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5.6 Phase diagram and melting of iron 146

6 Transport properties 156
6.1 Generalities 156
6.2 Mechanisms of diffusion in solids 162
6.3 Viscosity of solids 174
6.4 Diffusion and viscosity in liquid metals 184
6.5 Electrical conduction 189

6.5.1 Generalities on the electronic structure of solids 189
6.5.2 Mechanisms of electrical conduction 194
6.5.3 Electrical conductivity of mantle minerals 203
6.5.4 Electrical conductivity of the fluid core 212

6.6 Thermal conduction 213

7 Earth models 221
7.1 Generalities 221
7.2 Seismological models 223

7.2.1 Density distribution in the Earth 223
7.2.2 The PREM model 227

7.3 Thermal models 230
7.3.1 Sources of heat 230
7.3.2 Heat transfer by convection 231
7.3.3 Convection patterns in the mantle 236
7.3.4 Geotherms 241

7.4 Mineralogical models 244
7.4.1 Phase transitions of the mantle minerals 244
7.4.2 Mantle and core models 259

viiContents



Appendix PREM model (1s) for the mantle and core 272

Bibliography 275

Index 309

viii Contents



Preface to the first edition

Not so long ago, Geophysics was a part of Meteorology and there was no
such thing as Physics of the Earth’s interior. Then came Seismology and,
with it, the realization that the elastic waves excited by earthquakes,
refracted and reflected within the Earth, could be used to probe its depths
and gather information on the elastic structure and eventually the physics
and chemistry of inaccessible regions down to the center of the Earth.
The basic ingredients are the travel times of various phases, on seismo-

grams recorded at stations all over the globe. Inversion of a considerable
amount of data yields a seismological earth model, that is, essentially a set
of values of the longitudinal and transverse elastic-wave velocities for all
depths. It is well known that the velocities depend on the elasticmoduli and
the density of the medium in which the waves propagate; the elastic moduli
and the density, in turn, depend on the crystal structure and chemical
compositionof the constitutiveminerals, and on pressure and temperature.
To extract from velocity profiles self-consistent information on the Earth’s
interior such as pressure, temperature, and composition as a function of
depth, one needs to know, or at least estimate, the values of the physical
parameters of the high-pressure and high-temperature phases of the candi-
dateminerals, and relate them, in the framework of thermodynamics, to the
Earth’s parameters.
Physics of the Earth’s interior has expanded from there to become a

recognized discipline within solid earth geophysics, and an important part
of the current geophysical literature can be found under such key words as
‘‘equation of state’’, ‘‘Grüneisen parameter’’, ‘‘adiabaticity’’, ‘‘melting
curve’’, ‘‘electrical conductivity’’, and so on.
The problem, however, is that, although most geophysics textbooks

devote a few paragraphs, or even a few chapters, to the basic concepts of the
physics of solids and its applications, there still is no self-contained book
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that offers the background information needed by the graduate student or
the non-specialist geophysicist to understand an increasing portion of the
literature as well as to assess the weight of physical arguments from various
parties in current controversies about the structure, composition, or tem-
perature of the deep Earth.
The present book has the, admittedly unreasonable, ambition to fulfill

this role. Starting as a primer, and giving at length all the important
demonstrations, it should lead the reader, step by step, to the most recent
developments in the literature. The book is primarily intended for graduate
or senior undergraduate students in physical earth sciences but it is hoped
that it can also be useful to geophysicists interested in getting acquainted
with the mineral physics foundations of the phenomena they study.
In the first part, the necessary background in thermodynamics of solids

is succinctly given in the framework of linear relations between intensive
and extensive quantities. Elementary solid-state theory of vibrations in
solids serves as a basis to introduce Debye’s theory of specific heat and
anharmonicity. Many definitions of Grüneisen’s parameter are given and
compared.
The background is used to explain the origin of the various equations of

state (Murnaghan, Birch—Murnaghan, etc.). Velocity—density systematics
and Birch’s law lead to seismic equations of state. Shock-wave equations of
state are also briefly considered. Tables of recent values of thermodynamic
and elastic parameters of the most important mantle minerals are given.
The effect of pressure on melting is introduced in the framework of anhar-
monicity, and various melting laws (Lindemann, Kraut—Kennedy, etc.) are
given and discussed. Transport properties of materials — diffusion and
viscosity of solids and of liquid metals, electrical and thermal conductivity
of solids — are important in understanding the workings of the Earth; a
chapter is devoted to them.
The last chapter deals with the application of the previous ones to the

determination of seismological, thermal, and compositional Earth models.
An abundant bibliography, including the original papers and the most

recent contributions, experimental or theoretical, should help the reader to
go further than the limited scope of the book.

It is a pleasure to thank all those who helped make this book come into
being: First of all, Bob Liebermann, who persuaded me to write it and
suggested improvements in the manuscript; Joël Dyon, who did a splendid
job on the artwork; Claude Allègre, Vincent Courtillot, François Guyot,
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Jean-Louis Le Mouël, and Jean-Paul Montagner, who read all or parts of
the manuscript and provided invaluable comments and suggestions; and
last but not least, Carol, for everything.

1991 Jean-Paul Poirier
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Preface to the second edition

Almost ten years ago, I wrote in the introduction to the first edition of this
book: ‘It will also probably become clear that the simplicity of the inner
Earth is only apparent; with the progress of laboratory experimental
techniques as well as observational seismology, geochemistry and geomag-
netism, we may perhaps expect that someday ‘‘Physics of the Inner Earth’’
will make as little sense as ‘‘Physics of the Crust’’ ’. We are not there yet, but
we have made significant steps in this direction in the last ten years. No
geophysicist now would entertain the idea that the Earth is composed of
homogeneous onion shells. The analysis of data provided by more and
better seismographic nets has, not surprisingly, revealed the heterogeneous
structure of the depths of the Earth and made clear that the apparent
simplicity of the lower mantle was essentially due to its remoteness. We
also know more about the core.
Mineral physics has become an essential part of geophysics and the

progress of experimental high-pressure and high-temperature techniques
has provided new results, solved old problems and created new ones.
Samples of high-pressure phases prepared in laser-heated diamond-anvil
cells or large-volume presses are now currently studied by X-ray diffrac-
tion, using synchrotron beams, and by transmission electron microscopy.
In ten years, we have thus considerably increased our knowledge of the
deep minerals, including iron at core pressures.We knowmore about their
thermoelastic properties, their phase transitions and their melting curves.
Concurrently, quantum mechanical ab-initio computer methods have
made such progress as to be able to reproduce the values of physical
quantities in the temperature- and pressure-ranges that can be experimen-
tally reached, and therefore predict with confidence their values at deep-
Earth conditions.
In this new edition, I have therefore expanded the chapters on equations
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of state, on melting, and the last chapter on Earth models. Close to
two-hundred-and-fifty new references have been added.
I thank Dr Brian Watts of CUP, my copy editor, for a most thorough

review of the manuscript.

1999 Jean-Paul Poirier
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Introduction to the first edition

The interior of the Earth is a problem at once fascinating and
baffling, as one may easily judge from the vast literature and the
few established facts concerning it.

F. Birch, J. Geophys. Res., 57, 227 (1952)

This book is about the inaccessible interior of the Earth. Indeed, it is
because it is inaccessible, hence known only indirectly and with a low
resolving power, that we can talk of the physics of the interior of the Earth.
The Earth’s crust has been investigated for many years by geologists and
geophysicists of various persuasions; as a result, it is known with such a
wealth of detail that it is almost meaningless to speak of the crust as if it
were a homogeneous medium endowed with averaged physical properties,
in a state defined by simple temperature and pressure distributions. We
have the physics of earthquake sources, of sedimentation, of metamor-
phism, of magnetic minerals, and so forth, but no physics of the crust.

Below the crust, however, begins the realm of inner earth, less well
known and apparently simpler: a world of successive homogeneous spheri-
cal shells, with a radially symmetrical distribution of density and under a
predominantly hydrostatic pressure. To these vast regions, we can apply
macroscopic phenomenologies such as thermodynamics or continuum
mechanics, deal with energy transfers using the tools of physics, and obtain
Earth models — seismological, thermal, or compositional. These models,
such as they were until, say, about 1950, accounted for the gross features of
the interior of the Earth: a silicate mantle whose density increased with
depth as it was compressed, with a couple of seismological discontinuities
inside, a liquid iron core where convection currents generated the Earth’s
magnetic field, and a small solid inner core.

The physics of the interior of the Earth arguably came of age in the 1950s,
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when, following Bridgman’s tracks, Birch at Harvard University and Ring-
wood at the Australian National University started investigating the high-
pressure properties and transformations of the silicate minerals. Large-
volume multi-anvil presses were developed in Japan (see Akimoto 1987)
and diamond-anvil cells were developed in the United States (see Bassett
1977), allowing the synthesis of minerals at the static pressures of the lower
mantle, while shock-wave techniques (see Ahrens 1980) produced high
dynamic pressures. It turn out, fortunately, that the wealth of mineral
architecture that we see in the crust and uppermost mantle reduces to a few
close-packed structures at very high pressures.

It is now possible to use the arsenal of modern methods (e.g. spectros-
copies from the infrared to the hard X-rays generated in synchrotrons) to
investigate the physical properties of the materials of the Earth at very high
pressures, thus giving a firm basis to the averaged physical properties of the
inner regions of the Earth deduced from seismological or geomagnetic
observations and allowing the setting of constraints on the energetics of the
Earth.

It is the purpose of this book to introduce the groundwork of condensed
matter physics, which has allowed, and still allows, the improvement of
Earth models. Starting with the indispensable, if somewhat arid, phenom-
enological background of thermodynamics of solids and continuum mech-
anics, we will relate the macroscopic observables to crystalline physics; we
will then deal with melting, phase transitions, and transport properties
before trying to synthetically present the Earth models of today.

The role of laboratory experimentation cannot be overestimated. It is,
however, beyond the scope of this book to present the experimental
techniques, but references to review articles will be given.

In a book such as this one, which topic to include or reject is largely a
matter of personal, hence debatable, choice. I give only a brief account of
the phase transitions of minerals in a paragraph that some readers may
well find somewhat skimpy; I chose to do so because this active field is in
rapid expansion and I prefer outlining the important results and giving
recent references to running the risk of confusing the reader. Also, little is
known yet about the mineral reactions in the transition zone and the lower
mantle, so I deal only with the polymorphic, isochemical transitions of the
main mantle minerals, thus keeping well clear of the huge field of experi-
mental petrology.

It is hoped that this book may help with the understanding of how
condensed matter physics may be of use in improving Earth models. It will
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also probably become clear that the simplicity of the inner Earth is only
apparent; with the progress of laboratory experimental techniques as well
as observational seismology, geochemistry, and geomagnetism, we may
perhaps expect that someday ‘‘physics of the interior of the Earth’’ will
make as little sense as ‘‘physics of the crust.’’
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1

Background of thermodynamics of solids

1.1 Extensive and intensive conjugate quantities

The physical quantities used to define the state of a system can be scalar
(e.g. volume, hydrostatic pressure, number of moles of constituent), vec-
torial (e.g. electric or magnetic field) or tensorial (e.g. stress or strain). In all
cases, one may distinguish extensive and intensive quantities. The distinc-
tion is most obvious for scalar quantities: extensive quantities are size-
dependent (e.g. volume, entropy) and intensive quantities are not (e.g.
pressure, temperature).
Conjugate quantities are such that their product (scalar or contracted

product for vectorial and tensorial quantities) has the dimension of energy
(or energy per unit volume, depending on the definition of the extensive
quantities), (Table 1.1). By analogy with the expression of mechanical work
as the product of a force by a displacement, the intensive quantities are also
called generalized forces and the extensive quantities, generalized displace-
ments.
If the state of a single-phase system is defined byN extensive quantities e

�
and N intensive quantities i

�
, the differential increase in energy per unit

volume of the system for a variation of e
�
is:

dU��
�

i
�
de

�
(1.1)

The intensive quantities can therefore be defined as partial derivatives of
the energy with respect to their conjugate quantities:

i
�
�

�U
�e

�

(1.2)

For the extensive quantities, we have to introduce the Gibbs potential
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Table 1.1. Some examples of conjugate quantities

Intensive quantities i
�

Extensive quantities e
�

Temperature T Entropy S
Pressure P Volume V
Chemical potential � Number of moles n
Electric field E Displacement D
Magnetic field H Induction B
Stress � Strain �

(see below):

G�U��
�

i
�
e
�

(1.3)

dG��
�

i
�
de

�
� d�

�

i
�
e
�
���

�

e
�
di

�
(1.4)

and we have:

e
�
��

�G
�i

�

(1.5)

Conjugate quantities are linked by constitutive relations that express the
response of the system in terms of one quantity, when its conjugate is made
to vary. The relations are usually taken to be linear and the proportionality
coefficient is a material constant (e.g. elastic moduli in Hooke’s law).
In general, starting from a given state of the system, if all the intensive

quantities are arbitrarily varied, the extensive quantities will vary (and
vice-versa). As a first approximation, the variations are taken to be linear
and systems of linear equations are written (Zwikker, 1954):

di
�
�K

��
de

�
�K

��
de

�
� · · ·�K

��
de

�
(1.6)

or

de
�
� �

��
di

�
��

��
di

�
� · · ·��

��
di

�
(1.7)

The constants:

�
��

��
�e

�
�i

�
�
��� � � �� ��� �����	 ��

(1.8)

are called compliances, (e.g. compressibility), and the constants:
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K
��

��
�i

�
�e

�
�
��� � � �� ��� �����	 ��

(1.9)

are called stiffnesses (e.g. bulk modulus).
Note that, in general,

K
��

�
1

�
��

The linear approximation, however, holds only locally for small values
of the variations about the reference state, and we will see that, in many
instances, it cannot be used. This is in particular true for the relation
between pressure and volume, deep inside the Earth: very high pressures
create finite strains and the linear relation (Hooke’s law) is not valid over
such a wide range of pressure. One, then, has to use more sophisticated
equations of state (see below).

1.2 Thermodynamic potentials

The energy of a thermodynamic system is a state function, i.e. its variation
depends only on the initial and final states and not on the path from the
one to the other. The energy can be expressed as various potentials accord-
ing to which extensive or intensive quantities are chosen as independent
variables. The most currently used are: the internal energy E, for the
variables volume and entropy, the enthalpy H, for pressure and entropy,
theHelmholtz free energy F, for volume and temperature and theGibbs free
energy G, for pressure and temperature:

E (1.10)

H�E�PV (1.11)

F�E� TS (1.12)

G�H� TS (1.13)

The differentials of these potentials are total exact differentials:

dE� TdS�PdV (1.14)

dH� TdS� VdP (1.15)

dF�� SdT �PdV (1.16)

dG�� SdT � VdP (1.17)
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The extensive and intensive quantities can therefore be expressed as
partial differentials according to (1.2) and (1.5):

T ��
�E
�S�




��
�H
�S�

�

(1.18)

S���
�F
�T�




� ��
�G
�T�

�

(1.19)

P���
�E
�V�

�

���
�F
�V�




(1.20)

V ��
�H
�P�

�

��
�G
�P�




(1.21)

In accordance with the usual convention, a subscript is used to identify
the independent variable that stays fixed.
From the first principle of thermodynamics, the differential of internal

energy dE of a closed system is the sum of a heat term dQ� TdS and a
mechanical work term dW ��PdV. The internal energy is therefore the
most physically understandable thermodynamic potential; unfortunately,
its differential is expressed in terms of the independent variables entropy
and volume that are not the most convenient in many cases. The existence
of the other potentials H, F and G has no justification other than being
more convenient in specific cases. Their expression is not gratuitous, nor
does it have some deep and hidden meaning. It is just the result of a
mathematical transformation (Legendre’s transformation), whereby a
function of one or more variables can be expressed in terms of its partial
derivatives, which become independent variables (see Callen, 1985).

The idea can be easily understood, using as an example a function y of a variable x:
y� f (x). The function is represented by a curve in the (x, y) plane (Fig. 1.1), and the
slope of the tangent to the curve at point (x, y) is: p� dy/dx. The tangent cuts the
y-axis at the point of coordinates (0,�) and its equation is: �� y� px. This
equation represents the curve defined as the envelope of its tangents, i.e. as a
function of the derivative p of y(x).
In our case, we deal with a surface that can be represented as the envelope of its

tangent planes. Supposing we want to expressE (S,V ) in terms of T andP, we write
the equation of the tangent plane:

��E��
�E
�V�

�

V ��
�E
�S�




S�E�PV � TS�G

In geophysics, we are mostly interested in the variables T and P; we will therefore
mostly use the Gibbs free energy.
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Figure 1.1 Legendre’s transformation: the curve y� f (x) is defined as the envelope
of its tangents of equation �� y� px.

1.3 Maxwell’s relations. Stiffnesses and compliances

The potentials are functions of state and their differentials are total exact
differentials. The second derivatives of the potentials with respect to the
independent variables do not depend on the order in which the successive
derivatives are taken. Starting from equations (1.18)—(1.21), we therefore
obtain Maxwell’s relations:

��
�S
�P�




��
�V
�T�

�

(1.22)

�
�S
�V�




��
�P
�T�




(1.23)

�
�T
�P�

�

� �
�V
�S�

�

(1.24)

�
�T
�V�

�

���
�P
�S�




(1.25)

Other relationships between the second partial derivatives can be ob-
tained, using the chain rule for the partial derivatives of a function
f (x, y, z)� 0:

�
�x
�y�

�

·�
�y
�z�

�

·�
�z
�x�

�

�� 1 (1.26)

For instance, assuming a relation f (P,V,T )� 0, we have:
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Table 1.2. Derivatives of extensive (S,V ) and intensive (T,P) quantities

�
�S

�T�



�
C



T �

�S

�V�



� �K

 �

�S

�P�



�
C

�
�K

�
T

�
�S

�T�
�

�
C

�
T �

�S

�V�
�

�
C

�
�VT �

�S

�P�



�� �V

�
�T

�S�



�
T

C



�
�T

�V�
�

��
�K

�
T

C
�

�
�T

�P�



�
1

�P

�
�T

�S�
�

�
T

C
�

�
�T

�V�
�

�
1

�V �
�T

�P�
�

�
�VT

C
�

�
�P

�T�



� �K

 �

�P

�V�
�

� �
K

�
V �

�P

�S�



��
1

�V

�
�P

�T�
�

�
C

�
�VT �

�P

�V�



� �
K



V �

�P

�S�



�
�K

�
T

C
�

�
�V

�T�
�

��
C

�
�K

�
T �

�V

�P�
�

� �
V

K
�

�
�V

�S�



�
1

�K



�
�V

�T�
�

� �V �
�V

�P�



� �
V

K



�
�V

�S�
�

�
�VT

C
�

�
�V
�T�

�

���
�V
�P�




·�
�P
�T�




(1.27)

With Maxwell’s relations, the chain rule yields relations between all
derivatives of the intensive and extensive variables with respect to one
another (Table 1.2). Second derivatives are given in Stacey (1995).
We must be aware that Maxwell’s relations involved only conjugate

quantities, but that by using the chain rule, we introduce derivatives of
intensive or extensive quantities with respect to non-conjugate quantities.
These will have a meaning only if we consider cross-couplings between
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fields (e.g. thermoelastic coupling, see Section 2.3) and the material con-
stants correspond to second-order effects (e.g. thermal expansion).
In Zwikker’s notation, the second derivatives of the potentials are stiff-

nesses and compliances (Section 1.1):

K
��

�
�i

�
�e

�

�
��U

�e
�
�e

�

(1.28)

�
��

�
�e

�
�i

�

�
��G

�i
�
�i

�

(1.29)

It follows, since the order of differentiations can be reversed, that:

K
��

�K
��

(1.30)

�
��

��
��

(1.31)

Inspection of Table 1.2 shows that, depending on which variables are
kept constant when the derivative is taken, we define isothermal,K



, and

adiabatic, K
�
, bulk moduli and isobaric, C

�
, and isochoric, C



, specific

heats. We must note here that the adiabatic bulk modulus is a stiffness,
whereas the isothermal bulk modulus is the reciprocal of a compliance,
hence they are not equal (Section 1.1); similarly, the isobaric specific heat is
a compliance, whereas the isochoric specific heat is the reciprocal of a
stiffness.
Table 1.2 contains extremely useful relations, involving the thermal and

mechanical material constants, which we will use throughout this book.
Note that, here and throughout the book, V is the specific volume. We will
also use the specific mass 	, with V	� 1. Often loosely called density, the
specific mass is numerically equal to density only in unit systems in which
the specific mass of water is equal to unity.
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2

Elastic moduli

2.1 Background of linear elasticity

We will rapidly review here the most important results and formulas of
linear (Hookean) elasticity. For a complete treatment of elasticity, the
reader is referred to the classic books on the subject (Love, 1944; Brillouin,
1960; Nye, 1957). See also Means (1976) for a clear treatment of stress and
strain at the beginner’s level.
Let us start with the definition of infinitesimal strain (a general definition

of finite strain will be given in Chapter 4). We define the tensor of infinitesi-
mal strain �

��
, (i, j� 1, 2, 3), as the symmetrical part of the displacement

gradient tensor �u
�
/�x

�
, where the u

�
s are the components of the displace-

ment vector of a point of coordinates x
�
, (Fig. 2.1):

�
��
�

1

2�
�u

�
�x

�

�
�u

�
�x

�
� (2.1)

The trace of the strain tensor is the dilatation (positive or negative):

Tr�
��
��

�

�
��

�
�u

�
�x

�

�
�u

�
�x

�

�
�u

�
�x

�

�div u�
�V
V

(2.2)

The components �
��
of the stress tensor are defined in the following way:

Let us consider a volume element around a point in a solid submitted to
surface and/or body forces. If we cut the volume element by a plane normal
to the coordinate axis i and remove the part of the solid on the side of the
positive axis, its action on the volume element can be replaced by a force,
whose components along the axis j is �

��
(Fig. 2.2). In the absence of body

torque, the stress tensor is symmetrical.
The trace of the stress tensor is equal to three times the hydrostatic

pressure:

11



Figure 2.1 Components of the displacement gradient tensor in the case of
infinitesimal plane strain. The components of the strain tensor are:

�
��

� �u
�
/�x

�
, �

��
� �u

�
/�x

�
, �

��
� �

�
(�u

�
/�x

�
� �u

�
/�x

�
)� �

��

Figure 2.2 Components of the stress tensor �
��
. The bold vectors represent the force

per unit area exerted on the volume element by the (removed) part of the solid on the
positive side of the normal to the corresponding plane.
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Tr�
��
��

��
��

��
��

��
� 3P (2.3)

Hence the hydrostatic pressure is:

P�
1

3
�
�

�
��

(2.4)

2.2 Elastic constants and moduli

For an isotropic, homogeneous solid and infinitesimal strains, there is a
linear constitutive relation between the second order tensors of stress and
strain, that expresses the response of an elastic solid to the application of
stress or strain, starting from an initial, ‘‘natural’’, stress- and strain-free
state

�
��
��

��

c
����

�
��

(2.5)

This is Hooke’s law. The fourth-order symmetrical tensor c
����

is the
elastic constants tensor. Due to the fact that the stress and strain tensors are
symmetrical, themost general elastic constants tensor has only 21 non-zero
independent components. For crystals, the number of independent elastic
constants decreases as the symmetry of the crystalline system increases and
it reduces to three for the cubic system *:

c
����

� c
��
, c

����
� c

��
, c

����
� c

��

* The elastic constants are usually expressed in contracted notation, pairs of indices
being replaced by one index according to the correspondence rule:

11� 1, 22� 2, 33� 3, 23� 32� 4, 13� 31� 5, 12� 21� 6.

In what follows, we will mostly give examples relative to cubic crystals, for the
sake of simplicity and also because many of the most important minerals of the
deep Earth are cubic (spinel, garnet, magnesiowüstite, ideal silicate perovskites).

For an isotropic system (e.g. an aggregate of crystals in various random
orientations), the number of independent elastic constants reduces to two.
Hooke’s law is then conveniently expressed as:

�
��
� ��

��
�
�

�
��

� 2��
��

(2.6)

where �
��
is equal to 1 if i� j and to zero if i� j,	

�
�
��

� �V/V is the trace of
the strain tensor, � and � are the two independent Lamé constants, defined
by:
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�� c
��

(the shear modulus)

and:

� � 2�� c
��

hence:

�� c
��

� c
��

� 2c
��

Note that c
��
, c

��
and c

��
here are the three non-independent elastic

constants of the isotropic aggregate, not the three independent constants of
cubic crystals.
The elastic properties of an isotropic material can be described by elastic

moduli, which consist of any two convenient functions of � and �.
The elastic moduli most currently used in solid earth geophysics are (see

Weidner, 1987, for a review of the experimental methods of determination
of the elastic moduli):

• The shear modulus �.
• The bulk modulus or incompressibility K, defined (Table 1.2) by:

K�� V
dP

dV
��

dP

d lnV
(2.7)

In linear elasticity, when a pressure P is applied to a solid in the
natural state, the corresponding relative volume change is given by:

�V
V

��
P

K
(2.8)

Hence, from (2.6):

K�
3�� 2�

3
(2.9)

• Poisson’s ratio 
, defined in a regime of uniaxial stress �
��
, as minus the

ratio of the strain normal to the stress axis, �
��

� �
��
, to the strain along

the stress axis, �
��

(i.e. ratio of thinning to elongation or thickening to
contraction, if 
� 0):


 �
� �

��
�
��

�
� �

��
�
��

(2.10)

Poisson’s ratio, being dimensionless, is not strictly speaking a
modulus, but it is a combination of elastic moduli and it can be used,
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together with any one modulus to completely define the elastic proper-
ties of a body. Indeed, using (2.6) and writing �

��
��

��
� 0, we obtain:


�
�

2(�� �)
(2.11)

and, with (2.9):


�
3K� 2�
2(3K��)

�
3(K/�)� 2

2[3(K/�)� 1]
(2.12)

In many cases, especially in the Earth’s crust, it so happens that � ��,
i.e. there is only one independent elastic modulus (a Cauchy solid); then

� 0.25.
If the solid is incompressible (K��), then, from (2.12), 
� 0.5. The

same result can of course be obtained with the definition of 
, by writing
�V/V � �

�
� 2�

�
� 0. Note that for a liquid � � 0, hence we also have


� 0.5, but that does not mean that the liquid is incompressible. Also, it is
important to realize that Poisson’s ratio results from a complicated combi-
nation of elastic constants and can take widely different values depending
on the material. A value of 
 close to 0.5 does not mean that there is some
proportion of fluid present: solid gold, for instance, at room temperature,
has a Poisson’s ratio of about 0.42. Poisson’s ratio can be negative, if cracks
are present in the body. For an infinitely compressible solid (K� 0), we
would have 
�� 1.
We therefore have the bounds on Poisson’s ratio:

� 1�
� 0.5 (2.13)

Poisson’s ratio is especially interesting in geophysics, since it can be
expressed as a function of the ratio v

�
/v

	
of the velocities of the longitudinal

(P) and transverse (S) elastic waves only . We have:

v
�
� �

�� 2�

 �

�
�
� �

K��
�
�


 �
�
�

(2.14)

v
	
��

�

�

�
�
(2.15)

hence:

v
�
v
	

� �
�� 2�

� �
�
�

(2.16)

From (2.16) and (2.11), we have:
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 �
�
v
�
v
	
�
�
� 2

2��
v
�
v
	
�
�
� 1�

(2.17)

The condition 
� 0.25 corresponds to v
�
� v

	
�3, which is frequently

obtained in the crust.

Let us remind the reader here that (2.14) and (2.15) can be derived fromNewton’s
equation of motion of a unit volume element of a continuum medium:



��u

�t�
� F (2.18)

where u is the displacement vector, 
 the specificmass and F the force that balances
the stress on the volume element, given by:

F
�
��

�

��
��

�x
�

(2.19)

We will here write the equation of motion in the simple case of a longitudinal
wave propagating in the x

�
direction (u

�
� u, u

�
� u

�
� 0, �u

�
/�x

�
� �u/�x, �u

�
/

�x
�
� �u

�
/�x

�
� 0) and a shear wave polarized along x

�
and propagating along x

�(u
�
� u, u

�
� u

�
� 0, �u

�
/�x

�
� �u/�x, �u

�
/�x

�
� �u

�
/�x

�
� 0).

From (2.1), (2.6), (2.18) and (2.19), we have for the longitudinal wave:

�
��

� (�� 2�)
�u

�
�x

�

and:



��u

�t�
� (�� 2�)

��u

�x�
(2.20)

and for the shear wave (u
�
� u

�
� 0, u

�
� u):

�
��

��
�u

�
�x

�
and:



��u

�t�
� �

��u

�x�
(2.21)

The wave equations (2.20) and (2.21) correspond to waves propagating with
velocities given by (2.14) and (2.15) respectively.

Here is a good opportunity to introduce the seismic parameter �, which
we will frequently use later on:

��
K



(2.22)
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It is related to v�, the propagation velocity of the hydrostatic part of the
strain (dilatation), given by:

v���
K


�
�
�

��
3�� 2�

3
 �
�
�

(2.23)

Hence:

�� v�
�
��

�
v�
	

(2.24)

Note that:

v�� v
�
in solids, for �� 2�/3��� 2�.

v�� v
�
in liquids, for �� 0 (the strain is purely dilatational)

We can find another useful expression for � from the definition of K,
(2.7):

K� �
dP

d lnV
�

dP

d ln

�


dP

d

(2.25)

where 
� 1/V is the specific mass, hence:

� �
dP

d

(2.26)

The bulk modulus K is, by definition, isotropic. The average bulk
modulus of a single-phase aggregate of anisotropic crystals is therefore the
same as the bulk modulus of the single crystals and it can easily be found
from the experimentally determined elastic constants.
For cubic crystals:

K�
c
��

� 2c
��

3
(2.27)

The problem of calculating the effective shear moduli of an aggregate
from the single-crystal elastic constants is, however, much more difficult
and, indeed, it has no exact solution; all we know is that the aggregate value
lies between two bounds (see Watt et al., 1976): a lower bound calculated
assuming that the stress is uniform in the aggregate and that the strain is
the total sum of all the strains of the individual grains in series (Reuss
bound), and an upper bound calculated assuming that the strain is uniform
and that the stress is supported by the individual grains in parallel (Voigt
bound). The arithmetic average of the two bounds is often used (Voigt—
Reuss—Hill average).
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Variational methods allow the calculation of the tighter Hashin—Shtrik-
man bounds (Watt et al., 1976; Watt, 1988).
For cubic crystals, with elastic constants c

��
, c

��
, c

��
, there are two shear

moduli, c and c' corresponding to shear on the �100� and �110� planes
respectively:

c� c
��

c' ��
�
(c

��
� c

��
)

The effective Reuss and Voigt shear moduli of a single-phase aggregate
are:

�
�
�

15

6/c' � 9/c
(2.28a)

�
�

�
1

5
(2c' � 3c) (2.28b)

Expressions for the effective moduli of aggregates of crystals with lower
symmetry can be found in Sumino and Anderson (1984).
The lower and upper Hashin—Shtrikman bounds are:

�


� c' �

3

5
(2c� c' � 4�) (2.29a)

�
�
� c�

2

5
(c' � c� 6�') (2.29b)

with:

� �
3

5

K� 2c'
c'(3K� 4c')

�' �
3

5

K� 2c

c(3K� 4c)

A compilation of elastic constants and averaged aggregate moduli for a
number of mantle minerals as a function of temperature is given in Ander-
son and Isaak (1995). The single-crystal elastic constants and aggregate
(Hashin—Shtrikman) moduli of San Carlos olivine were measured up to
1500K (Isaak, 1992), and at room temperature, for pressures up to 17GPa
(Abramson et al., 1997) and up to 32GPa (Zha et al., 1998a, see Fig. 2.3).
The elastic moduli of forsteriteMg

�
SiO

�
and its high-pressure polymorph,

wadsleyite, were measured up to the pressures of the transition zone (Li et

18 2 Elastic moduli



Figure 2.3 Aggregate bulk and shear moduli (Hashin—Shtrikman averages) of San
Carlos olivine as a function of density. Experimental points are fitted to a

third-order Birch—Murnaghan equation of state (after Zha et al., 1998a).

Figure 2.4 Schema of the coupling between thermal andmechanical variables (after
Nye, 1957).
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al., 1996; Zha et al., 1998b). Chen et al. (1998) measured the elastic con-
stants of periclase (MgO) at simultaneous high temperature and pressure,
up to 1600K and 8GPa.

2.3 Thermoelastic coupling

2.3.1 Generalities

All the extensive and intensive variables, conjugate or not, can be cross-
coupled in many ways and the couplings are responsible for a variety of
first- and second-order physical effects, e.g. thermoelastic or piezoelectric
effects (see Nye, 1957).
We will deal here only with thermoelastic coupling (Fig. 2.4) and derive

the expressions for the isothermal and adiabatic bulk moduli.

2.3.2 Isothermal and adiabatic moduli

Let us assume that the intensive variables �
��
and T depend only on the two

extensive variables �
��
and S and that we can write the coupled equations

for the differentials (Nye, 1957):

d�
��
��

��
��

��
��
�
�

d�
��

��
��

��
�S �� dS (2.30)

dT ��
�T
��

��
�
�

d�
��

��
�T
�S�� dS (2.31)

Let us consider only the simple scalar case (geophysically relevant) of
hydrostatic pressure: �

��
� �

��
P and isotropic compression ���V/V.

We can then write (2.30) and (2.31) as:

dP��
�P
���

�

d���
�P
�S�� dS (2.32)

dT ��
�T
���

�

d���
�T
�S�� dS (2.33)

Dividing both sides of (2.32) by d�:

dP

d�
��

�P
���

�

��
�P
�S��

dS

d�
(2.34)

Let us consider the isothermal case, and assume dT � 0 in (2.33). We
find:
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dS

d�
��

�
�T
���

�

�
�T
�S��

(2.35)

Carrying (2.35) into (2.34), we get:

�
dP

d��
�

��
�P
���

�

� �
�P
�S���

�S
�T���

�T
���

�

�
dP

d��
�

��
�P
���

�

� �
�P
�T���

�T
���

�

(2.36)

Now:

�
�P
���

�

�K
�

[isothermal bulk modulus]

�
�P
���

�

�K
�

[adiabatic bulk modulus]

and:

�
�T
���

�

� ��
�T
�V�

�

V

Hence:

K
�
�K

�
� �

�P
�T���

�T
�V�

�

V (2.37)

We find in Table 1.2 that:

�
�P
�T�

�

� �
�P
�T��� �K

�

�
�T
�V�

�

��
�K

�
T

C
	

hence:

K
�
�K

�
� �K

�
T�

�K
�
V

C
	
� (2.38)

The dimensionless parameter in brackets is the thermodynamic
Grüneisen parameter (see Chapter 3):
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�
��



�K

�
V

C
	

(2.39)

Hence:

K
�

K
�

� 1� �
��
�T (2.40)

Now, from Table 1.2, we see that:

�
�P
�S�

�

�
�K

�
T

C
	

(2.41)

We also see that:

�
�P
�T�

�

� �K
�

(2.42)

and:

�
�T
�S�

�

�
T
C

�

(2.43)

Hence, from (2.41), (2.42) and (2.43):

�
�P
�T�

�
�
�T
�S�

�

� �
�P
�S�

�

�
�K

�
T

C
�

�
�K

�
T

C
	

(2.44)

and:

C
	
C

�

�
K

�
K

�

� 1� �
��
�T (2.45)

Incidentally, we note that:

�
��

�
�K

�
V

C
	

�
�K

�
V

C
�

(2.46)

Zwikker (1954) gives a general formulation for calculating the difference
between a stiffness and the reciprocal of a compliance. Starting from the
linear equations (1.6) between intensive and extensive quantities:

di
�
�K

��
de

�
�K

��
de

�
(2.47)

di
�
�K

��
de

�
�K

��
de

�
(2.48)

and the definition:
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K
��

��
�i

�
�e

�
�
��

(2.49)

we can calculate 1/�
��

� (�i
�
/�e

�
)
��
by putting di

�
� 0 in (2.48), from which

we obtain:

de
�
� �

K
��
K

��

de
�

(2.50)

Substituting in (2.47):

di
�
��K��

�
K�

��
K

��
� de� (2.51)

hence:

�
�i

�
�e

�
�
��

�
1

�
��

�K
��

�
K�

��
K

��

(2.52)

or:

K
��

�
1

�
��

�
K�

��
K

��

(2.53)

For thermoelastic coupling, if subscript 1 corresponds to the elastic
variables and subscript 2 to the thermal variables (i.e. i

�
�P, i

�
� T,

e
�
� �, e

�
�S):

K
��

�K
�
,

1

�
��

�K
�
, K

��
��

�P
�S�

�

, K
��

��
�T
�S�

�

For unit volume, (2.53) is equivalent to (2.38) if we take (2.45) into
account.
The difference between the bulk modulus at constant temperature and

the bulk modulus at constant entropy (adiabatic) is not trivial since the
elastic moduli measured in the laboratory by ultrasonic methods are
adiabatic, as well as the ones derived from the seismic wave velocities (the
transit time of the waves is too short to allow exchange of heat); on the
other hand, the elastic moduli relevant to geodynamic processes on the
scale of millions of years are evidently isothermal. However, for values of �
and �

��
typical of Earth materials, the difference between K

�
and K

	
at

room temperature is of the order of 1% only (Dewaele and Guyot, 1998).

It is interesting to remark that the adiabatic and isothermal shear moduli of an
isotropic solid are identical to first order. The following hand-waving demonstra-
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Figure 2.5 Variation of the entropy and free energy with elastic deformation: (a)
extension—compression, and (b) shear (after Brillouin, 1940).

tion is borrowed from Brillouin (1940, p. 23).
Let us consider a solid of unit volume, at equilibrium. Its free energy is a

minimum. Hence, if we impose a dilatation or a compression, the free energy
increases in both cases. The free-energy curve has a horizontal tangent (Fig. 2.5(a)).
However, due to thermoelastic coupling, the variation of entropy S is not symmetri-
cal: dilatation (�V/V � 0) absorbs heat (�S� 0), whereas compression (�V/V � 0)
evolves heat (�S� 0). If the entropy is kept constant, the temperature increases on
compression and decreases on dilatation. The variation of pressure as a function of
�V/V (bulk modulus) is therefore (as seen above) greater for constant entropy than
for constant temperature.
Let us now turn to the case of shear strain. For symmetry reasons, at constant

temperature, positive and negative shear are equivalent and correspond to an
increase in entropy. Free energy and entropy are represented by curves with a
minimum and a horizontal tangent (Fig. 2.5(b)). Hence, a shear isothermal trans-
formation is also adiabatic to first order and �

�
��

�
.

The variation of temperature with reversible adiabatic compression or
dilatation is easily found by simple inspection of Table 1.2:

�
�T
�V�

�

��
�K

�
T

C
	

��
�
��

T
V

(2.54)

�
� lnT
� lnV�

�

�� �
��

(2.55)

or:

�
� lnT
� ln
�

�

� �
��

(2.56)

We may note that for an adiabatic compression or decompression we
have, from (2.55):
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�
T
�

T
�
�
�

��
V

�
V

�
�
��� (2.57)

This relation is known for perfect gases with ��C
	
/C

�
� 1. For solids,

we have from (2.45):

� � �
��

�
1

�T�
C

	
C

�

� 1� (2.58)

With the definition K� dP/d ln
, we find a useful expression for the
variation of temperature with pressure

�
�T
�P�

�

� �
��

T
K

�

(2.59)

which, of course, we could have found from Table 1.2 and the definition of
�
��
.

2.3.3 Thermal pressure

Let us calculate the increase in internal pressure, �P
��
, caused by heating a

solid at constant volume (thermal pressure).
Table 1.2 gives:

�
�P
�T�

�

� �K
�
� �

��

C
�

V
(2.60)

Integrating at constant volume and supposing �
��

� const, we obtain:

�P
��

�P
�
�P

�
�

�
��

V �
��

��

C
�
dT �

�
��

V
(E

�
�E

�
)� �

��

�E
V

(2.61)

where E is the internal energy. Hence:

�P
��

� �
��

�E
V

(2.62)

This is the equation of state of Mie—Grüneisen, to which we will return
later. The Grüneisen parameter is defined here as the coefficient relating
the thermal pressure to the thermal energy per unit volume:

�
��

� V
�P

��
�E

(2.63)

Integration of (2.60) at constant volume also yields:
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�P
��

��
��

��

�K
�
dT (2.64)

It is experimentally verified in many solids that �K
�
is approximately

independent of temperature (O. L. Anderson, 1995a). Equation (2.64) can
then be written:

�P
��

� �K
�
�T (2.65)

or:

�P
��

K
�

�
�V
V

� ��T (2.66)

This is consistentwith the definition of the thermal expansion coefficient.
It could be said that thermal pressure causes thermal expansion when
volume is not constrained to remain constant.
It is interesting to find the variation of �K

�
with volume (Anderson et al.,

1995) and the conditions for which it is independent of volume, because in
this case the thermal pressure depends only on temperature (O. L. Ander-
son, 1995b). The logarithmic derivative of �K

�
:

�
� ln(�K

�
)

� lnV �
�

�
� ln �
� lnV

�
� lnK

�
� lnV

(2.67)

can be written:

�
� ln(�K

�
)

� lnV �
�

� �
�

�K' (2.68)

where:

�
�



� ln �
� lnV

��
1

��
� lnK

�
�T �

	

(2.69)

is the Anderson—Grüneisen parameter (see Section 3.6), and:

K' 

�K

�
�P

��
� lnK

�
� lnV

(2.70)

The condition �
�
�K' � 0 is fulfilled for olivine between 300K and

1500K, and only above 1600K for MgO (O. L. Anderson, 1995b).

