must be convex or 
linear with respect to the g coordinate, i.e.,  
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2

2 0, 1... 1
i

g i t
X

∂
≥ = −

∂
 

where, the equality applies when the system is 
heterogeneous (i.e., consists of more than one 
phase). For the three components of the Gibbs 
energy of a solution in 8.1, for any general (i.e., not 
pure) composition by definition 

2 mech

2 0
i

g
y

∂
≡

∂
 

and 
2 conf

2 0
i

g T
y

∂
≥ ∝

∂
 

where the equality applies only at T = 0 K. There is 
no rigorous constraint on ex ,g but to a first 

approximation for many solutions 
2 ex

2 0 constant
i

g
y

∂
< ≈

∂
. 

Additionally, confg is a weak logarithmic function 
of composition, whereas exg varies as at least a 

quadratic function of composition. Thus we can 
expect that at non-zero temperature, confg will 

dominate (and stabilize) dilute solution behavior, 
but that the destabilizing role of exg will become 

more significant at intermediate solution composi-
tions. Since the stabilizing effect of confg vanishes 

at T = 0 K, but must be infinite at T = ∞ K, then if 
temperature is reduced continuously from a high 
value there must be a finite temperature at which  

2

2 0
i

g
y

∂
=

∂
 

at exactly one composition. This composition and 
temperature are the critical composition and 
temperature of the solutions solvus. Determina-
tions of the critical conditions for a solvus are the 
most accurate method of constraining the parame-
ters and structure of a solution model, because at 
this condition all the high order derivatives must 
vanish, i.e.,  

crit crit0 for 2 at ,
n

i in
i

g n T T y y
y

∂
= ≥ = =

∂
 8.18 

Thus critical conditions provide a set of equations 
that can be solved for the unknown parameters of a 
model.  
 
Above the critical temperature the g−y surface is 
always concave and all compositions of the solution 
are stable. Below the critical temperature the 
surface is convex in the vicinity of the critical 
composition, and such compositions are metastable 
with respect to a mixture of compositions that can 
be determined from the stability criterion, these 
compositions are said to define the limbs of the 
solvus (Fig 8.2−3). The stable compositions of a 
solvus are always on the convex portion of the g−y 
surface of the solution and therefore include the 
conditions for which the surface is concave. The 
points (or curves or planes for multidimensional 
solutions) at which the surface changes from 
convex to concave are referred to as spinodes. 
There is no reason to ascribe spinodes any special 
significance from classical thermodynamics, but in 

Fig 8.2

a'' b''
a''

 y diagram for a binary system with a 
partially miscible solution. Any composition of 
the solution between  and  is metastable 
with respect to a mixture of 

−g

g

 and , these 
compositions define the limbs of the solvus of 
the solution. The y surface is only convex 
between  and , these points (or, in multidi-
mensional solutions, curves or surfaces) are the 

 of the solvus. 

b''

a' b'

spinodes

−

0 1

′′a

′a

′′b

′b

solvus
spinode

Fig 8.3 Temperature-composition diagram for 
an immiscible binary solution. The spinodes and 
the solvus coincide only at the critical point and 
at 0 K.

solvus

spinodes
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statistical mechanics it is argued that between the 
spinodes any microscopic fluctuations within a 
homogeneous phase will lower the bulk G and 
hence favor exsolution of immiscible phases. In 
contrast, such fluctuations for compositions 
between the spinodes and the solvus raise the bulk 
energy and inhibit exsolution. This argument has 
been confirmed experimentally, in that phases 
within a spinode decompose rapidly to the spinodal 
compositions, but equilibration beyond the spinode 
to the solvus compositions is often extraordinarily 
slow.  
 
By analogy with g X− diagrams, a tangent to the 

g−y surface of a solution extrapolated to the pure 
endmember composition defines the partial molar 
Gibbs energy of the endmember in the solution (Fig 
8.2). Thus if A and B are two phases of a solution 
that coexist across a solvus the equalities  

A B 1...i ig g i t= =  8.19 

can also be used to constrain the parameterization 
and/or structure of a solution model. Alternatively, 
if the solution model is known, then the numerical 
solution of 8.19 offers a means of computing the 
solvus, although for our purposes graphical 
methods may be preferable, and in the case of 
heterogeneous systems Gibbs energy minimization 
is always superior for this purpose.  

PARTIAL MOLAR ENERGY AND ACTIVITY 

The partial molar Gibbs energy of an endmember 
increases monotonically with the endmembers 
concentration for any stable composition (i.e., not 
within a solvus), and can thought of as a measure of 
the thermodynamic “concentration” of the 
endmember. Thus, if it is possible to write a 
reaction between the endmembers of various 
solutions, e.g.,  
grossular + 2 kyanite + quartz = 3 anorthite 8.20 
a necessary condition for the equilibrium of this 
reaction is that the change in the partial molar 
energies for the reaction is zero, i.e.,  

Plag Grt Ky Qtz
an gr ky qtz0 3 2g g g g g∆ = = − − − ,  8.21 

or in general  

0 i ig v g∆ = = ∑  8.22 

Recognition of this fact in the geosciences led to 
the idea that, under the assumption of equilibrium, 
measurements of the composition of impure phases 

could be used to establish P-T the conditions of 
equilibration for the rock containing the phases. 
From 8.3, for any given composition of a solution, 
gi for an endmember is obtained by extrapolating 
the tangent to the g−y surface at the solutions 
composition to the endmember composition (Fig 
8.2). Thus for a solution with two endmembers 

( )

( )

1 1
1

2 2
2

1

1

gg g y
y
gg g y
y

∂
= + −

∂
∂

= + −
∂

 8.23 

where  

1 2

g g
y y

∂ ∂
= −

∂ ∂
 

and more generally for a solution with t endmem-
bers 

t

i j
j i j

gg g y
y≠

∂
= −

∂∑ . 8.24 

Given that  
sol

sol
i

i

Gg
N

∂
≡

∂
 8.25 

8.23 and 8.24 may seem unnecessarily complex, 
however because solution models are formulated in 
terms of constrained compositional variables yi 
differentiation with respect to the general variable 
Ni is not at all straightforward.  
 
The concept of thermodynamic activity separates 
the thermodynamics of the pure endmember from 
that of the solution model by defining the activity 
of an endmember as 

exp
R
i i

i
g ga

T
 −

≡  
 



 8.26 

Activity is often closely to the endmember 
concentration yi, and in the limit of a pure 
phase 0i ig g− = and 1i ia y= = . Activity models 

can thus be derived from a complete solution model 
by substituting 8.24 into 8.26, e.g., in the case of 
the plagioclase solution model (8.14, 8.17) derived 
earlier this procedure yields the activity of albite as 

( ) ( )

( ) ( )

2
ab an-an-ab2

ab ab ab

2
ab ab an-ab-ab an-an-ab

1
2 exp

R

2 1
exp

R

y W
a y y

T

y y W W
T

 −
 = − ⋅ ⋅
 
 

 − −
 
 
 

 8.27 

Rearranging 8.26, the partial molar energies in Eq 
8.22 are 

R lni i ig g T a= +  8.28 
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Thus 8.22 is formulated in terms of activities as 

( )0 R lni i ig g T a∆ = = ν +∑   8.29 

or 
0 R lng g T K∆ = = ∆ +  8.30 

where the equilibrium constant K is defined as 
i

iK a ν≡ ∏ ,  8.31 

which in the specific case of reaction 8.21 is 
3

an
2

gr ky qtz

aK
a a a

=  8.32 

where given that quartz and kyanite are likely to be 
very nearly pure we may reasonably as-
sume 1ky qtza a= ≈ . 

PROBLEMS 

8.1) An experimentalist establishes that the critical 
point of the Na-Ca plagioclase solvus is at yab = 1/3 
and T = 900 K. a) Use this observation to determine 
Wab-ab-an and Wan-an-ab for a subregular excess 
function (8.17) in combination with the configura-
tional entropy model of 8.14 (the 2nd and 3rd 
derivatives of the solution model must be zero at 
the critical condition. b) Use these parameters to 
compute and plot the plagioclase solvus from 900 
to 400 K. c) As a petrographer, you observe 
anorthite rich plagioclase (yab=1/10) coexisting with 
a more albite-rich plagioclase in a metapelite, what 
temperature did the metapelite equilibrate at?  
 
Hint 1: use conditions 8.18 to determine Wab-ab-an 
and Wan-an-ab, but be sure to express gplag entirely as 
a function of yab. 

 
Hint 2: you can solve for the solvus conditions by 
at least four methods: i) plotting the g−y surface; ii) 
solving for the conditions at which 

Ab-Plag An-Plag
an ang g= and Ab-Plag An-Plag

ab abg g= ; or iii) 
constructing a plot of Plag

ana vs Plag
aba , although in this 

case you’ll have to figure out for yourself how to 
interpret the plot.  
 
8.2) A rock contains garnet (yalmandine=0.67, 
ypyrope=0.16, ygrossular=0.17), plagioclase (yab= 0.64) 
and pure kyanite, sillimanite and quartz. a) Derive 
activity models for anorthite in plagioclase and 
grossular in garnet from 8.26. For plagioclase use 
the solution model from problem 8.1, for garnet 
assume a regular model (8.16) with only one non-
zero term Wpy-gr = 33000 J/mol and assume that 
mixing occurs only on the A-site (i.e., 
( )A

2 3 123Ca,Mg,Fe Al Si O ). b) Assuming that the 

temperature of equilibration for the rock is known 
to be 1000 K by some independent means (for 
example, coexistence of kyanite+sillimanite), use 
these activity models to compute the pressure for 
the grossular-kyanite-anorthite-quartz equilibrium 
(i.e., the conditions for which 8.30 is true for the 
observed plagioclase and garnet compositions). 
NOTE: The thermodynamic data for the pure 
phases are loaded for you in the maple script 
thermo_course/ chapter8/problem_8_2_setup.zip. 
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9: THE EVIL OF THERMOBAROMETRY 
AND THE TRUE PATH TO WISDOM 
“Phase diagrams are the beginning of wisdom...”  
– Sir William Hume-Rothery (1899-1969) 
 
For historical reasons (a euphemism for irrational 
reasons) thermodynamic formalisms in the 
geoscience focus more on activity models, then the 
solution models from which activities are derived. 
Because of this, albeit unwarranted, attention the 
present chapter enlarges on the activity concept as 
introduced in chapter 8.  

A PHYSICAL MODEL FOR ACTIVITY/FUGACITY 

To obtain a more intuitive understanding of activity 
as introduced in the previous chapter, consider the 
osmotic system of Fig 9.1. Here the main portion of 
the system contains a 2-component solution such as 
biotite (endmembers annite and phlogopite), which 
is separated from two, initially empty, chambers by 
rigid membranes that are permeable with respect to 
only one of the endmembers, i.e., osmotic mem-
branes. Since the pressures in these chambers is 
independent of the pressure on the main portion of 
the system, we can arrive at an equilibrium 
condition in which the chambers are filled with 
pure endmembers at pressures dictated by the 
constraint that the partial molar Gibbs energy of the 
endmembers must be equal in all parts of the 
system where they are possible, e.g., 

( ) ( ), , ,g P T y g P T=Bio
phl phl phl

  9.1 

where although ,P P≠ phl the partial pressure Pphl is a 

function of the total P on biotite through 9.1. 
Activities are simply a means of accounting for this 
difference, this can be done explicitly in terms of 
pressure in which case the activity is referred to as 
a fugacity as in 

( ) ( )
( )

, , ,

, ln

g P T y g P T

g P T T f

=

= +

Bio
phl phl phl

phl r phlR





 

where Pr is the arbitrary reference pressure, i.e.,  
( ) ( )r, , ,

exp
R

i i
i

g P T y g P T
f

T
 −

≡  
 



 9.2 

a convention often used for fluids. This convention 
corresponds to the activity of the endmember 
defined relative to a standard state for the pure 
endmember at the reference pressure and the 
temperature of interest. For solids it is conventional 

to define the properties of the pure endmember at 
the pressure and temperature of interest, i.e. 

( ) ( )
( )

, , ,

, ln

g P T y g P T

g P T T a

=

= +

Bio
phl phl

phl phlR





 

i.e.,  
( ) ( ), , ,

exp
R

i i
i

g P T y g P T
a

T
 −

≡  
 



 

Such definitions are arbitrary and introduce 
artificial complexity into thermodynamic theory. 

PBio

P Bio
phl PBio

ann

Biotite

phlogopite annite

annyann
phl

R lnT aphl

R lnT fphl

gbio
phl ( , )=P T

Fig 9.1. An isothermal system consisting of 
biotite with endmembers phlogopite and annite. 
The system is connected to 2 compartments by 
rigid osmotic membranes that are permeable 
with respect to only one endmember. In each 
compartment pressure is dictated by the 
constraint that the partial molar energy of the 
pure endmember in the compartment must be 
equal to that of the endmember in biotite. It 
follows that only 1 of the 3 pressures is 
independent. The conventional definition of the 
activity of a solution endmember is related to the 
difference in the partial molar energy of the 
endmember in the solution and in its pure state at 
the same  and . Alternatively, activities may 
be defined relative to the partial molar energy of 
the pure endmember at a different pressure, in 
which case the activity is usually referred to as a 

.

P T

fugacity

g P,T°( )phl

g P ,T°( )phlphl

g P ,T°( )rphl

g



   

   43 

MORE TECHNICALITIES ON ACTIVITY 

The Gibbs energy of a solution can be expressed in 
terms of activities as: 

sol

1 1
R ln

t t

i i i i
i i

g y g y T a
= =

= +∑ ∑  

where comparison with 6.4 identifies the first term 
to be gmech term of a solution model. The relation-
ship of the second summation to the remaining 
components of a solution model (gconf + gex) is 
made clear splitting the activity into an “ideal” 
factor (aideal) related to the configurational entropy 
and non-ideal factor known as the activity coeffi-
cient, γ, related to the excess energy, in which case  

sol ideal

1 1 1
R ln R ln

t t t

i i i i i i
i i i

g y g y T a y T
= = =

= + + γ∑ ∑ ∑  9.3 

where, in the special case of a molecular solution 
model (6.9) ideal

i ia y= . Comparison of 6.1, 6.24 and 

9.3 requires 
conf

ideal confR ln
t

i j
j i j

gT a g y
y≠

∂
= −

∂∑  9.4 

ex
exR ln

t

i j
j i j

gT g y
y≠

∂
γ = −

∂∑ . 9.5 

The geometry of g−y diagrams (Fig 9.2), or 
alternatively a Taylor series expansion of 9.4 and 
9.5, suggests two important limiting behaviors for 
actvities 

ideal

H

1
0

i i i

i i

y a a
y k

→ →
→ γ →

 9.6 

known respectively the Raoult’s and Henry’s 
limiting laws, where kH is the Henry’s law 
constant. From application of the Gibbs-Duhem 
relation (1.9) it can be shown that if one endmem-
ber of a solution obeys Raoult’s law, then the other 
endmembers must behave according to Henry’s 
law. Henry’s law behavior is sometimes used, 
particularly in aqueous chemistry, to formulate a 
standard state for a pure endmember at infinite 
dilution, also known as a solute standard state, 
that is derived from the pure endmember, or 
solvent standard state, as  

*
HR lni ig g T k≡ + . 9.7 

The virtue of adopting the Henry’s law standard 
state for a dilute solute is that the contribution of 
the excess (“non-ideal”) component of the solution 
model becomes implicit and the energy of the 
solution has the pseudo-ideal form 

( )* idealR ln 0i i ig g T a y= + → . 9.8 

The application of this model to melts and solid-
solutions has been popularized by Holland & 
Powell (1998), who essentially refer to the solute 
standard state as a standard state that has been 
corrected according to Darken’s quadratic 
formalism (DQF), and the term HR lnT k  as a 

DQF-correction. For any stable solution it is 
evident that H 0k >  must be positive and therefore 

* .i ig g>   

y2
0 1

a1

Raoult’s law region

Henry’s law region

1y2
0

RT aln 1


RT aln *
1

Fig 9.2 g y

g

−  diagram showing the difference 
between the  activity of endmember 1 for an 
intermediate solution composition measured 
relative to the solvent ( ) and soluteo  ( ) 
reference states. The   is 
the pure endmember (or species) at  and . 
The  is the (hypothetical) 
pure species at infinite dilution and the  and 

 of interest. The lower diagram shows the 
activity of component 1 in the solution as a 
function of . There are 2 limiting behaviors, 
in the Raoult’s law region the activity is ideal 
if measured relative to the solvent standard 
state, in the Henry’s law region the activity is 
ideal if measured relative to the solute 

g*

P T

P
T

y

solvent reference state

 solute standard state

2

g

g1°

g1*

µ1=g1

gideal
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THERMOBAROMETRY AND ACTIVITY-CORRECTED 

EQUILIBRIA 

The use of activities in thermobarometric calcula-
tions as briefly outlined in chapter 6 is seductively 
simple. One merely measures the compositions of 
the minerals in some rock, identifies equilibria 
involving endmember compositions of the mineral, 
and computes the P-T location of the equilibria. In 
many cases, the equilibria are constrained for the 
pure endmembers by experimental measurements 
so that the free energy change of the pure endmem-
ber reaction is a known function of pressure and 
temperature, i.e.,  

( ),g f P T∆ =  

and therefore it is only necessary to compute the 
equilibrium constant for activity models for each 
equilibrium and solve  

( )0 , R lnf P T T K= +  

for the conditions of equilibrium. Unfortunately, 
this method, while simple, can lead to solutions that 
are in fact totally inconsistent with equilibrium. The 
origin of this problem is that while the condition 

0g∆ = is a necessary condition for equilibrium it is 

not a sufficient condition. Moreover even if a 
system is in equilibrium, it is not necessarily stable.  
 

To understand the consequences of using a 
necessary but not sufficient condition for equilibri-
um, consider the “GASP” barometer defined by 
reaction 6.20 in the CaO-Al2O3-SiO2 system, the 
condition 0g∆ = for this reaction implies that 

activity corrected partial molar energies of anor-
thite, grossular, quartz and kyanite are coplanar in 
the CaO-Al2O3-SiO2 g X− space and therefore that 

the chemical potentials of CaO, Al2O3 and SiO2 are 
equal in the observed garnet, plagioclase, etc. 
However, both garnet and plagioclase contain other 
components as well and these are not constrained to 
be equal at the conditions of the GASP equilibrium; 

P3

P2

P1

T2T1

ann
alm

pyphl

Bi
o

St
 +

 G
rt

Fig 9.3 P-T diagram projection for phase 
relations in the system K O-FeO-MgO-Al O -
SiO with , ,  and determined 
by external (e.g., saturation constraints) so that 
the system has two thermodynamic compo-
nents (

2 2 3

2  SiO2 Al2O3 K2O H2O µ µ µ µ

FeO and MgO). The univariant 
equilibrium biotite (Bio)  = Staurolite (St) + 
Garnet (Gt) defines the true limit for the 
stability of Bio. The two thin solid lines 
represent "activity corrected" univariant curves 
for specific (e.g., observed) compositions of 
garnet and biotite as depicted in the  
diagrams of Fig 9.4.
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X
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R  ln ( )T a     alm
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Fig 9.4 Free energy composition diagrams 
corresponding to conditions on Fig 9.3, the 
free energyhere is = ω  − µ − µ −

µ − µ
g SiO2- Al2O3

K2O H2O.

n n
n n

-X

SiO2 Al2O3

K2O H2O . The "observed" composi-
tions of Grt and Bio are indicated by filled 
black circles on the  corresponding  
curves, the true equilibrium compositions of 
coexisting Grt+Bio are indicated by open 
circles. 
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indeed, in general they will not be equal. To 
illustrate this problem, consider garnet-biotite 
equilibrium in the K2O-FeO-MgO-Al2O3-SiO2-H2O 
system. To reduce the dimension of the composi-
tion space, assume that the system contains water, 
quartz, kyanite and muscovite at all conditions of 
interest, thus we can make the Legendre transform 

2 2 2 2 2 2 2 3 2 3H O H O K O K O SiO SiO Al O Al Og n n n nω = − µ − µ − µ − µ

 9.9 
and we are left with MgO and FeO as thermody-
namic components, so we can now analyze the 
phase relations in a two dimensional Xω− dia-
gram (Fig 9.4). Both biotite (a solution between 
annite and phlogopite) and garnet (a solution 
between almandine and pyrope) are continuous 
solutions in the reduced composition space. The 
necessary conditions for equilibrium are (assuming 
we have chosen the formula units of garnet and 
biotite so that each has a total of 1 mole of 
FeO+MgO, so that the stoichiometric coefficients 
are one) 
ω = ωGrt Bio

alm ann  (i.e., µ = µGrt Bio
FeO FeO ) 9.10 

ω = ωGrt Bio

py phl  (i.e, µ = µGrt Bio
FeO FeO ) 9.11 

These equalities can be reformulated as the 
conditions for independent “activity corrected” 
univariant equilibrium in the MgO and FeO 
subsystems, i.e., from 9.10 

1

1 ln
a

T
a

∆ω = ω − ω

= ∆ω +

Gt Bio
alm ann

Gt
alm
Bio
ann

R

 9.12  

and from 9.11 

2

2 ln
a

T
a

∆ω = ω − ω

= ∆ω +

Gt Bio
py phl

Grt
py

Bio
phl

R

 9.13 

which for any arbitrary, e.g., observed composi-
tions, can be solved to define the P-T conditions of 
activity-corrected univariant equilibria. Taken 
individually these curves do not define the equilib-
rium conditions for Grt+Bio, but rather the 
conditions at which the tangents of the Xω−  
surfaces of each phase at the specified compositions 
extrapolate to the same intercept (Fig 9.4). Thus, in 
general the curves do not indicate equilibrium 
conditions, the only true equilibrium condition 
being the condition at which the two “activity-
corrected” univariant curves intersect (Fig 9.3). Use 
of the activity corrected GASP barometer is exactly 
analogous to considering only one of these curves, 

it establishes a range of conditions that include the 
equilibrium condition, but which, in general, are 
not themselves possible conditions.  
 
A more insidious problem is that even if simple 
inverse thermobarometry is done in such a way as 
to establish the conditions of a true equilibrium, it 
cannot provide information about the stability of 
the observed phases relative to those that are not 
observed. In our Grt+Bio example, we have a 
system with c=2 components and 3 phases must 
coexist along any real univariant curve such as that 
corresponding to the equilibrium of Grt + Bio + 
Staurolite, which limits the stability of Biotite (Fig 
9.3). Thus, in this example, the thermobarometric 
results are inconsistent with the phase relations 
predicted from essentially the same data. Often 
such inconsistencies are dismissed by statements 
such as “the assemblage is observed, therefore it 
must have been stable”, but such casual argumenta-
tion belies the complexity of thermobarometry. The 
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sad truth is that observed mineral compositions 
rarely represent anything approximating equilibri-
um conditions (after all, if they did 
thermobarometry would always yield ~298 K and 1 
bar) and therefore it is not possible to find a single 
P-T condition at which all the observed phases of a 
rock are in equilibrium. In recent years, in recogni-
tion of this complexity petrologists have developed 
more sophisticated inverse methods such as 
WEBINVEQ (Gordon 1992) and “Average P-T” 
(Powell 1985, Holland & Powell 1998) that attempt 
to obtain identify the conditions at which an 
observed rock is closest to equilibrium. However, 
to date there are no inverse methods that also 
account for thermodynamic stability.  