26 2 Elastic moduli



3

Lattice vibrations

3.1 Generalities

In a crystal at temperatures above the absolute zero, atoms vibrate about
their equilibrium positions. The crystal can therefore be considered as a
collection of oscillators, whose global properties can be calculated. In
particular, it will be interesting to determine:

(i) The normal modes of vibration of the crystal.
(ii) The dispersion relation, i.e. the relation �� f (k) between the fre-

quency � and the wave vector k.
(iii) The vibrational energy.

The vibrational approach is especially fruitful since it allows a synthesis
between the thermal and elastic properties and gives a physical basis to
thermoelastic coupling. This is due to the fact that the low-frequency,
long-wavelength part of the vibrational spectrum corresponds to elastic
waves, whereas the high-frequency part corresponds to thermal vibrations.
In finite crystals, the lattice vibrations are quantized and behave as quasi-
particles: the phonons.

In the following section, we will give the elementary basis of the calcula-
tions in the simple case of a monatomic lattice. This will be sufficient to
introduce the concepts and formulas needed for our purpose. For a more
complete and still elementary treatment, the reader is referred to the
standard textbooks by Kittel (1967) and Ziman (1965).

3.2 Vibrations of a monatomic lattice

3.2.1 Dispersion curve of an infinite lattice

Let us consider an infinite crystalline lattice formed of only one kind of
atoms. Furthermore, let us assume that the lattice is a very simple one and
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Figure 3.1 Parallel identical lattice planes of an infinite crystalline lattice. The
displacement of plane n� i with respect to plane n is u

���
� u

�
.

can be described as an infinite stacking of identical, equally spaced, lattice
planes. Each atomic plane, of mass M, is labeled by an index n and is
connected to all the other planes n� p (p positive or negative can become
infinite) by a symmetrical pair-interaction potential V

�����
(Fig. 3.1).

Let us now consider a longitudinal planar wave propagating normal to
the planes, (the reasoning would be the same for a shear wave). The
displacements u

���
, . . ., u

���
are counted from an arbitrary origin taken at

plane n and they are assumed to be infinitesimal.
Plane n is in the potential of all the other planes �

�
V

�����
, that can be

expanded to second order in powers of (u
�
� u

���
):

�
�

V
�����

��
�

V��
1

2
�
�

��V
�����

�u�
�

(u
���

� u
�
)�� · · · (3.1)

The potential is assumed to be symmetrical; this is an important con-
straint that will be lifted later on.

The potential well corresponding to a symmetrical potential truncated
after the second order is therefore parabolic. This is the harmonic approxi-
mation, the vibrations of the planes are harmonic, like those of a mass—
spring system, as we will see presently.

Plane n is subjected to a force F
�

given by:

F
�
��

�
�u

�
��

�

V
��������

�

��V
�����

�u�
�

(u
���

� u
�
) (3.2)

or:

F
�
��

�

K
�
(u

���
� u

�
) (3.3)
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with a force constant:

K
�
�

��V
�����

�u�
�

� V�
�

(3.4)

The force is linear in displacement as in the case of a harmonic mass—
spring system with a force constant K.

If we had only a pair of planes of mass M, Newton’s equation would give the
equation for a harmonic oscillator:

M
d�u

dt�
�Ku� 0

with a restoring force: F�� dE/du, which corresponds to a parabolic potential
well:

E�
Ku�

2
� const

(i) Dispersion relations

Let us consider the motion of plane n of mass M in the potential of the
other planes. The equation of motion is:

M
d�u

�
dt�

� �
�

K
�
(u

���
� u

�
) (3.5)

Let us look for progressive plane wave solutions:

u
�
� u� exp i(nk·a��t) (3.6)

where a is the interplanar distance at rest, i.e. the period of the lattice (Fig.
3.1).

Let us carry u
�

into the equation of motion:

���Mu� exp i(nk·a��t)�

�
�

K
�
u�[exp i(n� p)k·a� exp ink·a] exp(� i�t)

or:

��M� ��
�

K
�
exp(ipk·a� 1) (3.7)

All planes being identical, we have K
�
�K

��
and we can write:

��M�� �
���

K
�
[exp(ipk·a)� exp(� ipk·a)� 2] (3.8)
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Figure 3.2 Dispersion curve of the lattice of Fig. 3.1. In the center of the Brillouin
zone, for long wavelengths, the frequency � is proportional to the wave number k,
Hence, the group velocity of the lattice waves is equal to the phase velocity of sound.
At the edge of the Brillouin zone, the group velocity is zero, that is, the waves do not

propagate.

and remembering (3.4) that K
�
� V�

�
:

���
2
M

�
���

V�
�
(1� cos pk·a) (3.9)

This is the dispersion relation for the infinite crystal. We will discuss it,
without loss of generality, in the simple case where the interaction is limited
to the nearest-neighbor planes (p� 1). We have then:

���
2
M

V�(1� cosk·a)�
4
M

V� sin��
k·a
2 �

or:

�� 2�
V�
M�

�	�

� sin�
k.a
2 � � (3.10)

The dispersion curve is given in Fig. (3.2).
We can make the following observations:

(i) � � f (k) is periodic with the period � g �� � 2�/a � , equal by definition
to the period of the reciprocal lattice. The interval ��/a, ��/a defines
the first Brillouin zone.

(ii) � � f (k) is a symmetrical function. It is therefore sufficient to specify it
in the interval 0,�/a.

(iii) At the edge of the Brillouin zone, i.e. for � k � � (2n� 1)�/a�
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(n� 1/2) � g � , the frequency is a maximum:

� ��
���

� 2�
V�
M�

�	�
(3.11)

(The maximum atomic vibrational frequency is of the order of
10�
Hz.)

At the maximum, d�/dk� 0, which means that the group velocity of
the waves vanishes. The only permissible wave is a stationary wave
that does not propagate energy:

u
�
� u� exp i[(n��

�
)k·a��t]�� u� exp(� i�t) (3.12)

The neighboring planes vibrate with opposite phases.
(iv) Near the origin, at very low frequencies and long wavelengths, i.e. for

� ��
���

(in practice, � � 10�Hz), we have: �� a and �k �� 1/a.

The neighboring planes vibrate almost in phase and we can write:

� � ak�
V�
M�

�	�
(3.13)

The frequency is proportional to the wave number. In other terms, in the
long-wavelength limit, the group velocity d�/dk is equal to the phase
velocity: there is no dispersion. The phase velocity is equal to the velocity v



of the longitudinal wave:

d�
dk

� a�
V�
M�

�	�
�

�
k

� v



(3.14)

Indeed, if the wave vector k is much smaller than the reciprocal lattice
parameter, i.e. if the lattice parameter in real space is much smaller than the
wavelength, it is reasonable to assimilate the lattice to an elastic continuum
in which the wave equation for longitudinal waves is (2.20) and the velocity
of the waves is given by (2.14):

v


� �

�� 2	

 �

�	�

The reasoning would, of course, be the same for transverse waves.
Indeed, there are three dispersion curves, one for the P-waves and one for
each polarization of the S-waves.

Comparing the classic expression (2.14) for the velocity of the P-waves
with (3.14), we see that the relevant elastic modulus is proportional to the

313.2 Vibrations of a monatomic lattice



second derivative of the potential energy with respect to strain. Therefore,
the elastic constants, introduced as phenomenological material constants
in the thermodynamic approach, can be physically interpreted in terms of
interatomic potentials.

As an example, let us calculate the value of the bulk modulus K
�

at 0K (no
thermal energy), for a simple ionic crystal like NaCl (Kittel, 1967). The pair-
interaction potentialE

��
between neighboring ions of opposite charge consists of an

attractive Coulombic part and a short-range repulsive part due to the ion cores:

E
��
�
q
�
q
�

r
��

�
ZB

r�
��

(3.15)

Here q
�
and q

�
are the electric charges of ion i and its neighbor j, r

��
is the distance

between the ions, Z is the coordination number and B and n are parameters of the
repulsive part of the potential (Born potential).

The cohesive energy E
�
of the crystal is obtained by summing the attractive parts

of the potential (a somewhat complicated process) and assuming that the short-
range repulsive part extends only to nearest neighbors:

E
�
�N��

�q�
R

�
ZB

R�� (3.16)

where ���
�
(�)R/r

��
is theMadelung constant (�� 1.75 for the NaCl structure),R

is the nearest-neighbor distance, q� q
�
�� q

�
is the electric charge, and N is the

total number of ions of one sign.
At equilibrium, the nearest-neighbor distance is R

�
given by: (dE

�
/dR)

����
� 0

and we have then:

R���
�

�
nZB

�q�
(3.17)

Hence:

E
�
��

N�q�
R

�
�
R

�
R

�
1

n�
R

�
R �

�

� (3.18)

We can now calculate K
�
�� V�

dP

dV�
����

.

From P���
�E
�V�

	

, we get �
�P
�V�

	

���
��E

�V��
	

and K
�
� V

��E

�V�
.

For the NaCl structure, we haveN� 4 formula units per face centered cubic unit
cell, each occupying a volume a
/4 (a� 2R is the cell parameter), hence V � 2NR
.

dE
�

dV
�
dE

�
dR

dR

dV
�
dE

dR

1

6NR�

d�E
�

dV�
�
d�E

�
dR� �

dR

dV�
�
�
dE

�
dR

d�R

dV�

At equilibrium, dE/dR� 0 and R�R
�
, hence:
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Figure 3.3 Dispersion curve (half of the first Brillouin zone) of an infinite lattice with
p atoms per primitive unit cell. there are three acoustical modes (one P mode and
two S modes polarized at right angles) and 3p� 3 optical modes. There is a gap of

forbidden energies at the edge of the Brillouin zone.

K
�
� V�

1

6NR��
�

�
d�E

�
dR��

����

�
1

18NR
�
�
d�E

�
dR��

����

(3.19)

From (3.16) , (3.17) and (3.19) we obtain:

K
�
�

1

R

�

�q�(n� 1)

18R
�

(3.20)

In the general case of an infinite crystal, with p atoms per primitive unit
cell (not necessarily of the same chemical nature), it can be shown (see
Kittel, 1967) that for each value of the wave number k, there are 3p
frequencies, each corresponding to one normal mode. There are:

Three acoustical modes corresponding to one longitudinal (P) mode and
two transverse (S) modes, if they are pure. The modes are orthogonal
to one another.

3p � 3 optical modes corresponding to out-of-phase vibrations of neigh-
boring planes for small wave numbers. The optical modes often have
frequencies in the range of that of infrared or visible light and can
cause optical absorption, hence their name. Near the edge of the
Brillouin zone, there is a forbidden gap (Fig. 3.3).

3.2.2 Density of states of a finite lattice

In the case of a finite lattice, the number of degrees of freedom, hence of
possible normal modes, is finite and the vibrations are quantized: instead of
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Figure 3.4 Dispersion ‘‘curve’’ of a finite unidimensional lattice of length L and
period a; it consists of L/a discrete points, one for each allowed mode.

continuous dispersion curves, we have a succession of discrete points, one
for every one of the allowed wave numbers (Fig. 3.4).

We also need boundary conditions: For a crystal large enough com-
pared with the interatomic distance a, the boundary conditions chosen do
not matter much as long as there are boundary conditions. The ones
currently used are the Born—von Karman periodic boundary conditions:
ForN parallel planes in the crystal, we impose that the vibrational state of
theN�� (last) plane be the same as that of the first, which amounts to ideally
closing the crystal on itself (as a hypertorus in 4-D space), hence imposing a
period N:

u
��


� u
�

We have therefore:

u� expi(nk·a��t)� u� expi[(n�N)k·a��t]

hence:

expiNk·a� 1

or:

Nk·a� 2m�

with m an integer (positive or negative).
The length of the crystal is L �Na. The allowed modes therefore have

wave numbers given by:

k� 2m�/L (3.21)

and the number of allowed wave numbers is:
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Table 3.1. Volume and mass of the various subunits in a polyatomic crystal

Unit Volume Mass Number of subunits

Mole V 
V Unit cells: V/V
�Formulas: VZ/V

�
�N

�Atoms: nN
�
� VZn/V

�
Unit cell V

�

V

�
Formulas: Z
Atoms: Zn

Formula (‘‘molecule’’) V
�
/Z� V/N

�

V

�
/Z�M Atoms: n

Atoms V/nN
�

M/n�M�

2�
a �

2�
L �

��
�

L
a

�N (3.22)

Let us now generalize this result to three-dimensional reciprocal space
(k-space) and consider, for the sake of simplicity, the case of a crystal of
volume V and primitive unit cell volume V

�
, where subscript L stands for

‘‘lattice’’.
The volume of the Brillouin zone is: (2�)
/V

�
, and the volume per

allowed wave number in k-space is: (2�)
/V. There are, therefore, V/V
�

allowed values of k in the Brillouin zone.
The density of states g(�) is the number of modes per unit frequency

range. The number of vibrational states between � and �� d� is there-
fore:

g(�)d��w(k)dk (3.23)

where w(k)dk is the number of states in k-space in a spherical shell of
thickness dk, between k and k� dk. If (Table 3.1) we take the volume of the
crystal equal to the molar volume V, and if the crystal has n atoms per
formula unit andZ unit cells per mole, there are nN

�
atoms in the mole (N

�
is Avogadro’s number) and 3nN

�
modes in the volume of the Brillouin

zone (see Kieffer, 1979a). We have:

w(k)dk�
3nN

�
V

�
(2�)


· 4�k�dk�
3nZV
(2�)


· 4�k�dk

We will now calculate the density of states in the case of the very useful
Debye approximation.
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3.3 Debye’s approximation

3.3.1 Debye’s frequency

Debye’s approximation consists in assuming that the long wave or con-
tinuum approximation, with a linear dispersion curve � � v
 k (where v
 is an
average velocity of sound waves), holds for the whole vibrational spectrum.
In other words, all the modes are considered to be acoustic, with the same
average value of the velocity. The allowed ks are assumed to be uniformly
distributed in the Brillouin zone. If we take for the volume V of the crystal
the molar volume, the crystal contains nN

�
atoms, where n is the number of

atoms in the formula unit and N
�

is Avogadro’s number.
The density of states (3.23) is therefore given by:

g(�)�
3nZV
(2�)


· 4�
��

v
 


or

g(�)�A�� (3.24)

with

A�
3nZV
2��v
 


(3.25)

The curve of the density of states vs frequency is the vibrational spec-
trum. We see that in Debye’s approximation it is parabolic (Fig. 3.5).

Debye’s calculation of the average sound velocity gives:

v
 �
�3�
1

v




�
2

v

�
�
��	


(3.26)

O. L. Anderson (1963) showed that the Debye average sound velocity is
accurately estimated by using the Voigt—Reuss—Hill averaging method (see
Section 2.2) for calculating the longitudinal and transverse sound velocities
v



and v
�
from single-crystal elastic constants.

The Brillouin zone is assumed to have the simple shape of a sphere with
radius k

�
given by:

4

3
�k


�
�

(2�)


V
�

The maximum radius k
�

corresponds to a maximum cut-off frequency
�

�
, called Debye frequency: �

�
� k

�
v
 .
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Figure 3.5 Dispersion curve (a) and vibrational spectrum (b) in the case of the
Debye approximation. The vibrational spectrum is the curve of the density of states
g(�) vs frequency. �

�
and k

�
are the Debye frequency and wave number
respectively.

�
�
� v
 �

6��

V
�
�
�	


� v
 �
6��N

�
Z �

�	

V��	
 (3.27)

However, if we assume that all the different atoms play equivalent
mechanical roles in the vibrations, it is then possible to consider the
individual atom (of any chemical nature) as the vibrational unit. In that
case, we can take for V

�
the average volume of one atom:

V��
�

�
nN

�
V

�
nN

�



M

where M is the mass of the formula unit.
Hence:

�
�

� v
 (6��nN
�
)�	
V��	
 (3.28)

Introducing the mean atomic mass M� �
M

n
, we find the expression of

Debye’s frequency in general use (O. L. Anderson, 1988; Robie and Ed-
wards, 1966):

�
�
� (6��N

�
)�	
�



M� �

�	

v
 (3.29)

Since this approach assumes that there is only one atom per unit cell, it
follows that all the modes are assumed to be acoustic, which is consistent
with Debye’s approximation.
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3.3.2 Vibrational energy and Debye temperature

In the limit of the linear continuum approximation, the normal vibration
modes are independent, hence the energy of one lattice mode (state) de-
pends only on its frequency � and on the number of quanta of vibration
occupying that state (phonon occupancy). In thermal equilibrium, the
phonon occupancy is given by the Bose—Einstein distribution, (phonons
are bosons):


n�� �exp�
��
k
�
T�� 1�

��
(3.30)

where ��
h

2�
� 1.0546� 10�
� J s (h� 6.626 08 � 10�
� J s is Planck’s

constant) and k
�
� 1.380 66� 10��
 J/K is Boltzmann’s constant.

The crystal, with all its modes of oscillation, can be considered as a
collection of oscillators. Einstein’s approximation assumes that all the
oscillators have the same frequency; neglecting the zero-point energy, the
energy of a crystal with N oscillators is therefore:

E� 3N
n���� 3N���exp�
��
k
�
T�� 1�

��

and the specific heat:

C
�

��
dE

dT�
�

� 3Nk
��

��
k
�
T�

�
exp�

��
k
�
T��exp�

��
k
�
T�� 1�

��

In Debye’s approximation, we have various permissible frequencies:
�(k)��

�
. The energy per oscillator (per mode) is equal to ��; as we have

g(�)d� modes in the frequency range � to � � d�, the energy (neglecting
the zero-point energy) is:

E��
��

�


n(�, T )���g(�)d� (3.31)

With (3.24), (3.25) and (3.30) we have:

E�
3�nZV
2��v
 
 �

��

�

�
d�

exp�
��
k
�
T�� 1

(3.32)

It is convenient to change variables and express (3.32) in terms of the
non-dimensional variables x� ��/k

�
T and x

�
��

�
/T, where �

�
is the

elastic Debye temperature, defined by:
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�
�

�
��

�
k
�

(3.33)

With (3.27):

�
�
�

�
k
�
�
6��N

�
Z �

�	

V��	
v
 �

h

k
�
�
3N

�
4�Z�

�	

V��	
v
 (3.34)

which, if Z� 1, gives:

�
�
� 251.2V��	
v
 (3.35)

with V in cm
/mol and v
 in km/s given by (3.26).
With (3.28) and (3.29), i.e. if all the atoms play an equivalent mechanical

role:

�
�

�
h

k
�
�
3nN

�
4� �

�	

V��	
v
 �

h

k
�
�
3nN

�
4� �

�	


�


M� �

�	

v
 (3.36)

or:

�
�
� 251.2�



M� �

�	

v
 (3.37)

There are various more or less sophisticated ways of calculating Debye’s
temperature from elastic constants (Alers, 1965) or from specific heats
(Blackman, 1955) (see below) and the resulting numerical values are often
quite different. When comparing and using Debye’s temperatures of vari-
ous materials found in the literature, it is always advisable to check
whether they have been calculated in the same way (e.g. using (3.35) or
(3.37) see Table 3.2).

Using (3.34) we have:

E�
3nZVk�

�
T �

2���
v
 
 �
��

�

x


expx� 1
dx (3.38)

or:

E� 9nN
�
k
�
Tx�


� �
��

�

x


exp x� 1
dx (3.39)

3.3.3 Specific heat

The specific heat or heat capacity at constant volume C
�

is obtained by
differentiating (3.39) with respect to temperature:
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Figure 3.6 Typical curve of the specific heat at constant volumeC
�

vs temperature
T. At low temperatures,C

�
varies as T
 and at high temperaturesC

�
approaches the

classical Dulong and Petit value 3R.

C
�
��

�E
�T�

�

� 9nN
�
k
�
x�
�

��

�

x� exp x

(expx� 1)�
dx (3.40)

or:

C
�
� 9nN

�
k
�
D�

�
�

T � (3.41)

TheDebye functionD�
�

�
T � is calculated and tabulated (e.g. in Landolt—

Börnstein tables).
At T � �

�
the heat capacity approaches the classical value given by the

Dulong and Petit law:

C
�

� 3nNk
�
� 3nR (3.42)

with the gas constant R� 2 cal/molK.
At low temperatures, the heat capacity is approximately equal to:

C
�
� 234nNk

��
T
�

�
�



(3.43)

(Debye’s T
 law).
The values of C

�
(T ), (Fig. 3.6), can be experimentally determined by

calorimetry and fitted to (3.41) by choosing the best value of the Debye
temperature. The Debye temperature determined in this fashion is called
the calorimetric Debye temperature (at temperature T).

3.3.4 Validity of Debye’s approximation

Debye’s approximation is only as good as its basic assumptions. It is
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Figure 3.7 Variation with temperature of the calorimetric Debye temperature for a
few simple substances. Elastic Debye temperatures at 0K are shown by closed

circles (after Kieffer, 1979).

therefore valid if the actual vibrational spectrum can reasonably be ap-
proximated by a parabolic curve g(�) and if most of the spectrum corre-
sponds to frequencies lower than the cut-off Debye frequency �

�
. If De-

bye’s model is valid, then the calorimetric Debye temperature �
���	

must
be independent of temperature and equal to the elastic Debye temperature
�

�
	
(usually calculated with (3.37) and reasonably assuming that the

elastic constants, varying little with temperature, can be taken equal to
their values at room temperature). This is practically the case for elements
and simple close-packed substances, for which it can be reasonably as-
sumed that all atoms are mechanically equivalent (Kieffer, 1979a) (Fig. 3.7).
Plots of the ratio �

���	
/�

�
	
as a function of temperature, for minerals with

open structures (Fig. 3.8) exhibit a dip at low temperatures corresponding
to the actual presence of more low-frequency modes (optical modes) than
are taken into account in Debye’s model, and rise steadily at high tempera-
tures, indicating an excess of modes near Debye’s frequency and a deficit at
higher frequencies in the model (Kieffer, 1979a). O. L. Anderson (1988)
finds that Debye’s model is satisfactory for close-packed minerals with a
volume per atom V

�
�M� /
 smaller than about 5.8 cm
/mol, like
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Figure 3.8 Variation with temperature of the ratio of the calorimetric to the elastic
Debye temperatures for quartz (Qz), olivine (Ol), stishovite (St), and periclase (Pe)

(after Kieffer, 1979).

Figure 3.9 Vibrational spectrum (density of states) for periclase compared with the
Debye spectrum (dashed curve). The frequencies of the modes, including the optical
modes, are nearly all below the Debye frequency and both spectra converge at low

frequencies (after O. L. Anderson, 1988).

stishovite, corundum and periclase (Fig. 3.9), since only a small fraction of
the phonon spectrum has frequencies higher than the Debye cut-off fre-
quency. This is also the case for the dense lower-mantle perovskite form of
MgSiO



(V

�
� 4.8), whose thermoelastic properties are satisfactorily ac-

counted for by Debye’s theory (O. L. Anderson, 1998) (Fig. 3.10).
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Figure 3.10 Calculated phonon density of states (two sets of calculations, A and B)
for MgSiO



perovskite. The greater portion of the spectra is at frequencies lower

than the Debye cut-off frequency �
�
. The dashed curve is the Debye spectrum (after

O. L. Anderson, 1998).

Kieffer (1979a—c) developed a generalized model based on lattice dy-
namics and observational vibrational data (infrared and Raman spectro-
scopy, inelastic neutron scattering) that allows a better calculation of
thermodynamic data of minerals (specific heat and entropy) than Debye’s
model.

3.4 Mie–Grüneisen equation of state

We have calculated, in Debye’s approximation, the vibrational (i.e. ther-
mal) energy of a solid. We are now in a position to calculate the total energy
of the solid and its equation of state, i.e. the expression of pressure P as a
function of specific volume V and temperature T.

Since P�� (�F/�V )
�
, let us start with Helmholtz’ free energy F and

consider it as the sum of two terms:

F�E
�
�F

�
(3.44)
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where E
�
is the cohesive energy at 0 K, calculated in Section 3.2 equation

(3.16), and F
�

is the free energy of the phonon ‘‘gas’’ in Debye’s approxi-
mation:

F
�
�E

�
� TS

�
�E

�
� T�

�F
�

�T �
�

(3.45)

E
�

is given by (3.39) and we will write it:

E
�
� Tf�

�
�

T �
Now, from (3.45) we have:

E
�

�F
�

� T�
�F

�
�T �

�

�
d(F

�
/T )

d(1/T )
(3.46)

It will be convenient to express F
�

also as a function of T and �
�
/T:

F
�
� Tg�

�
�

T � (3.47)

which, with (3.46), gives:

E
�
��

�

dg(�
�
/T )

d(�
�
/T )

(3.48)

Let us now write the expression of pressure:

P���
�F
�V�

�

��
dE

�
dV

�
dF

�
d�

�

d�
�

dV
(3.49)

Now:

dF
�

d�
�

�
dF

�
d(�

�
/T )

d(�
�
/T )

d�
�

�
1

T
d(Tg(�

�
/T ))

d(�
�
/T )

and, with (3.48):

dF
�

d�
�

�
E
�

�
�

(3.50)

We can therefore write:

P��
dE

�
dV

�
E
�

�
�

d�
�

dV
(3.51)

We have thus expressed P in terms of known quantities and of the
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variation of Debye’s temperature with volume. It is convenient to intro-
duce the Debye—Grüneisen parameter:

�
�
� �

d ln�
�

d ln V
��

d ln�
�

d ln V
(3.52)

We have then:

P��
dE

�
dV

� �
�

E
�

V
(3.53)

This is the complete Mie—Grüneisen equation of state, that we first
encountered in Section 2.3.3. The thermal pressure was then related to the
increase in thermal energy by the thermodynamicGrüneisen parameter �

��
.

Now we see that the thermal energy is the energy of the phonon gas and we
have introduced a more physical definition of the Grüneisen parameter,
expressing the volume dependence of the Debye frequency.

We will now show that the two definitions are equivalent and that
�
��

� �
�
.

Assuming that the mode frequencies are independent of temperature
(quasi-harmonic approximation, see below), we can differentiate (3.53) with
respect to T and obtain:

�
dP

dT�
�

�
�
�

V �
dE

�
dT �

�

�
�
�

V
C

�

now, by definition of the coefficient of thermal expansion � and (1.27), we
have:

��
1

V�
�V
�T�

�

��
1

V�
�V
�P�

�
�
�P
�T�

�

�
1

K
�
�
�P
�T�

�

(3.54)

hence:

�
�
�

�VK
�

C
�

� �
��

(3.55)

3.5 The Grüneisen parameters

So far we have introduced two definitions of the Grüneisen parameter, a
thermodynamic, i.e. macroscopic one: �

��
and a microscopic one: �

�
. Now,

there are many more ways of defining a Grüneisen parameter or ‘‘gamma’’
and we will review here those that are the more important and currently
encountered in the literature (see Stacey, 1977b).
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We should indeed start with Grüneisen’s own definition: he considered
what we call the ‘‘mode gamma’’ �

�
expressing the volume dependence of the

frequency of the i�� vibration mode of the lattice:

�
�
��

� ln�
�

� ln V
�

� ln �
�

� ln

(3.56)

If all the �
�
s have the same volume dependence and there is only one

Debye cut-off frequency, all the mode gammas are equal to the Debye
gamma �

�
defined above. If, in addition, we make the assumption that the

mode frequencies are independent of temperature, it can be shown to be
equivalent to the thermodynamic gamma (see Section 3.4).

Slater (1939) asserted that Debye’s theory implied that all mode frequen-
cies varied in the same ratio as the cut-off frequency, hence that all the
mode gammas were equal. He also made the assumption that Poisson’s
ratio � was independent of the volume and derived another expression for
Grüneisen’s parameter in terms of the variation of the bulk modulus K
with volume as follows.

From (3.28) we have:

�
�
� v
 V��	
� v
 
�	
 (3.57)

we can show, from (2.12), (2.14) and (2.15) that the velocities of the longi-
tudinal (P) and transverse (S) waves can be expressed as the square root of
K/
 times a function of Poisson’s ratio:

v


��

K


�
�	�

�
3(1� �)
1� � �

�	�

(3.58)
v
�
��

K


�
�	�

�
3(1� 2�)
2(1� �) �

�	�

N.B.: We clearly see here that the assumption that Poisson’s ratio is independent
of volume is, in fact, already included in Debye’s model stricto sensu, since a
dependence of � on volume would mean that the longitudinal and transverse
velocities, hence the frequencies of the corresponding modes, would have different
volume dependences. The modes would not all have the same gammas, in contra-
diction with Debye’s assumptions.

The average Debye velocity can therefore be written:

v
 �K�	�V�	�f (�) (3.59)

It follows that:

ln�
�

�
1

2
lnK�

1

6
ln V � ln f (�) (3.60)
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and, since � is assumed to be independent of volume:

�
�	

��
� ln�

�
� ln V

��
1

6
�

1

2

d lnK

d ln V
(3.61)

or:

�
�	

��
1

6
�

1

2

d lnK

d ln

(3.62)

or:

�
�	

��
1

6
�

1

2

dK

dP
(3.63)

This defines the Slater gamma, which explicitly depends on the assump-
tion that Poisson’s ratio is independent of volume (or pressure). Using the
definition of the bulk modulus:

K
�

�� V�
�P
�V�

�

we can write:

�
�	

��
1

6
�

1

2 �1 �

� ln ��
�P
�V�

�
� ln V �

which gives another expression of Slater’s gamma:

�
�	

��
2

3
�

V
2

�
��P

�V��
�

�
�P
�V�

�

(3.64)

A full lattice dynamical computer simulation on a monatomic cubic
lattice has confirmed the linear dependence of the Grüneisen parameter on
dK/dP (Vočadlo and Price, 1994).

Conversely, knowing Slater’s gamma, we can obtain the variation with
density or pressure of the bulk modulus:

d lnK

d ln

�
dK

dP
� 2�

�	
�

1

3
(3.65)

Since the ratio K/	 depends only on Poisson’s ratio, which is assumed
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not to depend on volume, we also have:

d ln	
d ln


� 2�
�	

�
1

3
(3.66)

and:

d	
dP

�
	
K�2�

�	
�

1

3� (3.67)

The assumption that Poisson’s ratio does not vary as specific volume
decreases is of course not strictly correct, as Slater perfectly knew; Pois-
son’s ratio does, in fact, slightly increase with pressure. Slater’s gamma is
nevertheless a rather good approximation for close-packed solids (O. L.
Anderson, 1988) and formulas (3.64) to (3.67) are useful expressions of the
pressure dependence of the elastic moduli.

The restriction that Poisson’s ratio be independent of volume can be
lifted by dealing separately with the longitudinal and transverse acoustic
branches of the phonon spectrum and defining a transverse gamma �

�
and a

longitudinal gamma �
	
; this, of course, is in contradiction with the original

Debye’s assumptions (see N.B. above) and implies a modification of De-
bye’s model (Stacey, 1977b). The weighted average of �

�
and �

	
defines a new

gamma called acoustic gamma or high-temperature gamma (Vashchenko
and Zubarev, 1963; Stacey, 1977b):

�
�
� �

��
�

1

3
(�

	
� 2�

�
) (3.68)

Defining �
	
and �

�
in the same way as �

�
, but replacing v
 by v



and v

�
respectively, and using (3.58), we obtain:

�
�
� �

1

6
�

1

2

d lnK

d ln

�

1

3

5�� � 4�
(1� ��)(1� 2�)

d ln �
d ln 


(3.69)

We see that the acoustic gamma is equal to the Slater gamma plus a term
which is a function only of Poisson’s ratio and its dependence on specific
mass. Knopoff and Shapiro (1969) show that in the acoustic gamma the
pressure derivative of the shear modulus plays a role significantly more
important than the pressure derivative of the bulk modulus.

The acoustic gamma is also called high-temperature gamma because it
can be derived from the expression for thermal pressure, assuming that at
high temperature the thermal energy E

��
� 3RT is equally distributed

between the P-mode and the two S-modes. We have then:
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P
��

�
RT
V

(�
	
� 2�

�
)�

3RT
V

�
��

and the definition (3.68) immediately follows.
Quareni and Mulargia (1988) propose to use what they call the Debye—

Brillouin gamma:

�
��

�
1

3
� V�

dv



dV
� 2

dv
�

dV� (2v
�
� v



)�� (3.70)

To compare it with the other formulations, it is convenient to write:

�
��

�
1

3
�

d ln�
2v

�
� v



3 �

d ln

(3.71)

Note that we could write the acoustic gamma as:

�
�
�

1

3
�

1

3�
d ln v



d ln


� 2
d ln v

�
d ln
��

1

3
�

d ln�
v


v�
�

3 �
d ln 


(3.72)

and, of course, Debye’s gamma is:

�
�

�
1

3
�

d ln��
1

v




�
2

v

�
�/3�

��	


d ln

(3.73)

We see that in practice these formulations differ only in the way the
velocities are averaged; they can all be written:

�
�
�

1

3
�
d ln v


d ln

(3.74)

with:

v

�
� 
�3�

1

v




�
2

v

�
�
��	


for the Debye gamma

v

�
� (v



v�
�
)�	
 for the acoustic gamma (3.75)

v

��

�
1

3
(v



� 2v

�
) for the Debye—Brillouin gamma.

The pressure dependence of Poisson’s ratio is obviously included in the
last two expressions and the cut-off frequencies for the longitudinal and
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transverse branches may or may not be assumed equal without affecting
their validity.

All these approaches use the same fundamental assumptions of the
Debye approximation: the optical modes are not specifically taken into
account and all the modes are assumed to be independent and non-
dispersive (i.e. the group velocity is equal to the phase velocity and does not
depend on the frequency), an approximation valid only at low frequency
and for acoustic modes only. Now, at high temperatures, the high-fre-
quency modes carry an important proportion of the thermal energy and
they are dispersive. Furthermore, they interact and cannot be considered as
independent.

Irvine and Stacey (1975) proposed another way of calculating an expres-
sion of the Grüneisen parameter in the high-temperature classical limit,
still as a function of the pressure derivative of the bulk modulus, but
avoiding consideration of lattice modes (see also Stacey, 1977b). The
expression they found is identical with the one derived earlier by Vash-
chenko and Zubarev (1963) from the free-volume theory. In view of the fact
that the Vashchenko—Zubarev gamma or free-volume gamma is widely
quoted and used, I will reconstitute the derivation of formula (3.80) (see
below), of which Vashchenko and Zubarev, in their original paper, only say
that it was ‘‘obtained by starting from the free-volume theory’’. I will then
give Irvine and Stacey’s derivation.

The free-volume theory was proposed by Lennard-Jones and Devon-
shire (1937) to account for the properties of dense gases and liquids. The
main idea is that the atoms can be regarded as confined in cells and that
their average environment is approximately the same as in a crystal. The
atoms are in potential wells resulting from the attractive and repulsive
parts of the pair-interaction potentials with their neighbors. This is in a
way similar to the Einstein approximation where the atoms are considered
as independent oscillators in harmonic, parabolic, potential wells, except
that here the wells do not have to be parabolic. (Interestingly enough,
Vashchenko and Zubarev used for solids a theory that was devised for
dense fluids, assuming they could be locally regarded as solid-like!) Due to
the fact that the energy is high near the cell boundaries, the atoms are in
effect confined to a ‘‘free volume’’ V

�
smaller than the cell size:

V
�
��

�
		

exp��
�(r)� �(0)

kT � dV (3.76)

where �(r) is the potential energy of the atom in its cell at the distance r from
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its equilibrium position.
The thermodynamic properties can be determined from the translation

partition function of the atoms of mass m, in their free volume, which is
known from statistical mechanics (see e.g. Gurney, 1966):

Z��
2�mk

�
T

h� �

	�

V
�

(3.77)

Vashchenko and Zubarev start from the Mie—Grüneisen definition of
the thermodynamic gamma (2.63):

�
��

�
VP

��
E
��

whereP
��

andE
��

are the thermal pressure and thermal energy respectively,
which can be expressed in terms of the partition function Z:

P
��

� k
�
T�
d lnZ

dV �
�

E
��

� k
�
T��

d lnZ

dT �
�

Note, incidentally, another interesting formulation of the thermo-
dynamic gamma:

�
��

�
(d lnZ/dV )

�
(d lnZ/dT )

�

·
V
T

(3.78)

Inserting (3.77) into (3.78), we obtain:

�
��

��
� ln V

�
� ln V �

�
�
3

2
��

� ln V
�

� ln T �
�
�

��
(3.79)

From (3.76), expanding �(r) in powers of r for small displacements of the
atoms, integrating and approximating the energy by the pair-interaction
potential, Vashchenko and Zubarev find:

�
��

��
V
2 �
d�(PV�	
)

dV� ��
d(PV�	
)

dV �
��

(3.80)

to be compared with Slater’s gamma formulation (3.64).
Irvine and Stacey (1975) start from an analysis of the three-dimensional

oscillations of atoms on a simple cubic lattice and calculate the thermal
energy and thermal pressure in the classical limit to obtain the Mie—
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Grüneisen thermal gamma. The outline of their demonstration is given
here:

Let us consider a pair of neighboring atoms vibrating independently in the three
directions x, y, z. At equilibrium (T � 0K), the atomic separation is r



in the x

direction and the force constant of the bond is F(r


). At finite temperature, the

atoms vibrate and their interatomic separation is r� [(r


��x)���y�� �z�]�	�,

where �x, �y,�z are the components of the elongation of the bond; as they are
small compared to r



, r�� can be expanded to second order in �x,�y,�z. The force

constant can be expanded to second order in (r� r


), and its x-component

F
�
�F(r)(r



��x)r�� is expressed to second order using the expansions of F(r) and

r��. Its time average �F
�
� must be balanced by the force created by the external

pressure P over the area r�



so that the specific volume remains constant; P is then
equal to the thermal pressure. In taking the time average of F

�
, the time average

��x� is taken equal to zero since the external pressure prevents thermal expan-
sion and in the classical limit the potential energy of each bond is equal to (1/2)k

�
T.

The quadratic terms in the expansion of �F
�
� can therefore be written as

functions of r



and of F(r


) and its derivatives with respect to r, taken at r



:

F�(r


),F�(r



). The thermal pressure appears in a Mie—Grüneisen type equation,

using the high-temperature classical Dulong and Petit value for the specific heat at
constant volume: C

�
� 3k

�
per atom. The Grüneisen parameter is calculated as:

���
1

3�
1

2
F�(r



) �

F�(r


)

r



�
F(r



)

r�


��
F�(r



)

r



�
2F(r



)

r�


�

��

SinceP
�
�F(r



)/r�



, we can express r



, F(r



), F�(r



) and F�(r



) in terms of P and of the

bulk modulus K and its derivative dK/dP.
The Grüneisen parameter can thus be written:

�
��

��
1

2

dK

dP
�

5

6
�

2

9

P

K��1�
4

3

P

K�
��

(3.81)

which is equivalent to (3.80) and can be easily derived from it by using the definition
of the bulk modulus: K�� V�P/�V. The calculation can be generalized to other
lattices than the simple cubic one; the expression (3.81) still holds, as long as the
interatomic forces are purely central.

A ‘‘modified free-volume’’ gamma, adapted to the high pressures of the
lower mantle and core, is given in Stacey (1995).

Dugdale and MacDonald (1953) proposed another expression for the
Grüneisen parameter correcting the alleged error made by Slater in ne-
glecting to take into account the effect of finite strain under applied
pressure:

�
��

��
1

2

dK

dP
� 1�

2

9

P

K��1 �
2

3

P

K�
��

(3.82)

or:
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�
��

��
1

3
�

V
2 �

��(PV�	
)

�V� ��
�(PV�	
)

�V �
��

(3.83)

However, Gilvarry (1956d) showed that use of the formal theory of finite
strain also leads to Slater’s gamma and that no physical basis exists for the
modification proposed by Dugdale and MacDonald. Irvine and Stacey
(1975) found that their derivation of the free-volume gamma leads to the
Dugdale and MacDonald gamma if they assume one-dimensional atomic
motions, thus displaying the weakness of the model.

N.B. Incidentally, note that at P� 0, we have: �
��

� (1/2)(�
�	

� �
��

)

The relations between the various gammas are summarized in Fig. 3.11.
That Grüneisen’s parameter varies with pressure clearly appears from

the calculations, but the variation depends on how the sound velocities or
the elastic moduli vary with pressure and the data do not always exist or, if
they exist, they are not always easy to extrapolate to high pressures.
Depending on which equations of state (i.e. K� f (P)) are used, the results
may widely differ (Irvine & Stacey, 1975).

A useful empirical law relates the Grüneisen parameter to the density 

(O. L. Anderson, 1979):

�
�� const (3.84)

with values of q between 0.8 and 2.2 acceptable for the lower mantle.
Boehler & Ramakrishnan (1980) determined the pressure dependence of

the thermodynamic gamma by measuring the temperature change asso-
ciated with adiabatic compression up to 5 kbar, using the expression:

�
��

�
�K

	

C

�

�
K

	
T �

�T
�P�

	

they found values of q between 0.6 (for Fe) and 1.7, with an average value of
1.3 for metals and alkali halides.