THE TRUE PATH: FREE ENERGY MINIMIZATION 

The fundamental flaw in thermobarometry is that it 
involves prescribing mineral compositions and then 
asking what conditions yield the prescribed 
(observed) compositions. The flaw being that we 
cannot prescribe mineral compositions and expect 
to find a thermodynamically consistent solution. 
Given that thermodynamics provides us with a 
means of predicting all the properties of a rock as a 
unique function of its environmental variables, the 
alternative is to use such predictions (i.e., forward 
models) to find the closest match between observed 
and predicted phase relations. Phase diagrams 
embody thermodynamic these predictions and are 
themselves a consequence of the geometry of the 
minimum Xω− for a system as function of its 
environmental variables. The method by which this 
surface is determined graphically is straightfor-
ward, but to compute such surfaces numerically is 
surprisingly difficult. Here we will only briefly 
outline the formulation of the simplest method, 
constrained free energy minimization, which 
enables us to predict the amounts and compositions 
of the stable phases of a system as a function of 
variables{ }1 c c+1 k+2,..., , ,...,X X θ θ . The construction 

of a phase diagram using constrained free energy 
minimization, amounts essentially to a mapping 
program in which one samples the variable space, 
records the stable phases, and maps the fields in 
which the various phase assemblages are stable (Fig 
9.5).  
 

To simplify the formulation of Free energy 
minimization we will describe all the phases of the 
system as solutions in all the components of the 
system. If a phase has a fixed composition, or 
otherwise limited solution behavior, then it can be 
treated as a special case by imposing appropriate 
constraints. The problem can be stated as follows: 
minimize 

 ( )sys

1 1
1

ω j j j j

c
j

x y y
Π

−
=

= ω∑   9.14   

subject to the physical constraints 
sys

1
1... 1j j

i i
j

X x y i c
Π

=

= = −∑  9.15  

0 1jx≤ ≤  9.16 

0 1j

iy≤ ≤  9.17 
1

1

1j

j

x
Π −

=

≤∑  9.18    

1

1

1
c

j

i
i

y
−

=

≤∑  9.19  

where Π is the total number of phases that may 
occur in the system, as opposed to those which are 
actually stable; xj is the molar proportion of the jth 
phase and i indexes the c-components of the system 
and the c-endmembers of each solution. Constraint 
9.15 is a restatement of the lever rule, which 
requires that the amounts of the components in the 
phases of the system must sum to the total amounts 
of the components in the system; and constraints 
9.16-9.19 are necessary to ensure all amounts and 
compositions remain positive. As formulated the 
Free energy minimization problem is the classical 
non-linear minimization problem, wherein 9.14 is 
the objective function to be minimized, subject to 
the linear constraints 9.15, 9.18 and 9.19; and the 
linear inequalities 9.16 and 9.17; to solve for the 
amounts (xj) and compositions ( j

iy ) of the stable 

phases. In the context of the optimization problem, 
the p ≤ c stable phases are those phases with non-
zero amounts. A maple script to solve the general 
non-linear problem is provided in the course notes 
for the solution of problem 9.1. Drawbacks of non-
linear optimization strategies are that they often 
require initial guesses for the phase compositions. 
In contrast, the case in which the possible phases all 
have fixed compositions can be solved by linear 
optimization methods that are numerically robust. 
The robustness of the linear optimization, suggests 
a third method in which the non-linear problem is 



   

   47 

linearized by replacing approximating each possible 
solution phase by a series of stoichiometric 
compounds. The linearized problems is illustrated 
by the maple script at 
www.perplex.ethz.ch/simplex.html.  

PROBLEMS 

9.1 The maple script in ../problem_9_setup.zip 
derives Xω −  functions, where X =nK/(nK+nNa), 
for white mica and alkali-feldspar for a system in 
which these phases coexist with water, kyanite and 
quartz (i.e., the Legendre transform is equivalent to 
a petrological “projection” through water, kyanite 
and quartz. a) Use the Xω −  functions to construct 
a T-X phase diagram (at P = 3000 bar, as set in the 
scrupt) for temperatures from 800-980 K. The 
topology of the diagram is determined entirely by 
the location of: two 2-phase reactions (pure albite 
reacting to pure paragonite, pure sanidine reacting 
to pure muscovite), two 3-phase reactions, and the 
sanidine critical condition (at T = 961 K, X = 1/3). 
Locate univariant equilibria and critical points 
within +/-1 K, the rest of the diagram can be 
sketched qualitatively. b) Balance the 3-phase 
reactions, do you expect the reaction stoichi-
ometries to vary as a function of pressure?  
 
Hint: you can do this problem graphically by 
plotting the Xω − or by making use of the 
optimization command in the script, the latter is 
more practical for determining the phase relations 
in the vicinity of the 3-phase reactions (to use the 
script for this purpose you will need to vary the 
constraint on bulk composition specified in the 
NLPSOLVE command).  
 

http://www.perplex.ethz.ch/simplex.html
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10: MOLECULAR FLUIDS 
There is nothing unique to the thermodynamics of 
fluids (or, for that matter, any phase), but fluids, 
and in particular gases, are microscopically simpler 
than solids and therefore have a longer experi-
mental and theoretical history. This history has led 
to a situation in which, from a practical perspective, 
fluids are treated differently than solids in two 
distinct ways: fluid equations of state tend to 
incorporate more theory and the thermodynamic 
reference state for fluid species is defined different-
ly than for solids.  

WHAT IS A FLUID?  

Fluids are defined by concepts that are themselves 
poorly defined, but a reasonable starting point is to 
define a fluid as any phase that lacks long-range 
order on an atomistic scale. Thus, fluids are clearly 
distinguished from crystals in which atoms are 
arranged periodically on an effectively infinite 
structure, excepting the occasional defect. By this 
definition, glasses qualify as fluids, which may be a 
little counterintuitive, but is certainly less troubling 
than the rheological definition of a fluid, which is 
anything that has time-dependent deformation, e.g., 
the earth’s mantle. The only legitimate definition of 
a gas (or vapor) is that it is a fluid that may 
undergo a discontinuous transformation to a fluid 
with higher density, which is thereby defined to be 
a liquid fluid. Ignoring the complexities introduced 
by impure fluids, the necessity for this unsatisfying 
definition is that the pressure-temperature trajectory 
of the liquid-gas equilibrium phase boundary of any 
one-component system terminates at a point at 
which the properties of gas and liquid become 
indistinguishable, i.e., a critical point. For 
example, the critical point of water is at 647 K and 
220 bar, at a temperature below this point if the 
pressure of a water gas is continuously increased at 
some point the gas will undergo a discontinuous 
transformation to liquid water (Figs 10.1 and 10.2). 
However, because of the existence of the water 
critical point, it is possible to vary pressure and 
temperature in such a way as to go from the 
gaseous to the liquid state continuously, thereby 
making the distinction between liquid and gas 
meaningless.  
 Another vague non-thermodynamic distinction is 

that of molecular and ionic fluids. The former 
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supposedly being composed entirely of covalently 
bonded molecular species, and the latter consisting 
of ionized species. To a first approximation, fluids 
composed of volatile elements (i.e., gaseous 
elements at room pressure and temperature) tend to 
be molecular, whereas fluids composed of non-
volatile elements tend to be ionic. Thus, C-O-H-N-
S-Cl-F fluids are dominantly molecular, while 
aqueous fluids with dissolved solids (e.g., electro-
lytes) or melts tend to be ionic. Unfortunately, the 
validity of these generalizations is limited, in that 
pressure tends to decrease the ionic character of 
both electrolytes and melts. The critical points of 
molecular fluids are rarely at more extreme 
conditions than the critical point of water, thus 
within the earth molecular fluids are typically 
supercritical.  

ELEMENTARY THEORY 

The basis for the early theoretical treatments of 
fluids was Clapeyron’s (1834) combination of 
Boyle’s (1662) and Charles’s (1787) laws as the 
ideal gas law  

RPV n T=  10.1 
or 

RPv T=  10.2 
the first complete equation of state (EoS). This 
equation of state is theoretically justified in the 
limit that the phase of interest is composed of zero-
dimensional non-interacting particles, which is not 
an entirely unreasonable approximation for low-
pressure gases. However, at higher pressure the 
condensation of the gas to a liquid provides 
evidence of both attractive intermolecular forces 
and that gases cannot be compressed to zero 
volume, i.e., the existence of short range repulsive 
intermolecular forces.  
 
Van der Waals (1873) improved on the ideal gas 
model by postulating the molar volume of a gas 
should approach a limiting value at 0 K, i.e.,  

RTb v
p

= −  10.3 

where b is a positive constant characterizing the 
size of the gas molecules, i.e., the molar covolume. 
Further, van der Waals postulated that intermolecu-
lar attractive forces should vary as 1/r6, where r is 
intermolecular distance. As the pressure of a gas is 
the manifestation of these forces and the average 

intermolecular distance in a gas is V1/3, Van der 
Waals argued that the pressure predicted by 10.3 
could be corrected for the effect of intermolecular 
forces as 

2

RT aP
v b v

= −
−

 10.4 

where a is a constant characteristic of the gas, 
which must be positive if the force are attractive. I 
do not know enough history to know if Van der 
Waals motivation for the 1/r6 (i.e., 21/ )v depend-

ence for interatomic forces was physical or 
mathematical, but I do know he was interested in 
obtaining an equation of state that could reproduce 
boiling. The mathematical requirement for such an 
equation is that for a given isotherm: i) it must be 
able to predict two states with different molar 
volumes at a single pressure, and ii) on either side 
of this pressure the molar volume must decrease 
with pressure ( 0)v P∂ ∂ < . The ideal gas is linear in 

volume (Fig 10.3) and therefore cannot meet the 
first condition. A quadratic equation in volume 
could meet the first condition in that it may have 
two real roots, but v P∂ ∂ would be opposite in sign 

for each root and therefore violate the second 
requirement. Thus an equation of state must be at 



   

   50 

least third order in volume to predict boiling, and 
this is exactly what results from Van der 
Waals 2/a v term, as by rearrangement of 10.4 
 ( ) 2 3Rav Pb T v Pv ab− + + = . 10.5 

With suitable parameters 10.4 (or 10.5) has 1 real 
root for T > Tc, and 3 real roots at T < Tc. Of the 3 
roots, only the minimum and the maximum have 

v P∂ ∂ < 0, and therefore meet the second require-

ment for the equation of state, the intermediate root 
has no physical significance.  
 
Experimental and theoretical models have shown 
that the there are 4 major categories of intermolecu-
lar forces in fluids: nuclear repulsion ~ 1/rn, n = 6-
12, short range; electrostatic (or Coulombic) due 
to permanent polar moments, net attractive forces, 
~ 1/r2, comparatively long range;  
inductive, induced by interaction of polar and 
nonpolar molecules, attractive, ~ 1/r6; and disper-
sive, (or London) caused by fluctuations by in 
nonpolar molecules, attractive, ~ 1/r6. Thus, as 
electrostatic forces are absent in true molecular 
fluids, dispersive and inductive forces are indeed 
consistent with van der Waals’ model. Moreover, 
because all the intermolecular forces decay rapidly 
with intermolecular distance, all gases must behave 
as ideal gases in limit 0P →  (this is a law named 
after some dead physicist). 
 
The choice of the covolume b and dispersion a term 
in the Van der Waals equation of state are easily 
derived by differentiation of 10.4 

3

R 2P T a
v v b v

∂
= − +

∂ −
 10.6 

( )
2

2 3 4
2R 6P T a

v vv b
∂ = −
∂ −

 10.7 

Equating these derivatives to zero at the critical 
condition (Fig 10.2) and solving for the constants in 
terms of the critical temperature (Tc), pressure (Pc) 
and volume c( )v  gives 

c c
c c c

c

R9 3, R ,
3 8 8
v Tb a T v P

v
= = = . 10.8 

Van der Waals realized that by scaling the pressure, 
temperature and volume of a gas relative to the 
respective critical properties, 10.4 yields a “univer-
sal” equation of state 

*
*

* *2

3
3 1

TP
v v

= −
−

 10.9 

where the scaled or “reduced” variables are 

* * *

c c c

, ,v P Tv P T
v P T

= = = .  

This realization was the origin of the theory of 
corresponding states, which essentially postulates 
that all gasses in the same reduced state have the 
same reduced properties (reduced compressibility, 
etc.). There is nothing wrong with this theory in 
principle, but in practice, it requires an equation of 
state with perfect accuracy. In this regard, the Van 
der Waals EoS has been found wanting.  
 