It is simpler, not necessarily more inaccurate in view of all the other
sources of uncertainty, and often experimentally correct to assume that
q� 1. Indeed, O. L. Anderson (1998) finds that, for MgSiO



perovskite, q

varies from 1.12 to 0.82 between 800 and 1800K, and Fei et al. (1992) find
that q� 1.1 for magnesiowüstite (Mg

���
, Fe

���
)O. From q� 1, it follows

that:

�
 � �
�


�
� const (3.84)

The formula can be given some justification by considering the thermo-
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Table 3.3. Grüneisen parameters of some typical crystals

Crystal �
��

�
�

�
�	

�
��

�
��

�
�

�
��

Source

MgO 1.52 1.41 A
1.54 1.12 0.78 0.45 0.92 0.95 QM (a)
1.54 1.89 1.55 1.22 1.40 1.48 QM (b)

Al
�
O



1.13 1.15 A
1.28 1.92 1.59 1.25 1.25 1.39 QM (b)

MgAl
�
O

�
1.40 0.67 A
1.40 2.18 1.84 1.51 0.44 0.85 QM (b)

Mg
�
SiO

�
1.16 1.49 A
1.18 2.39 2.05 1.72 1.26 1.51 QM (b)

SrTiO



1.63 1.96 A
Fe 1.65 3.14 2.80 2.47 2.26 2.48 QM (a)

1.65 2.65 2.31 1.98 1.76 1.99 QM (b)

Notes: �
��

� thermodynamic gamma; �
�
� acoustic gamma; �

�	
�Slater gamma;

�
��

�Dugdale—MacDonald gamma; �
��

�Vashchenko—Zubarev gamma;
�
�
�Debye gamma; �

��
�Debye—Brillouin gamma.

Sources: A: O. L. Anderson (1988). QM (a): Quareni and Mulargia (1988)
(Hashin—Shtrickman). QM (b): Quareni and Mulargia (1988) (Voigt—Reuss—Hill).

dynamic gamma: �
��

� �K
�
/
C

�
; at high temperature in the classical limit

C
�
� 3nR, and:

�
�
�K

�
3nR

(3.86)

Now, there is reasonable experimental evidence that �K
�

remains con-
stant at high temperatures for a number of crystals (Birch, 1968; Brennan &
Stacey, 1979; Steinberg, 1981).

The Grüneisen parameter can reasonably be considered as independent
of temperature to a first approximation (Irvine & Stacey, 1975).

Table 3.3 gives values of the various gammas for a few important crystals
and mantle minerals, from Quareni and Mulargia (1988) and O. L. Ander-
son (1988). Two observations can be made:

(i) For all materials, the values of gamma at ambient pressure roughly lie
between 0.5 and 3 and are generally close to 2.

(ii) For a given material the values of gamma vary widely, depending of
course on which gamma is calculated, but also on the origin of the
experimental data used and even on the way the elastic data are
averaged (Voigt—Reuss—Hill or Hashin—Shtrickman).
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Figure 3.12 Harmonic curve of interatomic potential. The equilibrium interatomic
distance r



corresponds to the minimum of the parabolic curve.

3.6 Harmonicity, anharmonicity and quasi-harmonicity

3.6.1 Generalities

Let us come back to the schematic case of a lattice of atoms vibrating as
harmonic oscillators about their equilibrium position. The restoring force
F� k(r� r



) is proportional to the elongation r� r



, and the symmetrical

interatomic pair potential is parabolic (Section 3.2.1) (Fig. 3.12). This case
corresponds to the linear infinitesimal elasticity, with elastic moduli inde-
pendent of strain (or stress).

In reality, the equilibrium distance between atoms r



is determined by
the balance between a long-range attractive force and a short-range repul-
sive force. The interatomic potential E(r) can be expressed as the sum of an
attractive and a repulsive potential e.g. by Mie’s formula:

E(r)��
a

r�
�
b

r�
(3.87)

with n�m, since the repulsive potential has a shorter range. A simple case
is that of ionic crystals, for which m� 1 (Coulombic attraction) and n� 9
(Born potential). The curve of bond energy (Fig. 3.13) is therefore asymmet-
rical, steeper towards small interatomic distances. This results in non-
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Figure 3.13 Anharmonic curve of interatomic potential (bold curve). The potential
is the sum of the attractive Coulombic potential and a short-range repulsive
potential (thin curves). The osculatory parabola at r� r



(dashed curve) corre-

sponds to the harmonic approximation.

linear anharmonic oscillations. As the interatomic spacing decreases with
increasing applied pressure, the restoring force (i.e. the opposite of the slope
of the curve) increases more rapidly than in the harmonic case: compres-
sion becomes more and more difficult, in other words the bulk modulus
increases with pressure.

Of course, near its minimum, the curve of bond energy can be assimilated
to its osculatory parabola (with the same curvature) and the linear approxi-
mation is valid.

3.6.2 Thermal expansion

Another important consequence of the asymmetry of the potential curve
appears when temperature is taken into consideration. At low tempera-
tures, the quantized energy levels are near the bottom of the potential well
and the vibrational amplitudes are small; the harmonic approximation
holds. However, as temperature increases, the energy levels climb higher up
in the well and the amplitudes increase. The asymmetry of the well cannot
be neglected any longer and causes the oscillations to become non-
sinusoidal or, in other words, anharmonic.

The interatomic distance oscillates between r
�

and r
�
, with r

�
� r



�

r


� r

�
, i.e. the extension of the bond is greater than its compression (Fig.
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Figure 3.14 Thermal expansion. At T � 0K, the interatomic potential is minimum
for the equilibrium distance r



. At a finite temperature, the potential E(T ) is higher

and due to the asymmetric shape of the anharmonic curve, the equilibrium distance
is the average between r

�
and r

�
, which is greater than r



.

3.14). In addition, the restoring force is smaller on the extension side, so
that, on average, the bond spends a longer time in extension than in
compression. The mean value of the bond length becomes longer than the
equilibrium value at low temperature: r

�
� r

�
� 2r



.

The asymmetry of the potential curve of anharmonic solids can be seen
as the cause of thermal expansion. However, it does not follow that the
coefficient of thermal expansion of harmonic solids is zero (nor that their
bulk modulus is independent of pressure). Stacey (1993a) has shown that,
for a 3-D harmonic lattice, K�

�
� 1 and that the Grüneisen parameter is

necessarily negative, which implies that the coefficient of thermal expan-
sion is negative.

We have already seen (Section 2.3.3) that we can relate thermal expan-
sion to thermal pressure by considering that heating a solid at constant
volume increases the internal (negative) pressure, which, in turn, would
cause the solid to expand if the constraint of constant volume were lifted:

�
�P
�T�

�

� �K
�
� �

��

C

�

The Grüneisen ratio is therefore a good parameter of anharmonicity and
we have seen in Section 3.5 that it can be related to dK/dP, which is also
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linked to the bond asymmetry. It can also be expressed as a function of the
exponents m and n of the bond potential in Mie’s formula (3.87) (Zwikker,
1954). By expanding the potential E(r) in a series of powers of the vibra-
tional elongations, the thermal energy can be expressed as a function of m
and n and Grüneisen’s parameter is found to be (see also Section 4.4):

�
��

�
1

2
�
m� n

6
(3.88)

It is possible to introduce an intrinsic anharmonic parameter a
�
for every

vibration mode, that can be experimentally determined by measuring
separately the variation with temperature and pressure of the mode fre-
quencies by infrared or Raman spectroscopy (Gillet et al., 1989). There are
therefore two mode Grüneisen parameters:

�
���

���
� ln�

�
� ln V�

�

and �
���

���
� ln�

�
� ln V�

�

We can write:

d ln�
�
� a

�
dT � �

���
d ln V � a

�

�T
�P
dP��a�

�T
� ln V

� �
���� d ln V

(3.89)

Hence:

�
� ln�

�
� ln V�

�

�� �
���

� a
�

�T
� ln V

� �
���

or:

a
�
��

� ln �
�

�T �
�

� �(�
���

� �
���

) (3.90)

We can also deal with the effect of temperature on the vibration modes
and elastic moduli by considering that an increase in temperature causes an
increase in volume by thermal expansion and calculating the effect of the
increase in volume on the elastic properties through quantities such as
� d lnK/d ln V � dK/dP. This is the so-called quasi-harmonic approxi-
mation, which takes into account the effect of temperature through the
volume change due to thermal expansion only. In the quasi-harmonic
approximation, the vibrations are considered to be harmonic about the
new equilibrium positions of the atoms corresponding to the expanded
state.
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Table 3.4. Typical values of thermal expansion coefficient

Mineral P (GPa) T (K) �(10��/K) Reference

MgO 0 298 3.1 (Suzuki, 1975)
�-Mg

�
SiO

�
(forsterite) 0 1700 2.5 (Isaak et al., 1989)

�-Mg
�
SiO

�
0 23 2.7 (Suzuki et al., 1979)

MgSiO



(perovskite) 0 298—381 2.2 (Ross & Hazen, 1989)
MgSiO



(perovskite) 10.7 677—1024 1.9 (Wang et al., 1994)

MgSiO



(perovskite) 0—20 298—773 1.8—2.5 (Utsumi et al., 1995)
MgSiO



(perovskite) 25 298—1473 2.0 (Kato et al., 1995)

MgSiO



(perovskite) 30 2000 2.1 (Funamori et al.,
1996)

MgSiO



(perovskite) 0 300—1600 2.6 (Jackson & Rigden,
1996)

Fe 243 4500 1.3 (Stacey, 1993)

However, we must not overlook the fact that there are anharmonic
effects due to temperature that are not accounted for by the quasi-har-
monic approximation (e.g. changes in the electronic configuration of the
bonds). D. L. Anderson (1987, 1988) distinguishes between the intrinsic
derivatives of the elastic moduli expressing the effect of temperature or
pressure at constant volume and the extrinsic, or volume-dependent de-
rivatives. They are conveniently expressed as dimensionless logarithmic
derivatives with respect to specific mass 
 (Dimensionless Logarithmic
Anharmonic or DLA parameters).

An often-used DLA parameter (D. L. Anderson, 1987a) is theAnderson—
Grüneisen parameter (proposed by O. L. Anderson) �

�
or �

	
:

�
�
� �

� ln �
� ln V�

�

��
1

��
� lnK

�
�T �

�

� �
� lnK

�
� ln
 �

�

(3.91)

�
	
��

� ln �
� ln V�

	

��
1

��
� lnK

	
�T �

�

��
� lnK

	
� ln
 �

�

(3.92)

The Anderson—Grüneisen parameter embodies the pressure dependence
of the thermal expansion coefficient. Chopelas and Boehler (1989) deter-
mined the pressure dependence of the thermal expansion coefficient of
MgO and forsterite by putting experimentally determined values of ther-
modynamic parameters in the equation:

� �
K

	
C

�
K

�
VT�

�T
�P�

	

They found values of �
�
� � (� ln �/� ln
)

�
equal to 6.5 and 6.1 respect-
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ively. A systematics of (� ln �/� ln
)
�

for many minerals yields an average
value �

�
� 5.5� 0.5. A more recent systematics has shown that �

�
is

proportional to the compression V/V
�

(Chopelas and Boehler, 1992). The
value of �

�
therefore decreases at high pressure.

Typical values of the thermal expansion coefficient for minerals are given
in Table 3.4.
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4

Equations of state

4.1 Generalities

The thermodynamic state of a system is usually defined by pressure P,
temperature T and specific volume V (or specific mass �), linked by the
equation of state (EOS) (see e.g. Eliezer et al., 1986). The best known EOS is
the one for ideal gases:

PV � RT

We are concerned here with the various possible EOSs for solids at high
pressures and high temperatures (see Zharkov & Kalinin, 1971; O. L.
Anderson, 1995a) because, in order to build compositional (mineralogical )
Earth models, it is indispensable to have an EOS for the regions of the
interior of the Earth, as well as for the candidate minerals. Inversion of
seismic travel-times yields seismic velocities at all depths (pressures), and to
compare the velocities, or the inferred values of densities or elastic moduli,
with those of mineral assemblages, one needs either to ‘‘compress’’ the
assemblages to high pressures or ‘‘decompress’’ the Earth material to
ambient pressure. Hence the need for EOS.

Since in the case of solids the effect of temperature is much less than for
gases, it is often introduced only as a thermal expansion correction to the
isothermal EOS : V(P) or �(P), which is the one usually experimentally
determined for minerals at high pressures (Stacey et al., 1981). We will
therefore start by considering isothermal equations of state (see reviews by
Boschi and Caputo, 1969; Stacey et al., 1981; and Poirier, 1999).

The simplest isothermal EOS one can think of, for solids, is given by the
definition of the bulk modulus K:

K ��
dP

d lnV
�

dP

d ln�
(4.1)
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If we consider infinitesimal strains resulting from the application of
hydrostatic pressure to an initially unstressed solid, we are in the case of
linear elasticity, with constant bulk modulus, and the EOS is obtained by
integrating (4.1) with K � K

�
:

V � V
�
exp��

P

K
�
� (4.2)

This simple EOS is obviously not correct for high pressures since it does
not take into account the fact that it is more andmore difficult to compress
the solid, i.e. that the bulk modulus increases with pressure. Seismic waves
in the Earth, as well as ultrasonic waves in laboratory experiments, propa-
gate in media that have undergone a finite strain under high pressure, and
even though the strain corresponding to the propagation of the waves can
be considered infinitesimal and treated in the linear approximation, we
must not neglect the fact that the large finite strain has modified the elastic
moduli of the medium.

4.2 Murnaghan’s integrated linear equation of state

Let us consider infinitesimal strains resulting from the application of
hydrostatic pressure P to a solid initially compressed to a finite strain by
pressure P

�
.

Murnaghan (1967) demonstrated that the effective local bulk modulus is
(see note, p. 71):

K �
1

3
(3�� 2� � P

�
) (4.3)

In the case of isotropic solids, this is equivalent to having three elastic
constants: �, � and P

�
. The constants � and � depend on the initial pressure

P
�
and are equal to �

�
and �

�
(Lamé constants of the solid in the natural

state) for P � P
�
. If we make the assumption that � and � are linear

functions of P
�
, the local bulk modulus is also a linear function of P

�
:

K �
1

3
(3�

�
� 2�

�
)� kP

�
(4.4)

where k is a constant.
Using (4.1), we have:

d ln� �
dP

K
�
� kP

�
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P
�
, being arbitrary, can be replaced by P and we obtain by integration:

P �
K

�
k ��

�
�
�
�
�
� 1� (4.5)

If we made the drastic assumption that � and � do not depend on P
�
, we

would have k � 1/3. If, now, we assume that the dependence of K on the
pre-applied pressure is the same as that of K

�
on pressure about P � 0, i.e.

if we assimilate k to K�
�
� (dK/dP)

���
, we can write (4.5) as:

P �
K

�
K�

�
��

�
�
�
�
���

� 1� (4.6)

which can also be written as:

�� �
��1�

K�
�

K
�

P�
�����

(4.7)

This is Murnaghan’s integrated linear EOS, (Murnaghan, 1967), usually
simply called Murnaghan’s EOS.

An equation formally identical to (4.6) could be derived by expanding K
to first order in P about P � 0:

K � K
�
� K�

�
P (4.8)

inserting (4.1) into (4.8) and integrating, but this apparently simpler pro-
cedure is not physically rigorous and hides the important role of the finite
strain.

The assumption that the bulk modulus is a linear function of pressure is also at
the basis of the polytropic equation of state used by astrophysicists (Eddington,
1930), which links the pressure inside a star, considered as a self-gravitating sphere
of perfect gas, to the density of the gas:

P � C��

where C and � are constants. We see that:

K � �
dP

d�
� �C��� �P

� is equivalent to K�
�
, but K

�
� 0, since density is zero for zero pressure in a gas.

Laplace (1825) also used the assumption that the bulk modulus is a linear
function of pressure to calculate the density at the center of the Earth (see Section
7.2.1).
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Figure 4.1 The distance ds between two neighboring points P, P� becomes dS after
straining, due to the nonuniformity of the displacement field u.

4.3 Birch–Murnaghan equation of state

4.3.1 Finite strain

The EOS most currently used, especially in the treatment of experimental
compression data of minerals, is the Eulerian finite strain Birch—Mur-
naghan EOS. In view of its importance, we will devote some space to
presenting it here, first introducing the necessary background, starting with
the expression for finite strain.

Let us consider a solid in the coordinate axes Ox
�
x
	

x


(Fig. 4.1), and let

ds be the distance between two neighboring points P of coordinates x
�

(i � 1, 2, 3) and Q of coordinates x
�
� dx

�
. We have:

ds	��
�

(dx
�
)	 (4.9)

Let points P and Q be displaced to P' and Q' by a displacement vector
u(x

�
), which is a function of the coordinates of the points:

P(x
�
)�P'(x

�
� u

�
)

Q(x
�
� dx

�
)�Q'(x

�
� dx

�
� u

�
� du

�
)

Since u is not constant for all points, which would correspond to a
rigid-body translation, the distance dS between P' and Q' is different from
ds: the solid undergoes a strain.

To define the notion of strain and perform all the necessary calculations,
we can use either of two schemes.
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• The Lagrangian scheme, in which one expresses the coordinates X
�
of a

point in the strained state as a function of its coordinates x
�
in the initial,

unstrained state:

X
�
� x

�
� u

�
(4.10)

• The Eulerian scheme, in which one expresses the coordinates x
�
of a

point in the initial unstrained state as a function of its coordinates X
�
in

the strained state:

x
�
� X

�
� u

�
(4.11)

The two schemes yield definitions of strain that are equivalent for
infinitesimal strain but not for finite strain. The Lagrangian scheme yields a
finite strain for an infinite pressure (see below), and anyway, the Eulerian
scheme is more physically meaningful for finite strain conditions, since
every quantity is expressed in terms of the coordinates of the points in the
strained solid, which are the experimentally accessible ones. As a conse-
quence, the Eulerian scheme is commonly used to determine experimental
equations of state and we will adopt it in what follows.

We have:

dS	� ds	� �
�

(dX
�
)	��

�

(dx
�
)	� 2�

�

dX
�
du

�
��

�

(du
�
)	 (4.12)

If the displacements u are continuous and differentiable functions of x
�
,

we have:

du
�
��

�

du
�

dX
�

dX
�

(4.13)

The Eulerian finite strain tensor �
��
is defined by:

dS	� ds	� 2�
��

�
��

dX
�
dX

�
(4.14)

with:

�
��
�

1
2�

�u
�

�X
�

�
�u

�
�X

�
��

1
2
�
�

�u
�

�X
�

�u
�

�X
�

(4.15)

For infinitesimal strains, we can neglect the quadratic term and we
obtain the definition of strain given by (2.1).

The Eulerian strain is sometimes written:
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�
��
�

1
2�	��

��
�

�x
�

�X
�

�x
�

�X
�
� (4.16)

where 	
��
� 1 if i � j and 	

��
� 0 if i � j.

N.B. It is easy to show that (4.16) is equivalent to (4.15) by carrying x
�
� X

�
� u

�into (4.16). We have then:

2�
��
� 	

��
� �

�
�
�X

�
�X

�

�X
�

�X
�

�
�X

�
�X

�

�u
�

�X
�

�
�X

�
�X

�

�u
�

�X
�

�
�u

�
�X

�

�u
�

�X
�
�

2�
��
� 	

��
� 	

��
� 	

��

�u
�

�X
�

� 	
��

�u
�

�X
�

��
�

�u
�

�X
�

�u
�

�X
�

which can be immediately reduced to (4.15).
N.B. The Lagrangian finite strain is:

�
��
�

1

2��
�

�X
�

�x
�

�X
�

�x
�

� 	
��� (4.17)

Let us now focus our attention on the isotropic compressional strain
caused by the application of hydrostatic pressure, and let us write:

�u
�

�X
�

�
�u

	
�X

	

�
�u



�X




�


3

(4.18)


��
�

�u
�

�x
�

�
�V
V

�

is the trace of the infinitesimal strain tensor.

From (4.15) and (4.18), we have:

�
��
� �	

��

with:

��


3
�

1

2


	

9
(4.19)

An elementary cube of volume V � (dX
�
)
 in the strained state had a

volume equal to V
�
��dX

��1�
�u

�
�X

�
��



in the unstrained state, hence:

V
�

V
�

�
�
�

� �1�
�u

�
�X

�
�


� �1�



3�




Using the simple trick of writing:

�1�


3�



���1�



3�

	

�

�	
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we see that:

�
�
�

��1�
2

3

�

	

9 �

�	

��1� 2�


3

�

	

18��

�	

� (1� 2�)
�	 (4.20)

As � (dilatation) is negative for positive pressures, we introduce the
‘‘compression’’ f �� �:

�
�
�

�
V

�
V

� (1� 2 f )
�	 (4.21)

We see that for infinitesimal strains, we obtain the well-known result:

�
�
�

�
V

�
V

� 1� 
 (4.22)

The isothermal bulk modulus at P � 0 is:

K
��

�� lim
���
�

PV
�V�

�

�� lim
���
�

P


�
�

(4.23)

and, since P �� �
�F

�V�
�

:

K
��

�� lim
���
�
1



�F

�V�
�

(4.24)

where F is the Helmholtz free energy.
Now, to first order, we have:

V
V

�

� (1� 2 f )�
�	� 1� 3 f (4.25)

and:

dV �� 3V
�

df

Since f tends toward zero with P, we can write:

9K
��

V
�
� lim

���
�
1

f

�F

�f �
�

(4.26)

Let us now expand the free energy F in powers of f. If we take the energy
of the unstrained state equal to zero and remembering that the elastic
strain energy is quadratic for infinitesimal strains, we have:

F � a(T ) f 	 � b(T ) f 
� c(T ) f �� · · · (4.27)
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4.3.2 Second-order Birch–Murnaghan equation of state

We will follow Bullen (1975) for the demonstration of the Birch—
Murnaghan EOS. Let us consider only the expansion of F to second order:

F � af 	 (4.28)

From (4.26) and (4.27), we obtain:

a �
9

2
K

��
V

�
(4.29)

The pressure is:

P ���
�F

�V�
�

���
�F

�f �
�

df

dV
(4.30)

Differentiating (4.21), we get:

dF

dV
� �

1

3V
�

(1� 2f )
�	 (4.31)

hence:

P � 3K
��

f (1� 2 f )
�	 (4.32)

Using (4.21), we can express f in terms of �/�
�
:

f �
1

2 ��
�
�
�
�
	�


� 1� (4.33)

and carrying it into (4.32), we obtain the second-order Birch—Murnaghan
equation of state (Birch, 1938, 1947):

P �
3K

��
2 ��

�
�
�
�
��


��
�
�
�
�

�


� (4.34)

The bulk modulus can be calculated directly from (4.34):

K �
�
�
�

dP

d�
�
�
�
�

(4.35)

K �
K

��
2 �7�

�
�
�
�
��


� 5�
�
�
�
�

�


� (4.36)

and, using (4.21) again:

K � K
��

(1� 7f )(1� 2f )
�	 (4.37)
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The seismic parameter � is, then, a simple polynomial in f:

� �
K

�
�

K
�

�
�

(1� 2f )(1� 7f )

or:

� ��
�
(1� 9f � 14f 	) (4.38)

The pressure derivative of the bulkmodulus is calculated from (4.37) and
(4.31):

�
dK

dP�
���

� K�
�
�

dK

df

df

dP

K�
�
�

12� 49f

3� 21f
(4.39)

It is interesting to note that purely from finite strain theory, we obtain
the numerical value K�

�
� 4, for the infinitesimal case f � 0. It turns out

that the experimental values of K�
�
for many close-packed minerals are

usually close to 4 (see Table 4.1, below).
Note also that K�

�
� 4 corresponds to reasonable values of the

Grüneisen parameters:

�
��

� 1.8 �
��

� 1.2

Introducing the value K�
�
� 4 in Murnaghan’s equation of state (4.6), we

can compare the pressure P' it predicts with the pressure P predicted by the
Birch—MurnaghanEOS (4.34) for the same values of �/�

�
. We see (Fig. 4.2)

that P' is slightly greater than P, but for values of �/�
�

 1.25 given by the

seismological PREM model for the lower mantle, the relative difference is
about 3%.

N.B. Let us consider the results we obtain if, expanding the strain energy to
second order in the finite strain f as we have done in (4.29), we calculate P, K and K�

�in the limit f � 0. We see from (4.32) that: P � 3f K
��

, when f � 0; we have from
(4.22): �/�

�
� 1� 3f, hence:

P � K
���

�
�
�

� 1�
K ��

�P

��
� K

��

�
�
�

� K
��

� P

This physically corresponds to a situation, where, having applied pressure P and
compressed the solid to a finite compression f, we then increase the strain f by
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Figure 4.2 Ratio R of the pressure given by the second-order Birch—Murnaghan
equation of state to the pressure given byMurnaghan’s equation (with K�

�
� 4) as a

function of �/�
�
(ratio of the density to the density at zero pressure) for the material

of the lower mantle. At the core—mantle boundary (CMB) R � 0.968.

infinitesimal increments. The effective bulk modulus is then increased by P (see
(4.3)).

4.3.3 Third-order Birch–Murnaghan equation of state

If we expand F to third order in f:

F � a(T ) f 	 � b(T ) f 
 (4.40)

we have:

P � 3K
��

f (1� 2f )
�	�1�
3bf

2a� (4.41)

For P � 0 ( f � 0), K � K
�
and K� � K�

�
. Expressing these conditions as

a function of the coefficients a and b yields the third-order Birch—Mur-
naghan EOS, after a simple, but tedious, calculation:

P �
3K

��
2 ��

�
�
�
�
��


� �
�
�
�
�

�


� �1�
3

4
(K�

�
� 4)��

�
�
�
�
	�


� 1�� (4.42)

usually written:

P �
3K

��
2 ��

�
�
�
�
��


��
�
�
�
�

�


��1� ���
�
�
�
�
	�


� 1�� (4.43)
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Table 4.1. Elastic moduli at room temperature of mantle materials, and
their pressure derivatives

Mineral K
�
(GPa) K�

�
�
�
(GPa) ��

�
Reference

�-(Mg
���

Fe
���

)
	
SiO

�
131.1 3.8 Zha et al. (1998a)

�-(Mg
���

Fe
���

)
	
SiO

�
126.3 4.28 78 1.71 Abramson et al. (1997)

�-Mg
	
SiO

�
129 4.2 79 1.4 Zha et al. (1998b)

�-Mg
	
SiO

�
128 4.44 80 1.32 Li et al. (1998)

�-Mg
	
SiO

�
125 4.45 77 1.79 Fujisawa (1998)

�-Mg
	
SiO

�
170 4.24 108 1.49 Li et al. (1998)

�-Mg
	
SiO

�
170 4.3 115 1.4 Zha et al. (1998b)

�-Mg
	
SiO

�
166 6.04 111 2.15 Fujisawa (1998)

�-(Mg
���

Fe
���

)
	
SiO

�
183 5.38 Zerr et al. (1993)

MgSiO


(Pv) 261 4 Funamori et al. (1996)

MgSiO


(En) [�4.2GPa] 123 5.6 Angel & Ross (1996)

MgO 153 4 Utsumi et al. (1998)

Pv�perovskite; En� enstatite.

Note that if K�
�
� 4, we obtain the second-order equation (4.34).

Static equations of state of minerals are currently obtained up to press-
ures of several hundred kilobar (tens of GPa) (e.g.Will et al., 1986) and even
sometimes above a megabar (100GPa) (Knittle and Jeanloz, 1987). The
method consists in measuring the lattice parameters by X-ray diffraction in
situ in a diamond-anvil cell at various pressures; the curve V/V

�
� f (P) is

usually fitted by a third-order Birch—Murnaghan EOS. However, there is a
trade-off between the values of K

�
and K�

�
and, in many cases, the accuracy

of the measurement is too low to obtain a good value of K�
�
, so K�

�
� 4 is

assumed (which, in fact, amounts to fitting the data by a second-order
Birch—Murnaghan EOS).

Knittle (1995) gives a review of the experimental techniques and the
values of K

�
and K�

�
for a great number of minerals. Recent values for

mantle minerals are given in Table 4.1.
The errors involved in parameter-fitting of the compression curves have

been analyzed by Bell et al. (1987). Angel and Ross (1996) point out that
fitting the compression curve with a unique equation of state may lead to
erroneous results when the mineral undergoes a structural change, as is the
case for orthopyroxene at 4.2GPa.

More generally, Stacey et al. (1981) andO. L. Anderson (1995a) note that
the Birch—Murnaghan equation is subject to a truncation problem due to
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the fact that the coefficient of the term of degree 4 of the polynomial
expansion of the free energy is larger than that of the term of degree 3,
leading to bad convergence for large strains . However, it turns out that the
coefficient of the term of degree 3 vanishes for K�

�
� 4, which accounts for

the fact that, despite its shortcomings, the second-order Birch—Murnaghan
equation works rather well in this case. Indeed, Stacey et al. (1981) write
that: ‘‘In spite of its apparently rigorous, classical origin, the Love—
Murnaghan—Birch formalism has no more fundamental theoretical basis
than [ . . . ] other, mostly completely empirical, approaches . . .’’, andO. L.
Anderson (1995a) remarks: ‘‘The long use and wide application of this
[Birch—Murnaghan] EoS has engendered for it a certain authority in the
literature. Nevertheless, this EoS, like all other isothermal EoSs, is based
on an unproven assumption. In this case, the EoS rests on the assumption
of Eulerian strain.’’

Wewill now examine an equation of state, based on another definition of
finite strain, that is free from many of the shortcomings of the Birch—
Murnaghan EOS.

4.4 A logarithmic equation of state

4.4.1 The Hencky finite strain

When the finite strain is defined by the change in distance between two
neighboring points during deformation (Section 4.3.1), the problem arises
of choosing between the Eulerian and the Lagrangian schemes. Now, the
Lagrangian and Eulerian strains behave very differently for large exten-
sions and compressions and are equivalent only for small strains.

As a function of V/V
�
or �/�

�
, the Eulerian and Lagrangian strains are:

�
�
�

1

2 �1��
V

�
V �

	�


��
1

2�1� �
�
�
�
�
	�


� (4.44)

and:

�
�
�

1

2 ��
V
V

�
�
	�


� 1��
1

2��
�
�
� �

	�

� 1� (4.45)

It is easily seen that for infinite extension (V ��) the Eulerian strain
takes the finite value �

	
, while for infinite compression (V � 0) the Lagran-

gian strain takes the finite value ��
	
. This obviouslymakes the Lagrangian

strain unsuitable for large compressions. However, the choice remains
fraught with an uncomfortable arbitrariness.
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Figure 4.3 Eulerian, Lagrangian, and Hencky strains (see text).

Engineers and structural geologists, dealing with large finite strains,
have taken a different approach (see e.g. Means, 1976; Poirier, 1985). In
uniaxial deformation (compression or extension), they do not take as a
reference state either the deformed or undeformed state. Instead, they
define an increment of strain d� corresponding to the increase (or decrease)
by dl of the current length l of a sample during deformation:

d��
dl

l
(4.46)

When the body undergoes a finite extension (or compression) from l
�
to

l, the total finite strain is:

�
�

��
	

	�

d�
�
� ln

l

l
�

(4.47)

The finite strain thus defined is called the Hencky strain (Fig. 4.3). For
compression under hydrostatic pressure, the Hencky strain has a simple
expression (Reiner, 1969, p. 43):

�
�
�

1

3
ln�

V
V

�
��

1

3
ln�

�
�

� � (4.48)

It is clear that the Hencky strain satisfactorily tends to � � for infinite
compression, and to �� for infinite extension.
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Figure 4.4 P/K
�

as a function of �/�
�

for the logarithmic (Log) and Birch—
Murnaghan EOS, for different values of K�

�
(K�

�
� 2, 3.5, 4, 5). BME: Birch—

Murnaghan Eulerian. BML: Birch—Murnaghan Lagrangian, V: Vinet.

4.4.2 The logarithmic EOS

An equation of state can be derived by expanding the free energy in powers
of theHencky strain (exactly as the Birch—MurnaghanEOSwas derived by
expanding the free energy in powers of the Eulerian strain). In this case the
convergence of the expansion is better.

For the expansion to second order, we obtain the simple expression
(Poirier and Tarantola, 1998):

P � K
�

�
�
�

ln
�
�
�

(4.49)

and to third order:

P � K
�

�
�
�

ln
�
�
�
�1��

K�
�
� 2

2 � ln
�
�
�
� (4.50)

Fig. 4.4 shows the compression curves P/K
�
� f (�/�

�
), for the logarith-
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mic and the Birch—Murnaghan EOS, and different values of K�
�
. We see

that, if the curves are very similar for K�
�
� 3.5, they diverge for K�

�
� 3.5

and K�
�

 3.5. In the latter case, the Birch—Murnaghan EOS would lead to

the unphysical result of negative pressures for very large compressions.

4.5 Equations of state derived from interatomic potentials

4.5.1 EOS derived from the Mie potential

Equations of state expressed as functions of (�/�
�
) can be justified by the

choice of appropriate interatomic attractive and repulsive potentials (see
Section 3.6) (Gilvarry, 1957a; Stacey et al., 1981).

Let us, for example, consider Mie’s potential (3.87):

F(r)��
a

r

�

b

r�
�� aV�
�
� bV���
 (4.51)

Adjusting a and b to obtain r � r
�
and K � K

�
for P � 0, we obtain:

F(V )�
9K

�
V

�
n � m ��

1

m�
V
V

�
�
�
�


�
1

n�
V
V

�
�
���


� (4.52)

and:

P �
3K

�
n � m��

V
�

V �
������
��

��
V

�
V �

����
�
��

�
(4.53)

�
3K

�
n � m��

�
�
�
�
������
��

��
�
�
�
�
����
�
��

�
K�

�
has the simple expression (see D. L. Anderson, 1989b):

K�
�
�

1

3
(m � n � 6) (4.54)

We see that the second-order Birch—Murnaghan equation is obtained for
m � 2 and n � 4 and that, as expected, we have K�

�
� 4.

N.B.: Using Slater’s relation (3.65):

�
��

��
1

6
�

1

2

dK

dP

we find an expression for Slater’s Grüneisen parameter for P � 0:

�
��

�
1

6
(m � n � 5) (4.55)
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For m � 2 and n � 4, Slater’s gamma is equal to 1.83.

In the case of ionic or ionocovalent crystals, it is physicallymore realistic to
take m � 1, corresponding to a Coulombic attractive potential, we then
obtain a Born—Mie potential:

F(V )�
9K

�
V

�
n � 1 ���

V
V

�
�
���


�
1

n�
V
V

�
�
���


� (4.56a)

which can be expressed in terms of the Hencky strain, given by (4.48)

F(�
�
)�

9K
�
V

�
n � 1 �� exp(� �

�
)�

1

n
exp(� n�

�
)� (4.56b)

Expanding F in powers of the Hencky strain to third order, and following
the same procedure as above, we find the logarithmic EOS (4.50).

Other equations of state, derived from various more or less empirical
interatomic potentials are given in Stacey et al. (1981).

4.5.2 The Vinet equation of state

At very high pressures, i.e. for large compressions, it is understandable that
EOSs derived from expansions of a potential truncated to low orders
become invalid. The Vinet EOS (Vinet et al., 1987, 1989), derived from an
empirical potential, has a special interest, since it gives good results for very
compressible solids, such as hydrogen (Hemley et al., 1990). It also gives
good results for MgSiO



perovskite (Hama and Suito, 1996, 1998).

Partly due to an unfortunate choice of notations, the derivation of the
EOS in the original paper (Vinet et al., 1987) is unnecessarily complicated.
It is, however, very simple to derive it, starting from the empirical potential
used by the authors, and following the same steps as above.

The empirical potential is:

F(a)� F
�
(1� a)exp(� a) (4.57)

where:

a �
r � r

�
l

(4.58)

and where r and r
�
have the same meaning as above and l is a scaling

length.
Taking V � (4/3)�r
, we find:
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P ��
�F(V )

�V
��

F
�

4�lr	
a exp(� a) (4.59)

and setting:

K
�
�

F
�

12�l	r
�

and:

K�
�
� 1�

2r
�

3l

yields the Vinet EOS:

P � 3K
��

V
V

�
�
�	�


�1� �
V
V

�
�
��


� exp�
3

2
(K�

�
� 1)�1��

V
V

�
�
��


�� (4.60)

The compression curves corresponding to the Birch—Murnaghan, logar-
ithmic and Vinet equations of state, for several values of K�

�
, are compared

in Fig. 4.4. We see that the curve for the Vinet EOS is situated between the
curves for the Birch—Murnaghan and logarithmic EOS, but closer to the
curve for the logarithmic EOS. It is remarkable that, for K�

�
� 3.5, all three

curves are practically indistinguishable.

4.6 Birch’s law and velocity–density systematics

4.6.1 Generalities

Having measured the compressional wave velocities v
�
of some 250 speci-

mens of rocks by ultrasonic methods, up to 10 kbar (1GPa), Birch (1961a)
found that at pressures above a few kilobars (whenmost cracks are closed),
the principal factors determining velocity were the specific mass � and the
mean atomic mass M
 (usually, although improperly, called ‘‘density’’ and
mean atomic ‘‘weight’’ respectively). The mean atomic mass is equal to the
sum of the atomic masses of all atoms in a formula unit, divided by the
number of atoms. The mean atomic mass of Mg

	
SiO

�
for instance is equal

to: M
 � (2� 24.3� 28.3� 4� 16)/7� 20.13. It turns out that most
close-packed mantle oxides and silicates have a value of M
 close to 20 (e.g.
20.12 for MgSiO



; 20.15 for MgO). In most cases, an increase in M
 above

these values corresponds to the replacement of magnesium by the heavier
iron. One can consider that, for the mantle M
 � 21.1 and for the core
M
 � 49.3.
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Figure 4.5 Velocity of P-waves at 1GPa vs specific mass for silicates and oxides.
The dashed lines show the trend for a constant mean atomic mass (after Birch,

1961a).

Birch (1961a) was able to fit the data corresponding to the same M
 by a
linear law (Fig. 4.5) and, for values corresponding to the mantle
(20� M
 � 22), he found:

v
�
�� 1.87� 3.05� (4.61)

with v
�
in km/s and � in g/cm
.

More generally, Birch (1961b) noted that: ‘‘The experimental data sug-
gest that, regardless of crystal structure, the representative points on the
velocity—density diagram will move along a line of constant mean atomic
weight,’’ and that, in general:

v
�
� a(M
 )� b� (4.62)

Also, isostructural compounds plot on lines roughly perpendicular to
the iso-M
 lines.

Birch further wrote: ‘‘As a provisional hypothesis, it will be postulated that
the velocity—density relations, as expressed above, hold for all changes of
density in the Earth’s mantle, however produced.’’ In other words, the
changes in density produced by compression or by replacing a mineral by
an ‘‘analog’’ compound of same M
 but of different chemical composition,
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cause the same change in elastic wave velocity. Forty years later, the
‘‘provisional hypothesis’’ still holds and relation (4.62), known as Birch’s
law, has given rise to the vast field of velocity—density systematics on
analog compounds.

Analog compounds of minerals relevant to geophysics (mostly silicates)
are usually isostructural crystals (see below for the importance of structure)
with different cations: in the perovskite structure, for instance, silicon can
be replaced by germanium, titanium or even aluminum, while magnesium
and iron can be replaced by other alkaline earths or transition elements
(Liebermann et al., 1977). The replacement of divalent oxygen by the
univalent fluoride anion gives rise to another class of analogs: fluorides,
with weaker ionic bonds, which are indeed rather good models of oxides
(e.g. BeF

	
for SiO

	
) and have been used to infer their elastic or thermal

properties (Jones and Liebermann, 1974; Jackson, 1977).
The velocity—density systematics are currently used for three main pur-

poses (Liebermann, 1973):

• Determining the density profiles from measured seismic velocities in
regions of the mantle assumed to be chemically homogeneous.

• Assessing the chemical homogeneity of regions of the mantle and relat-
ing the inhomogeneity to changes in chemical composition.

• Relating the velocity jump at seismic discontinuities to the density
increase known to occur for certain phase transitions.

The contribution of this approach to geophysics has been immense, but
specific conclusions are usually not unique and must sometimes be taken
with a grain of salt. Indeed, Schreiber and Anderson (1970) found that
Birch’s curves for various rocks such as diabase, gabbro and eclogite, fitted
the data on various cheeses extremely well and that it was not possible to
reject the hypothesis that the Moon is made of green cheese, on acoustic
grounds.

As the elastic wave velocities depend on the elastic constants and den-
sity, Birch’s law is indeed an equation of state, if the changes in density are
assumed to be produced by hydrostatic pressure. Furthermore, if one
justifiably assumes that the velocities are insensitive to frequency at first
order, i.e. that the velocity—density relationship established in the labora-
tory at ultrasonic frequencies (� 1MHz) is valid for seismic frequencies
(� 10Hz), we have then a seismic equation of state (D. L. Anderson, 1967).

In what follows, we will try to extract the most important results from a
considerable amount of published literature and, for details, we will refer
the reader to the original papers and review articles (e.g. Wang, 1978;
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Figure 4.6 Bulk sound velocity vs specific mass for metals, from shock-wave data
(solid curves). The corresponding atomic masses are indicated. The curves (dashed)
for mantle and core materials, from seismic data, are also shown (after Birch, 1963).

Liebermann, 1973, 1982; O. L. Anderson, 1988). We will deal only with
bulk-velocity—density systematics, since, despite some attempts (Davies,
1976), the systematics on shear velocity are extremely unreliable, due to the
great influence of the structure-sensitive non-central bonding forces in
shear.

4.6.2 Bulk-velocity–density systematics

Using published values of the bulk (or hydrodynamical) velocity v� �

��� �K/�, obtained by shock-wave experiments or isothermal com-
pression on metals, Birch (1961b, 1963) found that the bulk-velocity—den-
sity plots occurred in a sequence corresponding to the sequence of the
atomic numbers of the metals (Fig. 4.6). Superimposing on the plots of the
metals the plots corresponding to the mantle and to the core obtained from
seismic data, Birchwas led to the conclusion that themantle was composed
of light elements and that the core was essentially made of iron. McQueen
et al. (1964), using shock-wave data, obtained a bulk-velocity—density
Birch’s diagram for oxides and silicates (Fig. 4.7).

Wang (1968a) used an experimental shock-wave equation of state to
show that the bulk-velocity—density plot for MgO was indeed linear up to
1.26Mbar (126GPa), in agreement with Birch’s postulate. He established a
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Figure 4.7 Bulk sound velocity vs specificmass for minerals and rocks of themantle
and crust. Themean atomicmass is indicated. The solid line is the locus of the points
corresponding to material of mean atomic mass 20.1 (after McQueen et al., 1964).

systematics similar to that of McQueen et al. (1964) with an equation:

v�� a(M
 )� b� (4.63)

For the values 20� M
 � 22 corresponding to mantle minerals, Wang
proposed:

v��� 1.75� 2.36� (4.64)

Wang (1970) compared the plots of �/�
�

vs �/�
�

corresponding to
the empirical relationship (4.64) with the plot derived from the Birch—
Murnaghan expression of the seismic parameter:

�
�

�

� 7�
�
�
�
�
��


� 5 �
�
�
�
�
	�


(4.65)

He found that the values of �/�
�
at given �/�

�
, predicted by the linear

relation, with coefficients consistent with experimental data were only 1%
higher than those predicted by the Birch—Murnaghan EOS.
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Shankland (1972, 1977) and Chung (1972) showed that Birch’s law was
consistent with Debye’s theory: The sound velocity is v�

�
��/k and we

have, from (3.28) and (3.56):

d ln v�
�

d ln �
� �

�
�

1

3
(4.66)

As the values of Grüneisen’s ratio for most materials are in the range of 1
to 2, the slopes of the constant mean atomic mass lines in Birch’s diagram
are roughly identical as a consequence of the near constancy of �

�
for the

‘‘isochemical’’ compounds. Integration of (4.66) would lead to a power law
(see 4.68 below) and Chung (1972) showed that Birch’s law is a linearization
of the power law over a certain range of densities corresponding to those of
most rocks and minerals.

Chung (1972) and Shankland (1972), using a reasoning based on in-
teratomic potentials for ionic crystals, also proposed that the isostructural
variation of the bulk velocity with M
 is given by:

�
d ln v�
d lnM
 �

�������

��
1

2

or

v��M
 � const (4.67)

This relation can be justified by considering the acoustic velocity:

v�
�
�

�
k

��R
�

where R
�
is the interatomic distance at equilibrium and remembering that

for harmonic atomic oscillations, the frequency � is given by:

���
E�
�

m

where E�
�
is the second derivative of the cohesive energy with respect to

interatomic distance and m is the mass (see Section 3.2.1). For interatomic
potentials appropriate for ionic crystals, such as (3.15), the cohesive energy
is given by (3.18) and we have:

E�
�
�

N�q	(n � 1)

R

�

hence:

v�
�
��

N�q	(n � 1)

mR
�

�
��	

(4.68)
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The quantity �q	(n � 1)/R
�
is practically constant for a given structure and

M
 is proportional to m. It follows that the logarithmic derivative of the
velocity with respect to the mean atomic mass is equal to � �

	
, hence

equation (4.67).
The relation (4.67) has been verified for various oxides (Chung, 1972)

(Fig. 4.8) and also for the geophysically interesting compounds with il-
menite (Liebermann, 1982) and perovskite (Liebermann et al., 1977) struc-
tures (Fig. 4.9).

Birch’s postulate that, whatever the cause of the density change, the
relation between v� and � can be represented by a straight line of constant
slope, must be somewhat qualified, although it remains valid as a general
principle. It appears, for instance, that crystal structure has some effect on
the coefficient b of the linear relation (4.63): the slope of the iso-M
 lines
tends to be smaller (b � 3) for close-packed structures such as corundum,
rocksalt and perovskite than for open structures such as olivine, pyroxene
or quartz (b � 4) (Liebermann, 1982). Furthermore, when the density
change is caused by a phase transformation, b tends to be smaller when
there is an increase in coordination than when the coordination remains
unchanged (Liebermann and Ringwood, 1973; Liebermann, 1982).

A power-law form of the bulk-velocity—density relation can indeed be
derived from (4.66), which we can write:

v�� a(M
 )������
� (4.69)

D. L. Anderson (1967, 1989b) proposed a power-law seismic equation of
state, derived from the expression of pressure in terms of interatomic
potentials (see Section 4.5). Following Gilvarry (1957), Anderson writes
equation (4.53) as:

P � (N � M)��K
���

�
�
�
�
�
��

�
�
�
�
�

� (4.70)

with: N � 1� (n/3) and M � 1� (m/3). Taking the derivative of pressure
with respect to density and remembering that � � dP/d�, we have:

� ��
�
(N � M)���N�

�
�
�
�
���

� M�
�
�
�
�
���

� (4.71)

and:

d ln�
d ln �

�
�
�
�
�N(N � 1)�

�
�
�
�
��	

� M(M � 1)�
�
�
�
�
��	

�
·�N�

�
�
�
�
���

� M�
�
�
�
�
���

�
��
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Figure 4.8 Bulk sound velocity vs mean atomic mass for various minerals. For
minerals of the same structure and different chemical composition (e.g. Fe content),

the empirical relation v�� M
 ���	 is verified (after Chung, 1972).
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Figure 4.9 Bulk sound velocity vs mean atomic mass for crystals with ilmenite
structure (a) and perovskite structure (b) (after Liebermann, 1982).
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If �/�
�
� 1, i.e. for small compressions, we have:

d ln�
d ln �

� N � M � 1�
1

3
(n � m � 3) (4.72)

or:

�
�
�

��
�
�

�
�

����
�
�

(4.73)

Taking into account the expression for Slater’s gamma (4.55), we can
write:

�
�
�

��
�
�

�
�
��	��������
��

(4.74)

identical to (4.69). Note that (4.74) can be written:

d ln�
d ln�

� 2 �����
1

3� (4.75)

For N � 4� K�
�

and M � 0, equation (4.69) becomes Murnaghan’s
linear integrated EOS and (4.73) becomes:

�
�
�

� �
�
�

�
�
��


(4.76)

which, of course, can be directly obtained by taking the derivative of (4.6),
with K�

�
� 4:

��
dP

d�
��

��
�
�
�
�
�����

(4.77)

For N � 7/3 and M � 5/3 (n � 4, m � 2), equation (4.70) becomes the
Birch—Murnaghan EOS and we also have:

�
�
�

� �
�
�

�
�
��


(4.78)

which corresponds to a value of Slater’s gamma of 1.83.
From an experimental correlation on 31 minerals and rocks, Anderson

(1967) gives:

�
M


� 0.048���
	
 (4.79)

in good agreement with the theoretical considerations (Fig. 4.10).
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Figure 4.10 Seismic equation of state for selected rocks and minerals (after
Anderson, 1967).

Equation (4.78) can be written:

ln� �
1

3
ln�� const�

1

3
(lnK � ln�)� const

or:

lnK � 4 ln�� const (4.80)

Relation (4.80) can be directly derived by setting dK/dP � 4 in

� �
d ln K

d ln�
��

d lnK

d lnV
�

dK

dP

Anderson and Nafe (1965) verified that in the case of oxides the slope of
the �—V logarithmic plot takes values between � 4 and � 3, whether the
change in volume is due to compression or compositional variation. How-
ever, alkali halides, fluorides, sulfides and covalent compounds behaved
differently and obeyed a relation:

K
�
V

�
� const (4.81)
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Figure 4.11 The product KV
	
of the bulk modulus by the molar volume is almost

constant for materials of the same crystal structure and independent of the mean
atomic mass (after Chung, 1972).

where the bulk modulus and the specific molar volume are taken at
ambient pressure.

Anderson and Anderson (1970) and Chung (1972) showed that the
relation (4.81) is indeed applicable to oxides, provided they have the same
structure (Fig. 4.11 ). This results from the near constancy of the quantity
�q	(n � 1)/R

�
, in (4.68), which is equal to K

�
V

�
(or K

�
R


�
), (see (3.20)).

4.7 Thermal equations of state

So far, we have only dealt with isothermal equations of state, whose
material parameters are experimentally determined at room temperature.
We will now consider equations of state valid at high temperatures (above
Debye temperature) or with explicit temperature dependence. For a recent
review see O. L. Anderson (1995a).
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Figure 4.12 Experimentally determined thermal pressure (relative to the thermal
pressure at room temperature) vs T/�

�
(�

�
�Debye temperature). In most cases

the thermal pressure is proportional to temperature (after O.L. Anderson, 1984).

(i) At temperatures above the Debye temperature, we already know, of
course, one appropriate EOS: the Mie—Grüneisen equation of state (3.53).
However, it has the important drawback of containing a thermal pressure
term: P

�

� �

�

E
�

/V, which is not directly accessible to experiment. O. L.

Anderson (1984) circumvented the difficulty by proposing for P
�


an em-
pirical expression, independent of volume and linear in temperature:
P
�


� a � bT. The coefficients a and b are given a physical meaning by
writing the thermal pressure along an isochore:

P
�


��
�

�
�
�P

�T�
�

dT ��
�

�

�K
�

dT (4.82)

Assuming that �K
�

is a constant independent of temperature for
T ��

�
, an assumption valid in most cases (Birch, 1968; Brennan and

Stacey, 1979; O. L. Anderson, 1980), Anderson finds:

P
�


� ��
��

�

�K
�

dT � �K
�
(T ��

�
) (4.83)
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The Mie—Grüneisen EOS, thus modified, is claimed to be universal, as
the linear correlation (4.83) holds for most materials (Fig. 4.12). The bulk
modulus can be measured at high temperatures by resonance methods
(Sumino et al., 1983) and the thermal expansion coefficient � can be
measured by dilatometry.

(ii) Brennan and Stacey (1979) derived a high-temperature, ther-
modynamically based EOS by equating the expression of the ther-
modynamic gamma (3.55) with that of the Vaschenko—Zubarev gamma
(3.81), both valid in the classical high-temperature range (T ��

�
). If

C
�
� const and (dK

�
/dT )

�
� 0, �K

�
is independent of T and P (or �) and

we can write:

� � �
�
x��

with x ��/�
�
. Denoting the derivatives with respect to x by primes, we

have:

K � xP� (4.84)

dK

dP
� 1�

xP�
P�

(4.85)

Inserting (4.84) and (4.85) into the expression of the Vaschenko—Zubarev
gamma (3.81), Breenan and Stacey obtain a differential equation:

9x
P�� (6x	� 18�
�
x)P�� (4x � 24�

�
)P � 0 (4.86)

whose solution is the EOS:

P �
K

�
2�

�
�

�
�
�
�
��


�exp�2���1�
�
�
�
��� 1� (4.87)

K �
K

�
3�

�
�

�
�
�
�
��


��2
�
�
�

� 3�
�� exp�2�� �1�

�
�
�
��

�	 �
�
�
� (4.88)

For P � 0, K�
�
� 2�

�
� 5/3 and for infinite pressure, K� asymptotically

tends to 4/3.

(iii) Gilvarry (1957a) started from the isothermal general form of equa-
tions of state (4.53), which he wrote:

P � (N � M)��K
���

V
�

V �
�
��

V
�

V �
�

� (4.89)

K � (N � M)��K
��N�

V
�

V �
�
� M�

V
�

V �
�

� (4.90)
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and he generalized it to arbitrary temperatures by replacing V
�
and K

�
by

quantities V and K, functions only of temperature. The temperature
dependence of V and K is determined by considerations of ther-
modynamic consistency, writing that the expressions of (�P/�T )

�
and

(�K/�T )
�
obtained by differentiating (4.89) and (4.90) are equal to:

�
�P

�T�
�

� �K
�

and:

�
�K

�T�
�

�� �V�
�K

�V�
�

� K	�
��
�P�

�

After various reasonable approximations, Gilvarry finds:

V(T )� V
�
exp��

�

�

�
�
dT� (4.91)

K(T )� K
�
exp� �

�

�

�
�
�
�

dT� (4.92)

with � �� K����
��
�P�

�

.

V(T ) and K(T ) are thus the volume of the solid at temperature T and
zero pressure and the bulk modulus at temperature T and zero pressure
respectively. The equation of state obtained by replacing V

�
and K

�
by

V(T ) andK(T ) in (4.89 and 4.90) can be approximated at high pressure by
retaining only the first terms in the expansion of the exponentials:

P � P(T
�
)� (N � M)��K

� �N�
V

�
V �

�
� M�

V
�

V �
�

��
�

�

�
�

dT (4.93)

Gilvarry found a very good agreement between the pressure as a func-
tion of compression measured for potassium at 77K and the prediction of
his EOS based on experimental results at 4.2K.

(iv) Recent progress in experimental techniques at high pressures and
temperatures, and the use of synchrotron radiation has made it possible to
obtain thermal equations of state of mantle minerals in relevant pressures
and temperature ranges (see e.g. Jeanloz and Hemley, 1994). In more and
more cases, the derivatives of the bulk modulus and the thermal expansion
coefficient with respect to pressure and temperature are measured.
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The P—V—T equation of state of magnesiowüstite (Mg
���

, Fe
���

)O has
been determined up to 30GPa and 800K (Fei et al., 1992). The thermoelas-
tic properties of (Mg, Fe)SiO



perovskite have been investigated by Wang

et al. (1994) up to 11GPa and 1300K, and those of MgSiO


by Funamori

et al. (1996) up to 30GPa and 2000K and by Fiquet et al. (1998) up to
57GPa and 2500K. Dubrovinsky et al. (1998), using X-ray diffraction at
high temperature and pressure, determined the equation of state of corun-
dum (Al

	
O



) and �-iron up to 68GPa.

Experimental results have also been used in thermodynamicmodeling of
the high-temperature, high-pressure thermoelastic properties of the silicate
perovskite (O. L. Anderson, 1998; Hama and Suito, 1998).

A thorough critical analysis of the experimental data and of the con-
straints on the P—V—T equations of state of mantle minerals has been
provided by Jackson and Rigden (1996) and Jackson (1998), and in the case
of silicate perovskite by Bina (1995), who points out the importance of
measuring the thermoelastic properties in the stability field of the mineral.

4.8 Shock-wave equations of state

4.8.1 Generalities

Although pressures up to above 5Mbar (500GPa) have been obtained in
diamond-anvil cells (Xu et al., 1986), in practice, equations of state of
minerals obtained by static compression using the diamond-anvil cell
cover a pressure range seldom extending above 1Mbar (100GPa). For the
measure of density as a function of pressure from 1 bar (100 kPa) to
3.7Mbar (370GPa) (pressure at the center of the Earth), the shock-wave
technique still has no competitors. Shock waves are generated in target
samples by a variety of methods, essentially using explosives or high-
velocity projectiles launched by a light-gas (hydrogen) gun. The quantities
measured are the shock-wave velocity and the ‘‘particle velocity’’ (i.e. the
velocity imparted to the particles of the sample by the shock wave) as well
as the temperature. Details on the experimental apparatus and methods of
measurement are given in review articles (Ahrens, 1980, 1987).

The results of the shock-wave experiments are embodied in Hugoniot
curves or ‘‘Hugoniots’’, loci of the peak shock states achieved from the
initial state by experiments with different impact velocities. The Hugoniots
are usually given as Pressure vs Density curves or sometimes as Pressure vs
Volume curves. Typically, they exhibit several stages (Fig. 4.13).

(i) Up to the pressure of the Hugoniot Elastic Limit (HEL), which can
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Figure 4.13 Typical Hugoniot curve showing theHugoniot elastic limit (HEL). The
hydrostatic compression curve (hydrostat) of the low-pressure phase is given for

comparison (after Ahrens, 1980).

vary from about 0.2GPa (for halite) to about 20GPa (for diamond),
the regime is one of finite elastic strain, corresponding to the propaga-
tion of the longitudinal shock wave.

(ii) Above the Hugoniot elastic limit, the material yields plastically at the
microscopic level and loses most or all of its shear strength, behaving
in effect hydrostatically like a fluid. The Hugoniot then differs little, if
at all, from the theoretical hydrostatic Hugoniot or ‘‘hydrostat’’.

(iii) Most Earth materials at high pressure exhibit one or several phase
transitions toward higher-density phases, giving rise to new stages on
the Hugoniot corresponding to the behavior of the high-pressure
phases. Between the low-pressure phase and the high-pressure phase
regimes (and between successive high-pressure phase regimes), a tran-
sitional ‘‘mixed-phase regime’’ occurs.

It is important to note that the Hugoniot is just the locus of the final
shock state achieved, but that it is not the thermodynamic path followed by
the material. In other words, ‘‘successive shock states along the Hugoniot
cannot be achieved one from another by the shock process’’ (Ahrens, 1987).
The actual thermodynamic path followed is a straight line from the initial

954.8 Shock-wave equations of state



Figure 4.14 Profile of a shock wave propagating with velocity U
�
in a material of

density �
�
and energy E

�
at rest. Behind the front, the density, pressure, and energy

are �, P, and E, respectively, and the particle velocity is u
�
.

to the final state, called the Rayleigh line (see below). Similarly, the press-
ure—density relation represented by the Hugoniot in the low- or high-
pressure phase regimes does not correspond to an isothermal equation of
state, any more than it is adiabatic. Isotherms or isentropes (adiabats) can
however be derived from the Hugoniot (reduction of the Hugoniot to
isothermal EOS) (see below).

We will now derive the Rankine—Hugoniot equations governing the
thermodynamics of shock-wave experiments.

4.8.2 The Rankine–Hugoniot equations

Let us consider a steady planar shock front, with a rise time short com-
pared to the characteristic decay time, propagating in a solid at rest (Fig.
4.14). The shock front propagates with a velocity U

�
with respect to the

frame of reference of the laboratory and imparts a velocity u
�
to the

particles of the solid. The specific mass and the internal energy per unit
mass change from the values �

�
and E

�
at rest to � and E behind the shock

front.
We will now perform the calculations in the frame of reference of the

shock front, considered as at rest.
Let us assume that the sample is a cylinder of unit area cross-section at

rest in the frame of reference of the laboratory and that the shock wave goes
through it from left to right with a velocity U

�
(Fig. 4.15).

In the frame of reference of the shock front, the particles of matter arrive
from the right with a velocity U

�
(from right to left) and they acquire a

velocity u
�
(from left to right), the velocity with respect to the shock front

therefore becomes U
�
� u

�
� 0 (the positive sense is taken from right to

left).
Let us now write the conservation of mass, momentum and energy in a

slice containing the shock front.

(i) Per unit time, the mass entering the slice is equal to the mass leaving it:

�
�

U
�
��(U

�
� u

�
)� m (4.94)
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Figure 4.15 Velocities of the particles in the frame of reference of the shock front.

(ii) The sum of the forces exerted on the slice is equal to the rate of change
of momentum. The forces on the unit area cross-section ends of the
slice are equal to the normal stresses �

�
and �, i.e. to the pressures P

�
and P in the hydrostatic case, above the HEL:

m[(U
�
� u

�
)� U

�
]��

�
� �

or:

P � P
�
� mu

�
(4.95)

and, with (4.94):

P � P
�
��

�
U

�
u
�

(4.96)

(iii) The work done by the forces is equal to the sum of the increments of
kinetic energy and internal energy per unit time:

P
�
U

�
� P(U

�
� u

�
)� m�E � E

�
�

1

2
(U

�
� u

�
)	�

1

2
U	

��
or, with (4.95):

� mu
�
U

�
� P

�
u
�
� mu	

�
� m�E � E

�
� u

�
U

�
�

1

2
u	
��

and, with (4.94):

�
�

U
��E � E

�
�

1

2
u	
��� P

�
u
�

(4.97)

We can set P
�
� 0 in (4.94), (4.96) and (4.97) and we obtain the usual

form of the Rankine—Hugoniot equations:

��
�
�
U

�
U

�
� u

�

(4.98)

P � �
�

u
�
U

�
(4.99)
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�E � E � E
�
�

1

2
u	
�

(4.100)

We see that the increase in internal energy is equal to the kinetic energy
(per unit mass).

If, now, we retain P
�
for symmetry and eliminate u

�
between (4.94) and

(4.96), we obtain:

U	
�
� (P � P

�
)�

�
�
�

(� ��
�
)�

or, in terms of the specific volumes:

U
�
� V

��
P � P

�
V

�
� V�

��	
(4.101)

Eliminating U
�
between (4.96) and (4.101), we obtain:

u
�
� [(P � P

�
)(V

�
� V )]��	 (4.102)

With (4.101) and (4.102), (4.97) gives:

E � E
�
�

1

2
(P � P

�
)(V

�
� V) (4.103)

For a final shock state characterized by u
�
and U

�
, the energy is known,

since it is a function of the shock-wave and particle velocities only, and the
pressure and specific volume are, from (4.101) and (4.102):

P � P
�
�

u
�
U

�
V

�

(4.104)

V � V
�
� V

�

u
�

U
�

(4.105)

The initial specific volume is that of the sample, equal to that of the
material for non-porous samples only. If an artificially porous sample is
used (V

�
large), shock states of higher energy at higher pressures can be

reached for the same shock-wave velocity. For a given specific volume (or
mass), one can achieve different energy states (at different pressures) by
driving shock waves into samples of different initial porosities. The
Grüneisen parameter can then be obtained by carrying the finite differen-
ces �P and �E obtained from (4.104) and (4.103) into the definition (2.60):
�
�


� V(�P/�E)
�
.
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Figure 4.16 Pressure—volumeHugoniots for periclase, iron, pyrrhotite, and quartz.
Except periclase, these minerals exhibit phase changes (after Ahrens, 1987). hpp:

high-pressure phase.

The Hugoniot P(V ) (Fig. 4.16) or P(�) is, as seen above, the locus of the
final shock states of given internal energy, which cannot be reached by
following the Hugoniot but a straight line, the Rayleigh line.

For a constant shock-wave velocity U
�
and starting from P

�
� 0, we

have, from (4.104):

P �
u
�
U

�
V

�

and, from (4.105):

u
�
�

U
�

V
�

(V
�
� V)

hence:

P �
U	

�
V	

�

(V
�
� V) (4.106)

994.8 Shock-wave equations of state



Figure 4.17 Multiple shockwaves occur if the Rayleigh line from initial to final state
intersects the Hugoniot. Point 1 corresponds to a phase transition or to the
Hugoniot elastic limit. To obtain a final state between 1 and 3 (e.g. 2) two shock
waves will form, one leading to the intermediate shock state 1, followed by a slower

one leading from 1 to 2.

The slope of the Rayleigh line is equal to � U	
�
/V	

�
, it depends on the

shock-wave velocity and the initial specific volume only.
The Hugoniots generally exhibit a change in slope at the pressure

corresponding to the Hugoniot elastic limit (Fig. 4.17). The states between
the HEL and the intersection of the HEL Rayleigh line with the Hugoniot
can be reached only by a bifurcation of the shock wave: two successive
shockwaves form, the first one is an elastic wave that brings the material to
the HEL state, the second one is slower and brings the material to the final
state (Ahrens, 1971, 1987).

After the passage of the shock wave, the shocked material is released
from the high-pressure shock state to ambient pressure in a very short time
(10�� to 10�
 s), following a release isentrope (Ahrens, 1987).

4.8.3 Reduction of the Hugoniot data to isothermal equation of state

For most materials, in a range of pressure where there is no phase transi-
tion, there exists an empirical linear relation between U

�
and u

�
, usually

written (Takeuchi and Kanamori, 1966):

U
�
� C

�
� �u

�
(4.107)

Although there is no satisfactory theoretical explanation for this rela-
tion, Berger and Joigneau (1959) and, later, Ruoff (1967), have shown that
by combining the Rankine—Hugoniot equations, theMie—Grüneisen equa-
tion of state and an expansion of the pressure in a series of powers of the
compression, it is possible to construct an expansion of U

�
in a series of

powers of u
�
, whose first-order terms represent (4.107). The particle velocity
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tends toward zero with pressure and the shock-wave velocity is then equal
to the bulk sound velocity, hence:

C
�
� �

K

��
��	

� ���	 (4.108)

The slope of the line is found to be:

��
(dK/dP)

�
� 1

4
�

�
��

� 1

2
(4.109)

With (4.107), (4.101) and (4.102), we obtain the Hugoniot centered at the
zero-pressure state (metastable state, if relation (4.107) corresponds to a
high-pressure phase) (McQueen et al., 1963):

P � P
�
� C	

�

V � V
�

[V
�
� �(V

�
� V )]	

(4.110)

where P is the pressure at high temperature under the shock conditions.
Raw Hugoniot data can also be fitted with a two-parameter Birch—

Murnaghan type equation constrained by choosing a zero-pressure density
related to the slope of the P(�) Hugoniot at zero pressure (dP/d���

�
) by

the Anderson (1967) seismic equation of state (Anderson and Kanamori,
1968; Ahrens et al., 1969).

It is then necessary to remove the thermal pressure to obtain an isother-
mal equation of state at T � 0K.

Takeuchi and Kanamori (1966) use the Mie—Grüneisen equation of
state:

P � P
�
� �

�


E � E
�

V
(4.111)

where P
�
is the pressure needed to compress thematerial at 0K to the same

specific volume as that obtained under shock and E
�
is the internal energy

corresponding to the isothermal compression at 0K. The isothermal equa-
tion of state relates P

�
to V and V

��
(specific volume at 0 K and zero

pressure). It is found by integrating a system of differential equations
essentially obtained by carrying (4.103) into the expression of �

�

from

(4.111) and identifying it with Slater’s or Dugdale—McDonald expressions
in terms of the derivatives of pressure and in using the definition:
P
�
� (�E

�
/�V )

�
. The specific volume at 0K is estimated using the defini-

tion of the thermodynamic gamma in terms of the coefficient of thermal
expansion.
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Shapiro and Knopoff (1969) proposed a method based on the same
principles, but which they claim to be mathematically simpler.

4.9 First principles equations of state

4.9.1 Thomas–Fermi equation of state

The Thomas—Fermi equation of state (TF EOS) is an EOS in which the
atomic structure of the solid is not taken into consideration; the pressure is
assumed to be entirely that of a degenerate electron gas and is calculated
using the semi-classical Thomas—Fermi approximation. These assump-
tions are justified for elements at extremely high pressures, inside stars for
instance. Even the pressure at the center of the Earth is much below the
domain of validity of the TF EOS, which does not extend below 1000GPa.
This, apparently, should suffice to confine the interest in the TF EOS to
astrophysics and exclude it from geophysics. It turns out however that
considerable attention was given in the geophysical literature to the TF
EOS (see e.g. Boschi and Caputo, 1969), extrapolating it below its validity
range down to the range of shock-wave and static pressure experimental
data. Although these attempts generally met with indifferent success, inter-
polation between the TF EOS and experimental P—V curves is possible
(Elsasser, 1951) and it provided a useful constraint on the composition of
the core (Birch, 1952) (Fig. 4.18). It is therefore justified to devote some
space here to outlining the basic physics of the TF EOS.

(i) The Thomas–Fermi approximation

The Thomas—Fermi approximation is a method for finding the density of
electrons in an atom of atomic number Z. It essentially rests on the
following assumptions (see Eliezer et al., 1986):

• The system as a whole is in its lowest quantum state.
• In a volume so small that within it the change in the potential energy is

small comparedwith themean total energy of an electron, the number of
electrons is large.

It is therefore possible to consider that the free electrons form a gas that
can be treated classically rather than by quantum mechanical methods.
The only contribution of quantum mechanics is that the electrons are
subject to the exclusion principle, hence obey Fermi—Dirac stastistics
(Fermi—Dirac gas). The approximation works better for heavy metals.

Let the electrostatic potential due to the nucleus and electrons inside the
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Figure 4.18 Estimated density of iron as a function of pressure. The dashed curve is
interpolated to pass through the data for the core (after Birch, 1952).

atom be V(r), r being the distance from the nucleus, and let the maximum
energy of an electron be E

	��
�� eV

�
, (e is the charge of the electron). At

any point, we have:

p	

2m
� eV � E

	��

where p is the momentum of an electron, whose maximum value is:

p
	��

� (2me)��	[V(r)� V
�
]��	 (4.112)

According to Fermi—Dirac stastistics, each volume of phase space dpdr
contains (2/h
)dpdr electrons and the volume of the momentum space
corresponding to points which are occupied is (4�/3)p


	��
, hence the numb-

er of electrons per unit volume in real space is:

n(r)�
8�
3h


(2me)
�	[V(r)� V
�
]
�	 (4.113)

The electrostatic potential V(r) and the density of charge n(r) are related
by Poisson’s equation:
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�	V � 4�ne (4.114)

With spherical symmetry, the Laplacian is written:

�	V �
1

r	

d

dr�r	
dV
dr� (4.115)

As r � 0, the potential is due mostly to the nucleus and behaves as Ze/r,
it is therefore convenient to introduce the dimensionless quantity:

�(r)� [V(r)� V
�
]�

Ze

r �
��

(4.116)

with the boundary condition �(0)� 1. We have therefore:

�	V �
Ze

r

d	�
dr	

(4.117)

With (4.117) and (4.113), we can write (4.114) as:

d	�
dr	

�
32�	

3h

(2me	)
�	Z��	�(r)
�	r���	 (4.118)

Introducing the dimensionless variable x � r/�, with � � Z���	 (see
Eliezer et al., 1986), we obtain the dimensionless Thomas—Fermi differen-
tial equation, valid for any value of Z:

d	�
dx	

��
�	x���	 (4.119)

The equation can be solved numerically (Feynman et al., 1949), with�(x)
expanded in a series of powers of x:

�� 1� a
	

x � a



x
�	� a
�

x�� · · · (4.120)

The coefficients are expressed as functions of a
	
. The values of � are

tabulated as a function of x
�
� r

�
/�(Z), where r

�
is the atomic radius of the

element of atomic number Z.

(ii) Pressure–volume relation at T � 0K

From (4.113) and (4.116), the electronic density of an isolated atom is:

n �
8�
3h


(2me)
�	�
Ze

r
��


�	
(4.121)
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The solid is considered as a gas of atoms, each atom being surrounded by
a sphere of atomic size; the pressure is due to the bombardment of the free
electrons on the boundary of the atomic sphere and is given by the kinetic
theory:

P �
2

3

E

V
�

�
2

3

E
�
n

N
(4.122)

n � N/V is the number of free electrons per unit volume and E
�
/N is the

internal energy (equal to the kinetic energy) per electron:

E
�

N
�

3h	

10m�
3

8��
	�


n	�
 (4.123)

Hence:

P �
h	

5m�
3

8��
	�


n
�
 (4.124)

With (4.124) and (4.121) and remembering that r ��x, we have:

PV �
2

15

Ze	

�
x��	
�

[�(x
�
)]
�	 (4.125)

where V is the atomic volume:

V � (4�/3)(�x
�
)
 (4.126)

The values of �(x
�
), for a given atomic number are found in tables

(Feynman et al., 1949).
At high enough pressures, for an element of atomic number Z, the

pressure can be directly found from (4.124), by taking for n the number of
electrons in the atomic volume, n � Z/V:

P �
h	

5m�
3

8��
	�


Z
�
V�
�
 (4.127)

or:

PV �
h	

5m�
3

8��
	�


Z
�
V�	�
 (4.128)

Brillouin (1954, p. 245) estimated the electronic pressure for metals by
taking one free electron per atom; he found values of the order of 10GPa.

Scaled pressure—volume curves, valid for all values of Z, are often given
as PZ����
 vs ZV. This can be justified by writing (4.125) as:

1054.9 First principles equations of state



Figure 4.19 Pressure—density isotherms for iron at 0K. TFD: Thomas—Fermi—
Dirac approximation; BM: Birch—Murnaghan equation of state for �� ��

	
, 0, �

	(after Boschi and Caputo, 1969).

P � Z	����
�(x

�
)

x
�
�


�	
(4.129)

Remembering that �� Z���
, we see from (4.126) that x
�
is a function

only of ZV and we can write:

PZ����
� �
�(x

�
)

x
�
�


�	
� f (ZV ) (4.130)

Dirac modified the Thomas—Fermi theory to include the quantum ex-
change effects (TFD model). The resulting equation cannot be put in a
scaled form and has to be solved for every value of Z (see Eliezer et al., 1986;
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Boschi and Caputo, 1969). The results for iron, compared with the iso-
therm derived from shock-wave experiments and the Birch—Murnaghan
EOS (Takeuchi and Kanamori, 1966) are given Fig. 4.19.

Feynman et al. (1949) treated the more complicated case of the TF EOS
at high temperature.

4.9.2 Ab-initio quantum mechanical equations of state

In recent years, progress in computer performance and in calculation
methods have led to considerable advances in the field of construction of
parameter-free, ab-initio equations of state for specific minerals, using
molecular dynamics and quantummechanics. It is beyond the scope of this
book to enter into the quantummechanical details of the methods.We will
only and very briefly give the physical basis of the more popular models.
More information can be found in Vočadlo et al. (1995), Price and Vočadlo
(1996) and Gillan (1997).

Isothermal equations of state at 0K (neglecting thermal vibrations) are
usually calculated by two different approaches.

(i) The static binding energy of the crystal U(�), where � is the total
charge-density, is considered as the sum of two contributions: a long-
range attractive Culombic pair potential between ions, usually cal-
culated by the Ewald summation method, and a term embodying the
electronic interactions. The pair potential can be given a priori or fitted
to experimental values of somematerial parameter (e.g. elastic moduli).
The electronic energy may also be fitted to experimental data or to
ab-initio data, obtained by using quantum mechanical simulation
methods.

It is also possible to neglect the long-range electronic interactions
and, using molecular orbital theory, to calculate the energy of a finite
cluster of atoms in a vacuum over a range of bond lengths (see e.g.
McCammon et al., 1991).

The energy of the infinite lattice (finite in the computer, with periodic
boundary conditions), or of the cluster of atoms, is computed as a
function of interatomic distance, and minimized to obtain the equilib-
rium volume at 0K. The pressure, hence the equation of state, is
obtained by taking the derivative of the energy as a function of volume.

(ii) In the second, truly ab-initio, approach, the electronic energy is cal-
culated from first principles, by solving the Schrödinger equation for a
many-electron system. A popular formalism consists in describing the
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Figure 4.20 Calculated isothermal compression curve for MgO at 298K. The
circles represent experimental results (after Hemley et al., 1985).

ground state of the system in terms of a unique functional of charge-
density alone (density functional theory). As the exact form of this
functional is unknown, approximations such as local density approxi-
mation (LDA) (e.g. for MgSiO



perovskite, Stixrude and Cohen, 1993;

Karki et al., 1997) or generalized gradient approximation (GGA) are
used.

Thermal equations of state are obtained by introducing atomic lattice
vibrations. This can be done in different ways.

(i) The phonon spectrum of the system can be described by lattice dy-
namics in the quasi-harmonic approximation (below the Debye tem-
perature). This has been done byHemley et al. (1985) forMgO at room
temperature, yielding an ab-initio EOS in good agreement with the
experimental data of Mao and Bell (1979) (Fig. 4.20). Hemley et al.
(1987b) and Wolf and Bukowinski (1985, 1987), using the same
method, calculated the thermal EOS of MgSiO



and CaSiO



perov-

skites. Cohen (1987) calculated the EOS of MgSiO


perovskite, using

the ‘‘potential induced breathing’’ model, in which the constraint on
the rigidity of ions is lifted. He found a very good agreement with the
experimental results of Yagi et al. (1982) and Knittle and Jeanloz
(1987) (Fig. 4.21).
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Figure 4.21 Calculated and experimental equation of state for MgSiO


perovskite

at room temperature. WB: Wolf and Bukowinski (1987); H: Hemley et al. (1987b);
PIB: potential induced breathing (Cohen, 1987). The experimental results of Yagi et
al. (1982) and Knittle and Jeanloz (1987) are indicated by crosses and circles,

respectively (after Cohen, 1987).

(ii) Different configurations of the system can be drawn at random
(Monte-Carlo simulation).

(iii) Each atommay wander in the potential field of the static lattice, but is
confined in its Wigner—Seitz cell. (see e.g. Wasserman et al., 1996).

(iv) In the molecular dynamics (MD) technique, each vibrating ion is
assigned position and velocity in a potential field. The forces acting on
the ion are calculated from the derivative of the potential. Position and
velocity are calculated at each time step by solving Newton’s equation
of motion (e.g. for MgSiO



perovskite, Patel et al., 1996).

(v) Finally, ab-initio quantummolecular dynamics (QMD), is independent
of the choice of an arbitrary (or fitted) potential. The forces are directly
calculated by fully self-consistent electronic structure methods at every
step of the dynamics (e.g. for perovskites, Wentzcovitch et al., 1995).
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5

Melting

5.1 Generalities

Melting (or fusion) is an extremely important phenomenon for solids since
it causes them to cease being solids and to transform to the liquid state of
matter, thereby losing crystalline long-range order and resistance to shear.
Melting is a first-order phase transition, i.e. it exhibits discontinuities in the
first derivatives of the free energy: volume and entropy.
Pure metals (and more generally elements) have a fixedmelting point T

�
at a given pressure. The equilibrium between solid and liquid is univariant
and the variation of the melting point with pressure is represented by the
melting curve: T

�
(P).

The situation is more complicated for multicomponent systems such as
alloys and mineral crystals. Several cases may arise and are best under-
stood by referring to phase diagrams (see also Section 7.4.1). A phase
diagram at constant pressure is a map of the stability domains of the
various possible phases in the composition—temperature space. For the
sake of simplicity, let us consider only binary systems, whose composition
can be defined by the proportions (in atom or mole percents) of two simple
end-members. The end-members that will concern us here can be elements
(e.g. Fe, S) or simple binary oxides (e.g. MgO, SiO

�
) that exhibit congruent

melting like elements (i.e. the solid melts at fixed temperature, giving a
liquid with the same chemical composition). For various definite propor-
tions of the end-members, compounds may exist, e.g. FeS, FeS

�
or

MgO,SiO
�
(MgSiO

�
) or 2MgO, SiO

�
(Mg

�
SiO

�
). The compounds may

sometimes in turn be used as end-members in other, more restricted phase
diagrams, e.g. MgSiO

�
—Mg

�
SiO

�
.

The most typical melting situations are schematically represented in
Fig. 5.1:
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Figure 5.1 Typical phase diagram for compositions intermediate between � and �.
(�,� in the cases that interest us are often simple oxides.) (a) For compositions such
as x

�
, when temperatureT

�
is reached during heating (cooling) the first (last) drop of

liquid of composition x
�
appears (disappears); when temperature T

�
is reached

during heating (cooling) the last (first) crystal of composition x
�
disappears

(appears). (b) For the eutectic composition x
�
, the solid (liquid) melts (freezes) at the

fixed temperature T
�
of the eutectic point E. (c) For the definite composition �

�
�
�
,

the solid melts congruently, yielding a liquid of the same composition. (d) For the
definite composition �

�
�
�
, the solid melts incongruently, decomposing into a liquid

in equilibrium with crystals of composition �
�
�
�
.

(i) Close to one end-member, (e.g. �), there usually is a region where the
stable phase is a solid solution of � in �. For a composition x

�
(Fig.

5.1(a)) melting occurs over a temperature interval, with a variable
composition of the liquid: When the temperature reaches the value T

�
,

the first drop of liquid of compositionx
�
appears, in equilibriumwith a

solid solution of composition x
�
; if the temperature is increased, the

proportion of liquid increases and its composition varies until the
temperature T

�
is reached, at which the last crystal of composition x

�
disappears.
The locus of the points in the diagram corresponding to the appear-

ance of the first drop of liquid is called solidus and the locus of points
corresponding to the disappearance of the last crystals (or appearance
of first crystals during cooling) is called liquidus.
The situation in Fig. 5.1(a) corresponds to a rather usual case, where

the melting point of a crystal is lowered by impurity elements in
solution. A geophysically important example is that of the lowering of
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Figure 5.2 Phase diagram for the iron—sulfur system at ambient pressure (after
Verhoogen, 1980).

the melting point of iron by sulfur (Fig. 5.2). When end-members differ
only by the chemical nature of atoms of comparable size on the same
crystalline sites (e.g. forsterite Mg

�
SiO

�
and fayalite Fe

�
SiO

�
), a con-

tinuous solid solution can exist and the spindle formed by the solidus
and liquidus extends over the whole composition range (Fig. 5.3).

(ii) A common feature of phase diagrams is the existence of one or several
compositions for which melting occurs at a fixed temperature. For
these compositions, the liquidus exhibits an angular point correspond-
ing to a deep minimum of the melting temperature (eutectic point), as
shown in Fig. 5.1(b).