Although the van der Waals equation is not 
accurate, its formulation established the importance 
of cubic equations of state for the prediction of 
phase transitions and it has served as a basis for 
virtually all subsequent theoretical and semi-
empirical equations of state. In earth science, 
empirical modifications of the Redlich-Kwong 
(1941) EoS 

( )
RT aP

v b T v b v
= −

− +
 10.10 

are the most popular descendent of the van der 
Waals equation. Typically these modifications are 
to the covolume (b) and/or dispersion term (a) is 
taken to be a function of pressure and/or tempera-
ture. 

GIBBS ENERGY AND FUGACITY OF PURE FLUIDS 

The typical reference state used for solids is the 
Gibbs energy of the pure solid at the pressure and 
temperature of interest. In contrast, for molecular 
fluid species, the reference state is the temperature 
of interest and an arbitrary reference pressure (Pr). 
Thus, the Gibbs energy of a pure fluid at the 
pressure and temperature of interest must be 
evaluated from 

( , ) ( , )
r

P

r
P

g P T g P T v dP= + ∫     10.11 

For an ideal gas, substituting 10.2 into 10.11yields 

,ideal ( , ) ( , ) R lnr
r

Pg P T g P T T
P

 
= +  

 
  . 10.12 

Historically, because non-ideal fluids are described 
by complex equations of state, for practical 
applications the value of the integral in 10.11 was 
tabulated. However, rather than tabulate the volume 
integral directly a proportional function known as 
fugacity was defined 
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0

exp R
P

f vdP T
 

≡  
  
∫  10.13 

the virtue of this function is that it parallels that for 
the ideal gas, in that the Gibbs energy of a pure real 
gas is then 

( )
( , )( , ) ( , ) R ln

,r
r

f P Tg P T g P T T
f P T

= +


 



. 10.14 

Such manipulations are anachronistic in that the 
integral  

( )
( , )R ln ( , ) ( , )

,
r

P

r
rP

f P Tv dP T g P T g P T
f P T

= = −∫


  



 

can be evaluated analytically and efficiently by 
computer. Nonetheless, as fugacities persist in 
geoscientific literature as relicts of the past, it is 
worthwhile to clarify a complication in explicitly 
evaluating 10.13, namely that the volume of a gas 
tends to infinity in the limit 0.P →  To avoid this 
difficulty a simple trick is to evaluate integral of the 
difference real gas volume from its ideal volume 

( ),ideal

0

( , )R ln
P f P Tv v dP T

P
− =∫



  . 10.15 

From the dead-physicist limiting law, the volume of 
a real fluid must approach that of an ideal gas in the 
limit 0,P →  thus the integrand of 10.15 is finite for 
any real pressure. This formulation suggests an 
alternative expression for fugacity as  
f P= ϕ   10.16 

where ϕ is known as the fugacity coefficient, and 
subject to the limiting law 1, 0,Pϕ → →  thus 

10.15 is 

( ),ideal

0

R ln
P

v v dP T− = ϕ∫     10.17 

A potential complication that arises using complex 
equations of the general form P=f(v), is that it may 
not be possible to obtain the equivalent volume 
explicit form, i.e., v=h(P), which is necessary to 
evaluate 10.17 analytically. This complication can 
be circumvented by the rule of integration by 
parts (Fig 10.4), which states that if b is a continu-
ous function of a, then 

0 0

0 0d d
a b

a b

b a ab a b a b= − −∫ ∫ . 10.18 

Applying this rule to the volume integral in 10.17 

( ),ideal

0

R

R( ) .

P

v

Tv v dP P v
P

TP v dv
P∞

 − = − − 
 

 − −  

∫

∫


  

 

 10.19 

A minor complication in evaluating 10.19 is that it 
is necessary to compute the volume at the pressure 
of interest to obtain the integration limit .v  
 
Another seemingly peculiar feature in the thermo-
dynamic treatment of molecular fluids is that the 
reference state provided in virtually all tabulations 
of thermodynamic data for gaseous species is not 
for a pure real gas, but rather for a hypothetical 
pure ideal gas consisting entirely of the species of 
interest. The reasons for this convention are two-
fold: i) the thermodynamic properties of an ideal 
gas can be computed from theory and ii) the 
properties of the corresponding real gas are 
dependent on the particular equation of state used 
to evaluate the pressure dependence of the fluid. 
Combining 10.12 and 10.14 

( ),ideal ,
( , ) ( , ) R ln r

r r
r

f P T
g P T g P T T

P
 

− =  
 



  , 

 10.20 
where the superscript “ideal” denotes the hypothet-
ical ideal gas standard state and using 10.20 to 
eliminate ( , )rg P T from 10.14, the Gibbs energy of 

a real gas is 
,ideal ( , )( , ) ( , ) R lnr

r

f P Tg P T g P T T
P

= +


  . 

 10.21 

IMPURE FLUIDS 

With ever greater frequency in recent literature, 
impure fluids are treated identically to solid 
solutions as outlined in chapter 6, with the minor 
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technical difference that the partial molar energy of 
pure species or endmembers are computed from 
10.14 (or its approximation 10.21). However, many 
fluid equations of state include empirical mixing 
rules that relate the parameters of an impure gas to 
the parameters of the pure constituent species. For 
example, in the case of van der Waals and the 
unmodified Redlich-Kwong equations, the 
following mixing rules are considered appropriate 

( )2
,mix i i mix i ia y a b y b= =∑ ∑  

Given such a rule, it can be shown by the same type 
of graphical argumentation as we used to define 
activities, that the fugacity of a species in an impure 
fluid is 

, ,

RR ln R ln
R

j

i
iv T v n

P T vT f dv T
n v T

∞   ∂   = − −   ∂     
∫

Algebraically, the thermodynamic activity of an 
impure molecular species is  

i i i
i i i

i i

f P
a y

f P
ϕ

= γ = =
ϕ 

 10.22 

which leads to a bewildering variety of ways in 
which equilibrium constants may be expressed for 
reactions involving both fluids and solids. 

PROBLEMS 

10.1 The critical temperature, pressure and molar 
volume for water are, respectively, 647 K, 220 bar, 
9.16 J/bar (the critical volume has been faked here 
to make the van der Waals EoS give the correct 
critical pressure and temperature, the real critical 
volume is 4.787 J/bar). Calculate the covolume (b) 
and dispersion (a) terms for water in the van der 
Waals EoS (10.8). Evaluate the molar volume and 
fugacity of water 700 K and 2000 bar.  
 
Hint: after determining which of the three roots of 
the van der Waals equation for volume is real at the 
conditions of interest, this root (i.e., ( )v P ) can be 

used explicitly in 10.17 to obtain the fugacity 
coefficient of water.: Error! Bookmark not 
defined. 
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11: SPECIATION AND ORDER-DISORDER 
SOLUTION MODELS 
Solution models as discussed in the previous 
chapter are “simple” in that the models have as 
many endmembers as the solution has independent-
ly variable chemical components. It is, however, 
possible to formulate a solution model as a mixture 
of t chemical “entities” where t > c, the number of 
components necessary to describe the chemistry of 
the mixture. By definition, t − c of the entities are 
compositionally dependent as it must be possible to 
write t − c reactions among these “entities”. There 
are two distinct limiting model types: pure specia-
tion models in which the thermodynamic 
properties of all t entities are independent and pure 
reciprocal models in which the thermodynamic 
properties of t − c of the entities are described in 
terms of the remaining c independent entities. Such 
models combine as reciprocal solution models with 
speciation. Reciprocal and combined solution 
models involve more complex bookkeeping and are 
described in chapter 12. 

SPECIATION MODELS 

Thermodynamic theory neither requires nor treats 
species within a solution. Such models are simply a 
means of introducing atomistic models to explain 
macroscopic behavior. The success of such a model 
depends on the accuracy of the atomistic model. 
Suppose as an example we wish to model macro-
scopic H-O fluids (Fig 11.1). If we recognize that 
on the atomistic scale H-O mixtures consist 
dominantly of H2O, H2, and O2 molecules, we may 
succeed in predicting the macroscopic properties of 
the fluid as a nearly ideal mixture of three mole-
cules. However if we describe the fluid as a mixture 
of only H2 and O2 molecules we can expect that the 
model will need a large excess term to account for 
the special stability of the fluid at the H2O composi-
tion (Fig 11.2).  
 
Once we have a macroscopic model we can of 
course calculate the thermodynamic properties of 
any species k in phase j through the relation  

1=

= µ∑
c

j k
k i i

i
g n . 11.1 

Thus in our example we can calculate the partial 
molar free energy of H2O2 in our macroscopic H2-
O2 mixture as 

( )

2 2 2 2

2 2

2 2 2 2

fluid
H O H O

fluid fluid
H O

o
H O H O

1 1

R ln

g

g g

g g T a a

= ⋅µ + ⋅µ

= +

= + +

 

The activity of H2O2 is then 
( )fluid

H O H O2 2 2 2

2 2

fluid
H O R−

≡
g ga e T  

and if the relation between H2O2 activity and 
composition is known we can obtain the concentra-
tion of H2O2, e.g., in the ideal limit we equate 
activity with concentration. If we find that this 
concentration is significant, then we may expect 
that the ideality of our macroscopic model will 
improve if we model the macroscopic H-O mixture 
as consisting of four species: H2O, H2, O2, and 
H2O2. Thus, the success of a speciation model, i.e., 
its ability to explain macroscopic behavior without 
invoking non-ideal interactions, is critically 
dependent on the choice of species; models that 
incorporate insignificant species are unnecessarily 
complex. 
 

XO

H O

H O2

O2H2

XO

H O

CH4

H O2

CO2

Fig 11.1 Relation between the ternary 
speciation composition space for H -O -H O 
and C  mixtures and the macro-
scopic H-O composition space.

For 

2 2 2

H -CO -H O
 The dashed 

lines in the speciation composition space are 
lines of constant bulk composition. The 
speciation problem amounts to identifying the 
speciation that yields the lowest free energy 
for a given bulk composition. CH -CO -
H O these speciations are not at constant C-
content, but the dimensionality of the true C-
O-H composition space can be reduced by 
projection through carbon (as would be 
possible for graphite-saturated fluids). 

4 2 2

4 2

2
X O

=1
/3

X O
=1
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X
O =1/3

X
O =1/2
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There little new about the formulation of speciation 
models; the models consist of three components  

mech conf ex'g g g g= + +  11.2 

where the prime is used to indicate the formulation 
as in chapter 8. However, in speciation models 
there are t − c independent reactions between the 
species of the form 

1 1 0 1...c c k k
k k kv v v k c tφ + + φ + φ = = +  11.3 

for which the free energy change of reaction 
0kg∆ ≠ . 11.4 

Therefore for purposes of computing homogeneous 
phase equilibria, in contrast to the simple solution 
models of chapter 8, we cannot assign all t species 
arbitrary energies; although, as before, we can 
arbitrarily assign c chemically independent species 
energies of zero, in which case 8.4 simplifies to 

mech

1

t

k k
k c

g y g
= +

= ∆∑  . 11.5 

A more subtle problem is that the molar mass of the 
solution may vary as a function of speciation, e.g., 
for the H2O bulk composition, if the fluid consists 
entirely of  H2O molecules (yH2O = 1) if molar mas 
is ~18 g/mol, whereas when it is composed entirely 
of H2 and O2 molecules (yH2 = 2/3 yO2 = 1/3) its 
molar mass is ~12 g/mol. Anticipating that we will 
want to separate the effects of variation in specia-

tion from the variation in mass it is desirable to 
define a normalization function that keeps the mass 
of the solution constant for a given bulk composi-
tion as a function of its speciation. For any 
speciation the molar mass of the solution is  

1
N N

c

i i
i

y
=

= ∑  11.6 

where Ni is the molar mass of species i. Defining a 
reference mass  

0 0

1
N N

c

i i
i

y
=

= ∑  11.7 

where 0 0
1 ,..., cy y are the mole fractions of c chemi-

cally independent species when the mole fractions 
of the chemically dependent species are zero (i.e., 

1 ... 0c ty y+ = = = ). Observing that 1
1

k
k k kv v n n= ∂ ∂  

is the change in the number of moles of species 1 
per mole of species k formed by speciation reaction 
k; Eq 11.3 requires that a variation at both constant 
mass and composition must satisfy 

0

1

ν
ν

it
k

i i kk
k c k

n y n
= +

= + ∑  

where ni is the un-normalized molar amount of 
species i. The total number of moles of the species 
after this variation is then 

1 1 1
1

t t t
i

i k
i k c i k

n n n
ν
ν= = + =

 
= = +  

 
∑ ∑ ∑  

and defining  

Fig 11.2  diagram for an H-O fluid at a 
temperature and pressure at which a water-rich 
phase may coexist with hydrogen- and 
oxygen- rich fluids. The equilibrium free 
energy of the fluid as a function of bulk 
composition would be determined by solving 
for the stable speciation of the fluid at each 
bulk composition. The 

 =1/3) is a mixture 
of all three species. Because speciation models 
often predict a strong stabilization of the 
solution when the bulk composition is 
coincident with a species, such models are 
often referred to as "compound formation" 

−XOg

g X

X

− O

O

 surface lies below 
the free energy of pure H2O because the fluid 
at the water composition (

0 1 0 1

0

Fig 11.3 Schematic H-O speciation as a 
function of bulk composition. It can be shown 
by application of the Gibbs-Duhem relation 
that the maximum in the activity of any 
species must occur when the fluid and the 
species have the same composition (Connolly, 
1995). There is no thermodynamic requirement 
that the maximum in the species concentration 
occurs at this composition, but generally 
maxima in species concentration and activity 
are in close proximity to each other.    
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1
δν

it
k

k k
i k

ν
ν=

≡ ∑  

the normalized compositions of the solution are 
0

1

1

ν
ν

1 δν

it
k

i kk
k ci k

i t

k k
k c

y n
n

y
n n

= +

= +

+
= =

+

∑

∑
. 

Substituting these normalized compositions into 
11.6 and rearranging the order of summation 

0

1 1

1

νN N
ν

N
1 δν

it t t
k

i i k ik
i k c i k

t

k k
k c

y n

n

= = +

= +

+
=

+

∑ ∑ ∑

∑
. 11.8 

As the first summation in the denominator of 11.8 
is N0 (11.7) and the final summation in 11.8 is the 
change in mass caused by speciation reaction k, 
which is zero by definition, 11.8 simplifies to 

0

1
N N 1 δν

t

k k
k c

n
= +

 
= + 

 
∑ . 11.9 

Thus, g', the specific free energy per mole of 
species, can be renormalized to the specific free 
energy of the mass of a mole of the reference 
speciation as 
g g ′= Ξ  11.10 

Where the normalization factor   
0

1

N 1 1 δν
N

t

k k
k c

n
= +

 Ξ = = + 
 

∑
 

11.11 

is commonly referred to as the Helffrich-Green 
Stuffed moles normalization factor. Although the 
derivation of Ξ is notationally impenetrable, it is 
not a complicated term. For example, in the present 
case of the three species H-O fluid, taking 

2

0 2
3Hy = , 

2

0 1
3Oy = , 

2 2H H O 1v v = − , 

2 2
1

2O H Ov v = − , and ( )2H O1 1 2nΞ = − . In fact, in 

solid solutions, speciation reactions typically 
conserve the number of moles of the species, in 
which case 1Ξ = . 
 
Returning to our 3-species water model (c=2, t=3), 
in general 11.4 is 

2 2 2 2 2 2

mech

1

H H O O H O H O

t

i i
i

g y g

y g y g y g
=

=

= + +

∑ 

  

 11.12 

Choosing H2O as the c+1th species, there is one 
independent speciation reaction  
−H2 − ½ O2 + H2O = 0  
and assigning H2 and O2 energies of zero, 11.5 
becomes 

2 2

mech
H O H Og y g= ∆  . 11.13 

If the fluid is truly a molecular mixture, then from 
8.9 

( )2 2 2 2 2 2

conf
H H O O H O H OR ln ln ln= + +g T y y y y y y . 

 11.14 
As in simple solution models, the excess compo-
nent of speciation models is largely ad-hoc. In H-O 
fluids at temperatures below ~650 K paired solvi 
separate the H2O-rich fluids from both H2- and O2-
rich fluids (Fig 11.4). This behavior is reproduced 
with an excess function of the form 

2 2 2 2 2 2 2 2

ex
H O-H H O H H O-O H O Og W y y W y y= +  11.15 

if the interaction energies
2 2H O-HW and 

2 2H O-OW are 

assigned positive values to counteract the stabiliz-
ing entropic effects of 11.14. It is noteworthy, that 
if H-O fluids were treated as a simple binary 
mixture the existence of paired solvi would require, 
at least, a fifth order excess function. Thus, the ease 
with which complex behavior such as paired solvi 
are explained by speciation models is a virtue. 
Although the formulation of speciation models 
involves no new features, they introduce additional 
degrees of freedom in that for any general bulk 
composition the species fractions are not uniquely 
determined. From thermodynamics, the stable 
speciation must be that which minimizes the energy 
of the phase for the bulk composition of interest. To 
determine this speciation it is necessary to convert 
the solution model in terms of the independent 
species fractions ( )1 1 1,..., , ,...,c c tg y y y y− + (where yc 

Fig 11.4 Schematic isobaric phase diagram 
illustrating paired solvi around the H O 
composition (X =1/3). The species names 
indicate the dominant species in the coexisting 
fluids. Aqueous molecular fluids typically 
show this type of behavior at temperatures in 
the vicinity of the water critical point (647 K).
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has been eliminated by the closure constraint) to a 
function of the bulk solution composition 
{ 1 1,..., cX X − } and the fraction of t − c chemically 

dependent species, i.e., ( )1 1 1,..., , ,...,c c tg X X y y− + . 

This trivial, albeit sometimes messy, conversion is 
accomplished by noting that the total amount of any 
chemical component in a phase must be the sum of 
that component in the species present in the phase 
weighted by the species fractions, i.e. 

total , 1
t t

j j
i j i j

j j
X y n y n i c= =∑ ∑   11.16  

where j
in is the number of moles of component i in 

species j, total
jn is the total number of moles of the 

components in species j, and  

1
t

c i
i c

y y
≠

= − ∑ . 11.17 

Returning again to our H-O fluid model and taking 
the atomic fraction of oxygen as the independent 
bulk compositional variable, 11.16 and 11.17 are 

2 2

2 2 2

H O OO
O

O H H H O O

2
2 3 2

y ynX
n n y y y

+
= =

+ + +
 11.18 

2 2 2O H H O1y y y= − − . 11.19 

Eqs 11.18 and 11.19 can be rearranged as  
( )

2 2H O H O O1 1 2y X y X= − + −  11.20 

( )
2 2 2O O H O O H O1 2y X y X y= + + −  11.21 

and substituted into 11.13−11.15 to obtain 
( )2O H O,g X y , which is minimized at constant XO to 

determine the equilibrium concentration
2H O ,y  the 

remaining species concentrations are then obtained 
from 11.20-11.21 (Fig 11.3). In this simple case, 
the minimization can be done graphically by 
plotting ( )2O H O,g X y  vs 

2H Oy at constant XO. 

ANALYTIC SOLUTIONS OF THE SPECIATION 

PROBLEM 

The speciation problem can be formulated analyti-
cally to avoid the necessity of numerical or 
graphical energy minimization. Such a formulation 

exploits the fact that derivative of a function must 
vanish at the functions minimum. Thus given 

( )1 1 1,..., , ,...,c c sg X X y y− + , the stability criterion 

provides t − c additional constraints of the form 

1 1

0 1...
c

j X X

g j c t
y

−

 ∂
= = +  ∂ 



, 11.22 

which comprise a system of t − c simultaneous non-
linear equations that can be solved, usually 
numerically, for the unknown species concentra-
tions. The disadvantage of such an approach is that 
11.22 is a necessary, but not sufficient condition, 
for a global minimum, i.e., 11.22 may have more 
than one solution, thus in general it is not certain 
that a particular speciation is the speciation with the 
lowest possible free energy. Indeed, 11.22 may also 
correspond to maxima.  

A Less Rational Analytical Solution: 

The equilibrium constant method is a less rational 
means of solving the speciation problem. It is 
therefore perhaps unsurprising that this method is 
widely applied in earth sciences. The method 
exploits the fact that the equilibrium condition 
requires that the free energy change of any reaction 
between the species of a solution must be zero at 
equilibrium. Thus from 11.3 we have  

0 1...jg j c t∆ = = +  11.23 

and expanding 11.23 as in 8.30  
, R ln 0 1,..., .∆ + = = + j

jg T K j c t  11.24 

The activities that comprise the equilibrium 
constants Kj are then derived from 6.24 and, with 
11.16 and 11.17, recast as functions of 

1 1,..., ,cX X − 1,...,c ty y+ so that, as in 11.22, a system 

of t − c simultaneous non-linear equations in the 
unknown species concentrations is obtained. The 
reason this method is “less” rational is that it has all 
the disadvantages of the direct solution of 11.22, 
but involves many more mathematical operations.  
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COMPOUND FORMATION AND ORDER-DISORDER 

MODELS 

Speciation models are widely applied in the 
description of mineral solutions, but because people 
seem to be uncomfortable with the idea of a 
“species” in the context of a solid phase, these 
models often referred to as compound formation 
or order-disorder models. The origin of this 
terminology arises from the fact that in some 
solutions it is possible to achieve particularly 
favorable energetics if different cations can be 
regularly ordered on a particular crystallographic 
site. A famous example of this is dolomite, which 
has two octahedral identisites, M1 and M2, per 

M2 M1
0.5 0.5 3Ca Mg CO  formula unit. At low temperature, 

the energy of stoichiometric dolomite is minimized 
if Ca is entirely on M2 and Mg on M1. Any 
deviation from this perfectly ordered scheme causes 
a rapid increase in the energy, but such a deviation 
is inescapable if there is solution of either magne-
site, M2 M1

0.5 0.5 3Mg Mg CO ,  or calcite, M2 M1
0.5 0.5 3Ca Ca CO ,  in 

dolomite. This effect destabilizes calcite and 
magnesite solution, or viewed from another 
perspective, stabilizes the formation of stoichio-
metric dolomite, i.e., compound formation. With 
increasing temperature dolomite structure expands 
so the energetic penalty of putting Ca on the M1 
site decreases and, as there is an entropic benefit to 
disordering, the extent of solution between 
stoichiometric dolomite and both calcite and 
magnesite increases and ultimately becomes 
complete, at which point there is no distinction 
between dolomite and a calcite-magnesite solution 

M2 M1
0.5 0.5 3(Ca,Mg) (Ca,Mg) CO .  