(iii) Intermediate compounds may melt congruently (Fig. 5.1(c)) and can
be considered as end-members, thus dividing the phase diagram into
independent binary diagrams; such is for instance the case of forsterite
Mg

�
SiO

�
in the MgO—SiO

�
diagram (Fig. 5.4). Others melt, also at a

fixed temperature, but incongruently (Fig. 5.1(d)), decomposing into a
liquid and another compound; such is the case of enstatite MgSiO

�
at

atmospheric pressure, which gives forsterite and a silica-rich liquid
(Fig. 5.4). At pressures higher than 0.5GPa, melting becomes congru-
ent and a eutectic appears between forsterite and enstatite. The tem-
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Figure 5.3 Phase diagram of the forsterite—fayalite system at ambient pressure.

Figure 5.4 Phase diagram of the MgO—SiO
�
system at ambient pressure (after

Levin et al., 1964). Fo: Forsterite, Cl: Clinopyroxene, Cr: Cristobalite, Pe: Periclase.
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Figure 5.5 Phase diagramof the forsterite—enstatite system at pressures of 3GPa (a)
and 7GPa (b) (after Kato and Kumazawa, 1985b).

perature of the eutectic point increases with pressure, in parallel with
the melting point of enstatite, and its composition shifts towards the
Mg-rich side (Kato and Kumazawa, 1985b) (Fig. 5.5).

Many minerals exhibit anomalous rapid variations of physical proper-
ties (specific heat at constant pressure, thermal expansion, compressibility,
etc.) a few hundred degrees below the nominal melting point. These
premelting effects, notably observed in diopside (Ca

�
MgSi

�
O

�
), anorthite

(CaAl
�
Si

�
O

	
) and (Ca,Mg)Ge

�
O

�
olivine, have been attributed to cation

disordering in the crystalline phases (Richet et al., 1994). In natural diop-
side, containing some iron, very small droplets of a liquid consisting of
almost pure silica start forming at 1150 °C (200 °C below the solidus). This
incongruent early partial melting has been observed by transmission elec-
tron microscopy (Doukhan, 1995).
Melting of rocks is even more complicated: Minerals with the lowest

melting point melt first when temperature increases and the liquid reacts
with other minerals. To a given temperature above the melting point of the
most fusible mineral, corresponds a given degree of partial melting. One
still can define a liquidus, on which the first fractions of melt are in
equilibrium with the ‘‘liquidus phases’’; see e.g. Takahashi (1986) and Ito
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and Takahashi (1987b), on the melting of peridotites at pressures of the
upper and lower mantle.
Melting in the Earth obviously concerns rocks, and melting of rocks is

an important research topic in experimental petrology; it is however a
complicated phenomenon, little amenable to physical extrapolations to
high pressures. As a consequence, geophysicists generally use the melting
curves of the mantle minerals and of iron to obtain constraints on the
temperature profile in the Earth. In what follows we will consider the
physics of melting of simple solids as a basis for studying the effect of
pressure on melting, and we will review the various melting laws giving T

�
as a function of pressure.

5.2 Thermodynamics of melting

5.2.1 Clausius–Clapeyron relation

Let us express the equilibrium between solid and liquid at themelting point
by writing that the total differential change in Gibbs free energy G is equal
to zero, when a small volume element of the solid changes to liquid:

dG
 (V
�
� V

�
)dP� (S

�
�S

�
)dT 
 0 (5.1)

V
�
, S

�
andV

�
,S

�
are the specific volume and entropy per unit mass of the

liquid and solid respectively. The slope of the melting curve is given by the
Clausius—Clapeyron relation:

dT
�

dP



�V
�

�S
�

(5.2)

where �V
�


 V
�
� V

�
is the melting volume at pressure P, and

�S
�


S
�
� S

�
is the melting entropy at pressure P.

The latent heat of melting is:

L 
 T
�
�S

�
(5.3)

5.2.2 Volume and entropy of melting

(i) The melting volume is usually positive, since in most cases the specific
volume of the liquid is greater than that of the solid. Formetals, the ratio of
themelting volume to the specific volume of the solid is of the order of a few
percent, whereas it is an order of magnitude greater for alkali halides; the
silicates have intermediate values (see Table 5.1). When the short-range
structure of the liquid is very different from that of the solid, due to a
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Table 5.1.Melting volume �V
�
in cm�/mol, melting entropy �S

�
in

J/molK, and slope of the melting curve at 1 bar (100 kPa) for various
crystals

Crystal �V
�

�V
�

V
�S

� �
dT

�
dP �

�

Na 0.60 0.025 7.10 8.5
Mg 0.46 0.041 9.43 7.2
Al 0.64 0.060 11.3 5.9
K 1.20 0.026 7.10 16.9
Fe 0.28 0.036 8.32 3.5
Cu 0.32 0.042 9.58 3.64
Ag 0.42 0.038 9.27 6.04
Pb 0.46 0.041 8.28 7.23
LiF 3.47 0.327 24.12 11.2
NaCl 7.01 0.238 26.04 23.8
KCl 7.02 0.173 25.4 26.7
KBr 7.72 0.165 25.3 38.0
RbI 8.05 0.126 24.0 15.0
Quartz 2.5 0.105 5.53 35.5
Forsterite 3.8 0.081 70 4.8
Fayalite 3.7 0.076 60.9 7.5
Pyrope 18.3 0.158 162 5.5
Enstatite 5.4 0.160 41.1 12.8
Diopside 82.7 13.2

Sources: The values of �V
�
and �S

�
are from Ubbelohde (1978) for metals and

from Jackson (1977) for alkali halides. The values of �V
�
for silicates and of �S

�for forsterite are from Bottinga (1985). The values (averaged) of �S
�
for the other

silicates are from Richet and Bottinga (1986). The values of the slopes of the
melting curves are from Jackson (1977).

change in the type of bonding on melting, the liquid can be denser than the
solid (�V

�
� 0). This is, for instance, the case for water, denser than ice I

�
,

and silicon that becomes metallic on melting. Since the melting entropy is
always positive (the liquid is always more disordered than the solid), the
melting curve of these substances has therefore a negative slope; the
melting point decreases as pressure increases. In some cases (e.g. Rb, Ba,
Eu), the melting curve may exhibit a maximum at high pressures (Kawai
and Inokuti, 1968).
(ii) The entropy of melting is generally the sum of two terms:

�S
�


�
�S
�V�

�

�V
�


�S
�

(5.4)

The first term corresponds to the entropy change due to themodification
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of the vibrational frequencies following the isothermal expansion at
melting, and the second term is the entropy of disorder due to the structural
differences between the solid and the less well-ordered liquid. The disorder
is generally positional and can also be rotational if the structural units of
the liquid have no spherical symmetry.
Oriani (1951) calculated the expansion contribution to the entropy for

metals, starting from Maxwell’s relations:

�
�S
�V�

�


 �
�P
�T�

�


� �
�P
�V�

�

·�
�V
�T�

�


 �K
�

(5.5)

The first term in (5.4) can therefore be written:

�S
�

 �K

�
�V

�
(5.6)

or:

�S
�


 �
��
C

�

�V
�

V
(5.7)

where �
��
is the thermodynamic gamma and V, the specific volume of the

solid.
The existence of a linear relation between the entropy and the volume of

melting for various metals is implicit in Oriani’s analysis and directly
obtains if the entropy of disorder is independent of the metal and if it can be
assumed that �K

�
is a constant for a given solid (see Section 3.5). Indeed,

Stishov et al. (1973) noticed that the function �S
�
/(�V

�
/V) is the same for

argon and for sodium and tends to Rln2
 0.69R when �V
�
/V vanishes.

Lasocka (1975) further reported that, for a number of metals, the represen-
tative points on a diagramof�S

�
vs�V

�
/Vwere scattered about a straight

line passing through the point with ordinate Rln2 for �V
�


 0. Tallon
(1980), probably unaware of Oriani’s work, again justified the relationship:

�S
�


Rln2
 �K
�
�V

�
(5.8)

He also showed that the relationship is verified for sodium along its
melting curve, but he did not provide an explanation for the fact that the
entropy of disorder is close to Rln2.
Rivier and Duffy (1982) showed that, for dense atomic liquids, the

configurational entropy of disorder is, indeed, equal toRln2, by identifying
the configurations of the liquid to its topological degrees of freedom, linked
to the existence of line defects in the liquid that are absent in the solid.
From statistical mechanical theories of the entropy of the liquid and
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crystal, Wallace (1991) estimated the entropy of fusion for 25 elements. For
19 ‘‘normal’’ elements, he found constant-density entropies of fusion
�S

�

 (0.79� 0.11)R. The elements that did not fall into this group and

had larger entropies of fusion were those that had a change in electronic
structure between solid and liquid states (e.g. Si and Ge which go from
semi-conducting solid to metallic liquid).
The linear relationship between entropy and volume of melting is appar-

ently valid only for dense atomic liquids (metals, rare gases, etc.); it is not
verified for alkali halides and silicates, probably due to unaccounted for
contributions. In the case of silicates, for instance, the entropy of melting
must comprise a compositional (mixing) term that is larger for minerals
with isolated SiO

�
tetrahedra like olivine and garnet than for chain silicates

like enstatite and is, of course, zero for quartz (Stebbins et al., 1984).
Jackson (1977), searching for melting systematics, compared the melting

curves of fluorides and fluoroberyllates analogs of silicates (e.g. BeF
�
,

Li
�
BeF

�
). He found that the entropy of melting is primarily a function of

the crystal structure, while the volume of melting is controlled by the molar
volume of the crystal within each isostructural series. The magnitude of
dT

�
/dP is a function of the way in which the SiO

�
and BeF

�
tetrahedra are

linked. It is small for structures with isolated tetrahedra and large for
structures where the tetrahedra form a 3-D framework, themelting entropy
being low in this case due to the similarity between the solid and liquid
phases.
Experimental values of �S

�
, �V

�
and dT

�
/dP are given in Table 5.1.

5.2.3 Metastable melting

For solids, such as ice, whichmelt with a decrease of volume (�V
�

� 0), the
melting curve has a negative slope and usually ends at a triple point at high
pressure, where another phase becomes stable. However, the melting curve
of the low-pressure phase can be extrapolated in the stability domain of the
high-pressure phase. From this observation, Mishima et al. (1984) deduced
that, if a low-pressure phase were pressurized at temperatures low enough
to remain in a metastable state, it would melt when the trajectory of the
representative point in the P,T plane crosses the extrapolated melting
curve. Of course, for temperatures lower than the glass transition tempera-
ture, ‘‘melting’’ would produce not a liquid, but an amorphous glass.
Mishima et al. (1984) performed the experiment on ice I

�
at 77K and

succeeded in ‘‘melting’’ it at 1GPa, producing a new high-density (1.31)
amorphous phase of ice. In later experiments, (Mishima, 1996), the cross-

118 5 Melting



Figure 5.6 Phase diagram of SiO
�
. The horizontal arrow indicates the path of

pressure-induced amorphization (after Hemley et al., 1988).

over from equilibrium melting of ice to sluggish amorphization could be
followed during pressurization at about 140—165K.
Hemley et al. (1988), compressing SiO

�
quartz and coesite at 300K,

transformed them into glass at 25—35GPa, bypassing the stable higher-
pressure phases, thus confirming that metastable melting can also occur in
minerals (Fig. 5.6).Molecular dynamics simulation on the SiO

�
system also

suggests that the amorphization curve and the metastable extension of the
melting curve of quartz are identical (Badro et al., 1998).
Richet (1988) observed that there is no reason why such ‘‘melting’’ (or

rather vitrification) should be restricted to solids with �V
�

� 0 only;
high-pressure phases with �V

�
� 0 should be decompressed rather than

compressed to achieve vitrification. He gave a thermodynamic analysis of
direct vitrification from the solid state and argued that the fact that
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high-pressure CaSiO
�
perovskite cannot be quenched and immediately

vitrifies on release of pressure represents metastable melting.
Reviews of the pressure-induced amorphization of materials and min-

erals, have been given by Sharma and Sikka (1996) and by Richet and
Gillet (1997).

5.3 Semi-empirical melting laws

5.3.1 Simon equation

The equation proposed by Simon and Glatzel (1929) satisfactorily de-
scribes the melting curve of many substances: solidified gases, metals,
organic crystals, silicates. It was originally proposed in the form:

log(a
P)
 c logT
�


 b

and tested for alkali metals and organic molecular compounds. Nowadays,
it is usually written:

P�P
�

a

�

T
�

T
�
�
�
� 1 (5.9)

where P
�
and T

�
are the pressure and temperature of the triple point and a

and c, parameters that depend on the substance (they do not have the same
meaning as in the original equation). For most substances, P

�
is close to

zero and can be neglected. The slope at the triple point, close to the melting
point at ambient pressure, is: dT

�
/dP
 T

�
/ac.

Several authors have shown that a melting equation of the same form as
Simon’s equation could be derived from physically based melting models:
Domb (1951) started from the Lennard-Jones and Devonshire model (see
below) and found that it led to a formula of the right type, at high enough
pressure and for solids with central forces, but that the melting tempera-
tures predicted were too high. Salter (1954) derived Simon’s equation by
eliminating the atomic volume between the Mie—Grüneisen equation of
state and the Lindemann equation of melting, he found a relation between
the constant c and the Grüneisen parameter �: c
 (6�
 1)/(6�� 2). Gil-
varry (1956c) (see also Babb, 1963b) used Lindemann’s law and the Mur-
naghan integrated linear equation of state to obtain an equation of the
fusion curve similar to Simon’s equation.
The Simon equation has been fitted to the melting curve of many

substances (mostly organic crystals) by Babb (1963a) and of silicates by
Bottinga (1985) (Table 5.2). It is convenient to analytically fit melting
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Table 5.2. Parameters of Simon equation for a few substances

Substance T
�
(K) a (GPa) c

Fe 1805 107 1.76
Hg 234.3 38.22 1.177
Forsterite 2163 10.83 3.7
Fayalite 1490 15.78 1.59
Pyrope 2073 1.98 9.25
Enstatite 1830 2.87 5.01
Quartz 2003 1.60 3.34
Albite 1373 6.10 2.38

Note: P
�

 0 for all substances, except for pyrope (P

�

 4GPa).

Sources: The parameters for Fe and Hg are from Babb (1963a); those for silicates
are from Bottinga (1985).

curves but, even though it has been given some theoretical justification, it
cannot be used to extrapolate the melting curve outside of the interval in
which it has been experimentally determined.

5.3.2 Kraut–Kennedy equation

Kraut and Kennedy (1966a,b) found that, for many substances and in a
wide pressure range, the melting temperature varies linearly as a function
of the compression of the solid �V/V

�
(� 0) or, in other terms, that the

melting curve is a straight line, if plotted against compression instead of
pressure:

T
�


 T �
��1
C

�V
V

�
� (5.10)

They claimed that the linear relation can be safely extrapolated up to a
maximum compression of 0.5. For iron (Fig. 5.7) Kraut and Kennedy find:

T
�
(°C)
 1513�1
 3.3209

�V
V

�
� (5.11)

The relation also holds for solids whose melting curve has a negative
slope (e.g. germanium).
Gilvarry (1966) and Vaidya and Gopal (1966) independently showed

that the Kraut—Kennedy relation can be derived from Lindemann’s law
(see Section 5.4.2) and that the constantC can be expressed as a function of

1215.3 Semi-empirical melting laws



Figure 5.7 Melting temperature vs isothermal compression of iron at room
temperature (after Kraut and Kennedy, 1966a, b).

the Grüneisen parameter at P
�
,T

�
: C
 2(�

�
� 1/3). The Kraut—Kennedy

law can also be derived from the Clausius—Clapeyron relation, as shown by
Libby (1966) andMukherjee (1966). If the pressure dependence of the bulk
modulus is neglected and if �V

�
/�S

�
is assumed to remain constant along

themelting curve, integration of the Clausius—Clapeyron relation (5.2) then
yields:

T
�

� T �
�



�V

�
�S

�

(P�P
�
)


�V
�

T
�
�S

�

T �
�
K

�

�V
V

�

(5.12)

the value of the Kraut—Kennedy constant is therefore: C
K
�
(�V

�
/L).

As pointed out by Gilvarry (1966), the Kraut—Kennedy relation is a
linear approximation that, like Simon’s equation, should properly be used
as an interpolation formula only. While Kraut and Kennedy (1966b)
dispute this conclusion, Kennedy and Vaidya (1970) indeed reported that
the linear Kraut—Kennedy relation gives a good fit for the experimental
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results on metals, but that the melting curves of van der Waals solids,
concave toward the T axis, are best fitted by Simon’s law. The melting
curves of ionic crystals and silicates are concave toward the (�V/V

�
) axis.

Use of the Kraut—Kennedy relation and a fortiori Simon relation for
extrapolation would therefore overestimate the melting temperature of
minerals.

5.4 Theoretical melting models

5.4.1 Shear instability models

Brillouin (1938, 1940) analyzed the thermal vibrations in strained solid
bodies and gave a physical justification to the already old idea that, since
liquids have no shear strength, the shear modulus of a solid should de-
creasewith increasing temperature and vanish at themelting point (Suther-
land, 1891; Brillouin, 1898). He remarked, however, that it would be
difficult to imagine that the shear modulus should decrease smoothly up to
themelting point, since this would meanmelting without heat of fusion, i.e.
it would not account for the first-order character of melting.
Durand (1936) in the course of an experimental study of the elastic

moduli of alkali halides andMgOhad earlier observed that c
��
(see Section

2.2) was almost independent of temperature while c
��
decreased linearly.

He extrapolated the data to the temperature at which c
��


 c
��
, assumed

to be the melting temperature (thus implicitly defining the melting point as
the temperature for which the modulus �
 (c

��
� c

��
)/2 vanishes) and

calculated values of the melting points quite close to the experimental
values (e.g. 1170K instead of 1077K for NaCl).
Born (1939) unambiguously chose the loss of shear resistance as a

criterion for melting and stated that ‘‘a theory of melting should consist of
an investigation of the stability of a lattice under shearing stress’’. He
calculated a second-order expansion of the free-energy density of a cubic
crystal as a function of finite strain and wrote the conditions for stability
which guarantee that the energy is positive definite:

3K
 c
��


 2c
��

� 0; c
��

� c
��

� 0; c
��

� 0 (5.13)

Born considered (without offering much justification for it) that melting
occurs when the modulus c

��
, corresponding to shear along the �100	

planes, vanishes first and that a gel would be produced if c
��

� c
��
,

corresponding to shear along the �110	 planes, vanished first. He then
proceeded to calculate explicit expressions for the coefficients in the expan-
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sion of the free energy, using lattice dynamics within Debye’s quasi-har-
monic approximation and determined the variation of the elastic moduli
with T/


�
for different pressures and, finally, the melting curve T

�
/


�
vs

P. Born was quite aware that the latent heat of fusion could not be
calculated from his theory by using the Clausius—Clapeyron relation, since
the change of volume on melting depended on the properties of the liquid
state. It is also worth remarking that Born showed that his theory led to an
expression of vibrational frequencies as a function of T

�
similar to Lin-

demann’s (see Section 5.4.2) with a slightly different numerical coefficient:

�
�

CR���N���T���

�
M����V���� (5.14)

May (1970), instead of plotting the shear moduli c' 
 (c
��

� c
��
)/2 and

c
��

against temperature, plotted them for metals and argon, against
u
 (V � V

�
)/V

�
, whereV andV

�
are the specific volume at temperatureT

and at 0 °C respectively.He found that the plots were straight lines and that
c' vanished for a value of u slightly higher than but quite close to that of the
melt (e.g. for Al, c' 
 0 for u
 0.125, while melting occurs with u
 0.123).
Jackson and Liebermann (1974) calculated the critical temperatures for

shear instability and their initial pressure dependences for alkali halides
and oxides. They used the instability criterion c' 
 0 for halides with NaCl
structure (B1) and c

��

 0 for those with CsCl structure (B2). They found

that, although the critical temperatures were higher than the melting
temperatures by 30 to 200K, the initial pressure dependence was the same
as for melting; also, the critical temperatures and the initial pressure
dependences ordered in the same sense as the melting points and the initial
slopes of the melting curves. There was an excellent correspondence be-
tween these parameters for oxides and for their ‘‘weakened’’ fluoride ana-
logues (Table 5.3).
Tallon and co-workers (1977) modified the Born shear instability model

to account for the first-order character of melting. Plotting the logarithm of
the isothermal bulk modulus against the true dilatation ln(V/V

�
), for solid

alkali halides and for their melts, they found that the plot is linear over a
large temperature range including themelting point and that one canwrite:

� lnK
�

� lnV

� g

	

where g
	
is analogous to aGrüneisen parameter. Themain point is that the

variation of the bulk modulus with dilatation is continuous through the
melting point. From similar plots for c

��
and c' (Fig. 5.8), extrapolations
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Table 5.3. Comparison of the critical temperatures for shear instability T
�

and melting point T
�
and their initial pressure variation for oxides (OX) and

their fluoride (FL) analogs

Analogs T ��
�

T ��
�

T ��
�

T ��
�

dT ��
�

dP

dT ��
�

dP

dT ��
�

dP

LiF—MgO 2.8 2.8 12 10 11
NaF—CaO 2.4 2.3 15.1—18 14 13
KF—SrO 2.6 2.4 22.6 21 19

Source: From Jackson and Liebermann (1974).

show that, for B1 halides, c
��
is finite at the melting point and that c'

vanishes at the melting point on the melt side. Using these considerations,
Tallon and co-workers proposed that the free energy of the system is a
minimumwhen the elastic energy increase due to expansion is balanced by
the entropic term 2RT, where 2R is the ‘‘communal’’ entropy, correspond-
ing to the fact that, when the shear modulus vanishes, the onset of fluidity
allows the ions to have access to every part of the volume.

5.4.2 Vibrational instability: Lindemann law

(i) Sutherland relation

At the end of the last century, the idea of thermal vibrations of atoms in
solids was well accepted. Sutherland (1890) thought that ‘‘at some charac-
teristic temperature each solid ought to have a period of vibration charac-
teristic of its molecule. The question is, at what temperature? At the melting
point in each case the vibratory motion just breaks down, so that we ought
to expect some simple relation amongst the periods of vibration of the
elements at their melting points.’’ He then proceeded to calculate the
vibrational period at the melting point for an element of molecular massM
and specific heat C by writing that the kinetic energy of the molecule,
(Mv
 �)/2 is proportional to the heat received from 0K to the melting point,
MCT

�
. The period was taken equal to the maximum amplitude possible

at the melting point, �T
�

V��� (where � is the linear expansion coefficient
and V, the molecular volume) divided by the mean velocity v
 .
Assuming that MC
 const for elements and using an empirical rela-

tion �T
�

V���
 const, which he claimed to have verified for metals,
Sutherland obtained an expression for the vibrational period p:
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Figure 5.8 Evolution of shear modulus with dilatation for alkali halides. From top
to bottom: NaF, LiF, NaCl, KCl, KBr (after Tallon et al., 1977).

p� V���M���T����
�

(5.15)

Using the data available in the literature, he concluded that ‘‘the periods of
vibration of themolecules of solids at their melting points show very simple
harmonic relations.’’
We have devoted some attention to Sutherland’s paper to make it clear

that, despite some recent contentions (e.g. Mulargia and Quareni, 1988),
Sutherland did not give a theory of melting and that the semi-empirical
(and incorrect) relation (5.15) is not an earlier form of Lindemann’s law,
which we will now examine.

(ii) Lindemann law

In point of fact, Lindemann (1910) did not propose a theory of melting
either; his purpose was to calculate the Einstein vibrational frequency of a
solid. He assumed a harmonic solid, whose atoms vibrate sinusoidally with
a frequency:

�
�

�

�
m�

���
(5.16)
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where � is the force constant and m, the mass of the atom.
As a step in his calculations, Lindemann assumed that, at the melting

point, the amplitude of the vibration is so large that the atomic spheres
collide, i.e. the parameter 
, expressing the ratio of the distance between the
surfaces of the spheres to the distance of their centers, vanishes. It is then
possible to write that the integral of the work done on one atom by the
restoring force �x (where x is the elongation), from the equilibriumposition
to the value x
 
r/2, corresponding to the contact of two neighboring
spheres of radius r, is equal to the thermal energy calculatedwith Einstein’s
model (Section 3.3.2):

�
�r�

8

 ��

��exp�
��

�
k
�
T

�
�� 1�

��
� T

�
�

��
�

2k
�

(5.17)

Replacing � by its expression as a function of �
�
from (5.16), solving for

�
�
and neglecting small terms, Lindemann finds:

�
�

 2���R���
���

T
�

Mr��
���

(5.18)

The ratio 
 is calculated from Clausius—Mossotti equation, relating the
dielectric constant to the number of atoms per unit volume and it is
assumed to be constant; hence, in c.g.s units:

�
�

 4.12·10���T���

�
M����V���� (5.19)

where V is the atomic (molar) volume and M
Nm, the atomic (molar)
mass.
Lindemann used the melting points to calculate the frequencies and at

no point in the original paper did he suggest using relation (5.19) to predict
melting points.
Gilvarry (1956a, 1957b) gave a firmer basis to the Lindemann equation.

Instead of assuming that melting occurs when neighboring spheres collide,
he wrote that the root mean square amplitude of atomic vibrations at
fusion is a critical fraction f of the distance r

�
of separation of nearest-

neighbor atoms:

�u��
 f �r�
�

(5.20)

(Strangely enough, the introduction of the critical ratio f, without which
Lindemann’s law would not have been so successful, is usually attributed
to Lindemann, although it is nowhere to be found in the original 1910
paper and clearly belongs to Gilvarry.)
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In Debye’s approximation, at high temperatures, for a monatomic solid
of atomic mass M, we have (see Ziman, 1965):

�u���
9k

�
T

m��
�



9��T
mk

�

�

�

(5.21)

hence, with (5.20):

T
�


 f �
k
�

9��
M
�

�
r�
�

(5.22)

which can be written in terms of the atomic volume V, assuming that
r
�


 (V/N)���:

T
�


 0.00321 f �MV���
�
�

(5.23)

Noting that Debye’s frequency can be expressed as a function of the
elastic constants (see Section 3.3.1), Gilvarry (1956a) obtains an interesting
expression for Lindemann’s law:

RT
�


 �(�)KV (5.24)

where �(�) is a function of Poisson’s ratio at the melting point, propor-
tional to f � and K and V are the bulk modulus and the atomic volume at
the melting point. The critical ratio f is calculated for a few metals from
experimental data and found identical and equal to about 0.08, which
supports the theory.
Ross (1969) reformulated Lindemann’s law in terms of the statistical

mechanical partition function of a Lennard-Jones—Devonshire cell model
of a solid and found again that the Simon and Kraut—Kennedy relations
could be derived from it.
Wolf and Jeanloz (1984) noted that in its usual form, Lindemann’s law is

derived using a quasi-harmonic Debye approximation valid only for mon-
atomic solids. They found that the anharmonic contribution to the root
mean square atomic displacement can be quite large at the melting point
and they gave a lattice dynamics formulation of Lindemann’s criterion for
polyatomic, anharmonic crystals; in many cases, however, due to the lack
of experimental data on the frequency spectra, the complete formulation
cannot be used.
Stacey and Irvine (1977a) starting from the definition of the ther-

modynamic gamma in the Mie—Grüneisen equation of state, equated the
thermal pressure with the pressure increase that would obtain if melting
occurred at constant volume:
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2��T
�
�S

�

K��V

�

and, with the Clausius—Clapeyron equation, they obtained the relation:

d lnT
�

dP


2�
K

that resembles equation (5.27) (see below) and, in these authors view, gives
a sound thermodynamic basis to Lindemann’s law.
Despite such attempts, the single-phase approach to melting, derived

from the Lindemann relation, has generally been criticized — and rightly so
— on thermodynamic grounds:melting is defined as a vibrational instability
of the solid and no acccount is taken of the liquid phase (the same criticism
can be leveled at the shear instability models). The only valid ther-
modynamic criterion of melting should be the equality of the free energies
of the solid and liquid phases. However, in the absence of any good theory
of melting, Lindemann’s law represents a valuable tool. In fact, in the
rather common case where the structure and coordination of the liquid is
close to that of the solid and the free energies of both phases differ very
little, one may find good justification for using Lindemann’s law.
Martin and O’Connor (1977) experimentally determined the value of

�u�� near the melting point for Al, Cu and alkali halides (LiF, NaCl, KCl,
KBr) by measuring the reduction in intensity of the elastically scattered
component of a Bragg diffraction peak caused by thermal vibrations. They
found that the Gilvarry critical ratio f is equal to about 0.08 for metals (in
agreementwith the value determined byGilvarry, 1956a) and to about 0.11
for alkali halides. They concluded that the vibrational melting relationship
can be applied to simple crystals of similar type but that the factor f varies
with the crystal structure and the nature of the interaction force law.
Stern and Zhang (1988) determined �u�� in Pb using X-ray absorption

spectroscopy (EXAFS) with synchrotron radiation. They found a value of
the critical ratio at melting f
 0.068. They also showed that in solid
solutions of Hg in Pb, the Hg impurity atoms have a larger vibrational
amplitude than the Pb atoms and suggested that local premelting of the
Hg—Pb bonds occurs below the bulk melting temperature (this may
provide a physical reason for the lowering of melting point by impurities).
The case of polyatomic complex minerals is more difficult since the

Lindemann—Gilvarry approach is properly restricted to Debyemonatomic
solids. It is, however, possible to use Lindemann’s law (5.23) as a semi-
empirical relation between melting temperature, acoustic Debye tempera-
ture, molar volume andmean atomic massM� . Poirier (1989) found that for
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Figure 5.9 Correlation between actual melting temperature and the temperature
predicted by the Lindemann law (proportional to the quantity plotted as abscissa)
for oxide and fluoride perovskites: ScAlO

�
, GdAlO

�
, SmAlO

�
, EuAlO

�
, YAlO

�
,

CaTiO
�
, BaTiO

�
(point in the middle), SrTiO

�
, KMgF

�
, KMnF

�
, KZnF

�
, KNiF

�
,

KCoF
�
, RbMnF

�
, and RbCoF

�
(after Poirier, 1989).

15 crystals with perovskite structure (fluorides and oxides) whose melting
points and elastic moduli are known, there exists a good systematic corre-
lation (Fig. 5.9) between T

�
and M� V���
�

�
where 


�
is calculated using

(3.37). For these crystals, the Gilvarry ratio is found to be f
 0.11 for
perovskite oxides and about f
 0.13 for perovskite fluorides (Table 5.4).
Lindemann’s law is, in most cases, used together with an equation of

state (Gilvarry, 1956c) to extrapolate melting points to high pressures, i.e.
obtain an estimate of the melting curve T

�
(P) or T

�
(V ) when none is

experimentally available. Wolf and Jeanloz (1984) extrapolated the experi-
mental melting data for a few minerals to the V,T plane, using available
thermodynamic data; they used the Mie—Grüneisen equation of state,
taking into account anharmonicity and they found that the agreement
between the predicted and experimentalmelting curves was poor or bad for
most minerals (fayalite, diopside, pyrope, etc.), with the exception of for-
sterite for which the agreement was excellent.Mulargia andQuareni (1988)
avoided using an equation of state by directly calculating T

�
as a function

of pressure from the values of the sound velocities at high pressures derived
from experimental data. They compared the predicted slopes of the melting
curves with the experimental ones for five metals, three alkali halides, and
two minerals: bronzite and ‘‘peridotite’’ (?!); they found that the agreement
was satisfactory and concluded that Lindemann’s law could profitably be
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Table 5.4. Critical Gilvarry—Lindemann factor f for various fluorides and
oxides with perovskite structure

ABX
�

M� � v

�

T
�



�

f

KMgF
�

24.08 3.15 4.29 1413 320 0.13
KMnF

�
30.21 3.42 3.43 1308 244 0.14

KZnF
�

32.26 4.02 3.43 1143 252 0.12
KNiF

�
30.99 3.99 3.53 1403 262 0.13

KCoF
�

31.00 3.82 3.38 1305 247 0.14
RbMnF

�
39.48 4.32 3.13 1259 221 0.13

RbCoF
�

40.31 4.76 3.31 1148 239 0.11
ScAlO

�
24.00 4.28 6.19 2143 513 0.11

GdAlO
�

46.45 7.44 4.43 2303 354 0.11
SmAlO

�
45.07 7.18 4.57 2373 364 0.11

EuAlO
�

45.39 7.25 4.41 2213 353 0.11
YAlO

�
32.78 5.35 5.09 2223 410 0.11

CaTiO
�

27.20 4.04 5.63 2248 438 0.11
BaTiO

�
46.25 6.04 3.77 1898 280 0.12

SrTiO
�

27.70 5.12 5.29 2213 403 0.11

Note:M� is the mean atomic mass in g/at., � is the specific mass in g/cm�, v

�
is the

average Debye acoustic velocity in km/s, T
�
is the melting point in K, and 


�
is

the Debye temperature in K, calculated from (3.37).

used as a semi-empirical scaling law.
Another interesting way of using Lindemann’s law to extrapolate

melting curves consists in starting from its differential form giving the slope
of the melting curve in terms of the Grüneisen parameter.
Gilvarry (1956a) showed that at high temperature and in the limits of

Slater’s approximation (Poisson’s ratio constant along the melting curve),
differentiation of (5.24) gives:

d lnT
�

d lnV

 1
�

d lnK

d lnV�
����

and, with Slater’s definition of gamma (at the melting temperature):

�
��


�
1

6
�
1

2

d lnK

d lnV

we have:

d lnT
�

d lnV

� 2�

��


2

3
(5.25)

or:
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d lnT
�

d ln�

 2�����

1

3� (5.26)

or:

dT
�

dP

 2

T
�
K �����

1

3� (5.27)

The same relations can of course be obtained by taking the logarithmic
derivative of (5.23) and using the definition: � 
� d ln


�
/d lnV.

Note that:

d lnT
�

d ln�



d ln�
d ln�

where � 
K/� is the seismic parameter.
Equation (5.26) is a useful differential form of Lindemann’s law, very

convenient for extrapolating melting curves. Its integrated form, taking
into account the variation of � with density (��
 �

�
�
�
) is:

T
�


 T �
�
exp�2���1�

�
�
� �


2

3
ln�

�
�
� �� (5.28)

It can be used with a theoretical or an experimental EOS.
Note that writing (5.25) as a finite difference equation (taking into

account the fact that �V � 0):

�T
�

T �
�



T
�

� T �
�

T �
�


 2���
1

3�
�V
V

�

one obtains the Kraut—Kennedy relation (5.10):

T
�


 T �
��1
 2���

1

3�
�V
V

�
�

where the constant C is explicitly stated in terms of gamma (Vaidya and
Gopal, 1966; Gilvarry, 1966).
We clearly see here that the Kraut—Kennedy relation replaces the

melting curve in the T,V plane by its tangent at the origin and generally
cannot be used for extrapolations to very high pressures.

5.4.3 Lennard-Jones and Devonshire model

The two essential characteristics of the liquid state are that it has a
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vanishing shear modulus and no long-range order, and indeed it can be
shown that the loss of rigidity is a direct consequence of the loss of
long-range order (P. W. Anderson, 1984). We have seen that the problem
with the shear instability melting theories is that one defines melting by the
vanishing of the shear modulus of the solid, without reference to the melt
and that, consequently, these theories have no sound thermodynamic
grounding. No such inconvenience arises if one, instead, defines melting by
the transition from an ordered to a disordered state, which can be ther-
modynamically defined. This is what Lennard-Jones and Devonshire
(1939a,b) did in constructing what is probably the most rigorous theory of
melting of simple solids.
An atom of the solid or the liquid is regarded as vibrating in the available

space of a small cell (the free volume, defined in Section 3.5). Lennard-Jones
and Devonshire consider a crystal made up of identical atoms on regular
lattice sites �; the interstitial sites � are positions of higher energy. The
proportion of atoms on interstitial sites (Fig. 5.10) is taken as a measure of
disorder: The order parameter Q is defined as the ratio of the number of
atoms on �-sites, N� to the total number of atoms N:

Q

N�

N
(5.29)

1�Q

N�

N

Q varies between �
�
for total disorder and 1 for perfect order.

In a first paper, Lennard-Jones and Devonshire (1939a) calculated the
effect of disorder on the partition function of atoms by determining the
probability of various configurations about atoms on �- and �-sites. They
found a critical temperature at which long-range order disappears and they
determined the additional free energy and pressure due to disorder, in
terms of the extra energy W of a pair of atoms on neighboring �- and
�-sites. To calculate the melting temperature, they expressedW in terms of
interatomic potentials. This method gave good results for rare gases, but
the calculations were rather elaborate and Lennard-Jones and Devonshire
(1939b) proposed a simpler method derived from the Bragg—Williams
theory for order—disorder transformations in binarymetallic alloys. Simul-
taneously and independently, Frank (1939) published a paper developing
exactly the same method, showing that a cooperative disorder of the
Bragg—Williams type leads to the right kind of two-phase, first-order
melting transition. However, he did not go into detailed calculations and
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Figure 5.10 Melting by atomic disordering (after Lennard-Jones and Devonshire,
1939). (a) Local displacement of atoms, but long-range order preserved. (b) Long-
range order broken: equal number of atoms on regular lattice sites (crosses) and

interstitial sites (dots).

we will now return to the Lennard-Jones and Devonshire (1939b) quanti-
tative model.
Instead of calculating the configurations about a given atom, they

assume that its environment is governed by the average state of order
throughout the system. To change the position of a single atom from an
�-site to a �-site when all the atoms are on �-sites requires much more
energy, owing to the repulsive field of the neighbors, than when the change
is made simultaneously for several atoms. The phenomenon of interchange
is therefore regarded as a cooperative one.
The partition function ofN atoms in perfect order is equal to f

�
, where f

is the partition function of each atom of mass m vibrating in its cell, given
by:

f
�
2�mk

�
T

h� �
���

V
�
exp��

�
�

Nk
�
T� (5.30)

where V
�
, the free volume, is given by (3.76) and �

�
is the potential energy

of the system when all the atoms are in their equilibrium positions. The
partition function of the disordered system is:

Z
 f �D(Q) (5.31)

where D(Q) is a factor introduced to take account of the disorder, Q being
the order parameter defined in (5.29).
Assuming that the disorder is homogeneous, an atom on a �-site is

surrounded on average by zQ atoms on �-sites and an atom on an �-site is
surrounded by z(1�Q) atoms on �-sites, z being the number of �-sites
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adjacent to a �-site, equal to the number of �-sites adjacent to a �-site in the
system considered by Lennard-Jones and Devonshire. Now, if the interac-
tion energy of a pair of neighbors on �- and �-sites is W, the average extra
energy of an atom due to its neighbors is: W� 
 Wz(1�Q) for an atom on
an �-site and W� 
 WzQ for an atom on a �-site. Hence, the energy
required to transfer an atom from an �-site to a �-site is:

�W 
 W� � W� 
 Wz(2Q� 1) (5.32)

The total energy of interaction due to the disorder is:

N�W� 
N�W� 
 zNWQ(1�Q) (5.33)

Note thatW is a function of the distance between two sites and therefore
of the volume of the solid as a whole; this is how the cooperative feature of
the model is introduced.
The number of configurations such that there are N� atoms on �-sites

and N� atoms on �-sites is:

�(Q)

N!

(N�N�)!(N�)!
�

N!

(N�N�)!(N�)!



N!

(NQ)!� [N(1�Q)]!

The disorder factor D(Q) is therefore:

D(Q)
 �(Q) exp��
zNWQ(1�Q)

k
�
T � (5.34)

and the partition function of the system of atoms vibrating in disordered
cells is, from (5.31):

Z
 f ��(Q) exp��
zNWQ(1�Q)

k
�
T � (5.35)

Themaxima of the partition function for given volume, temperature and
W are found for dZ/dQ
 0, which, if one uses Stirling’s approximation:
ln(N!)�N lnN�N, can be written:

zW(2Q� 1)

2k
�
T


 lnQ� ln(1�Q) (5.36)

and, if one remembers that:

arg tanh x

1

2
ln�

1
 x

1� x�
one can write (5.36) as:
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2Q� 1
 tanh�
zW(2Q� 1)

4k
�
T � (5.37)

Equation (5.37) always has one root forQ
�
�
and, if zW/4k

�
T � 1, it has

another root Q
���

� �
�
, corresponding to a maximum of the partition

function Z and given in terms of W/k
�
T by (5.36). The Helmholtz free

energy, F
 � k
�
T lnZ

���
, is then:

F
 �Nk
�
T ln f
 zNWQ

���
(1�Q

���
)


 2Nk
�
T[Q

���
lnQ

���

 (1�Q

���
) ln(1�Q

���
)]

The free energy consists of two terms. The first one: F' 
�NkT ln f,
corresponds to the perfectly ordered crystal and the second term:

F" 
 zNWQ
���
(1�Q

���
)


 2Nk
�
T[Q

���
lnQ

���

 (1�Q

���
) ln(1�Q

���
)] (5.38)

corresponds to the extra contribution of the disorder of the centers about
which the atoms vibrate.
The internal energy, entropy and pressure can be similarly separated

into terms corresponding to the ordered crystal and extra terms due to the
state of positional disorder.
Since F" 
U" � TS", the disorder contributions to the internal energy

and entropy are:

U" 
 zNWQ
���
(1�Q

���
) (5.39)

S" 
 � 2[Q
���

lnQ
���


 (1�Q
���
) ln(1�Q

���
)] (5.40)

The extra pressure due to disorder P" 
� (�F"/�V )
�
is:

P" 
� zNQ
���
(1�Q

���
)�
dW
dV�

�

��
dF"
dQ�

���
�
dQ

dV�
�

(5.41)

Since F" is maximum for Q
���
, the last term vanishes and, as W is a

function of volume alone, we have:

P" 
� zNQ
���
(1�Q

���
)
dW
dV

(5.42)

Denoting by n" 
 zNQ
���
(1�Q

���
), the number of atoms in adjacent �-

and �-sites, we have:

P" 
� n"
dW
dV
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Figure 5.11 Lennard-Jones andDevonshire theory of melting (after Lennard-Jones
and Devonshire, 1939). (a) Pressure as a function of volume at a given temperature.
The lower curve givesP', the pressure for a state of order, and the upper one gives the
total pressure, the sum of P' and P", the disorder pressure. (b) Free energy as a

function of volume.
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SinceQ
���

is a function ofW/k
�
T only , as seen in equation (5.36), andW

is a function of volume only, it follows that, for a given temperature, n" is a
function of volume only and that P" rises from zero for small volumes to a
maximum and decreases to zero again for large volumes.
Owing to the existence of the term P" in the equation of state, the shape

of the isotherm is drastically modified from that of the ordered solid (Fig.
5.11(a)). The curve of free energy F as a function of volume is shown in Fig.
5.11(b) for solid argon. It displays a maximum B between two minima A
and C. The minimum A, for small volume, corresponds to a relatively
ordered state (solid) and the other minimum C corresponds to nearly total
disorder (liquid). Between A and C the system will have less free energy by
following the straight line AC corresponding to a two-phase mixture of
solid and liquid in equilibrium. The volume of melting can be directly read
as the difference of the abscissae of the twominima.Now, the total pressure
depends on volume and temperature ; if the interaction energy W varies
with volume as W 
 W

�
(V

�
/V )� and if �

�
� W

�
, it can be shown that:

P
 f (V/V
�
, k

�
T/�

�
). Therefore, there exists a functional relationship be-

tween V/V
�
and k

�
T/�

�
at P
 0.

As we have seen (Fig. 5.11), P goes to zero for three values of V/V
�
, the

smallest one corresponding to the volume of the solid at melting and it is
found that for many solid gases the corresponding value of k

�
T/�

�
is about

0.7. The melting temperature is therefore: T
�

� 0.7�
�
/k

�
.

There is a good agreement between observed and calculated values of
the temperature and volume of melting for solid gases.
Lennard-Jones and Devonshire (1939b) calculated the vibrational fre-

quency of a solid with an interatomic potential (Lennard-Jones potential)
given by:

� 
�
���

r

r
�
�
���

� 2�
r

r
�
�
��

� (5.43)

They were able to find a correlation between the vibrational frequency of
the solid and the melting temperature calculated by their model, thus
verifying Lindemann’s law: they found that for a number of solid gases,
they had:

T
�


�
1

163�
�

�

�
MV��� (5.44)

in good agreement with formula (5.23), if the Gilvarry factor f is taken
equal to about 0.1.
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5.4.4 Dislocation-mediated melting

The loss of long-range order is the fundamental feature of the melting
phenomenon and, as we have seen in the case of the Frank and Lennard-
Jones andDevonshiremodels, the cooperative appearance of disorder ( the
order parameter being a function of the total volume) accounts for the
first-order character of the melting transition.
However, for energetic reasons, long-range order cannot be destroyed

simultaneously over the whole crystal and disorder must be caused by the
proliferation of lattice defects that locally break the order. This is the origin
of defect-mediated theories of melting.
The simplest defect is the vacancy, a vacant lattice site. The equilibrium

atomic fraction of vacancies in a crystal increases with temperature as
exp(��G/k

�
T), where �G is the free energy of formation of vacancies (see

e.g. Poirier, 1985, p. 40). It is therefore tempting to envision melting as due
to the increase in the number of vacancies up to a point where the
vacancy-filled solid becomes so disordered that it can be considered as a
liquid. However, the cooperative effects necessary to produce a first-order
transition would appear only for unrealistically high vacancy concentra-
tions.
Dislocations (see e.g. Friedel, 1964; Nabarro, 1967) are linear lattice

defects that break the order along their cores. They also have a long-range
stress field and cause elastic energy to be stored in the volume of the crystal.
Motion of dislocations in the lattice causes slip and plastic deformation. It
is easy to see how a crystal filled with dislocations can be so disordered and
fluid as to be liquid-like. It probably was Shockley (1952) who first re-
garded the liquid as being a solid densely packed with dislocations and
calculated its viscosity by consideration of the motion of dislocations.
Dislocation-melting theories indeed rest on the assumption that a liquid

is a solid saturated with dislocation cores (Fig. 5.12) (Mizushima, 1960;
Kuhlmann-Wilsdorf, 1965; Ninomiya, 1978; Cotterill, 1980; Suzuki, 1983;
Poirier, 1986; Joos, 1996). The dislocation-melting models invoke a
cooperative effect: The free energy of the solid increases with dislocation
density but the introduction of new dislocations becomes easier and easier
and, for a finite density, the free energy of the solid saturated with disloca-
tions (i.e. a liquid) is equal to that of the dislocation-free solid . A first-order
transition is then thermodynamically possible between solid and liquid at
equilibrium.
The various dislocation-melting theories are reviewed by Poirier (1986)

and a model based on Ninomiya’s (1978) model is developed, giving the
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Figure 5.12 Dislocationmelting (two-dimensional example): a disordered liquid (a)
can be represented by a solid saturated with dislocations (b); the dislocation cores

are traditionally represented by ‘‘nails.’’

melting volume, entropy and temperature as a function of the elastic
moduli and the Grüneisen parameter. We will only give here the main
outline of the model.
The total elastic internal energy �E of one mole of crystal containing a

dislocation concentration C
�
consists of:

• The core energy:

�E
�
�C

�
b� (5.45)

C
�
is defined by: C

�

 LV/N

�
b, where L is the dislocation length per

unit volume, V is the molar volume, N
�
is Avogadro’s number and b is

the Burgers vector of the dislocations (a vector of the Bravais lattice,
expressing the strength of the dislocation).

• The elastic energy stored in the bulk of the crystal, which can be written,
taking into account the interaction of dislocations (Poirier, 1986):

�E
	
��C

�
�b� ln�

�r�
�
N

�
C

�
b

V �
���

(5.46)
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where � is the shear modulus and r
�
is the core radius.

Now, the strain field of a dislocation has a dilatation component and
the concentrationC

�
of dislocations introduces a dilatation �(C

�
), which,

in turn, causes the shear modulus to decrease. Using Slater’s formula
(3.66), we can write:

�
�
��1
�2��� 


1

3� �� (5.47)

where �
��
is Slater’s gamma, and carry the value of � into (5.46).

• A third energy term corresponds to the dilatation �:

�E� �K�� (5.48)

where K is the bulk modulus.

The total energy is therefore:

�E
�E
�

�E

	

�E� (5.49)

The equilibrium value of � corresponding to C
�
is obtained by minimiz-

ing �E with respect to �. For C
�

C
��

�
� �

�
at saturation, we have:

�
���
A

2�
�
�
K �����

1

3�C
��
�

(5.50)

where A is a geometric factor depending on the crystal structure.
The melting volume is then:

�V
�


 V�
�� (5.51)

The melting entropy can be written:

�S
R[3�
���
��


 2C
��
�
] (5.52)

The first term corresponds to the entropy increase due to the lowering of
lattice frequencies caused by anharmonic dilatation and the second term
corresponds to the vibrational entropy of dislocation lines.
The total extra free energy of the crystal with a dislocation concentration

C
�
, at temperature T is:

�F
�E� T�S (5.53)

and the melting temperature is obtained by taking C
�

C
��

�
in (5.53)

and setting �F
 0 (Fig. 5.13), since �F corresponds to the difference in
free energy between the liquid (dislocation saturated crystal) and the
dislocation-free solid. We have:
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Figure 5.13 Extra free energy of a crystal containing a dislocation concentrationC
�
.

At the melting temperature, �F
 0 for C
�

C
��

�
.

T
�



KV
2R

�
��
1� �
������ �

1

3�
�����

1

3� (3�
����� 
 2C
��
�
)

(5.54)

Using (5.51), (5.52) and the Clausius—Clapeyron rule, we obtain the slope
of the melting curve:

dT
�

dP



�V
�

�S
�



V
R

�
��
(3�
���

��

 2C
��

�
)

(5.55)

and:

d lnT
�

d ln�



2�����
1

3�
1
 �
������ �

1

3�
(5.56)

We see that (5.56) differs from the differential Lindemann law (5.26) only
by the coefficient [1
 �
��(�

��
� 1/3)], slightly larger than 1 if �

��
� �

�
, which

is always the case.
The melting parameters of iron were calculated using this model
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Figure 5.14 Calculated vs experimental melting temperature of the metals potass-
ium, sodium, rubidium, lead, cadmium, zinc, aluminum, gold and iron (after Poirier

and Price, 1992).

(Poirier, 1986) and found to be in good agreement with the experimental
values, as we will see in the next section. Poirier and Price (1992) found an
agreement better than 90% between the calculated and experimental
melting point of nine metals (Rb, K, Na, Cd, Pb, Zn, Al, Au, Fe) (Fig. 5.14).
Stacey and Irvine (1977b) derived the differential Lindemann law from

what they claimed to be a dislocation theory of melting and the Clausius—
Clapeyron rule. However, their model has no cooperative feature and the
liquid state is not characterized by a saturation concentration of disloca-
tions; instead, they assume that the latent heat of melting and the melting
volume are, respectively, equal to the extra energy and the anharmonic
dilatation corresponding to the removal of an atom from one of a pair of
linear mass-and-spring type chains — a system only very remotely connec-
ted to a crystal dislocation.

5.4.5 Summary

All melting theories are imperfect because to construct a good theory for
the first-order melting transition, one must write that the free energies of
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the solid and the liquid are equal at equilibrium. This would necessitate a
better description of the liquid state than the ones currently available —
indeed, the structure of the liquid state is a standing problem in physics.
Ab-initio calculations of the free energies of liquid and solid phases, using
density functional theory, are very promising and have recently given good
results in the case of metals (Vočadlo et al., 1997; de Wijs et al., 1998), but
they do not constitute theories of melting.
Such as they are, the disorder theories of melting of the Frank—Lennard-

Jones—Devonshire type or the dislocation theories of melting are closer to
being acceptable theories. The main objection to these theories is that they
lead to homogeneous melting kinetics in the bulk, while there is more and
more experimental evidence that melting is initiated from the surface, or
grain boundaries (see e.g. Joos, 1996).
The shear instability theories, even though they provide some interesting

correlations, are not good theories of melting, nor are the vibrational
theories in which, to quote Frank (1939), one assumes that ‘‘at the melting
point, the crystal shakes itself to pieces’’. We must, however, remark that
Lindemann (1910) never claimed to have done anything else than find a
correlation between the melting point and the vibrational frequency, and it
is no surprise that the Lindemann law can be found as a by-product of any
theory of melting worth its salt, even though that does not constitute a
justification of a ‘‘Lindemann theory of melting’’. As a correlation, and
especially in its differential form, in terms of the Grüneisen parameter,
Lindemann’s law is very valuable and its status is not impaired by the fact
that it does not embody a theory of melting.
It remains that even the best theories of melting, developed for simple

solids like solid gases or metals, dismally fail in the case of minerals due to
the complexity of the structure of their liquids. The Lindemann correlation,
however, if applied to crystals of the same structure, may be the base of
fruitful systematics and reasonable extrapolations of the melting curve.

5.5 Melting of lower-mantle minerals

The melting curve of the lower-mantle minerals provides an upper bound
to the temperature profile in the deep Earth, except possibly near the
core—mantle boundary (CMB), where it has been suggested that partial
melting may occur in an ultra-low velocity zone (Williams and Garnero,
1996; Holland and Ahrens, 1997). Also, as many transport phenomena
(diffusion, viscosity, etc.) have been empirically shown to scale with melting
temperature, it is important to obtain information on melting of minerals
at very high pressures.
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5.5.1 Melting of MgSiO3 perovskite

Heinz and Jeanloz (1987) first determined the melting curve of
(Mg

���
Fe

���
)SiO

�
perovskite up to 65GPa in a YAG laser-heated dia-

mond-anvil cell. They found that the melting point was independent of
pressure (dT

�
/dP� 0) and equal to 3000� 300K. Knittle and Jeanloz

(1989) pursued the experiments up to 96GPa, and found that above
60GPa the melting curve had a small slope dT

�
/dP� 20K/GPa; they

attributed the change of slope to a structural transition in the melt.
Melting experiments on MgSiO

�
between 22 and 25GPa in a multi-

anvil apparatus by Ito and Katsura (1992) gave a melting temperature of
about 2800K at 23GPa, in agreement withHeinz and Jeanloz (1987), but a
finite slope of the melting curve dT

�
/dP� 30� 5K/GPa, close to that

estimated by Poirier (1989).
Sweeney and Heinz (1993), using a diamond-anvil cell up to 94GPa,

found melting temperatures of (Mg
��	�

Fe
����

)SiO
�
slightly lower than

those reported by Heinz and Jeanloz (1987), and a small negative slope
dT

�
/dP� � 2.5� 0.6K/GPa, without any change in slope at 60GPa.

Zerr and Boehler (1993), using argon as the pressure medium in a CO
�

laser-heated diamond-anvil cell up to 63GPa, found a much higher slope
for the melting curve of (Mg

��		
Fe

����
)SiO

�
, dT

�
/dP� 60K/GPa at

22GPa, smoothly decreasing to 40K/GPa at 60GPa. This leads to an
extrapolated melting temperature at the CMB higher than 7000K. The
wide discrepancy with the results of Heinz and Jeanloz (1987) and Sweeney
and Heinz (1993) was attributed to differences in experimental set-ups and
melting criteria; a heated controversy followed (Heinz et al., 1994; Boehler
and Zerr, 1994). The experiments of Shen and Lazor (1995) on MgSiO

�
(Fig. 5.15) are in agreement with Zerr and Boehler (1993), while Sweeney
and Heinz (1998) find that the slope of the melting curve of
(Mg

��		
Fe

����
)SiO

�
up to 85GPa is dT

�
/dP� 5� 0.8K/GPa, leading to a

melting temperature at the CMB, extrapolated by Simon’s equation, of
about 4500K.

5.5.2 Melting of MgO and magnesiowüstite

Due to the fact that the melting temperature of MgO at atmospheric
pressure is already very high (3060K), there have been fewer attempts at
determining its pressure dependence by experiment than by calculation.
Zerr and Boehler (1994) measured the melting point up to 31.5GPa. Fit of
the experimental data to a Lindemann relation yields a slope dT

�
/dP�

36K/GPa near 1 atm (smaller than the slope found by the same authors for
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Figure 5.15 Experimental melting curves of silicate perovskiteMgSiO
�
, from Shen

et al., (1993) (crosses), and Zerr and Boehler (1993) (triangles) (after Shen and Lazor,
1995).

perovskite), and an extrapolatedmelting point slightly above 5000K at the
pressure of the CMB. The melting point of (Mg

��	�
Fe

����
)O magnesiowüs-

tite was found to be 3400K at 18GPa.
Vočadlo and Price (1996) calculated the melting curve of MgO up to

150GPa, by classical molecular dynamics. They found a much larger slope
than did Zerr and Boehler (1994): dT

�
/dP� 98K/GPa at 1 atm, with a

melting point tending to 8000K near the CMB. Also using molecular
dynamics, but an ab-initio, non-empirical potential, Cohen and Weitz
(1998) found results in agreement with Vočadlo and Price (1996):
dT

�
/dP� 114K/GPa at 1 atm.

5.6 Phase diagram and melting of iron

There is strong evidence for the Earth’s core being essentially composed of
iron (Birch, 1952; O. L. Anderson, 1985) and, as we will see below, a
knowledge of themelting curve of iron at core pressures allows us to place a
constraint upon the temperature at the inner core boundary and anchor
the Earth’s temperature profile. The melting curve, however, is part of the
phase diagram (see Section 7.4.1) and represents the equilibrium boundary
between the liquid and the solid phase stable at a given pressure. It is
therefore the whole phase diagram and not just the melting curve at
ambient pressure that must be extrapolated at high pressure.
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Figure 5.16 Phase diagram of iron up to 20GPa (after Guillermet and Gustafson,
1984).

At pressures lower than about 20GPa, the phase diagram of iron is
reasonably well known (Guillermet and Gustafson, 1984; Boehler, 1986)
(Fig. 5.16): The phase stable at room temperature and ambient pressure is
�-Fe with a body-centered-cubic (bcc) structure, at high temperature it
changes into face-centered-cubic (fcc) �-Fe, which reverts to a bcc �-Fe
phase below the melting point (Strong et al., 1973). At high pressure, �-Fe
transforms into hexagonal-close-packed (hcp) �-Fe. The � 
 � transform-
ation has been studied in situ by X-ray diffraction, using synchrotron
radiation and appears to take place by a diffusionless mechanism (Bassett
and Huang, 1987). The experimental values of the triple point between the
�, � and � phases are given in Table 5.5.
At low and moderate pressures, the phase that melts is �-Fe and the

melting curve has been determined up to 20GPa (Liu & Bassett, 1975) and
43GPa (Boehler, 1986) by resistive heating of an iron wire in a diamond-
anvil cell.
For more than ten years, the phase diagram of iron at high pressure has

been the subject of a controversy in the ‘‘iron workers’’ community, which
is not entirely over at the date of this writing. Whether the melting curve
extrapolated to a melting point at the pressure of the inner core boundary
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Table 5.5. Triple points in the Fe phase diagram. Pressure in GPa,
temperature in K.

�—�—� �—�—L �—�—L �—�—L

Reference P T P T P T P T

Bundy (1965) 11 763
Liu (1975b) 94 3243
Guillermet & Gustafson
(1984) 10.7 747
Anderson (1986) 280 5760
Boehler (1986) 11.6 810 75 2773
Akimoto et al. (1987) 8.3 713
Williams et al. (1991) 300 7500
Saxena et al. (1993) 70 2700
Boehler (1993) 100 2750
Saxena et al. (1994) 76.5 2946 205 40
Yoo et al. (1995) 50 2500
Mao et al. (1998) 60 2800

L: liquid.

(330GPa) higher than 7000K or lower than 5000K was the main bone of
contention. As more and more experiments were performed, the problem
arose of the presence (or absence) of new high-pressure phases and of their
crystallographic structures, with obvious consequences as to the nature of
the iron phase of the inner core.
In shock-wave experiments, Brown and McQueen (1980, 1982, 1986)

found a first discontinuity in sound wave velocity near 200GPa, and a
second discontinuity at 243GPa, at a higher temperature, between 5000
and 5700K; they attributed the first discontinuity to a solid—solid phase
transition, which they suggested might be � 
 �, and the second discon-
tinuity was considered as due to melting. Most later extrapolations of
experimental data were forced to go through the (wide) error bar of the
Brown and McQueen melting point at 243GPa.
Williams et al. (1987b) combined shock-wave experiments and melting

experiments in a laser-heated diamond-anvil cell up to 100GPa, and found
a very steep melting curve, extrapolating to a melting point of
7600� 500K at 330GPa. The melting curve calculated ab initio by Haus-
leitner and Hafner (1989) goes approximately through the Williams et al.
experimental points at lower pressures, but extrapolates to 5200K at
330GPa.
Boehler et al. (1990), in Mainz, also from experiments in a laser-heated
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Figure 5.17 Experimental melting curves of iron from Williams et al., (1987b)
(triangles) and Boehler et al., (1990) (crosses and rectangles) (after Duba, 1992).

diamond-anvil cell, found that the melting point of �-Fe at 120GPa was
3000K, more than 1000K lower than the value found by Williams et al.
(1987b). Williams et al. (1991) then confirmed a melting point T

�



4300� 200K at 105GPa and the extrapolation of the melting curve to the
�—�—liquid triple point at 300GPa and 7500K. Duba (1992) summarized
the arguments from both sides (Fig. 5.17), pointing out that the determina-
tion of melting in a diamond-anvil cell is very difficult and that the
discrepancy between experimentalists might come from the different
melting criteria used. Boehler (1993) confirmed his previous results by
extending his measurements up to a pressure of 200GPa, and found the
�—�—liquid triple point at 100GPa and 2750K. The melting curve extrapo-
lated to 4850K at 330GPa. At this point, a third team entered the fray:
Shen et al. (1993) in Uppsala, also using a laser-heated diamond-anvil cell,
measured the melting point of iron up to 60GPa. Below 20GPa, their
results agreed with both those of Williams et al. (1987b) and Boehler et al.
(1990), but above this pressure they were much closer to those of Boehler et
al. New shock-wave measurements at Livermore National Laboratory,
however, yielded melting temperatures of 6350K and 6720K at 235GPa
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Figure 5.18 Phase diagram of iron. Dashed curves are extrapolations, for P
between 200 and 330GPa, using values of the Grüneisen parameter �
 1.55, 1.4,
1.3, 1.2. The dotted curve is the extrapolation from Boehler (1993). The full curve
between 200 and 330GPa is from experiments by Yoo et al. (1993) (after Anderson

and Duba, 1997).

and 300GPa respectively, extrapolating to 6830� 500K at 330GPa (Yoo
et al., 1993).
Chen and Ahrens (1995) calculated the phase diagram of iron from

equations of state and found that their calculations favored Boehler’s
melting curve over that of Williams et al. (1987b).
Ten years after the controversial paper of Williams et al. (1987b), it was

time again for an assessment of the situation. On the basis of X-ray
diffraction identifications of the liquid phase in later work, and a more or
less general consensus, Anderson and Duba (1997) removed the steep
melting curve of Williams et al. (1987b) from further consideration. They
constructed a phase diagram from the published diamond-anvil cell data,
in reasonable agreement up to 200GPa, and extrapolated the melting
curve to the pressure of the inner core boundary (ICB), using the Lin-
demann law (5.28), for various values of the Grüneisen parameter (Fig.
5.18). With their preferred value � 
 1.4, they find an extrapolated melting
temperature at 330GPa between 5600 and 6500K, in rather good agree-
ment with the calculated values of Poirier and Shankland (1994)
(T

�

 6060—6160K) and Chen and Ahrens (1995) (T

�

 5800K). More

recent measurements by Mao et al. (1998) up to 84GPa agreed with those
of Saxena et al. (1993) and Boehler (1993) below 60GPa and yielded
slightly higher melting points above 60GPa. They inferred a position of the
�—�—liquid triple point at 60� 5GPa and 2800� 200K.
From Boehler’s (1993) data, the triple point at about 2700K and
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100GPa thought to be the �—�—liquid triple point would be at too low a
pressure to make it possible for the solid—solid transition observed by
Brown and McQueen to be an �
 � transition. If a fifth phase of iron
existed, the transition could be explained. Boehler (1997) interpreted the
transition reported by Brown and McQueen as due to incomplete shock
melting, which eliminated the need for a fifth phase and extended the field
of �-Fe to the temperature and pressure of the inner core.
However, Saxena et al. (1993) at Uppsala claimed to have identified a

phase � between the � and � phases, with the �—�—� triple point near 30GPa
and 1200K. A triple point near 70GPa and 2700K could then be the
�—�—liquid triple point. A further study up to 150GPa led Saxena et al.
(1994) to propose a phase diagram with the �—�—liquid triple point at
2946� 100K and 76.5� 4GPa and the �—�—liquid triple point at 4015K
and 205GPa. The melting curve extrapolates to between 5980 and 6680K
at 330GPa.
Another controversy was soon to appear. Yoo et al. (1995) used a

combined laser-heated diamond-anvil cell and X-ray diffraction technique
to determine the structure of the high-pressure high-temperature phases up
to 130GPa and 3500K. They observed that �-Fe was stable from 50 to at
least 110GPa, and found no evidence for the � phase. The triple point at
2500� 200K and 50� 10GPa was identified as the �—�—liquid triple
point. However, they found evidence for a double hcp phase (��) inside the
stability field of the � phase. Saxena et al. (1995) and Saxena et al. (1996),
using synchrotron X-ray diffraction, confirmed the transition from � to � at
38GPa and temperatures between 1200 and 1500K. They indexed the
structure of the � phase as double hcp. In a technical comment in Science,
Saxena and Dubrovinsky (1997) and Yoo et al. (1997) expounded their
respective viewpoints. More recent determinations of structures by X-ray
diffraction, while the sample is at high temperature and pressure (strangely
called ‘‘in-situ’’ experiments) did not clarify the situation. Shen et al. (1998)
still do not observe the � phase, while Saxena and Dubrovinsky (1998) and
Dubrovinsky et al. (1998) define its stability field and confirm a double hcp
structure, although Saxena and Dubrovinsky (1998) propose a positive
slope of the P,T boundary between � and � phases, while Dubrovinsky et
al. (1998) find a negative slope (Fig. 5.19). Andrault et al. (1997) confirm the
existence of the � phase, and agree with the Uppsala team on its stability
field (with a positive slope of the �—� boundary) (Fig. 5.20), but assign to it
an orthorhombic structure, that can be derived by small distortions from �
and � phases. O. L. Anderson (1997) sums up the situation.
Considering the controversy about the � phase, involving pressures of
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Figure 5.19 Phase diagram of iron. Stability field of the � phase (after Dubrovinsky
et al., 1998b).

the order of 50GPa, it is not surprising that the existence or non-existence
of a high-pressure phase above 200GPa (�� or �) is entirely hypothetical. It
was suggested by Brown and McQueen (1986) from their shock-wave
experiments, and thought to be body-centered cubic, since this structure
had been predicted to be stable at very high pressures (Ross et al., 1990;
Bassett and Weathers, 1990). However, Stixrude and Cohen (1995) per-
formed ab-initio calculations of the energies of the various iron phases at
high pressure and found the bcc structure to be unstable with respect to a
body-centered-tetragonal structure above 150GPa.
At the time of writing, it is still impossible to guess whether the inner core

phase is hexagonal close packed (�), double hcp or orthorhombic (�), or
something else (��). It seems however probable that it is not face-centered
cubic (�), as there is good evidence that the stability field of this phase does
not extend to very high pressures.
The seismologically determined density of the outer core is lower than

that of pure iron, at core pressure and temperature, deduced from equa-
tions of state. Light elements (S, O, Si, etc.) must therefore be present in
solution in the liquid metal. Besides decreasing the density of the core, they
also decrease the melting (freezing) point of the alloy, with respect to that of
pure iron. As the inner core boundary corresponds to freezing of the liquid
iron alloy, a knowledge of the freezing-point depression, together with that
of pure iron, would allow an estimation of the temperature at the inner core
boundary, thus providing an anchoring point for the geotherm. There is
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Figure 5.20 Phase diagram of iron. Stability field of the � phase (after Andrault et
al., 1997).

still much uncertainty about the nature and concentration of the light
elements in the core (Poirier, 1994a), although some progress has recently
beenmade in estimates of the chemical composition of the core andmantle
(Allègre et al., 1995). In addition, very little is known about the phase
diagrams of iron alloys at core pressures.
Sulfur is known to depress the melting point of iron at atmospheric

pressure and forms a eutectic, but it is not obvious that this effect persists
up to core pressures. Williams and Jeanloz (1990) investigated the melting
of iron—sulfur alloys up to 120GPa. They determined the melting curve of
FeS and of a 10wt% S alloy (Fig. 5.21), and they calculated the composi-
tion and temperature of the eutectic as a function of pressure.
Boehler (1992) measured the melting curve of FeS and FeS

�
between 7

and 44GPa, as well as the melting point of a mixture of Fe with about
10—20wt% FeS at several pressures. At 17.6GPa, the mixture begins to
melt at 1650� 50K, 600K below the melting point of iron and 300K
below that of FeS. Fei et al. (1997) report that the formation of the definite
compound Fe

�
S
�
above 14GPa changes the melting relation in the Fe—

FeS system.
Oxygen is another candidate as a light alloying element in the core.

Knittle and Jeanloz (1991) measured the melting curve of Fe
����

O up to
100GPa and found that it lies above that of pure Fe. The melting tempera-
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Figure 5.21 Experimental (full) and calculated (dashed) melting curve of an
Fe—10wt% S alloy (after Williams and Jeanloz, 1990).

Figure 5.22 Experimental melting curve of Fe
����

O. The melting curve of Knittle
and Jeanloz (1991b) is given for comparison (dashed) (after Boehler, 1992).
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ture of an alloy with 10wt% oxygen (Fe
����

O
����

) lies between that of Fe
and FeO at 83GPa. Boehler (1992) measured a melting curve of Fe

����
O,

lying much below that measured by Knittle and Jeanloz (1991) (Fig. 5.22).
Boehler (1993) found that alloys with 10wt% and 30wt% oxygen had
melting temperatures lower than those of Fe and FeO, but that above
60GPa the melting-point depression disappeared.
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6

Transport properties

6.1 Generalities

All dynamic processes inside the Earth are governed by the transport of
certain physical quantities, or at least depend on materials constants
(conductivities or diffusivities) that express how easily those quantities are
transported in a given region of the Earth.

• Solid-state reactions between minerals and kinetics of phase transform-
ations are controlled by transport of matter (atoms) by diffusion.

• Viscous flow of matter in the convecting mantle is controlled by diffu-
sion of momentum (viscosity).

• Cooling of the Earth is controlled by heat transfer in the thermal
boundary layers.

• The propagation of electromagnetic signals in the mantle depends on its
electrical conductivity.

Transport of a physical quantity (e.g. momentum or heat ) or of particles
(e.g. atoms or electrically charged particles) always results from the appli-
cation of a driving force F. In all cases it produces a flux J (measured per
unit area and unit time).
In the case of particles, the velocity v of the particle depends on the

driving force and in the linear approximation, we have:

v�MF (6.1)

whereM is the mobility of the particle, which depends on the nature of the
particle, on the properties of the medium in which it moves and on
temperature and pressure. The flux J is then equal to the number of
particles per unit volume times the velocity.
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In general, if the driving force derives from a potentialU, F� � gradU,
the linear approximation gives:

J��C gradU (6.2)

where C is the kinetic coefficient expressing the ease of transport.
The driving force may be external and imposed on the system (e.g. flow

due to a pressure gradient, electric current due to a difference of potential).
It can also reflect the existence of heterogeneities in the system, which the
resulting flow will tend to eliminate (e.g. diffusion of matter, diffusion of
momentumor viscosity, diffusion of heat). In that case, as we will see below,
equations of the type (6.2), together with conservation equations, yield
diffusion equations.
Diffusion is an out-of-equilibrium, dissipative, irreversible process.

Steady state flow in such processes corresponds to a minimumof the rate of
entropy production dS/dt. It can be shown (Prigogine, 1962) that the rate of
entropy production can be written as the product of a generalized driving
force F by the corresponding flux J.
Let us now consider a few important cases of transport phenomena

mentioned above.

(i) Fluid flow through a porous medium

The external driving force is a pressure gradient. The flow of an incom-
pressible fluid per unit area and second is given by Darcy’s equation:

J� �
k

�
gradP (6.3)

where k is the permeability of the medium, expressed in darcys (1
darcy� 1 �m�) and � is the dynamical viscosity (see below).

(ii) Electrical conduction

The external force is an electric field E deriving from a potential:
E�� gradV. The transport equation is Ohm’s law:

J��
��
E���

��
gradV (6.4)

where �
��

is the electrical conductivity, expressed in siemens/m (1 S/
m� 1���m��).
The electric current density J is equal to the number of charge-carrying

particles per unit volume times the electric charge they carry times their
velocity.
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(iii) Diffusion of matter

Diffusion is an irreversible process and, as such, can be best treated in the
framework of the thermodynamics of irreversible processes (TIP). For a
short and clear presentation of the formalism in the simpler case of metallic
alloys, see Bocquet et al. (1983).
The driving force for the diffusion of species A (atom or point defect) is

the gradient of its chemical potential �
�
. The flux of matter is given by:

J
�
�� L

�
grad�

�
(6.5)

where J
�
is the flux of atoms A per second, and L

�
is called the phenom-

enological coefficient. It is, however, more convenient to use Fick’s equa-
tion, expressed in terms of the concentration c

�
of atoms (number of atoms

per unit volume):

J
�
��D

�
grad c

�
(6.6)

where D
�
is the diffusivity or diffusion coefficient of species A, expressed in

m�/s or cm�/s.
Concentration c

�
is defined as the number of atoms of speciesA per unit

volume. If n is the total number of atoms per unit volume in the medium
and N

�
the atomic fraction of atoms A, we have:

nN
�
� c

�
(6.7)

By definition, the chemical potential is:

�
�
���

�
�RT ln �

�
N

�
(6.8)

where ��
�
is the chemical potential in the standard state and �

�
the activity

coefficient of species A. In the simple case of ideal solutions, �
�
� 1 and we

have:

grad�
�
�

��
�

�x
�

��
�

�N
�

�N
�

�x
�

RT
nN

�

�c
�

�x
(6.9)

hence:

J
�
�� L

�
grad�

�
��

L
�
RT
c
�

grad c
�

(6.10)

and, by comparison with (6.6):

D
�
�

L
�
RT
c
�

(6.11)
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Now, from (6.1), we have the velocity v
�

��M
�
grad�

�
and, since

J� c
�
v
�
, we have L

�
� c

�
M

�
. Carrying into (6.11), we obtain Einstein’s

relation, linking the diffusivity with the mobility:

D
�
�RTM

�
(6.12)

The conservation equation for species A is written:

divJ
�
�

�c
�

�t
� 0 (6.13)

hence, with (6.6):

�c
�

�t
� div(D

�
grad c

�
) (6.14)

if diffusivity is independent of concentration (an approximation generally
valid only for dilute systems), we obtain the diffusion equation (Fick’s
second equation):

�c
�

�t
�D

�
��c

�
(6.15)

where ��� div grad is the Laplacian operator in cartesian coordinates.
The irreversibility of diffusion is clearly seen in the equation, since it is

not invariant under transformation of t into � t.

(iv) Diffusion of momentum

The viscosity of a flowing fluid is due to the diffusional transfer of momen-
tum per unit volume �v (� is the specific mass and v, the velocity) down the
momentum gradient, i.e. from regions of higher velocity to regions of lower
velocity in an incompressible fluid.
The linear relation (6.2) can be written here:

�� �	 grad (�v) (6.16)

� is the shear stress (force per unit area) equal to the flux of momentum
(momentum transferred per unit area and second) and 	 is the kinematic
viscosity expressed in m�/s or cm�/s.
Equation (6.16) can be written:

�� �
� (6.17)

where � ��	 is the dynamic viscosity expressed in Pa s or poise
(1Pa s� 10 poise) and 
� � d
/dt�� grad v is the shear rate (Fig. 6.1). This
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Figure 6.1 In laminar shear flow, the shear rate is given by 
� � v/h.

is Newton’s relation, which often serves as a definition of the viscosity.
The corresponding diffusion equation of momentum is a simple form of

the Navier—Stokes equation for an incompressible fluid:

�(�v)
�t

� 	��(�v) (6.18)

(v) Diffusion of heat

The driving force here is (see Callen, 1985):

F�� grad�
�S
�Q��� grad�

1

T� (6.19)

where S is the entropy, T the temperature and Q the internal energy (heat).
The linear equation given by experiment:

J�� k gradT (6.20)

where k is the thermal conductivity, can be rewritten, as (6.2):

J� kT� grad�
1

T�
where kT� is the kinetic coefficient.
The diffusion equation (conservation of heat) is Fourier’s equation:

�T
�t

�
k

�C
�

��T (6.21)

where C
�
is the specific heat at constant pressure. It can also be written:

�T
�t

� ���T (6.22)

where �� k/�C
�
is the thermal diffusivity , expressed in m�/s or cm�/s.

The solutions of the differential equation for the diffusion of heat have
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been determined for a great variety of initial and boundary conditions by
Carslaw and Jaeger (1959) and can, of course, be applied to the diffusion of
matter.
For the sake of example, let us give here the solution of Fourier’s

equation in the case of a semi-infinite medium bounded by the plane x� 0
(extending to infinity in the direction of x� 0), whose initial temperature at
time t� 0 is a constant T

�
, the surface (x� 0) being kept at T � 0. The

temperature T of the medium at time t and depth x is given by:

T � T
�
erf�

x

2(�t)���� (6.23)

where erf is the (tabulated) error function defined by:

erf (y)�
2

�
�
�

�

exp(� u�)du (6.24)

We see that since the temperature at a given time and depth depends
only on the dimensionless parameter x/(�t)���, the time required for a point
to reach a given temperature is proportional to the square of its distance to
the surface, e.g. the time to reach T ��

�
T
�
is:

t�
1.099

�
x� (6.25)

Incidentally, these are the simplified boundary conditions Kelvin used to esti-
mate the age of the Earth (see Carslaw and Jaeger, 1959 and Burchfield, 1990). The
temperature gradient, from (6.23) and (6.24), is

�T
�x

� T
�
(
�t)����exp��

x�

4�t� (6.26)

hence the geothermal gradient at the surface is:

G��
�T

�x�
�	�

� T
�
(
�t)���� (6.27)

Taking T
�
� 1200 °C (for molten rock) and a typical value of � � 0.118 cm�/s,

Kelvin found that it took about nine million years for the geothermal gradient at
the surface to reach its present value taken to be equal to be 37 °C/km. Note that
Kelvin did not calculate the time it would take the whole Earth to cool down to its
present temperature and that, using the same numerical values and (6.25), we find
that it would take more than 10
 years to reduce by half the temperature at a depth
of 200 km. It is generally thought that Kelvin found an erroneous age of the Earth
because he did not take into account the production of heat by radioactivity.
However, Richter (1986) showed that it would not have been enough to obtain the
correct value. Indeed, as noted by Perry (1895), if Kelvin had accepted that the
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coefficient of thermal conduction could increase with depth (which is in effect
equivalent to assuming the existence of convection), he could have found an age of
the Earth greater than four billion (4� 10
) years.

(vi) Dimensionless numbers

The diffusion coefficient D, the kinematic viscosity 	 and the thermal
diffusivity � have the same dimensions and represent material properties .
Dimensionless numbers characterizing a fluid can be constructed with
these parameters (see e.g. Tritton, 1977). Particularly interesting are the
Prandtl number: P� 	/�, the Schmidt number: S� 	/D and the Lewis
number L��/D.

6.2 Mechanisms of diffusion in solids

There are various definitions of diffusion coefficients, corresponding to
different experimental conditions (see Bocquet et al., 1983). Let us inciden-
tally mention here that the chemical diffusion coefficient (a term loosely
used in earth sciences) only corresponds to the interdiffusion of two differ-
ent solids A and B (A into B and B into A), as seen in the laboratory
reference frame (as opposed to the lattice frame). It generally depends on
concentration. For simplicity, we will only consider solute diffusion coeffi-
cients at infinite dilution.
It is a fact of experience that diffusivity in solids varies with temperature

according to an Arrhenius law (Fig. 6.2(a)):

D�D
�
exp��

�H
RT� (6.28)

where �H is the activation enthalpy for diffusion, given by the slope of the
Arrhenius plot:

�H��R
� lnD
�(1/T)

(6.29)

The activation enthalpy is a function of pressure and the pressure
dependence of the diffusion coefficient is expressed by an apparent activa-
tion volume (Fig. 6.2(b); see p. 170 below):

�H��H
�
�P�V (6.30)

�V���RT
� lnD
�P

(6.31)
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Figure 6.2 (a) Typical Arrhenius plot for diffusion. The activation enthalpy �H is
given by the slope of the straight line. (b) Typical variation of diffusion coefficient
with pressure. The activation volume is given by the slope of the straight line.

The linear expression (6.30) is of course valid only at relatively low
pressures; at pressures of the lower mantle, the pressure dependence of the
activation volume would have to be taken into account.
In most cases relevant to geophysics, transport of atoms is effected by

exchange with vacant lattice sites or vacancies, that migrate through the
crystal.
Let us consider the important case of self-diffusion, i.e. diffusion of an

atomA in a crystal constituted totally or partially of atomsA (e.g. diffusion
of Fe in Fe or diffusion of O in MgO).
The probability for an atom to exchange with a vacancy, i.e. to diffuse by

one jump, is equal to the probability of finding a vacancy in a neighboring
site multiplied by the probability of successfully jumping into it. Hence the
self-diffusion coefficient is given by:

D
��

�N
�
D

�
(6.32)

whereN
�
is the equilibrium atomic fraction of vacancies at temperature T

and D
�
is the diffusion coefficient of vacancies.

It can be shown (see e.g. Poirier, 1985) that the equilibrium concentra-
tion of (thermal) vacancies is:

N
�
� exp��

�G
�

RT� (6.33)

with:

�G
�
��H

�
� T�S

�
(6.34)

where �G
�
, �H

�
, �S

�
, are the Gibbs free energy of formation, the enthalpy

of formation and the entropy of formation of vacancies, respectively.
Vacancies diffuse by a random walk process described by another of
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Einstein’s relations (there are many Einstein’s relations!):

�R����t(�l)� (6.35)

where �R�� is the mean square distance covered by a vacancy during time
t, � is the jump frequency and �l, the jump distance. The diffusion coeffi-
cient of vacancies is defined by:

D
�
�

�R��
6t

�
1

6
�(�l)� (6.36)

Note that the root mean square distance covered in time t by vacancies (or
any particle diffusing by randomwalk) is proportional to the square root of
time, as expected from (6.23):

x��Dt (6.37)

The jump frequency � is thermally activated, with an activation en-
thalpy equal to the activation enthalpy for migration of vacancies �H

�
.