Chemically the dolomite solution is analagous to 
the H-O fluid speciation discussed earlier, in that 
we can write a reaction between calcite (cc) and 
magnesite (mag), in both of which no octahedral 
site order-disorder is possible, and ordered dolomite 
(odo) 
½ mag + ½ cc = odo 
Thus, we can formulate a speciation model of 
calcite-magnesite solution that accounts for 
dolomite formation with cc, mag and odo as 
species. However, in contrast to the H-O fluid, 
where our atomistic model of the fluid consisted of 
true H2O, H2, O2 molecules, in a crystal structure 
the species influence individual identisite popula-

tions. In the case of calcite magnesite, mixing 
occurs on M1 and M2 with site fractions 

M1,Ca cc

M1,Mg mag odo

M2,Ca cc odo

M2,Mg mag

z y
z y y
z y y
z y

=

= +

= +

=

 11.25 

required by the species site populations, deduced as 
previously for plagioclase (chapter 8). From Eqs 
8.31 and 11.25, the change in configurational 
entropy of our calcite-magnesite model (n=2, 

M2m M1 2,m= =  M2 M1 1 2q q= = ) is 
conf

cc cc cc cc

mag mag mag mag

R 2[ ln (1 ) ln(1 )
ln (1 ) ln(1 )]

s y y y y
y y y y

= − + − −
+ + − −

 11.26 

Fig 11.5 Schematic isobaric phase diagrams 
illustrating the two types of paired solvi that 
may result from a speciation model of calcite-
magnesite solutions with an ordered dolomite 
species. In the upper diagram the solvi 
connected by a "tricritical" line, which marks a 
discontinuous ordering transition between 
dolomite and fully disordered calcite-
magnesite solution. Solutions with that exhibit 
this type of behavior are said to have 
"convergent" ordering. In such solutions the 
distinction between an ordered and disordered 
phase is legitimate. In the non-convergent case 
(lower diagram) there is a continuous 
transition between ordered and disordered 
states. The nature of the transition is controlled 
by the parameter values for the speciation 
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note that in this case the configurational entropies 
of the endmembers are zero, since in cc and mag 
there is only one octahedral cation, and in odo, 
although there are two cations, they are perfectly 
ordered onto M1 and M2 (i.e., mechs =0). As in the 
H-O fluid, the species fractions of calcite and 
magnesite can be expressed from 11.16 and 11.17 
in terms of bulk composition and the fraction of the 
ordered dolomite species 

Ca
cc cc odo

Ca Mg

2
n

X y y
n n

= = +
+

 

mag cc odo1y y y= − −  

and rearranged to obtain  
cc cc odo

mag cc odo

2
1 2.

y X y
y X y

= −
= − −

 11.27 

Combining suitable expressions for gmech and gex 
with 11.26 and substituting 11.27 in the result 
would yield ( )cc odo,g X y  which is minimized at 

constant Xcc (and, of course, P and T) to determine 
the equilibrium free energy and speciation of the 
solution phase. As discussed previously, this may 
be done by free energy minimization, or, as is more 
common, by solving 11.22 or 11.24. 
 
In effect speciation models are temperature (and in 
some cases pressure) dependent models for the 
configurational entropy of a solution. Recognition 
of this aspect of speciation models had led to 
alternative formulations of the speciation problem 
in which the free energy of solutions are expressed 
in terms of bulk composition and microscopic 
order parameters that specify crystallographic site 
populations. For example, in our calcite-magnesite-
ordered-dolomite model, we may define a micro-
scopic order parameter 

M1,Mg M2,MgQ z z= −  11.28 

that describes the degree to which Mg is ordered 
between the M1 and M2 sites. For the endmember 
site populations, Q is 0 for calcite and magnesite 
species and 1 for ordered dolomite. Since the 
microscopic site fractions of a speciation model are 
completely determined by the macroscopic 
fractions of the independent species, it is mathemat-
ically evident that the number of independent 
ordering parameters in an order-disorder solution 
model r = t − c the number of independent reactions 
that can be written between the species of the 
solution. Thus, in the order-disorder formula-

tion ( )1 1 1,..., , ,...,c rg X X Q Q− , whereas with 

speciation ( )1 1 1,..., , ,...,c c tg X X y y− + . The relation 

between the independent order parameters and 
species concentrations is recovered by substituting 
the site fraction definitions in terms of species 
fractions into the definition of the order parameters 
(or vice versa). Thus, for calcite-magnesite from 
11.25 and 11.28 we have the trivial result 

mag odo mag odoQ y y y y= + − = . 

Not uncommonly, the relationship between order-
parameters and species fractions is more complex, 
but in essence order parameters are species 
fractions, and just as in a speciation model, the 
equilibrium state of order in an order-disorder 
model is determined by finding values of the order 
parameters that minimize the free energy of the 
solution at a given bulk composition. Or analogous-
ly to 11.22 

1 1

0 1, ,
c

j X X

g j r
Q

−

 ∂
= =  ∂ 



 . 11.29 

Mathematically there is no distinction between 
speciation models and order-disorder models, but 
the latter formulations are more popular in the 
geological literature. I personally prefer the 
speciation formulation because mass balance 
constraints and the physical meaning of terms, such 
as 

cc-odo cc odoW y y , 

are relatively transparent. In contrast, in the order-
disorder formulation the solution model must be 
expressed as a function of macroscopic composi-
tional variables and microscopic ordering 
parameters, e.g., the above term is  

( )cc-odo ccW X Q Q− , 

and as there is no closure constraint on microscopic 
ordering parameters, mass balance constraints tend 
to be less straightforward than in speciation models.  

ORDER-DISORDER PHASE TRANSFORMATIONS 

Order-disorder in solids is intimately associated 
with polymorphic phase transformations. This 
association arises because ordering may result in a 
lowering of point group symmetry. For example, in 
high temperature dolomite the M1 and M2 sites 
have the same average site populations and are thus 
chemically indistinguishable and do not constrain 
symmetry; whereas at lower temperatures the 
ordering of Ca and Mg onto M2 and M1, respec-
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tively, makes the sites chemically non-equivalent 
and distinguishable; an effect that can only decrease 
symmetry. The transformation from ordered to 
disordered point group may be smooth in that the 
order-parameter that characterizes the transition 
varies continuously towards zero (i.e., toward the 
disordered high symmetry state), in which case the 
phase is said to have convergent ordering (Fig 
11.5). Alternatively, the ordering parameter may 
jump from finite values to zero across a boundary 
in pressure-temperature-composition space that is 
said to define the critical line of non-convergent 
ordering transformation (the boundary between 
low-symmetry dolomite and fully disordered 
calcite-magnesite solution in Fig 11.5). Speciation 
models are capable or reproducing both convergent 
and non-convergent phase transformations. The 
relationships between the model parameters 
necessary to produce a particular behavior is 
discussed in detail by Holland & Powell (1996ab).  

SPECIATION MODELS FOR PURE PHASES 

As the speciation problem is solved at constant bulk 
composition, it may be self-evident that the 
thermodynamic properties of pure phases, i.e., 
phases that can have only one bulk composition, 
can be described by speciation models. A pure 
oxygen fluid is a trivial example of this application. 
Ordinarily we assume such an oxygen fluid to be 
composed of the dimer O2, but spectroscopic 
measurements show that while O2 is usually the 
dominant species, ozone O3 and monatomic oxygen 
O can also be significant species if not dominant 
species in oxygen fluids. For such a system, 
minimization of the free energy of a speciation 
model analogous to our H-O fluid model would 
yield the equilibrium speciation and true free 
energy for oxygen. 
 
A more geological example of the application of 
speciation models to pure phases is the prediction 
of order-disorder transformations in pure minerals. 
A prominent example is albite, where at high 
temperature Al and Si are disordered on the T2 
site, ( ) ( )T2 T1

82Na AlSi Si O , while at low temperature 

the T2 site splits to T2a and T2b with Al and Si 
confined to a single site, i.e., 

( ) ( ) ( )T2a T2b T1
82Na Al Si Si O . The α/β quartz 

transformation is an additional example of a 
transformation that is appropriately by speciation.  

PROBLEMS 

11.1) Holland & Powell (1996b) suggest a specia-
tion model for omphacitic clinopyroxene 
[(Ca,Na)M2(Al,Mg)M1Si2O6] in which they propose 
that at low temperature the M2 and M1 sites split 
into four non-equivalent octahedral sites M2a, 
M2b, M1a, and M1a with the following species: 
 

  Site 
  M2a M2b M1a M1b 
 qi 1/2 1/2 1/2 1/2 
 
Species: 

di Ca Ca Mg Mg 
jd Na Na Al Al 
om Na Ca Al Mg 

 
Additionally they specify that the free energy 
change for the speciation reaction om  − ½ jd − ½ 
di = 0 is −3500 J/mol and independent of pressure 
and temperature and specify the following interac-
tion energies: Wdi-jd = 26000 J/mol, Wom-jd = 16000 
J/mol, Wom-di = 16000 J/mol. At 773 K, for a bulk 
composition identical to that of the om species, use 
the model to compute: a) the equilibrium specia-
tion; b) Holland & Powell’s order parameter Q = 
zM1a,Al – zM1b,Al; and c) the thermodynamic activity 
of diopside. 
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12: RECIPROCAL SOLUTIONS 
“What is a reciprocal solution?” 
 -R. Powell, 2006 
“The answer my friend is blowing in the wind” 
 -Puff, the Magic Dragon, ca 1966 
If a solution model is described in terms of t > c 
chemical entities (e.g., endmembers or species), it 
is always possible to describe t − c of these entities 
as a chemical mixture of c compositionally 
independent endmembers. In speciation models, 
although the compositions of t − c entities are 
compositionally independent, the remaining 
thermodynamic properties of the entities are 
independent. Thus, the stable speciation can only be 
determined by finding the mixture of these entities 
that minimizes the total energy of the solution 
subject to mass balance constraints. Logically there 
can be only one other limiting case of a solution 
model with t > c endmembers; to wit, reciprocal 
solutions in which the thermodynamic properties of 
t − c of the endmembers are dependent. However, if 
the t − c endmembers are both compositionally and 
thermodynamically dependent, then why not 
describe the solution in terms of c independent 
endmembers? The answer to this question is that a 
reciprocal formulation provides a simple means of 
relating real and model solution compositions. For 
this reason, reciprocal solution models are common 
in petrology. Unfortunately, the failure to recognize 
that the endmembers of reciprocal solutions cannot 
be independent is a widespread and fundamental 
thermodynamic error. 
 
NOTE: as currently written, this chapter may not 
account for the possibility that the Helffrich Green 
Stuffed moles normalization factor Ξ is not 
constant (Eq 11.11). 

WHAT IS A RECIPROCAL SOLUTION? 

A reciprocal solution is a phase that exhibits more 
than one independent chemical exchange. The 
classical example being ionic salts such has halite, 
in which the exchange of alkali metal cations is, at 
least to a good approximation, independent of the 
exchange of halogen anions. Taking solution of K, 
Cs and Br in halite as an example, we may write 
any general halite composition as the sum of a basis 
composition (e.g., NaCl) and three exchange 
operators 

Na1−x−yKxCsyCl1-wBrw =  
 NaCl + x KNa−1 + y CsNa−1 + w BrCl−1 

 12.1 
where the exchange operators, KNa−1, CsNa−1 and 
BrCl−1, are imaginary chemical entities that 
combine linearly with a real composition to obtain 
another real composition, i.e., to affect an ex-
change.  
 
Exchanges are mutually dependent if the stoichio-
metric coefficients of the corresponding exchange 
operators are dependent. For halite solution 12.1, 
charge balance requires 
0 1x y≤ + ≤  12.2 
0 1w≤ ≤  12.3 
thus, the exchanges of K and Cs for Na are 
mutually dependent, but independent of the BrCl−1 
exchange. Each group of dependent exchanges 
defines an orthogonal composition space, which 
may be thought of as defining the composition of a 
chemical mixing site. If the number of independent 
species mixing on the ith chemical mixing is site is 
ci, the dimension of the corresponding composition 
space must be a di-dimensional simplex, where di = 

Fig 12.1 Triangular prismatic composition 
space of the reciprocal (Na,K,Cs)(Cl,Br) 
solution, formed by joining the 2-dimensional 
composition space of the cation site (i.e., the 
triangular faces) with the 1-dimensional 
composition space of the anion site (the 
vertical axes). Although the solution has 6 
endmember compositions, only 4 of the 
endmembers are independent (i.e., the 
composition space is 3-dimensional and 
therefore can be defined by 4 components).

NaCl

NaBr

CsCl

CsBrKBr

KCl

x y
w
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ci −1. The (orthogonal) conjunction of these 
composition spaces defines the complete composi-
tion space of a reciprocal solution which is a 
polygon with  

M

i
i

t c= ∏  12.4 

vertices and dimension  

1
M

i
i

d d c= = −∑ , 12.5 

where M is the number of mixing sites, correspond-
ing to the endmember compositions of the 
reciprocal solution. In halite (Fig 12.1), taking the 
cation site as site 1, c1 = 3, c2 = 2, the number of 
endmembers is t = 6 from 12.4, and the dimension 
of the composition space (a triangular prism) is d = 
3 and therefore c = 4, from 12.5. The result that  

M

i
i

c c< ∑  12.6 

is a peculiar consequence of the fact that the 
composition spaces share a common origin (e.g., 
12.1).  
 