Hence:

�H
��

��H
�
� �H

�
(6.38)

In ionic compounds, each ionic species diffuses on its own sublattice and
one can define the coefficients of self-diffusion of cations D

�
and of anions

D
	
. In the case of binary compounds, we have:

D
�
�D

��
N

��
(6.39)

D
	
�D

	�
N

	�
(6.40)

where D
��
and D

	�
are the diffusion coefficients of cationic and anionic

vacancies, respectively.
Cationic vacancies are negatively charged and anionic vacancies are

positively charged; they are formed in electrically neutral pairs (Schottky
pairs). In pure ionic crystals, at equilibrium, the product of the atomic
fractions of cationic and anionic vacancies depends only on temperature:

N
	
N

�
�N�

�
� exp�

�S
�

R � exp��
�H

�
RT� (6.41)

with, for electrical neutrality:

N
	
�N

�

The activation enthalpies for diffusion of cations and anions are then:

�H
�
� �

�
�H

�
��H

��
(6.42)

164 6 Transport properties



�H
	
��

�
�H

�
��H

�	
(6.43)

Now, there can be, and often are, aliovalent cationic impurities in
solution (e.g. Ca�� replacing Na� ions in NaCl). If a Na� is replaced by a
Ca��, there is an excess of positive charge thatmust be compensated by the
creation of one negatively charged cationic vacancy. If the atomic fraction
of impurities is C, electrical neutrality demands that:

N
	
�C�N

�
(6.44)

Hence, with (6.41):

N�
�
�N

	
(C�N

	
) (6.45)

and:

N
	
�

C

2 ��1�
4N�

�
C �

���
� 1� (6.46)

N
�
�

C

2 ��1�
4N�

�
C �

���
� 1� (6.47)

If C�N
�
, diffusion is controlled by the thermally activated formation

andmigration of vacancies and the activation enthalpies are given by (6.42)
and (6.43). (It is the intrinsic regime.)
IfC�N

�
, the concentration of thermal vacancies is negligible compared

to that of the charge-compensating vacancies fixed by the concentration of
impurities:

N
�
�C (6.48)

The cationic vacancies are freely available for diffusion and no formation
activation enthalpy has to be spent:

�H
�
��H

��
(6.49)

Conversely, the concentration of anionic vacancies is reduced, N
	
�

N�
�
/C, thus reducing the diffusion coefficient of the anions. (It is the

extrinsic regime.) At lower temperatures, the charge-compensating va-
cancies may remain associated with the aliovalent cations; the activation
enthalpy for diffusion then includes the dissociation energy (equal to the
binding energy) of the complex (association regime).
On an Arrhenius plot (Fig. 6.3), the intrinsic and extrinsic regimes are

represented by straight line segments with different slopes and the transi-
tion temperature increases with impurity content:
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Figure 6.3 Diffusion regimes for ionic crystals: At high temperature, the concentra-
tion of vacancies is the thermal equilibrium concentration; below a temperature T


that depends on the concentration of aliovalent impurities, the concentration of
vacancies is imposed by charge balance requirements; at still lower temperatures,
the charge-compensating vacancies remain associated to the impurities and have to
be dissociated to participate in diffusion. �H

�
is the formation enthalpy, �H

�
is the

migration enthalpy, and �H
�
is the binding enthalpy of the vacancies.

T


�

�H
�

�H
�
� 2k

�
lnC

(6.50)

In the case of compounds where a cation can take several degrees of
oxidation (as often happens with transition-metal oxides and silicates), the
concentration of vacancies is sensitive to the oxygen partial pressure. For
instance, in a binary oxide such as magnesiowüstite (Mg, Fe)O,Fe�� ions
can be oxidized to Fe�� and we have (Chen and Peterson, 1980):

�
�
(O

�
)
�
� 2Fe���O�� �V�


�
� 2Fe�� (6.51)

V�

�
represents an Fe�� vacancy, with effective charge 2� ; an electron

hole h is associated with an Fe�� ion. The law of mass action gives:

[V�

�
][h]���

(p
�

)���

�K (6.52)

where K is called the reaction constant. Electrical neutrality imposes
2[V�


�
]� [h], hence, for a diffusion controlled mechanism:

D
�

� [V�

�
]� (p

�

)��� (6.53)

Nonstoichiometry, that in turn is often a function of oxygen partial
pressure p

�

, obviously considerably complicates the problem (see Kofstad,

1983; Dieckmann, 1984).
The transport of matter by diffusion in a compound involves transport
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of all cations and anions corresponding to the formula group. The case of
binary ionic crystals A�B� has been treated by Ruoff (1965) (see Poirier,
1985, for a summary), who defined an effective diffusion coefficient:

D
���

�
D

�
D

�
n
�
D

�
� n

�
D

�

(6.54)

where D
�
, n

�
and D

�
, n

�
are the diffusion coefficients and atomic fractions

of species A and B respectively �n��
�

���
, n

�
�

�
���� . The case of

multicomponent diffusion in silicates has been treated by Lasaga (1979)
and by Jaoul (1990) in the case of olivine.
Some values of the pre-exponential coefficient D

�
and of the activation

enthalpies for self-diffusion of silicon and oxygen in olivine and quartz are
given in Table 6.1. See also Freer (1980) for a review on oxides and Freer
(1981) for a review on silicates. A compilation of diffusion data for silicate
minerals, glasses and liquids can be found in Brady (1995). Experimental
methods of determination of the diffusion coefficients are reviewed in
Ryerson (1987). For more details on the mechanisms of diffusion, the
reader is referred to the book by Borg and Dienes (1988).

(i) Empirical relations

(i) A systematic empirical proportionality relation, the van Liempt relation,
has been found between the activation enthalpy of self-diffusion and the
melting point of metals (van Liempt, 1935; Bocquet et al., 1983):

�H
��

� 34T
�

(6.55)

with �H
��
in calories per mole and T

�
in kelvin (Fig. 6.4). In other words,

the activation enthalpy of self-diffusion of metals scales with their melting
points, and the self-diffusion coefficient can be written:

D�D
�
exp��

g
��

T
�

RT � (6.56)

with g
��

� 17, hence:

�H
��

� g
��
RT

�
(6.57)

The van Liempt relation does not hold for oxides and silicates: Plots of
published values of activation enthalpies for the self-diffusion of oxygen or
cations (Freer, 1980, 1981) against the melting temperatures of oxides or
silicate minerals yield only a scattered cloud of points (Fig. 6.5 shows, for
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Table 6.1. Pre-exponential factor and activation enthalpy for the diffusion
of O and Si in olivine and quartz

System �T (°C) D
�
(cm�/s) �H (kJ/mol) Reference

��O in forsterite 1275—1625 3.5� 10�� 372� 13 Reddy et al. (1980)
��O in forsterite 1300—1600 2.3� 10�� 293� 42 Jaoul et al. (1983)
��O in forsterite 1472—1734 2.9� 10�� 416 Oishi & Ando (1984)
��O in olivine 1636—2046 6.7� 10�� 318� 17 Gérard & Jaoul (1989)
��Si in forsterite 1300—1700 1.5� 10�� 376� 42 Jaoul et al. (1981)
Si in olivine 1130—1530 1.3� 10�� 291� 15 Houlier et al. (1990)
Si in quartz 1400—1600 1.3� 10� 734� 96 Jaoul et al. (1995)

instance, all the measured activation enthalpies of ��O in binary oxides).
This is obviously due to the fact that diffusion in these compounds is often
extremely sensitive to the impurity content, the oxygen partial pressure and
the experimental temperature range; in most cases the published values are
not comparable.
(ii) The compensation law or ‘‘isokinetic effect’’ was revived by Hart

(1981) and applied to diffusion in minerals. It is an empirical linear correla-
tion between the logarithm of the pre-exponential factor D

�
and the

activation enthalpy for the diffusion of various elements in the same
mineral or rock (Fig. 6.6). For olivine, for instance, Hart (1981) found (with
�H in kcal/mol and D

�
in cm�/s) (Fig. 6.7):

�H� 78� 7.5 logD
�

(6.58)

For silicon diffusion in silicates (quartz, olivine, diopside) Béjina and
Jaoul (1997) found (with �H in kJ/mol and D

�
in cm�/s) (Fig. 6.8):

�H� 532.6� 30.4 logD
�

(6.59)

This correlation implies that there exists an ‘‘isokinetic’’ temperature T*
for which all coefficients of diffusion are equal to D*. Then:

�H�RT lnD
�
�RT* lnD* (6.60)

and, asD
�
is proportional to exp (�S/R), this in fact is equivalent to having

a linear relation between activation enthalpy and entropy. The compensa-
tion law, also applied to other thermally activated phenomena, like the
thermal death of bacteria, has a long history of controversy (Exner, 1964;
Banks et al., 1972; Kemeny and Rosenberg, 1973; Boon, 1973; Harris,
1973). The case for the correlation being in most cases devoid of any
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Figure 6.4 The van Liempt relation for some metals: There is a good correlation
between the activation enthalpy for self-diffusion �H and the melting temperature

T
�
(after Bocquet et al., 1983).

physical significance has convincingly been made (Exner, 1964; Banks et
al., 1972; Dosdale and Brooks, 1983; Kirchheim andHuang, 1987): It could
be due to logarithmic compression in plotting logD, which varies in a
rather small range, since diffusion to be measurable has to be neither too
rapid nor too slow. In other words, only those materials which apparently
obey the compensation law are susceptible to investigation (Banks et al.,
1972).
Limoge and Grandjean (1996) have discussed the origin of the correla-

tion between activation enthalpy and entropy.
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Figure 6.5 Activation enthalpy for the diffusion at high temperature of ��O in
binary oxides versus melting point (data fromFreer, 1980). The van Liempt relation

is not verified.

(ii) Effect of pressure

The pressure dependence of the diffusivity is expressed by the activation
volume, defined as:

�V �
��G
�P

(6.61)

�G is the Gibbs free energy of the activation process; the apparent
activation volume, defined by (6.31): �V ' ��RT (� lnD/�P)� (��H/�P),
is equal to the real activation volume only if the pressure dependence of the
entropic term is neglected.
As diffusion experiments under pressure are difficult to realize, it is

interesting to calculate or estimate the activation volume, on theoretical
grounds or from empirical relations.
Keyes (1958, 1960, 1963) proposed a semi-empirical relation:

�V ' �
4�H
K

(6.62)

where �V ' is the apparent activation volume and K, the isothermal bulk
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Figure 6.6 Compensation law for diffusion (after Hart, 1981).

modulus. He found it could be justified using several models of lattice
defects. Assuming that the free energy of formation and migration of the
defect responsible for the diffusion is essentially represented by strain
energy in the crystal considered as a continuous medium, we can write:

�G��V (6.63)

or:

�G�KV (6.64)

depending on whether we assume the energy is entirely due to shear or
dilatation. From the definition (6.61), we can write:

�V
�G

�
� ln�G

�P
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Figure 6.7 Compensation law for diffusion in a few olivines (Mg—Fe, Co, Ni, Mn)
(after Hart, 1981).

If we assume that the pressure dependence of the bulk and shear moduli
are equal, we can write, using Slater’s relation (3.65 and 3.66):

� ln�
�P

�
� lnK
�P

�
2�

��
��

�
K

(6.65)

and, whether the energy is due to shear or dilatation:

�V ��
2�

��
��

�
K

�
1

K��G

�V �
2(�

��
� �

�
)

K
�G (6.66)

which is almost equivalent to (6.62) if we take �
��

� 1.83, corresponding to
K�� 4 (see Section 4.3.2) and if we assume that �G��H.
Sammis et al. (1981) have shown that strain-energy models assuming

pure shear and pure dilatation give upper and lower bounds on the
activation volume.
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Figure 6.8 Linear relation between �H and logD
�
for silicon diffusion in quartz

(circles), forsterite (stars) and diopside (squares). The straight line is a fit to the
compensation law (after Béjina and Jaoul, 1997).

Keyes (1963) also considered the case where the activation enthalpy is
expressed in terms of the melting temperature (equation (6.57)): The appar-
ent activation volume is then, using the Clausius—Clapeyron relation:

�V ' �
dT

�
T

�
dP

�H�
�V

�
T

�
�S

�

�H�
�V

�
�H

�

�H (6.67)

where T
�
, �V

�
and �S

�
are the melting temperature, volume and entropy

respectively. The relation can also be written:

�V ' �
d lnT

�
dP

�H�
d lnT

�
d ln �

1

K
�H

and, using the differential Lindemann law (5.26), we obtain (Poirier and
Liebermann, 1984):

�V ' �
2(�

��
��

�
)

K
�H (6.68)

equivalent to (6.66) if �V ' ��V.
At high pressures, the assumption that the activation volume is constant

does not hold any longer. The pressure dependence of the activation
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volume has been calculated, using various assumptions, by O’Connell
(1977), Karato (1981b), Sammis et al. (1981). It can be expressed as a
dimensionless parameter (Poirier and Liebermann, 1984):
Differentiating (6.66) and using (6.61), we obtain:

� ln�V
�P

�
� ln[2(�

��
� �

�
)K��]

�P
�

�V
�G

and:

� ln�V
�P

�
� ln[2(�

��
��

�
)K��]

�P
�

2(�
��

��
�
)

K
(6.69)

which, with (6.65) gives:

� ln�V
�P

�
1

K
�

1

�
��

��
�

��
��

�P
(6.70)

Assuming ��� const (3.85), one obtains:

� ln�V
� ln �

� � 1� �
��
(�

��
��

�
)�� (6.71)

Experimental and calculated values of activation volumes for self-
diffusion can be found in Sammis et al. (1981).

6.3 Viscosity of solids

The viscosity of solids is defined, as for fluids, by (6.17), rewritten here:

��
�

�

(6.72)

where � is the applied shear stress and 
� (� d
/dt) is the shear strain rate
(see Fig. 6.1). The definition of viscosity as a material constant has a
meaning only if it does not depend on time, i.e. if the shear strain rate is
constant. This is the case for high-temperature creep under constant stress,
in the quasi-steady state regime. The problem of the viscosity of solids is
therefore that of the high-temperature creep of crystals. A summary over-
view of the principal physical mechanisms of creep is given in what follows
and, for further information, the reader is referred to the monograph by
Poirier (1985) (see also Poirier, 1995). If the viscosity depends only on the
structural properties of the material and on temperature, it is said to be
Newtonian : the creep rate 
� then depends linearly on stress. In many cases,
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however, the creep rate is an increasing non-linear function of stress,
usually fitted by a power law: 
� ��	, with 3� n� 5 for most solids
(‘‘power-law creep’’).
Creep of solids is a thermally activated phenomenon, with an activation

energy �H, and the creep rate can be put into the Arrhenian form:


� � 
�
�
�	 exp��

�H
RT� (6.73)

To define the viscosity in the non-Newtonian case, one must therefore
specify either the stress or the strain rate (see e.g. Poirier, 1988b).
The viscosity at constant stress is given by:

���
�


� (�)
� 
� ���	

�
���	 exp�

�H
RT� (6.74)

and the viscosity at constant strain rate by:

�	� �
�(
� )

�

� 
� ���	
�

����	��	 exp�
�H
RT� (6.75)

It is also interesting to consider the viscosity at constant dissipated
power (�
� � const):

��	� � (���		� )�����	�� 
� ���	���
�

����	�����	� exp�
2�H

(n� 1)RT�
(6.76)

Note that the apparent activation energies (i.e. the sensitivity to tempera-
ture) of the viscosity at constant strain rate or dissipated power are smaller
than that at constant stress unless, of course, n� 1 in which case all three
viscosities are equal.
Creep deformation is due to a transport of matter by motion of lattice

defects. If the defects are vacancies, creep, then, directly results from the
directed diffusion of matter and vacancies in opposite directions, and it is
Newtonian. If the defects are dislocations, creep is non-Newtonian and can
be controlled either by diffusion-controlled climb or by glide of disloca-
tions (see below).

(i) Diffusion creep

Diffusion creep, orNabarro—Herring creep, is due to transport of matter by
self-diffusion through the grains of a polycrystal.
Let us consider a crystal of size d in the shape of a cube (for the sake of
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Figure 6.9 Principle of Nabarro—Herring creep. Vacancies flow from the faces in
tension (concentration C�) to the faces in compression (concentration C��C�)

and matter flow in the opposite direction.

simplicity), subjected to a normal tensile stress on a pair of faces and to
normal compressive stresses on the four other faces (Fig. 6.9). The compres-
sive normal stress hinders the formation of vacancies (to form vacancies,
atoms are extracted from inside the crystal and deposited on the surface,
which involves work against the stress), while the tensile stress facilitates it.
The formation energy of vacancies is therefore increased by �V/k

�
T at the

faces in compression and decreased by the same amount at the faces in
tension (V is the atomic volume) and the equilibrium concentrations of
vacancies at the faces in compression and tension are respectively:

C��C
�
exp��

�V
RT� (6.77)
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C��C
�
exp�

�V
RT� (6.78)

There is a flow of vacancies from the faces in tension to the faces in
compression and a flow of atoms in the opposite direction. The flux of
atoms is given by Fick’s law:

J� �D
�
gradC��

�D
�
(C��C�)

d
(6.79)

where D
�
is the diffusion coefficient of vacancies and � is a geometrical

constant. In unit time, a number Jd� of atoms leave the faces in compres-
sion and are added to the faces in tension; the crystal shortens by �d and
widens by the same quantity. We have:

�d�
Jd�V
d�

�JV

hence:


� �
�d
d

�
JV
d

(6.80)

With (6.77) , (6.78) and (6.79), we obtain:


� �
�D

�
C

�
V

d�
sinh�

�V
RT� (6.81)

or, remembering that D
�
C

�
V �D

�
N

�
�D

��
, the coefficient of self-diffu-

sion, we obtain, for �V �RT:


� �
�D

��
�V

d�RT
(6.82)

The activation energy for viscosity is therefore obviously equal to the
activation energy of self-diffusion.

(ii) Dislocation creep

Dislocations (Fig. 6.10) are line defects bounding an area within the crystal
where slip by an interatomic distance b has taken place , i.e. the crystal on
one side of the slip plane has been rigidly displaced by b with respect to the
other side (see Friedel, 1964 and, for a short summary, Poirier, 1985).
Dislocations move under an applied stress, extending the slipped area.
When a dislocation loop sweeps a whole crystal plane andmoves out of the
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Figure 6.10 (a) Dislocation loop in a crystal represented as a stack of lattice planes
(the front half is removed for clarity). The slipped area inside the dislocation is
stippled. The extra half-plane above the edge portion (left) is seen to wind itself in
helicoidal fashion around the screw portion (back) until it ends up as the extra
half-plane below the other edge portion (right). Each turn of the screw corresponds
to a displacement by the Burgers vector b, parallel to the screw portion and normal
to the edge portions. (b) Front view of the half loop. Flipping the bond OM to ON
makes the edge portion propagate toward the left. (c) Top view of the whole loop
oriented continuously (dashed arrows); opposite-sign extra half-planes correspond
to Burgers vectors of edge portions that would point in the opposite direction if the
dislocation segments were oriented in the same direction.
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Figure 6.11 Slip by dislocation motion. (1) Undeformed crystal. (2) A dislocation
line has been created at left andmoved inside the crystal, causing a slip by b behind it
(stippled area). (3) The dislocation has swept the whole length of the crystal and left a

step of height b at the surface. The shear strain is 
� b/h.

crystal, it leaves at the surface a step of height b. The crystal has acquired a
permanent shear deformation equal to b/h, where h is the dimension of the
crystal normal to the slip plane (Fig. 6.11). The motion of dislocations by
progressive breaking and re-establishment of atomic bonds is the energeti-
cally economic way of deforming crystals. Dislocations are carriers of
plastic deformation in solids.
For a mobile dislocation density � (total length of dislocation lines per

unit volume) moving an average distance �L, the shear strain is:


 ��b�L (6.83)

and, for constant dislocation density, the creep rate is:


� � �bv
 (6.84)

where v
 is the average dislocation velocity. This isOrowan’s equation, which
can be seen as a transport equation, giving the creep rate as the product of
the density of strain carriers (the dislocations), their strength (the Burgers
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vector b, characteristic of the dislocation and equal to the elementary slip
by an interatomic distance) and their velocity. The equation is analogous
to the microscopic Ohm’s law (see below). The dependence of the viscosity
on stress and temperature is found by expressing the dependence of dislo-
cation density and velocity.
For steady-state creep, the dislocation density is generally proportional

to �� (see Poirier, 1985) and depends little on temperature. The average
dislocation velocity depends, of course, on � and is controlled by the nature
and distribution of obstacles to the motion of dislocation lines in the
crystal. Two cases are especially interesting:

(a) The principal obstacle to the dislocation motion lies in the intrinsic
difficulty in breaking the atomic bonds, the so-called ‘‘lattice friction’’.
The material is said to have a high Peierls stress and the dislocation
lines tend to be straight, lying in potential valleys. The lattice friction
can be overcomewith the help of thermal vibrations and of the effective
stress (applied stress minus internal stress). The motion is directly
thermally activated and the activation enthalpy is stress dependent,
decreasing with increasing stress. The creep rate can be written:


� � 
�
�
�� exp��

�H(�)
RT � (6.85)

The viscosity is said to be glide-controlled.
(b) If the obstacles are discrete, with an average spacing �L, the average

velocity can be written in general:

v
 �
�L

t
�
� t

�

(6.86)

where t
�
is the average time the dislocation takes in gliding over the

distance �L between obstacles and t
�
is the average time it takes in

overcoming the obstacles. If t
�
� t

�
, the average velocity is v
 ��L/t

�
.

Edge dislocations can overcome obstacles to glide by moving out of
their glide plane by diffusion-controlled climb (Fig. 6.12) (Weertman
creep). If � is the distance a dislocation has to climb to escape the
obstacle and v

�
is the climb velocity, we have:


� ��b�Lv
�
��� (6.87)

It can be shown (Friedel, 1964) that v
�
is proportional to the self-

diffusion coefficientD
��
and, in the linear approximation, to the applied
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Figure 6.12 Climb of an edge dislocation. The dislocation climbs by an interatomic
distance when a jog travels down its length by absorbing (A) or emitting (E)

vacancies.

stress �. Remembering that � ���, we then obtain the general equation
for diffusion-controlled creep:


� � 
�
�
�� exp��

�H
��

RT � (6.88)

We have here a physical justification for power-law creep with n� 3,
but the experimental values usually range between 3 and 5. Diffusion-
controlled power-law creep is often observed at high temperatures in
metals and minerals, although some caution is in order before issuing
general pronouncements (Poirier, 1978). It is currently thought to be
responsible for the viscosity of the Earth’s mantle (Weertman, 1970,
1978; Poirier, 1988b). The viscosity profile of the mantle then depends
on the temperature profile and on the pressure dependence of the creep
rate.

In the case of diffusion-controlled creep of minerals containing iron,
which can take several degrees of oxidation, the creep rate depends on
oxygen partial pressure, and also on the activity of the components. Creep
experiments on olivine buffered against orthopyroxene or magnesiowüs-
tite, under various conditions of temperature, pressure and oxygen partial
pressure, yield very different activation energies and oxygen partial press-
ure dependence (Bai et al., 1991). Several creep laws are needed to account
for the results, which makes extrapolation to mantle conditions difficult.
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(iii) Effect of pressure

As for diffusion, the pressure dependence is expressed by an apparent
activation volume:

�V ' �RT
� ln �
�P

�
��H

�P

(6.89)

which should, in principle, be equal to the activation volume for self-
diffusion of the atomic species whose diffusion controls the creep rate.
There is, however, some debate as to which species controls the creep rate,
even in well-investigated minerals such as olivine (e.g. Jaoul et al., 1981)
and, anyway, there are very few experimental determinations of the activa-
tion volumes (Béjina et al., 1997, find an activation volume close to zero for
the diffusion of silicon in olivine). Onemust therefore resort to systematics.
Weertman (1970) applied van Liempt’s relation (6.57) to the creep of

metals and ice and implicitly extended it to the creep of all substances,
including the minerals of the Earth’s lower mantle. Weertman’s relation:

�H
� g
RT
�

(6.90)

where �H
 is the activation enthalpy for viscosity (or creep rate) and T
�
is

the melting temperature, is valid for metals with a value of the constant g

close to 18. For compounds, however, things are obviously not so simple
since the creep mechanisms are not always clear and, even if creep is
diffusion-controlled, van Liempt’s relation does not hold. Besides, the
published values of activation enthalpies for creep of ceramics (Cannon
and Lang-don, 1983) correspond to widely differing experimental condi-
tions, purity of materials, grain size, oxygen partial pressure, etc. Even if the
data are carefully selected, a plot of the activation energy against melting
temperature for various materials exhibits a considerable scatter (Fig. 6.13
shows, for instance, the data corresponding to compression creep of single
crystals of oxides and alkali halides). By grouping the compounds accord-
ing to their structure, it is, however, possible to improve the systematics
(Frost and Ashby, 1982) (Fig.6.14). Nevertheless, there is little hope of ever
obtaining a systematics good enough to usefully predict the activation
enthalpy of a compound from a knowledge of its melting temperature
because the scatter on g
 remains much too large. We find, for instance,
that, from the data of Fig. 6.13, we have g
� 27� 8 for oxides (in agree-
ment with Frost and Ashby, 1982) but, as g
 appears in an exponential, this
corresponds to an uncertainty of three orders of magnitude on the viscos-
ity! Weertman’s relation, however, remains useful for the purpose orig-
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Figure 6.13 Activation enthalpy for creep versusmelting point for oxides and alkali
halides (data fromCannon and Langdon, 1983). Straight lines are drawn for g� � 15

and g� � 30.

Figure 6.14 The ranges of the dimensionless quantity g� ��H�/RT
�
for classes of

solids (after Frost and Ashby, 1982).
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inally assigned to it by Weertman (1970), i.e. to extrapolate the viscosity to
high pressures, if the melting curve is known or inferred, but the value of g

must be the one experimentally determined for the specific compound one
is interested in.
The activation volume for diffusion-controlled creep of solids (and the

Earth’s mantle) has been estimated by several authors (e.g. Sammis et al.,
1981; Karato, 1981b; Ellsworth et al., 1985), using either Weertman’s
relation (6.90), i.e. assuming that the pressure dependence of viscosity is
equal to that of the melting point, or Keyes’ formulation with an elastic
strain model for the Gibbs free energy of activation. Poirier and Lieber-
mann (1984) discussed these formulations and showed that they were
equivalent within the limits of validity of Slater’s relation and Lindemann’s
law. The discussion has already been presented for diffusion in Section 6.2.

6.4 Diffusion and viscosity in liquid metals

The Earth’s outer core (16% of the Earth’s volume) is constituted of liquid
iron. Its diffusional and viscous transport properties must be placed in the
wider framework of liquid metals which, being simple unassociated liquids,
have been experimentally and theoretically well investigated. The reader is
referred to the book by Shimoji and Itami (1986) for a complete review of
the field (see also Battezzati and Greer, 1989).
There is an intimate connection in liquids between the self-diffusion

coefficient and the viscosity �. It is expressed by the Stokes—Einstein rela-
tion:

D��
k
�
T

2
a
(6.91)

where a is an atomic-size parameter. The Stokes—Einstein relation has been
experimentally verified for liquidmetals (Saxton and Sherby, 1962) and can
be theoretically justified (e.g. Zwanzig, 1983).
Eyring (1936) considered a liquid as a collection of molecules bound to

their neighbors and ‘‘dissolved holes’’ (similar to vacancies in solids).
Transport, either by diffusion or under the action of a shear stress (viscos-
ity), was thought to occur by thermally activated jumps of the molecules
into the holes. The diffusion coefficient then can be written, as for solids (see
6.36):

D� ��k� (6.92)

where � is the jump distance, comparable to the average interatomic
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spacing, and k� is the absolute reaction rate of the diffusion process. Eyring
therefore finds an expression of the diffusion coefficient that follows an
Arrhenius law, like the coefficient of diffusion of crystals:

D�D
�
exp��

Q

RT� (6.93)

whereQ is the activation energy corresponding to the potential barrier that
the molecule must overcome to jump into the hole.
To calculate the viscosity, Eyring assumed that the motion takes place

by individual molecules slipping by a distance � over the potential barrier
with a reaction rate k�. The viscosity is given by (6.17) with 
� � �

�
/�v, where

�v is the difference in velocity of two neighboring parallel layers, which are
a distance �

�
apart. The force acting on a molecule is ��

�
�
�
, where �

�
and

�
�
are the distances between molecules in the parallel planes in the direc-

tion of motion and perpendicular to it respectively. The force acts to lessen
the work for overcoming the barrier in the forward direction and raises it in
the backward direction, so the velocity difference can be written:

�v� �k��exp�
��

�
�
�
�

2k
�
T �� exp��

��
�
�
�
�

2k
�
T �� (6.94)

Now, for ��
�
�
�
�� 2k

�
T, we have:

��
�
�
k
�
T

�
�
�
�
��k�

(6.95)

With (6.92) and (6.95), we see that Eyring’s theory yields the Stokes—
Einstein relation:

D��
�
�

�
�
�
�

k
�
T (6.96)

The ‘‘free volume’’ theory of diffusion of Cohen and Turnbull (1951)
assumes that atoms are enclosed in cages formed by their neighbors and
can jump only when statistical fluctuations of the free volume V

�
(total

volume minus the volume occupied by the atoms) create a hole of volume
V* sufficient to accept an atom. The diffusion coefficient is:

D� (k
�
T )��� exp��

�V*

V
�
� (6.97)

1856.4 Diffusion and viscosity in liquid metals



where 0��� 1 is a numerical constant and V
�
� �(T � T

�
), where � is the

coefficient of thermal expansion.
Swalin (1959) starts from Einstein’s equation (6.36) but, instead of con-

sidering atoms jumping by a fixed distance into holes of a critical size, he
assumes that local density fluctuations cause atoms to move small variable
distances and finds for the diffusion coefficient of liquid metals:

D� (1.29� 10��)
���T�

�H
�

(6.98)

where � (in Å��) is related to the curvature of the potential-vs-distance
curve and �H

�
is the heat of vaporization. In this model, there is a

distribution of fluctuation sizes and most atoms participate in the diffusion
process at a givenmoment. The process has no activation energy; however,
a plot of lnD vs 1/T yields an apparent ‘‘activation energy’’ equal to 2RT,
devoid of physical meaning.
Indeed, the assumption that there are identifiable holes and that there is

a localized energy barrier to diffusion, inherent to Eyring’s ‘‘activated
state’’ model and its variants, is not easily tenable in liquids.
Nachtrieb (1967, 1977) found that the experimental results were best

fitted by a linear relation between D and T, based on the assumption that
each atom vibrates in the cage of its neighbors with a harmonic motion and
that with each oscillation, the center of oscillation moves by a distance
equal to the mean thermal amplitude:

D�
k
�
�

�
h�

T (6.99)

where �
�
is the Debye temperature, h is Planck’s constant and � the force

constant of the harmonic vibrations. In a sense, the entire liquid is in an
activated state and the concept of activation energy has no meaning.
However, and despite the fact that there is no convincing theoretical
justification for it, the temperature dependence of the diffusion coefficient is
still currently displayed on Arrhenius plots and ‘‘activation energies’’ are
determined, even by those who object to it (Nachtrieb, 1967; Shimoji and
Itami, 1986). Indeed, the fit of the data by an Arrhenius law is in most cases
reasonably good and ‘‘activation energies’’ provide a convenient means of
systematizing the data.
The ‘‘activation energies’’ for self-diffusion and heterodiffusion in liquid

metals are, not surprisingly, much smaller than in the corresponding solids.
As an example, average values for the heterodiffusion of H, C, N, O, S in �-,
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Table 6.2. Apparent activation energies for diffusion of various elements in
�-, �-, and liquid iron

Diffusing element Q� � (kJ/mol) Q� � (kJ/mol) Q�
���
(kJ/mol)

Hydrogen 12.5 47.2 15.5
Carbon 81.3 134.4 49
Nitrogen 76.8 152.2 50.2
Oxygen 96.3 168.5 50.2� 8.4
Sulfur 207.2 222.4 35.6

Source: Bester and Lange (1972).

�- and liquid iron, from Bester and Lange (1972) are given in Table 6.2.
As for diffusion, Eyring’s (1936) activated state theory of viscosity is

among the very few that predict an Arrhenian temperature dependence (see
Brush, 1962 and Shimoji and Itami, 1986, for a review).
Andrade (1934, 1952) proposed a theory of the viscosity of unassociated

liquids at their melting points, based on the idea that their structure is close
to that of the solid and that their viscosity is due to the transfer of
momentum by collision between parallel layers of atoms through the
amplitude of thermal vibration. Andrade found an expression of the viscos-
ity in terms of the massm of atoms, the mean interatomic spacing a and the
Lindemann vibrational frequency �

�
(equation (5.19)):

� �
2m�

�
3
a

(6.100)

or, in c.g.s. units:

�� (5.7� 10��)(AT
�
)���V���� (6.101)

where A and V are the atomic mass and volume respectively. Viscosity is
thought to decrease with increasing temperature because thermal agitation
interferes with the transfer of momentum at maximum amplitude. The
variation of viscosity with temperature is then governed, according to
Andrade (1934), by the fraction of atoms possessing the mutual potential
energy at extreme amplitude, which varies according to the Boltzmann
distribution formula, hence:

� � exp�
C

T� (6.102)

where C has the dimensions of an energy. Although it is not an activation
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Figure 6.15 Correlation between the melting point and apparent activation energy
for self-diffusion of liquid metals (after Poirier, 1988a).

energy, it can be treated like an apparent ‘‘activation energy’’ for system-
atization purposes.

(i) Empirical relations and effect of pressure

As for diffusion and viscosity in solids, there are systematic empirical
relations between the apparent ‘‘activation energy’’ of diffusion and viscos-
ity in liquid metals similar to (6.57) and (6.90), but the values of the
constants g

�
and g� are much smaller (Saxton and Sherby, 1962; Grosse,

1963; Poirier, 1988a). This is to be expected since the activation energy for
diffusion (and diffusion-controlled creep) of solids consists mostly of the
formation energy of point defects, whereas in liquids the apparent ‘‘activa-
tion energy’’ reflects only the temperature dependence of the mobility of
atoms which does not necessitate the creation of localized defects.
Poirier (1988a) found for a number of liquid metals:

Q
�
� 3.2RT

�
(6.103)

for diffusion (Fig. 6.15) and:

Q� � 2.6RT
�

(6.104)

for viscosity (Fig. 6.16). The value of g
�
� 3 is in good agreement with that

obtained by Saxton and Sherby (1962) and by Nachtrieb (1967), whose
model for diffusion rests on the idea that the average energy of atoms
vibrating in the cage of their neighbors is equal to 3RT.
The extrapolation to high pressures of the viscosity of liquid metals

(especially interesting for iron in the Earth’s core) stands on a somewhat
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Figure 6.16 Correlation between the melting point and apparent activation energy
for viscosity of liquid metals (after Poirier, 1988a).

safer ground than in the case of solids, despite the lack of theoretical
justification for (6.104), because of the lesser scatter in the value of the
constant ( close to 3). There is an excellent agreement between the apparent
‘‘activation volume’’ of the viscosity of mercury, calculated from the experi-
mental results of Bridgman, using (6.89) (�V ' � 0.62 cm�/mol) and the
empirical value, calculated from (6.104) and the slope of the melting curve
(�V ' � 0.59 cm�/mol).
It is interesting to consider the vicosity of a liquid metal right at its

melting point (T � T
�
). Since we have:

� � exp�
g�T�

T � (6.105)

we immediately see that the viscosity stays constant along the melting
curve and is equal to the viscosity at atmospheric pressure. The viscosity of
liquid iron at the inner core boundary should then be equal to 6 centipoise
(Poirier, 1988a). Ab-initio electronic structure calculations, based on den-
sity functional theory, yield a diffusion coefficient of liquid iron, at
T � 6000K, ofD� 0.4—0.5� 10�� cm�/s, which, with the Stokes—Einstein
relation (6.91), and a� 1Å, yields a viscosity of about 15 centipoise (de
Wijs et al., 1998).

6.5 Electrical conduction

6.5.1 Generalities on the electronic structure of solids

The theory of the electronic structure of solids is the corner stone of
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solid-state physics and it is obviously beyond the scope of this book even to
give a summary overview of it. However, since transport of electronic
charges is what electrical conduction is all about, it is impossible to avoid
giving some indispensable background, mostly at the hand-waving level.
For an elementary or intermediate treatment, the reader is referred to
Kittel (1967), Ziman (1965), Honig (1970) or Animalu (1977). An essential
concept in solid-state theory is that of electronic energy bands, separated by
band gaps.
Energy bands are ranges of allowed energy states for the electrons, the

gaps corresponding to forbidden states for which the Schrödinger equation
has no acceptable solution. They arise because of the existence of a periodic
lattice potential: Electronwave functions represent running waves carrying
momentum p� �k (k is the wave number). At the boundaries of the
Brillouin zones the waves cannot propagate and two standing waves are
formed with energies differing by E

�
the gap energy (Fig. 6.17).

It is also convenient to envision the formation of bands as due to the
spreading of atomic energy levels (orbitals) when the many atoms con-
stituting the crystal are brought together and the atomic orbitals overlap
(Fig. 6.18). The degree of overlap also characterizes the type of atomic
bonding.

• For ionic bonding, the electrons are transferred from one atomic species
to the other, forming ions with an inert gas electronic shell configur-
ation. There is very little overlap of orbitals and the band formalism is
not adequate. The electrons are bound to the ions and localized.

• For covalent bonding, the orbitals overlap and there is some degree of
delocalization of electrons, shared between neighboring atoms.

• For metallic bonding, the overlap is large and the electrons belonging to
the outer shell are completely delocalized; there is a sea of nearly free
electrons, bathing the ion core lattice.

The highest occupied band is the valence band, the lowest unoccupied
band is the conduction band. The gap width is given by:

E
�
�E

�
�E

�
(6.106)

where E
�
is the energy of the top level of the valence band and E

�
is the

energy of the bottom level of the conduction band. The electronic levels are
filled up to the Fermi level E

�
.

The electrical conduction properties of crystals essentially depend on the
position of the Fermi level with respect to the bands and on the gap width.
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Figure 6.17 (a) Energy vs wave number curve for a free electron (parabola).
(b) Energy vs wave number curve for a nearly free electron in a periodic potential

(first Brillouin zone). The energies in the gap of width E
�
are forbidden.

When an electrical field is applied to a crystal, the electrons are subjected to
a force and are accelerated, thus acquiring energy. They must therefore be
promoted to higher-energy levels. This is possible only if the Fermi level
lies within a partially filled conduction band with empty levels available
(metal) or if the gap is narrow enough so that thermal agitation can allow
electrons to cross it, from the valence band into the empty conduction band
(semi-conductor). If the valence band is completely filled and the gap is
wide, the crystal is an insulator; the electric field cannot make the electrons
move since there are no accessible energy levels for them. However, the
bands can be distorted, giving rise to polarization (dielectric). We can now
classify the crystals according to their electronic structure and electrical
properties.

(i) Insulators (Fig. 6.19(a)). The valence band is completely filled at 0K
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Figure 6.18 Widening of atomic levels into bands when atoms are brought close
together.

Figure 6.19 Electronic band structure of various classes of materials. (a) Insulators.
(b) Intrinsic semi-conductors at T � 0K. (c) Intrinsic semi-conductors at T � 0K.
(d) Metals at T � 0K. (e) Semi-metals at T � 0K. The filled levels are stippled.
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Figure 6.20 Localized levels introduced in the energy gap. (a) Shallow donor levels.
(b) Deep levels. (c) Shallow acceptor levels.

and the gap is too wide for thermal agitation to allow promotion of
electrons across it, even at high temperatures, i.e. (E

�
� k

�
T).

Typical insulators are, for instance, diamond (E
�
� 5.3 eV), for-

sterite (E
�
� 6.4 eV) and SiO

�
(E

�
� 8 eV). Incidentally, remember that

k
�
T � 1/40 eV at room temperature and that k

�
T � 1 eV at 11 605K.

Ionic crystals generally are insulators at low temperatures. This is due
to the fact that the charges can move only by thermally activated
jumps from one site to another; conduction involves either diffusion of
the whole ions (ionic conduction) or electronic charge transfer between
ions of different valence (hopping conduction). In both cases, if the
activation energy of the process is much higher than k

�
T, the crystal

behaves as a dielectric with very low conductivity. Although the band
formalism is not the best suited to ionic crystals, a large value of the
band gap width is associated with ionic crystals in the low-tempera-
ture insulating regime. At high temperatures, ionocovalent com-
pounds that are insulators at low temperatures, can simultaneously
exhibit electronic semi-conduction or hopping conduction and ionic
conduction.
Impurity atoms in low concentrations may introduce deep energy

levels in the gap, far from the gap edges (Fig. 6.20), whichmay allow for
some electrical conductivity of the semi-conduction type if the gap is
not too wide (see, e.g. Morin et al., 1977, for forsterite).