Adopting the notation that the composition of 
independent species j on chemical mixing site i of a 
solution is Zij; and that yklm… is the fraction of the 
endmember with species k on the mixing site 1, 
species l on mixing site 2, species m on site 3, and 
so forth, geometric argumentation gives 

... 1 2 3klm k l my Z Z Z=   12.7 

For halite this is illustrated in Fig 12.2, in which it 
is seen that if a general point is placed in the 
interior of the composition space it is possible to fill 
the composition space with t non-overlapping 
triangular prisms that share this vertex. The volume 
of the triangular prism opposite the NaCl vertex is 
Z1Na Z2Cl which, from 12.7, is yNaCl. Eq 12.7 permits 
two equivalent expressions for any extensive or 
molar property ψ of a solution, i.e.,  

31 2

1 2 3 ......
cc c

k l m klm
k l m

Z Z Zψ = ψ∑∑∑  12.8 

which, I think, is called a Bragg-Williams 
summation, or, dropping the multiple subscripts, 
the form employed previously for simple solutions  

t

i i
i

yψ = ψ∑  12.9 

as in, e.g., 6.4 
mech

1

t

i i
i

g y g
=

= ∑   

In combination Eqs 12.7 and 12.9 provided a 
perfectly admissible means of calculating the 
properties of a reciprocal solution in terms of t > c 
endmembers that are defined by the stoichiometric 
limits of a reciprocal solution. However, in 
contrast, to speciation problems where the fractions 

of the chemically dependent species 1,...,c ty y+ are 

determined by thermodynamics, 12.7 implies the 
fractions of all species are determined by stoichi-
ometry.  
 
In petrology, it is not uncommon that this is where 
the story of reciprocal solutions ends, i.e., the 
properties of the t reciprocal endmembers are 
determined, and configurational entropy and excess 
energy models are formulated in terms of the 
fractions of these endmembers. Sadly, this simple 
ending is also an unhappy ending, because although 
12.7 assigns endmember fractions that satisfy mass 
balance, the assignment is not unique, i.e., any 
general composition of the solution in an infinite 
number of ways from the t endmembers. This 
statement follows from the observation that we may 

Fig 12.2 Reciprocal salt composition space as 
in Fig 12.1, showing the barycentric coordi-
nates Z Z

Z

Z

1,Na 2,Cl 

1,Na

2,Cl

 and for the composition 
indicated by point P. The vertical projection of 
P onto the triangular face of the prism is  
which is identical to the area of the heavily 
shaded triangle; the horizontal projection of P 
onto the vertical axis defines ; thus the 
shaded volume is identical to barycentric 
fraction , as given by eq 12.7, for the salt at 
composition P.

yNaCl

NaCl

0

0

1

1
P
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vary the fractions of t − c endmembers arbitrarily 
provided the remaining fractions conserve mass, 
i.e., 

1 1 0 1...c c i
i iv v i c tφ + + φ + φ = = + . 12.10 

These variations are 
1 0 1...i ci iy y y i c tδ + + δ + δ = = +  12.11 

where δyi is an arbitrary variation of the fraction yi 
and δyji is the variation in the fraction of yj required 
in response to δyi by mass balance (12.10). 
Equating 12.10 and 12.11 gives 

j
ji i iy yδ = −ν δ . 12.12 

Since the variations 1,...,c ty y+δ δ are arbitrary, any 
composition 1,..., ty y from 12.7, can be converted to 

a composition involving only c independent 
endmembers by setting  

1...i iy y i c tδ = − = + . 12.13 

Designating the fractions of these endmembers in 
this new composition pi, 12.11-12.13, give 

1
1

t
j

i i i j
j c

p y y i c
= +

= − ν =∑  . 12.14 

Thus if we have a reciprocal solution model 
( )1 ,..., tg y y , 12.14 provides a mathematically 

equivalent model ( )1 ,..., cg p p . Furthermore, as the 

models are mathematically equivalent, it follows 
that the thermodynamic properties of the t depend-
ent endmembers of the reciprocal solution must 
correspond to those of the model ( )1 ,..., cg p p  at 

the endmember compositions. 
 
Until now, we have implicitly assumed that 
compositions are positive, but there is no funda-
mental requirement for this. A simple 
demonstration of this follows from the choice of 
H2O and O2 as components for an H-O system. H2 
= H2O – ½ O2, thus for H2, nH2O = 1 and nO2 = – ½, 
and XH2O = 2 XO2 = – 1. While, the fractions defined 
by 12.7 are positive, reciprocal solution composi-
tions defined by p1,…, pc are negative over half the 
composition space of the reciprocal solution. The 
reason for these negative compositions are that the 
composition of the jth dependent endmember, from 
12.14, is 

1j
i ip i c= −ν =  . 12.15 

As at least one stoichiometric coefficient in 12.10 
must be positive, at least one composition from 
12.15 must be negative. Other than this technicali-
ty, there is no difference between the formulation of 

reciprocal solution model as a function of inde-
pendent endmembers and the formulation of simple 
solution models as outlined in chapter 8. Thus, the 
answer to Powell’s introductory, and probably 
rhetorical question, question is that from a mathe-

matical perspective there is no such thing as a 
reciprocal solution.  
 
Before going on to consider the complexities that 
may arise in silicate solutions, it may be useful to 
make the algebra of 12.10-12.14 less abstract by 
revisiting the halite (c=4, t=6) example. Taking 
KBr and CsBr as dependent endmembers, 12.10 is 
NaCl − KCl − NaBr + KBr = 0 
NaCl − CsCl − NaBr + CsBr = 0. 
 
For a composition Na1−x−yKxCsyCl1-yBry with x = y = 
⅓ and w = ½, from 12.7, each endmember has a 
fraction of 1

6 , thus 12.14 gives 
pNaCl = yNaCl − yCsBr − yKBr  = − 1

6  
pKCl = yKCl + yKBr = 1

3   
pCsCl = yCsCl + yCsBr = 1

3  

pNaBr = yNaBr + yCsBr + yKBr = 1
2 . 

A SILICATE EXAMPLE: CHLORITE 

An important chemical exchange in silicates is the 
coupled Tschermaks exchange 

Fig 12.3. Possible representations of the 
composition space of a reciprocal solution 
(A,B) (C,D) . All possible compositions of the 
solution can be respresented as a positive 
linear combination of E, F, and G. 
Alternatively, compositions can be represented 
in terms of any three endmember compositions 
of the reciprocal solution if negative composi-
tions are allowed. For example, taking AC, BC 
and BD as independent endmembers, then the 
composition of the AD endmember is = 1, 

x y

ACy −
y yBC BD=1, =1; and the thermodynamic 
properties of the dependent endmember AD 
must be given by the solution model at this 

AC

BC BD

ADE

F

G
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VI IV VI IV
-1 -1Al Al SiM or simply Al2M−1Si−1, in which 

Al3+ replaces a divalent cation M on an octahedral 
site and a tetrahedral Si. For a solution with more 
than one kind of divalent cation mixing on octahe-
dral sites, the Tschermaks exchange is independent 
if the exchange does not alter the relative propor-
tions of the divalent cations. Thus for an Fe-Mg-Al-
silicate, the Tschermaks exchange is 
Al2(FexMg1−x)−1Si−1. As written, the Tschermaks 
exchange operator is only dependent on the number 
of divalent cations, i.e., 1+x−x, and as this number 
is constant, the Tschermaks exchange is independ-
ent. The combination of Tschermaks with FeMg-1 
exchange therefore results in a reciprocal solution, 
and as both exchanges are typical of Fe-Mg-Al-
silicates, reciprocal solutions are an omnipresent 
feature of the petrologic landscape. To illustrate the 
complete formulation of a reciprocal silicate 
solution consider a chlorite model 
(FexMg1−x)5−yAl2(1+y)Si3−yO10(OH)8 = 
Mg5Al2Si3O10(OH)8 + x FeMg-1+ y 
Al2(FexMg1−x)−1Si−1, 
0 1, 0 1x y≤ ≤ ≤ ≤   12.16 

where the basis endmember (x=0, y=0) 
Mg5Al2Si3O10(OH)8 is known as clinochlore, as x 
and y are independent it is evident that the Chlorite 
is a reciprocal solution with two binary chemical 
mixing cites, therefore the composition space is the 
conjunction of two orthogonal 1-d simplexes at the 

clinochlore composition. The compositions of the 
remaining endmembers (Fig 12.4) can be deduced 
from 12.16 with {x=1, y=0}, {x=0, y=1}, {x=1, 
y=1}. Thus the chlorite has a quadrilateral composi-
tion space (c=3, t=4) and one dependent 
endmember. 
 
Table 12.1 Endmember site populations for 
chlorite. The table shows only sites on which 
solution occurs, chlorite has two additional sites: 
one M4 occupied solely by Al, and two T1 sites 
occupied solely by Si. 
 

 Site: M T 
 qi 5 2 
 
Species: 

Clin Mg Al1/2Si1/2 

Daph Fe Al1/2Si1/2 
Ames Mg4/5Al1/5 Al 
fames Fe4/5Al1/5 Al 

 
Table 12.2 Endmember site populations for a 
chlorite model to depict the tendency of Al to order 
preferentially on one octahedral site (M1). This 
model is incorrect because the atomic site fraction 
of Al on the M1 site of ordered Fe-amesite 
(ofames) cannot be formed from a linear combina-
tion of the M1 site populations of ordered amesite 
(oames), daphnite, and clinochlore that satisifies 
conservation of mass (i.e., 12.18).  
 

 Site: M1 M2 T2 
 qi 1 4 2 
 
Species: 

Clin Mg Mg Al1/2Si1/2 

Daph Fe Fe Al1/2Si1/2 
Oames Al Mg Al 
ofames Al Fe Al 

 
This example reveals a common complexity of 
silicate reciprocal solutions, in that the chemical 
mixing sites bear little or no relation the crystallo-
graphic sites (Table 12.1), a consequence of the fact 
that the Tschermaks substitution operates across 
sites. Additionally, although the exact chemical 
identity of the Tschermaks exchange cannot be 
specified without knowledge of the FeMg-1 
exchange, we can specifiy the composition of the 
chemical mixing sites representing Tschermaks 
solely as a function of the stoichiometric coefficient 
y deduced from the chlorite formula. Thus, we may 

Fig 12.4 Reciprocal composition space of a 
chlorite model, although the solution can be 
described in terms of two independent 
exchanges, the chemical identity of the second 
(Tschermaks) exchange is dependent on the 
first. Moreoever, in contrast to the salt example 
of Figs 12.1-2, the chemical mixing sites do 
not correspond to crystallographic sites (Tab 
12.1).

clinochlore
Mg Al Si O (OH)5 2 3 10 8

Mg Al Si O (OH)
amesite

4 4 2 10 8 Fe Al Si O (OH)
Fe-amesite

4 4 2 10 8

daphnite
Fe Al Si O (OH)5 2 3 10 8

y

x

Z
2,A

l2 (M
g

Fe1
)

1 Si
1

x
x−

−
−

Z1,Fe
Z1,Mg

Z
2,(M

g
Fe1

)SiA
l

2
x

x−
−
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express the species fractions on the two independ-
ent mixing sites as: 

( )

( )

2 1 11

1 2

M,Fe

M,Mg

T,Al Fe Mg Si

T, Fe Mg SiAl

1

1
x x

x x

Z x
Z x
Z y

Z y
− −−

− −

=

= −

=

= −

 12.17 

Given 12.17 and 12.7, the barycentric endmember 
fractions are 

( ) ( )( )

( ) ( )

( ) ( )

( )

1 2

1 2

2 1 11

2 1 11

clin M,Mg T, Fe Mg SiAl

daph M,Fe T, Fe Mg SiAl

ames M,Mg T,Al Fe Mg Si

fames M,Fe T,Al Fe Mg Si

1 1

1

1

x x

x x

x x

x x

y Z Z x y

y Z Z x y

y Z Z x y

y Z Z xy

− −

− −

− −−

− −−

= = − −

= = −

= = −

= =

 

Selecting Fe-amesite as the dependent endmember, 
and making use of the mass balance relation 
4

5 clin 4
5− daph − ames + fames = 0. 12.18 

The chemical difference  
4

5 clin 4
5− daph = 4 MgFe-1  

thus 12.18 can be rewritten  
fames = ames − 4 MgFe-1  12.19 
where MgFe-1 is implicitly the Mg-Fe exchange 
operator for the octahedral site of chlorite. From 
12.14, the independent endmember fractions are 

4
5clin clin fames

4
5daph daph fames

ames ames fames

p y y
p y y
p y y

= −
= +

= +

 12.20 

For the sake of completeness, the components of a 
complete chlorite model, assuming a regular excess 
function are: 

mech
clin clin daph daph ames ames

ex
clin-daph clin daph clin-ames clin ames

daph-ames daph ames

conf conf

g p g p g p g

g W p p W p p
W p p

g T s

= + +

= +

+

= − ∆

  

12.21 

where confs∆ is necessary because the clinochlore 

and daphnite endmembers have Al-Si disorder on 
the T2 site. From the site populations in Table 12.1 
and 6.10 

conf
M,Mg M,Mg M,Fe M,Fe

M,Al M,Al

T,Al T,Al T,Si T,Si

R[5( ln ln
ln )

2( ln ln )]

s z z z z
z z

z z z z

= − +

+

+ +

 

where 

4
5M,Mg clin ames

M,Fe daph

1 1
5 5M,Al ames fames

1 1
2 2T,Al clin daph ames

1 1
2 2T,Si clin daph

z p p
z p
z p p
z p p p
z p p

= +

=

= +

= + +

= +

 12.22 

Evaluating 12.22 at the composition of pure 
daphnite and clinochlore yields conf conf

clin daph ln 4s s R= =  

and for amesite conf
ames ln(3125/ 256)s R= . Thus, from 

6.13,  
conf conf conf conf conf

clin clin daph daph ames amess s p s p s p s∆ = − − − . 

Evaluating this model at the composition of Fe-
amesite (i.e., 4 4

5 5clin daph ames, , 1),p p p= − = = the 

free energy of pure Fe-amesite is: 
4 4

5 5fames clin daph ames

16 4 4
20 5 5clin-daph clin-ames daph-ames

g g g g
W W W

= − + +

− − +

   

. 

SPECIATION IN RECIPROCAL SOLUTIONS  

A deficiency of the model just outlined is that in 
natural chlorites Al partitions preferentially, i.e., 
orders, into one of the five octahedral sites 
previously designated M (in addition to the M4 site, 
which was assumed to contain only Al). A first 
guess as to the model necessary to describe this 
behavior would logically be a reciprocal solution 
with endmember site populations as proposed in 
Table 12.2. Unfortunately, the model is incorrect 
because the site occupancy of the ordered Fe-
amesite endmember cannot be formed by a linear 
combination of the site populations of the remain-
ing endmembers that satisfies conservation of mass: 
ofames = oames 4

5− clin 4
5+ daph 12.23 

This difficulty follows from the fact, that if the M1 
and M2 sites are energetically distinct for Al, then 
they also must be energetically distinct for Fe and 
Mg. Microscopically, this means that chlorite is 
characterized by two thermodynamically independ-
ent MgFe−1 operators, one for M1 ([MgFe−1]M1) and 
another for M2 ([MgFe−1]M1), so the chemical 
difference 4

5 clin 4
5− daph becomes 

4
5 clin 4

5− daph = 4
5 [MgFe−1]M1 + 16

5 [MgFe−1]M2 

 12.24 
which cannot possibly yield the ofames site 
population in combination with the oames site 
populations because oames does not have Mg on 
the M1 site. The only means of resolving this 
dilemma is to introduce an additional endmember 
that allows us to discriminate between the energet-
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ics of the two substitutions. The anti-ordered 
amesite (aames) and Fe-amesite (afames) endmem-
bers of our previous model serve this purpose 
(Table 12.3). In this case,  
aames – afames = [MgFe−1]M1 + 3 [MgFe−1]M2 
 12.25 
which can be combined with 12.24 to isolate 
[MgFe−1]M2 is possible to isolate the two octahedral 
exchanges as: 
(clin – daph) – (aames – afames) = [MgFe−1]M2 

4
3 (aames – afames) – 3(clin – daph) = [MgFe−1]M1 

 12.26 
Since aames and afames are chemically equivalent 
to oames and ofames, it is evident that the model 
must be a reciprocal solution with speciation. 

However the complete formulation of such a model 
is a little too much for these notes.  
 
Table 12.3 Endmember site populations for a valid 
reciprocal chlorite model that accounts for Al-
partitioning of Al preferentially on M1. The model 
is a reciprocal solution with speciation.  
 

Site: M1 M2 T2 
qi 1 4 2 
clin Mg Mg Al0.5Si0.5 

daph Fe Fe Al0.5Si0.5 
oames Al Mg Al 
ofames Al Fe Al 
aames Mg Mg3/4Al1/4 Al 
afames Fe Fe3/4Al1/4 Al 
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13:AN INDEX OF SORTS 
activity, 40 

coefficient, 43 
adiabatic bulk modulus, 21 
amount, 9 

relative, 12 
Birch-Murnaghan EoS, 24 
Boltzman, Ludwig E, 37 
Boyle, 49 
Bragg-Williams summation, 61 
bulk modulus 

isothermal, 23 
Caratheodory, 7 
Charles, 49 
chemical mixing site, 60 
Clapeyron, 49 
Clausius, 5 
Clausius-Clapeyron relation, 34 
components, 28 
compound, 30 
compound formation models, 57 
compressibility 

isothermal, 23 
conjugate, 7 
conservative properties, 9 
continuity, 9 
convergent ordering, 59 
Corresponding State theory, 50 
Coulombic force, 50 
covolume, 49 
critical conditions, 39 
critical line, 59 
critical point, 48 
Dantzig, George, 32 
Darken's quadratic formalism, 43 
Debye, 25 
Debye temperature, 25 
diathermal, 16 
dilational work, 1 
dispersive forces, 50 
displacive transformation, 25 
DQF, 43 
Dulong-Petit limiting law, 25 
electrolytes, 49 
electrostatic force, 50 
endmembers, 36 
enthalpy, 19 
entropy, 5 
EoS, 23, 49 

equilibrium, 7 
equilibrium constant, 41 
Euler’s chain rule, 20 
Euler’s criterion, 5 
exchange operators, 60 
extensive, 9 
first law, 1 
Fowler, 7 
free energy, 17 
free energy function, 18 
fugacity, 50 
fugacity coefficient, 51 
Gibbs differential, 6 
Gibbs energy 

apparent, 26 
Gibbs energy 

formation from the elements, 26 
Gibbs energy 

mechanical mixture, 36 
Gibbs energy 

configurational, 36 
Gibbs energy 

excess, 36 
Gibbs function, 16 
Gibbs-Duhem relation, 7 
Goldschmidt, 17 
Gruneisen thermal parameter, 21 
heat capacity 

isochoric, 25 
heat capacity 

isobaric, 24 
Helmholtz energy, 19 
Henry's law 

constant, 43 
heterogeneous system, 11 
homogeneous function, 9 
ideal gas law, 49 
inductive forces, 50 
inexact differential, 1 
infinite dilution, 43 
integration by parts, 51 
intensive, 9 
internal, 11 
internal energy, 1 
internal equilibrium, 7 
inviscid, 16 
ionic fluid, 48 
isobaric expansivity, 23 
Legendre transformation, 18 
lever rule, 12 
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linear programming, 32 
Lomonosov, 9 
London forces, 50 
LP, 32 
Maple 

derivatives, 22 
plotting points, 13 
solving matrix problems, 13 

Margules parameters, 38 
Maxwell relations, 20 
Mie-Gruneisen, 24 
minimum free energy surface 

compounds, 30 
mobile components, 20 
molar variables, 10 
mole, 10 
mole fractions, 10 
molecular fluid, 48 
Murnaghan equation, 24 
natural variables, 19 
Nernst, 7 
non-convergent ordering, 59 
nuclear repulsion, 50 
objective function, 32 
optimization, 32 
order parameters, 58 
order-disorder solution models, 57 
partial differential notation, 19 
path dependent, 1 
phase, 11 
phase rule 

Khorzhinskii, 20 
phase rule, 12 

Goldschmidt's, 17 
mineralogical, 17 

potential functions, 6 
potentials, 2, 6 
projection, 31 
Raoult's Law, 43 
reaction coefficient, 34 
reaction equation, 34 
reciprocal solutions, 60 
Redlich-Kwong EoS, 50 
relative amount, 12 
reversible, 5 
simplex, 11 

algorithm, 32 
size, 9 
solution 

model, 36 

solution model 
regular, 38 
subregular, 38 

solution phase, 36 
solvus, 39 
sound velocity, 21 
specific variables, 9 
spinodes, 39 
spontaneous process, 14 
stable equilibrium, 14 
standard state 

solute, 43 
solvent, 43 

state, 9 
state function, 1 
Stefan 

Jozef, 1890, 18 
Stirling's approximation, 37 
supercritical, 49 
third law, 7 
third law entropy, 25 
total differential, 4, See complete differential 
Tschermaks exchange, 63 
Van der Waals EoS, 49 
variance, 12 
volume, 1 
work function, 18 
zappy do law, 5 
zero’th law, 7 
 



   

   68 

 

EXAMPLE: C-O-H FLUID SPECIATION 

For geological conditions, graphite-saturated fluids 
can to a good first approximation be considered 
mixtures of three molecular species water, carbon 
dioxide (CO2) and methane (CH4). Since the system 
is saturated in a pure carbon phase (graphite), the 
Legendre transform 

o,graphite
CG n GΩ = −  

allows us to eliminate carbon as a component with 
the result that the fluid has c=2 components (H,O) 
and t=3 species with the carbon-free compositions 
H2O, O2 (carbon dioxide) and H4 (methane). 
Choosing XO as the independent macroscopic 
variable, EQ REF yields 

( )
( )

2 2 2

2 2

4 2 2 2

4 2 2

H O H O CO
H O H O CO O

O CH H O H O CO
CH H H O H O CO O

y n n y n
X

y n y n n y n

 + + =
 + + + 

 

 12.27 
and from EQ REF 

2 2 4CO H O CH1 .y y y= − −  12.28 

Substituting 12.28 into 12.27, and rearranging the 
result gives methane concentration 

( )2 2 2 2

2

2 2 2

2

4 2 2 4

CO H O H O CO
O O H H O O O

H O CO CO
O O H O O

CH CO CO CH
O O H O

n n n y n X

n n y n
y

n n n X

  − − −  
  + − +  =

 − − 
 12.29 
as a function of the macroscopic composition XO 
and yH2O, the concentration of ordered species, a 
result can also be substituted into 12.28 to obtain 
CO2 concentration as a function of XO and yH2O.  

 
Since t−c = 1, there is only one independent 
reaction between the species of the form EQ REF! 

2 4 2CO CH 2H O+ =  12.30 

(after projection through carbon); thus  

2

mech
H OyΩ = ∆Ω  12.31 

where ∆Ω  is the free energy change of 12.30. 
Given that the model is for a molecular fluid, a 
simple molecular configurational entropy model 
(6.9) is appropriate in which case 

( ) ( ) ( )2 2 2 2 4 4

conf

H O H O CO CO CH CHln ln ln

S

R y y y y y y = − + + 
 12.32 
and, for the sake of simplicity, neglecting non-
ideality 

sol mech confTSΩ = Ω −  
which after substituting the expressions for 

2COy and 
4CHy as functions of XO and yH2O from 

12.29 and 12.28 can be differentiated with respect 
to yH2O and equated to zero to solve for yH2O as a 
function of XO , pressure and temperature. This 
expression is too ugly to produce here, but it is 
easily generated and solved in maple (Problem 9.1).  

PROBLEM 

11.1 Using the graphite-saturated COH fluid 
speciation model as formulated in the preceding 
example to calculate the speciation at 1000 K and 1 
kbar for XO = 0.1, 1/3 and 0.8. At these condi-
tions ∆Ω  for reaction 12.30 is -80000 J/mol H2.
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