(ii) Semi-conductors (Fig. 6.19(b,c)). Semi-conductors differ from insula-
tors in that their gap is narrower, comparable to k

�
T, thus allowing, in

pure crystals, thermal promotion of electrons in the conduction band,
leaving positively charged holes at the top of the valence band (intrinsic
semi-conduction). Typical gap widths for semi-conductors are of the
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order of 1 eV, e.g. E
�
� 1.14 eV for Si, E

�
� 0.67 eV for Ge, E

�
� 1.4 eV

for GaAs.
Impurity atoms in solution, e.g. As in Ge, can introduce shallow

levels (donor levels) near the top of the gap, that can ‘‘donate’’ electrons
to the conduction band and give rise to n-type conduction. If the
impurity can receive electrons, e.g. Ga in Ge, it introduces levels
(acceptor levels) near the bottom of the gap and gives rise to p-type
conduction, by holes in the valence band. This is known as extrinsic
semi-conduction.

(iii) Metals (Fig. 6.19(d)). In metals, the Fermi level falls within the conduc-
tion band, the remaining empty levels in the band are directly access-
ible to the electrons and there is a good electrical conductivity at 0K.
In some cases, the bottom of the conduction band is lower than the top
of the valence band in certain directions of reciprocal space (k-space)
and the electrons at the top of the valence band can spill over into the
conduction band (Fig. 6.19(e)). There are conduction electrons and
holes at 0K. Such crystals are known as semi-metals, not as good
conductors as metals; typical examples are the rare-earth metals.

It must be noted that the electrical properties of a given compound can
change with temperature or pressure. The change can be gradual and two
or more conduction mechanisms may coexist, as when an insulator at low
temperatures becomes a semi-conductor and/or an ionic conductor at high
temperatures or a metallic conductor at high pressure (Samara, 1967); the
change may also be discontinuous, as when some oxides become metallic
conductors above a critical temperature because, for a critical interatomic
distance, the electronic structure with localized electrons is less stable than
the metallic one (Mott transition). Pressure may lower the critical tempera-
ture (Mott, 1961).

6.5.2 Mechanisms of electrical conduction

(i) Generalities

Ohm’s law, I�R��V, relates the current intensity flowing in a conductor
to the difference of potential driving it and to the resistance R (or conduc-
tance R��) of the conductor.
The resistivity is: ��RS/L, where S is the section of the conductor and

L its length. Ohm’s law can therefore be written:

J��E (6.107)

194 6 Transport properties



where J� I/S (in amperes/m�) is the current density, E� V/L (in volts/m)
is the electric field and � ���� (in ���/m or siemens/m) is the electrical
conductivity.
The current is equal to the rate of passage of electric charge through unit

area of the conductor, it can be written:

J� nqv
�

(6.108)

where n is the number of mobile charge-carrying particles per unit volume,
q is their electric charge and v

�
their drift velocity in the direction of the

electric field.
We will give here a microscopic expression of Ohm’s law in the case of

electronic conduction in a partially filled band (metal or semi-conductor).
The electrons feel the periodic potential of the crystal (which accounts for
the existence of the bands in the first place), but for the sake of simplicity
and without too much loss of generality, we will consider the conduction
electrons as free.
Let us consider electrons moving freely in a band. The force exerted on

them by the electric field is:

F�� eE�
dp

dt
� �

dk

dt
(6.109)

where e is the electron charge, p is the momentum and k, the wave vector.
The electrons are accelerated by the force but their velocity does not

increase indefinitely, because of collisions and scattering of phonons or
point defects, and it reaches a steady state drift velocity v

�
. Let the relax-

ation time � be the average time between scattering events, the increase in
momentum between these events is:

��k�F� (6.110)

and the drift velocity is:

v
�
� �

�k
m

�
F�
m

(6.111)

where m is the mass of the electron, or with (6.109):

v
�
�� eE

�
m

(6.112)

and, with (6.108):

J� � nev
�
�

ne��
m

E
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hence:

��
ne��
m

(6.113)

If � is the mean free path of electrons and v
 is the total average (rms)
velocity (thermal velocity plus drift velocity), we have:

� �
ne��
mv


(6.114)

If the band is only slightly filled, as in extrinsic n-type semi-conductors,
the average kinetic energy of an electron is:

�
�
mv
 ���

�
k
�
T (6.115)

hence:

� � ne��(3mk
�
T )���� (6.116)

(ii) Metallic conduction

All the conduction electrons gain energy when the electric field is applied
and most of them are shifted from the levels they occupied to those left
vacant by others, with no net contribution to the electrical current. It is
only the electrons near the Fermi level that are promoted to empty levels
and provide a net response to the field. To a first approximation we can
take for v
 in (6.114) the velocity at the Fermi level v

�
given by:

�
�
mev

�
�E

�
(6.117)

and we obtain Drude’s formula:

� �
ne��
mv

�

(6.118)

The temperature dependence of the conductivity in T���� given by the
free-electron approximation does not agree with experimental results.
Indeed at low temperatures (a few kelvin), the conductivity is controlled by
the collision of electrons with dilute impurities in the lattice; it depends on
the impurity concentration and is practically independent of temperature.
At high temperatures (T ��

�
), the conductivity is controlled by phonon

scattering and decreases as T��. The resistivity of metals can be written
(Matthiessen’s rule) as:

�������
�

����
�

(6.119)
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where ���
�

is the impurity contribution and ���
�

� T at high temperatures
is the lattice-dependent part. The linear temperature dependence of the
resistivity can be qualitatively explained in the following way (Mott and
Jones, 1958).
The electrical resistance is due to the scattering of electrons by vibrating

atoms and it is proportional to the scattering probability, which, in turn, is
proportional to the mean square of the displacement of atoms �u��. At
high temperatures (T ��

�
), the mean potential energy of vibrating atoms

is:

�
�
f �u��� �

�
k
�
T (6.120)

where f is the restoring force. From the equation of motion:

M
d�u

dt�
� fu� 0 (6.121)

we have:

f�M�� (6.122)

whereM is the mass of the atoms and � their vibrational frequency. With
(6.120) and (6.122) and taking for� theDebye frequency�

�
� (k

�
/�)�

�
, we

obtain:

�����u��� ��
��

�
T

k
�
M

(6.123)

Since �u�� decreases with pressure, the conductivity of metals increases
with pressure. We have, with the definition (3.52) of the Debye—Grüneisen
parameter �

�
:

�
d ln�
d lnV

�
d ln�
d ln�

� �2
d ln�

�
d lnV

� 2�
�

(6.124)

(iii) Semi-conduction

In the case of semi-conductors, where electron- or hole states are close to
the edge of a band, the free-electron approximation cannot be used and the
interaction of the electrons with the lattice and other electrons must be
taken into account by introducing the effective mass m*, instead of the mass
m of the free electron. The expression of the effective mass can be found by
considering the motion of a wave packet of states with frequencies and
wave numbers near � and k respectively. Energy E� �� is propagated
with group velocity v

�
:
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v
�
�

d�
dk

�
1

�
dE

dk
(6.125)

hence:

dv
�

dt
�

1

�
d�E

dk�

dk

dt

With �
dk

dt
�F, (6.109), it becomes:

F� ��
d�E

dk��
�� dv

�
dt

�
dp

dt
(6.126)

We see that the role of the mass is played by the effective mass:

m*� ���
d�E

dk��
��

(6.127)

For free electrons E� �k�/2m, hence m*�m. Close to the edge of the
bands, momentum transfer between the electrons and the lattice is thus
taken into account by introducing the effective mass.
For a semi-conductor with band gap width E

�
and Fermi level E

�
, if the

energy at the top of the valence band is taken as the zero of energy, the
number of electrons in the conduction band (filled states) per unit volume
is:

n� �
�

��

2D(E) f (E)dE (6.128)

whereD(E) is the density of states of electrons (the number of states per unit
volume with energy between E and E� dE) and f (E) is the Fermi—Dirac
distribution function:

f (E)��exp�
E�E

�
k
�
T �� 1�

��
� exp�

E
�
�E

k
�
T � (6.129)

Calculating the value of the density of states (see e.g. Kittel, 1967;
Animalu, 1977), it can be shown that:

n� 2�
m*

�
k
�
T

2
�� �
���

exp�
E

�
�E

�
k
�
T � (6.130)

Similarly, the concentration of holes in the valence band is:

p� 2�
m*

�
k
�
T

2
�� �
���

exp�
�E

�
k
�
T � (6.131)
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The law of mass action for the concentrations of electrons and holes is
written as:

np� 4�
k
�
T

2
���
�
(m*

�
m*

�
)��� exp�

�E
�

k
�
T � (6.132)

wherem*
�
andm*

�
are the effective masses of electrons and holes respective-

ly.

(i) Intrinsic conduction. For intrinsic conduction, we have n� p, since a
hole is left in the valence band for every electron that is promoted to the
conduction band. The number of intrinsic carriers is then found from
(6.132):

n


� p



� 2�

k
�
T

2
���
���

(m*
�
m*

�
)��� exp�

�E
�

2k
�
T� (6.133)

and, setting (6.130) equal to (6.131):

E
�
�

1

2
E
�
�

3

4
k
�
T ln�

m*
�

m*
�
� (6.134)

One then sees that, if m*
�
�m*

�
, the Fermi level lies in the middle of the

gap. The conductivity is given by the sum of the contributions of electrons
and holes:

� � ne�
�
� pe�

�
� n



e(�

�
��

�
) (6.135)

where �
�
and �

�
are the mobility of electrons and holes respectively (drift

velocity per unit electric field). Comparison of (6.135) with (6.113) and
replacement of m by the effective masses yields:

�
�
� e�

�
m*

� (6.136)
�
�
� e�

�
m*

�

where �
�
and �

�
are the relaxation times for electrons and holes respectively.

From (6.133) and (6.135), we have therefore for intrinsic conductivity:

� � 2�
k
�
T

2
���
���

(m*
�
m*

�
)��� exp�

�E
�

2k
�
T� (��

� �
�
) (6.137)

Intrinsic conductivity is the conduction regime for pure crystals or
crystals with a low impurity concentration at high temperature, where the
concentration of intrinsic carriers, which grows exponentially with tem-
perature, is much larger than the concentration of impurities.
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Figure 6.21 Arrhenius plot of the electrical conductivity of semi-conductor showing
the intrinsic regime at high temperatures and the extrinsic regime at low tempera-
tures; in the intermediate regime the conductivity may slightly decrease with
increasing temperature due to electron—photon scattering (after Animalu, 1977).

The mobility at high temperatures is mostly controlled by phonon
scattering and it can be shown that:

�
�
��

�
� T���� (6.138)

The temperature dependence of the conductivity comes therefore essen-
tially from the temperature dependence of the carrier concentration. The
slope of the Arrhenius plot directly gives the energy gap E

�
(Fig. 6.21).

(ii) Extrinsic conduction. The electrons in the conduction band of n-type
semi-conductors (holes in the valence band of p-type semi-conductors)
arise by thermal ionization of the donor (acceptor) impurities. The donor
level (E

�
below the conduction band) is atE

�
�E

�
, referred to the top of the

valence band. The conduction electron concentration n is equal to the
concentration of ionized donors N�

�
, given by the product of the total

dopant concentration by the Fermi—Dirac distribution:
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In the low-temperature limit, E
�
� k

�
T, we have:
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and:
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The carrier concentration varies with the square root of the impurity
concentration and as T ���; the mobility, controlled by ionized impurity
scattering, varies as T����. The temperature dependence of the conductiv-
ity is therefore exponential, with the slope of the Arrhenius plot giving the
ionization energy of the impurity E

�
(Fig. 6.20). The same results apply to

p-type semi-conductors.
Between the intrinsic and the extrinsic regimes, there is an intermediate

temperature range where the concentration of intrinsic carriers is compar-
able with that of the dopant impurity. The conductivity in this range may
slightly decrease as temperature increases because of electron—phonon
scattering (Fig. 6.21).
Pressure affects the electrical conductivity of semi-conductors via the

mobility and concentration of the carriers. Mobility, controlled by phonon
scattering, depends on density, phonon velocity, effective mass, etc., all of
which depend on pressure (Paul and Warschauer, 1963). The overall
pressure dependence of mobility, however, remains of second order com-
pared to the pressure dependence of the carrier concentration: The carrier
concentration depends exponentially on the energy gap E

�
which depends

in a complicated way on pressure. At pressures up to 10 kbar (1GPa), for
instance, the energy gap of germanium first increases with pressure
(5� 10�� eV/bar), then tends to decrease, whereas the energy gap of silicon
decreases as pressure increases (Paul and Warschauer, 1963). At very high
pressures, anyway, one should expect that bands would eventually overlap,
giving rise to metallic conduction (Drickamer, 1963).

(iii) Hopping conduction and ionic conduction. Let us now consider the
case of ionic crystals where the orbital overlap is so small that the band
formalism becomes inadequate. To a first approximation, the electrons are
localized and bound to the ions; they cannot freely move as an electric field
is applied and the crystal behaves as an insulator at low temperatures. Such
compounds, for which the effective mass of the carriers is very large are
sometimes called ‘‘low-mobility semi-conductors’’. The only way an electri-
cal current can be created is by bodily motion of the ions by thermally
activated diffusion through the crystal (ionic conduction) or by thermally
activated charge-transfer between neighboring ions of different valence
(hopping conduction): for instance, a hole hops from a cation with charge
� 3 to a neighboring ion with charge � 2 or � 1. This occurs in the
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so-called ‘‘mixed-valence compounds’’. The ions can be of different natures
(e.g. Ni�� and Li� in lithium-doped NiO). They can also be of the same
nature, as in the important case of transition metals, which can exist with
several degrees of oxidation, e.g. Fe�� and Fe�� in magnetite Fe

�
O

�
(Kündig and Hargrove, 1969); see also Coey et al. (1989).
There are also cases where the low-mobility carriers in narrow-band

materials, interacting strongly with optical phonons, polarize the lattice
and distort it in their neighborhood. The lattice distortion moves with the
carrier (see Appel, 1968). The unit formed by the bound carrier and its
induced lattice deformation, confined to a small region, is called a small
polaron . The strain energy of the distorted latticeE

�
is equal to the polaron

binding energy. Conduction by polarons has been found in the case of
oxides like NiO, CeO

�
and FeO (Yamashita and Kurosawa, 1958; Austin

and Mott, 1969; Tuller and Nowick, 1977; Chen et al., 1982). At high
temperatures, small polarons move by thermally activated hopping (Emin,
1975). We will limit ourselves to the discussion of hopping and ionic
conduction, both of which proceed by thermally activated diffusion jumps.
The Nernst—Einstein relation links the electrical conductivity to the

diffusion coefficient of electrons or ions, it is obtained by equating the
expression of Ohm’s law (6.107) with the diffusion flux of charges:

�E� �Dgrad(nq)�� qD
�n
�x

(6.141)

where q is the charge of the carrier (ion, electron or hole) diffusing under the
action of the electric field E. In steady state, the concentration n(x) of
carriers at point x in the electric field follows a Boltzmann distribution law:

n(x)� exp��
eEx

k
�
T� (6.142)

From (6.141) and (6.142), we have:

�
D

�
q�n

k
�
T

(6.143)

For the case of hopping, the electron (hole) transfer reaction can be
written for instance:

M��
�

�M��
�

�M��
�

�M��
�

(6.144)

where M��
�

and M��
�

are cations of charge q in neighboring sites a and b.
If � is the fraction of lattice sites occupied by electrons or holes suscep-
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tible to jump (e.g. atomic fraction of M��), the probability of finding an
empty site in the neighborhood is 1� � and the diffusion coefficient of
charges (see Honig, 1970) is:

D��(�l)�(1� �) (6.145)

where � is the jump frequency and �l, the jump distance (see Section 6.2).
The jump frequency is thermally activated:

� ��
�
exp��

�H
k
�
T� (6.146)

The number of carriers per unit volume n is proportional to �, the
constant of proportionality depending on the crystal structure. With
(6.145) and (6.146), the Nernst—Einstein relation gives:

� �
�
�
�(1� �)
k
�
T

exp��
�H
k
�
T� (6.147)

where �
�
is a constant and �H is the activation energy for hopping. If the

atomic fraction � of charge carriers is constant, the hopping conductivity
depends on temperature according to an Arrhenius law, like diffusion, and
it is maximum for �� 0.5. Deviations from the Arrhenius law obviously
occur if � changes with temperature, e.g. if the concentration of Fe��
increases due to oxidation of Fe�� as the oxygen partial pressure increases.
The case of ionic conduction obviously reduces, via the Nernst—Einstein
relation, to the case of ionic diffusion, treated in Section 6.2.
The effect of pressure, however, is quite different for hopping and ionic

conductivity. In the case of ionic conductivity, we have seen in Section 6.2
that the activation energy for diffusivity increases with pressure because it
is more difficult to create vacancies under pressure. The ionic conductivity
therefore decreases as pressure increases. On the contrary, the activation
energy for hopping conductivity decreases as pressure increases because
the jump distance between sites decreases under pressure. As there is no
need for vacancies, the hopping conductivity increases with pressure.

6.5.3 Electrical conductivity of mantle minerals

A review of the experimental measurements of the conductivity of various
minerals and rocks at high pressure was given by Parkhomenko (1982).We
will only briefly summarize here the results concerning the main mantle
minerals.
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Figure 6.22 Arrhenius plot of the electrical conductivity of forsterite equilibrated
with MgO (after Cemic et al., 1980).

(i) Forsterite, olivines, fayalite

Pure forsteriteMg
�
SiO

�
is an insulator at room temperatures (�� 10��S/

m). Its conductivity was studied by Bradley et al. (1964), who found that its
activation energy between 300 and 700 °C increases with pressure, from
1.1 eV at 11 kbar (1.1GPa) to about 3 eV at 35 kbar (3.5GPa). Measure-
ments on single crystals in the three directions a, b and c (Morin et al., 1977,
1979) showed a conductivity anisotropy, with the highest conductivity in
the a-direction and the lowest conductivity in the b-direction .These results
are not confirmed by measurements between 1000 and 1500 °C by Schock
et al. (1989), who find that the conductivity is greatest and independent of
oxygen partial pressure in the c-direction, intermediate in the a-direction
and still least in the b-direction; they infer that conduction in forsterite is
dominated by electronic conduction in the a- and b-directions and prob-
ably by magnesium vacancy diffusion along the c-direction. Will et al.
(1979) and Cemic et al. (1980) studied the electrical conductivity of for-
sterite equilibrated with MgO, the thermodynamic conditions being thus
well defined. They found two regimes (Fig. 6.22):

� � 4.92 exp(� 0.98[eV]/k
�
T) for 520� T � 970 °C
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Figure 6.23 Arrhenius plot of the electrical conductivity of San Carlos olivine. The
gas mixture (10 CO

�
for 1 CO) buffers the oxygen partial pressure at the value of

10��Pa at 1200 °C (after Schock et al., 1989).

� � 4.69 · 10�� exp(� 2.46[eV]/k
�
T) for 970� T � 1075 °C

Olivines (Mg
���

Fe
�
)
�
SiO

�
and fayalite Fe

�
SiO

�
have been studied by

many authors. Schock et al. (1989) find that olivine appears to show mixed
conduction from 1000 to 1500 °C, as evidenced by the curvature of the
Arrhenius plot (Fig. 6.23), with electron hole conduction by hopping
predominant at lower temperatures andmagnesium vacancy ionic conduc-
tion predominant above 1390 °C.
Wanamaker and Duba (1993) measured the conductivity along [100] of

single-crystal San Carlos olivine, between 1100 and 1200 °C, as a function
of oxygen partial pressure, for ‘‘self-buffered’’ and ‘‘pyroxene-buffered’’
crystals. They find that, depending on the oxygen partial pressure, conduc-
tion is dominated by polarons or electrons in self-buffered samples and by
polarons and magnesium vacancies in pyroxene-buffered samples.
The experimental results for temperatures up to about 1200 °C are

generally consistent with a conduction mechanism by electron transfer by
hopping between Fe�� and Fe�� ions (Bradley et al., 1964, 1973; Hirsch et
al., 1993).
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Table 6.3. Parameters of the Arrhenius law �� �
�
exp(�E/k

�
T ) for

olivines (Mg
���

Fe
�
)
�
SiO

�

x (%Fe) T range (°C) P (GPa) �
�
(S/m) E (eV) Reference

10.4—
17.5 560—1800 1.15—3.2 0.9 Hamilton (1965)
1 300—1000 1.2 11 200 1 Bradley et al. (1964)
1 300—1000 3.5 230 1 Bradley et al. (1964)
10 300—1000 1.2 200 0.92 Bradley et al. (1964)
10 300—1000 4.7 5 0.74 Bradley et al. (1964)
50 300—1000 1.2 17 380 0.74 Bradley et al. (1964)
100 300—1000 1.2 1900 0.72 Bradley et al. (1964)
100 300—1000 4.7 370 0.53 Bradley et al. (1964)
18 500—1200 0 29 0.86 Mizutani & Kanamori (1967)
8.4 800—1200 0 160 0.79 Kobayashi & Maruyama

(1971)
19� 560—1120 0.2—0.8 1.3 0.98 Duba et al. (1974)
19� 1270—1440 0.2—0.8 53 700 2.33 Duba et al. (1974)
10� 870—1210 1.0 2.7 0.78 Cemic et al. (1980)
10� 820—1220 1.0 1.9 0.62 Cemic et al. (1980)
20� 800—1210 1.0 13.8 0.68 Cemic et al. (1980)
20� 875—1160 1.0 16.3 0.58 Cemic et al. (1980)
100� 340—1100 1.0 0.52 Will et al. (1980)
100� 340—1100 1.0 0.38 Will et al. (1980)
9� 1200—1250 0 1.3 Schock et al. (1989)
9� 1200—1250 0 1.6 Schock et al. (1989)
10 1000—1300 4.0 955 1.73 Xu et al. (1998b)
10 1000—1400 7.0 427 1.66 Xu et al. (1998b)
10 1000—1400 10.0 513 1.69 Xu et al. (1998b)
10� 1000—1400 10.0 1047 1.71 Xu et al. (1998b)

�Red Sea olivine with a low Fe��/Fe�� ratio.
�Reducing conditions (Fe—FeO buffer).
�Oxidizing conditions (Quartz—Magnetite—Fayalite buffer).
�Reducing conditions (Quartz—Fe).
�Oxidizing conditions (Quartz—Magnetite).
�f

�

� 10��Pa, a- and b-directions.

�f
�


� 10��Pa, c-direction.
�Single crystal, a-direction.

Even though results are somewhat scattered (Table 6.3), most investiga-
tions on olivines lead to similar conclusions:

• Conductivity increases and activation energy decreases as the total iron
content x increases (Bradley et al., 1964; Cemic et al., 1980; Hirsch et al.,
1993).

• Conductivity increases and activation energy decreases as the ratio of
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ferric to ferrous iron content increases, for instance, whenmeasurements
are made in an oxidizing atmosphere (Duba et al., 1973; Duba and
Nicholls, 1973; Cemic et al., 1980).

The effect of pressure is more disputed: Bradley et al. (1964, 1973) find
that conductivity increases with pressure, with an activation energy
decreasing linearly as pressure increases (dE/dP�� 0.005 eV/kbar for
olivine) from 10 to 60 kbar (1 to 6GPa). In shock-wave experiments
(Mashimo et al., 1980), conductivity is found to increase by a factor of more
than 10�� between 0 and 40GPa. However, no systematic variation of
conductivity with pressure is observed up to 0.8GPa (Duba et al., 1974)
and, in experiments at pressures up to 5GPa, Xu et al. (1998b) find an
activation volume not significantly different from zero.
In general, a behavior similar to that of olivine is found for other

orthosilicates of transition metals such as manganese, cobalt or nickel
olivines (Bradley et al., 1973), as well as for manganese germanate olivine
(Yagi and Akimoto, 1974).
The transition from olivine to its high-pressure polymorphs wadsleyite

and ringwoodite (occurring in the mantle transition zone below 400 km) is
accompanied by an increase in conductivity by about two orders of magni-
tude (Akimoto and Fujisawa, 1965; Xu et al., 1998b). This is consistent with
the hopping mechanism, which is easier in the spinel structure (as, for
instance, in magnetite).

(ii) Periclase and magnesiowüstite

Mitoff (1962) measured the conductivity of MgO single crystals at high
temperature and various oxygen partial pressures. He found that the
conduction was predominantly ionic at 1000 °C and intermediate oxygen
partial pressures, whereas at 1500 °C and high (1 atm) or low (� 10��atm)
pressures, the conduction was mostly electronic, deviation from stoichio-
metry resulting in sources of electronic charge carriers. Periclase is, in most
cases, at high temperatures, a mixed electronic and ionic conductor.
The behavior of the electrical conductivity of magnesiowüstites

(Mg
���

Fe
�
)O and wüstite Fe

���
O, as a function of pressure, total Fe

content and ferric/ferrous iron ratio is similar to that of olivines. It has also
generally been ascribed to hopping (Tannhauser, 1962; Hansen and Cutler,
1966; Iyengar and Alcock, 1970; Mao, 1972; Bowen et al., 1975; Chen et al.,
1982).
The conductivity of magnesiowüstites and wüstite is much higher than

that of olivines and its activation energy is lower, ranging from 0.7 to 0.4 eV
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for iron contents of 7.5 to 20mol% at ambient pressure (Iyengar and
Alcock, 1970). Mao (1972) found that at 15GPa, the electrical conductivity
of (Mg

����
Fe

����
)O is six orders of magnitude higher than that of olivines

with the same Fe/Mg ratio, with an activation energy equal to 0.37 eV. Li
and Jeanloz (1990b) studied the conductivity of magnesiowüstites with 9
and 27.5mol% FeO at 30GPa in a laser-heated diamond-anvil cell; they
found that the magnesiowüstite with 27.5mol%FeOwasmore conductive
by three orders of magnitude than the more iron-poor magnesiowüstite.
The activation energy decreased from 0.38 eV for 27.5% FeO to 0.29 eV for
9% FeO.
Wood and Nell (1991) investigated the electrical conductivity of

(Mg
����

Fe
����

)O between 1173 and 1773K, under controlled oxygen par-
tial pressure. They found that the variation of conductivity with p

�

rough-

ly obeys the relation: �� p����
�


and that the highest conductivity is
achieved for equal concentrations of ferric and ferrous ions, as expected for
conduction by electron hopping. In experiments at 5 and 10GPa, Dobson
et al. (1997) find a curvature of the Arrhenius plot and suggest that
conduction is controlled by small polarons below about 1000K and by
large polarons at higher temperatures.
Shock-wave and diamond-anvil cell experiments at pressures above

70GPa and temperatures above 1000K have shown that wüstite Fe
��
�

O
undergoes an increase in conductivity by three orders of magnitude
(Knittle and Jeanloz, 1986), which is interpreted as a transition to the
metallic state (‘‘metallization’’). Sherman (1989) argued that the observed
‘‘metallization’’ is not associated with metallic bonding, but with pressure-
induced 4s—3d band overlap (Mott transition). Fei and Mao (1994) per-
formed synchrotron X-ray diffraction measurements of FeO at high press-
ure and temperature and found that FeO undergoes a transition to the
NiAs structure above 96GPa; they suggested that the shorter Fe—Fe
distance across shared FeO

�
octahedra faces could lead to metallization by

electron delocalization.

(iii) Crystals with perovskite structure

Silicate perovskite (Mg,Fe)SiO
�
is thought to be an essential constituent of

the lower mantle but, so far, few experiments on its electrical conductivity
have been reported in the literature and they are conflicting.
Li and Jeanloz (1987, 1990a) report on the results of measurements of the

conductivity of (Mg
��

, Fe

���
)SiO

�
perovskite in a laser-heated diamond-

anvil cell, up to 85GPa and 3500K; they claim that the conductivity
remains below 0.001 S/m at lower-mantle conditions, with a very weak
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Figure 6.24 Arrhenius plot of the electrical conductivity of lower-mantle material.
(a) Perovskite and magnesiowüstite assemblage obtained by decomposition of
San Carlo olivine of various Fe contents. (b) Perovskite (Mg, Fe)SiO

�
with 8 and

11 at.% Fe at 52GPa. (After Peyronneau and Poirier, 1989.)

dependence on temperature (activation energy: 0.1—0.2 eV). Li et al. (1993)
found that conductivity increases with pressure and measured a negative
activation volume of � 0.12 cm�/mol. Peyronneau and Poirier (1989),
however, measured the conductivity of the same perovskite at 52GPa, in a
diamond-anvil cell heated by an external furnace up to about 400 °C; they
found that the conductivity is already 0.01 S/m at 400 °C and that it
increases with temperature and iron content in a way entirely consistent
with a hopping mechanism (Fig 6.24(b)). Shankland et al. (1993) confirmed
these results, finding an activation energy of 0.48 eV and an activation
volume of � 0.26 cm�/mol; the value of conductivity extrapolated to the
lower-mantle conditions is of the order of 1 S/m. Katsura et al. (1998)
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Figure 6.25 Electrical conductivity of perovskite, measured in amulti-anvil press at
a pressure of 23GPa. Enstatite was brought up to temperatures above 1500K and
transformed to stable perovskite.Measurements were then performed on quenched
perovskite reheated up to 1500K. The results of Shankland et al., 1993 (dashed line)
and of Li and Jeanloz, 1990a (dotted line) are shown for comparison (after Katsura

et al., 1998).

measured the conductivity of perovskite in a multi-anvil press, up to
23GPa and 2000K; they found an excellent agreement with the results of
Shankland et al. (1993) up to about 1000K (activation energy: 0.41 eV)
(Fig. 6.25), but report another regime, close to 2000K, with an activation
energy of 0.92 eV.
Values of the conductivity of the order of 1 S/m at lower-mantle condi-

tions, as extrapolated by Shankland et al. (1993) and Katsura et al. (1998),
are in good agreement with geophysical determinations. It is probable that
the discrepancy of more than four orders of magnitude between the results
found by Li and Jeanloz using laser-heating and by other teams using
external heating is due to the difference in experimental conditions.
Some other perovskites have been investigated and are generally
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thought to be electronic extrinsic semi-conductors up to the highest tem-
peratures investigated (generally about 1000 °C). This is, in particular, the
case for SrTiO

�
, with an activation energy of 0.4 eV above 1000K (Stumpe

et al., 1983). The conductivity of CaTiO
�
has also been investigated up to

1100 °C; it exhibits several regimes of conduction depending on the oxygen
partial pressure, which are interpreted in terms of small amounts of accep-
tor impurities (Balachandran et al., 1982).
Fluoride perovskites NaMgF

�
(O’Keefe and Bovin, 1979) and KZnF

�
(Poirier et al., 1983) were reported to exhibit a solid-electrolyte-like behav-
ior close to the melting point, attributed to an abnormally high mobility of
quasi-delocalized fluorine anions, which gives a very high electrical con-
ductivity comparable to that of a liquid. Kapusta and Guillopé (1988) and
Wall and Price (1989) performed molecular dynamics simulations on
MgSiO

�
and found a very high mobility of the oxygen ions, which leads

them to the conclusion that the silicate perovskite might also behave as a
solid electrolyte at high temperatures. There is, however, no experimental
support, so far, for this hypothesis.

(iv) Perovskite–magnesiowüstite assemblage

There is reasonably good evidence that a perovskite—magnesiowüstite
assemblage is representative of the composition of the lower mantle. The
electrical conductivity of this assemblage resulting from the dispropor-
tionation of olivine at high pressure was measured at Berkeley in a laser-
heated diamond-anvil cell (Li and Jeanloz, 1987, 1991) and in Paris in an
externally heated diamond-anvil cell (Peyronneau and Poirier, 1989 (see
Fig. 6.24(a)); Poirier and Peyronneau, 1992; Shankland et al., 1993; Poirier
et al., 1996). As in the case of pure silicate perovskite, there is a discrepancy
of about four orders of magnitude between the results, which can be
ascribed to differences in experimental conditions (Duba andWanamaker,
1994). There is a reasonable agreement of the Paris extrapolated value of
the conductivity at conditions of the lower mantle (of the order of 1 S/m)
with geophysical determinations (Shankland et al., 1993).
However, the experimental determination of the lower-mantle conduc-

tivity is fraught with many difficulties arising, in particular, from the
presence of impurities in the minerals, which may alter the oxidation state
and the conductivity. Thus, San Carlos olivine containing some nickel has
a higher conductivity than nickel-free synthetic olivine (Duba et al., 1997).
More important, perhaps, is the fact that aluminum is present in the lower
mantle, and it has been clearly shown that aluminum can not only dissolve
in perovskite and extend its stability field (Kesson et al., 1995), but it also
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modifies the partition coefficient of iron between perovskite and mag-
nesiowüstite (Wood and Rubie, 1996; Mao et al., 1997). In the absence of
aluminum, iron partitions mostly into magnesiowüstite, whereas it may
partition equally between both phases when aluminum is present. Further-
more, in perovskite containing some aluminum a high proportion of the
iron becomes ferric (McCammon, 1997). Xu et al. (1998) have found that
the conductivity of perovskite containing 2.9wt%Al

�
O

�
is about 3.5 times

greater than the conductivity of aluminum-free (Mg
��
��

, Fe
�����

)SiO
�

perovskite. It is, therefore, probable that the perovskite of the lower mantle
is richer in Fe and in Fe�� than the perovskite obtained in diamond-anvil
cells from the disproportionation of aluminum-free olivine (McCammon et
al., 1997), and that it might contribute more to the conductivity of the
assemblage (Poirier, 1997; Katsura et al., 1998).

6.5.4 Electrical conductivity of the fluid core

The fluid core is a liquid alloy of iron and nickel with about 10wt% light
elements (see Poirier, 1994a) at temperatures close to the melting point and
pressures above 1.3Mbar.
Measurements of the electrical conductivity of pure liquid iron at atmos-

pheric pressure yield a value of about 7� 10� S/m (Iida andGuthrie, 1988).
Conductivity decreases with increasing temperature, since electrons are
scattered by thermal vibrations of the atoms. One can write (Mott, 1934):

� �
M��

�
T

(6.148)

where�
�
is Debye temperature andM, the mass of the atoms. Conductiv-

ity then must increase with pressure, as compression of the lattice restricts
the thermal vibrations. From (6.148), one can derive:

� ln�
� ln�

� 2
� ln�

�
� ln�

� 2�
�

(6.149)

where �
�
is the Grüneisen parameter.

Conversely, impurities in solution scatter the electrons and cause a
decrease in conductivity. Estimates (Gardiner and Stacey, 1971) and simple
first-principle calculations (Jain and Evans, 1972) of the conductivity of the
core fluid yielded values between 2� 10� and 10� S/m.
Measurement, at atmospheric pressure and 1000 °C, of the conductivity

of a ‘‘core mix’’ composed of liquid (Fe
��

Ni

���
)
�
S
�
alloyed with 2.6wt%
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carbon gave an average value �� 2.7� 10�S/m (Johnston and Strens,
1973), while direct measurement of the conductivity of pure liquid iron
close to the melting point gave �� 7� 10� S/m (Van Zytveld, 1980).
Shock-wave measurements of Fe—10wt% Si alloys, at pressures between
50 and 150GPa also yield a value of � � 7� 10�S/m (Matassov, 1977). It
seems that there is some compensation between the effects of temperature
and impurities on the one hand and pressure on the other hand.
Secco and Schloessin (1989) have measured the electrical conductivity of

pure iron in the solid and liquid state as a function of temperature and at
pressures up to 7GPa. Extrapolating their results to the P,T conditions of
the outer core, they find it improbable that the conductivity of the impure
outer core can differ much from that of pure liquid iron at pressures below
7GPa and conclude that the most probable range of its value is 0.67—
0.83� 10�S/m.

6.6 Thermal conduction

(i) Generalities

Heat is transferred through solids by essentially two processes: lattice
conduction (or phonon conduction) and electronic conduction. In the
former case, the carriers are quantized lattice vibrations, i.e. phonons, and
in the latter case, electrons. Both processes operate in some measure in all
solids, but it is obvious that, in electrical insulators, phonons are respon-
sible for almost all of the conductivity whereas, in metals, electronic
conduction plays a predominant role. In both cases, the principal features
of the mechanisms of conduction can be accounted for by the classical (or
semi-classical) approach of the kinetic theory of gases, considering a gas of
electrons or phonons. We will limit ourselves here to this elementary
outlook, referring the reader to the book by Berman (1976) for a more
rigorous treatment. Techniques of measurement are dealt with in Horai
and Shankland (1987) and values of the thermal conductivities of many
rock-forming minerals can be found in Horai (1971).
The geophysical literature usually lumps together thermal conduction

and radiative heat transfer. This is somewhat misleading since thermal
conduction refers to the transport of heat, the degraded form of energy,
whereas radiative transfer concerns the propagation of energy, carried by
electromagnetic waves (photons) through a more or less transparent (i.e.
non-absorbing) medium. A justification can be found in the fact that, at
high temperatures, most experimental methods for measuring the thermal
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conductivity of solids yield an effective thermal conductivity, comprising a
term corresponding to radiative transfer (Kanamori et al., 1968). We will
follow the common usage and briefly deal with radiative transfer at the end
of this section.

(ii) Lattice conduction

The carriers of heat are phonons. In an anharmonic crystal, phonons
interact (collide) and the thermal conductivity is controlled by the mean
free path� between collisions: the more collisions there are, the shorter the
mean free path and the smaller the conductivity. In a harmonic crystal,
with no interactions between phonons, the mean free path, hence the
conductivity, would be infinite.
Let us consider the thermal conduction in a material along direction x.

The heat flux is given by:

J�� n(c� gradT)v
�

(6.150)

where n is the number of carriers per unit volume, c, their specific heat
(c� gradT is the amount of heat transferred over the length of themean free
path) and v

�
is their average velocity in the x-direction. We can also write:

J��
1

3
Cv� gradT (6.151)

where C� cn is the lattice specific heat per unit volume and v� 3v
�
is the

root mean square velocity of the phonon gas, i.e. the sound velocity.
Comparison with (6.20) gives the lattice heat conductivity:

k
�
�

1

3
Cv� (6.152)

At low temperatures (T � �
�
) the lattice specific heat varies as T� and

the mean free path � tends to become constant and controlled by defects,
hence the thermal conductivity varies as T� (Fig. 6.26). At high tempera-
tures (T ��

�
) the specific heat tends towards 3R (R is the gas constant)

and it can be more or less empirically shown (Dugdale and McDonald,
1955) that the mean free path varies as 1/T; thermal conductivity therefore
decreases as 1/T at high temperatures (Fig. 6.26). Minerals of geophysical
interest should not depart markedly from this behavior (Roufosse and
Klemens, 1974).
As the lattice heat conductivity is linked to anharmonicity, it clearly

must be possible to express it in terms of the Grüneisen parameter. Let us
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Figure 6.26 Temperature dependence of the lattice thermal conductivity.

start with (6.152) andwith the expression of Dugdale andMcDonald (1955)
for the mean free path:

� �
a

��T
(6.153)

where a is an interatomic distance, � the thermal expansion coefficient and
�, the Grüneisen parameter. Taking for � the thermodynamic gamma:

�

�

�
�K
C

(6.154)

where C��C
�
is the specific heat per unit volume and K is the bulk

modulus, we obtain:

k
�
�

avK

3��

�

T
(6.155)

Taking for the average phonon velocity: v� v�� (K/�)���, we can write:

k
�
�

av��
3��


�
T

(6.156)

and obtain the expression first given by Lawson (1957):

k
�
�

aK���

3��

�
����T

(6.157)
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The thermal conductivity can also be expressed in terms of the Debye
temperature �

�
. Assuming the minimum wavelength of the vibrational

modes to be equal to 2a, the maximum frequency is:

�
�	�

�

�v
a

�
k
�
�

�
�

(6.158)

Replacing v in (6.155) by its expression in terms of the Debye temperature
and writing

K� v�Ma��

where M is the average atomic weight, we obtain (Berman, 1976):

k
�
�

Ma��
�

3��

�

T
(6.159)

Horai and Simmons (1969, 1970) found empirical relations between the
thermal conductivity and the compressional (P-wave) and shear (S-wave)
velocities:

v
�
� 0.17k

�
� 5.93

(6.160)v
�
� 0.09k

�
� 3.31

and between thermal conductivity and Debye temperature:

�
�

� 25.6k
�
� 385 (6.161)

with k
�
in mcal/cmsK, v

�
and v

�
in km/s and �

�
in K (Fig. 6.27).

Using D. L. Anderson’s (1967) seismic equation of state and introducing
the concept of mean atomic specific heat, Maj (1978) derived a relation
between the lattice thermal conductivity and the seismic parameter for
silicate minerals:

k
�
� 0.43������ (6.162)

where k
�
is expressed in mcal/cmsK and � in km�/s�.

An order of magnitude value of the thermal conductivity of insulators
can be found (Animalu, 1977) by setting in (6.152): � � 3� 10�� cm,
v� 10� cm/s, C� 3R cal/mol. One obtains:

k
�
�

0.3R

V
���

with typical values of the molar volume V
���

of a few tens of cm�, conduc-
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Figure 6.27 Correlation of Debye temperature and lattice thermal conductivity for
silicates (after Horai and Simmons, 1970).

tivity values are found to lie in the range of about 5—30mcal/cm sK
(0.8—12.5W/m).
The effect of pressure on thermal conductivity can be found through the

theoretical or empirical relations between k
�
and the sound velocity: k

�
obviously increases with pressure. For typical mantle minerals, thermal
conductivity can undergo a tenfold increase between ambient conditions
and the pressure of the core—mantle boundary (Mao, 1972). From (6.157)
we can also see that, along an adiabatic temperature gradient, we have:

d ln k
�

d ln�
��

1

3
�

3

2

d lnK

d ln�
�

1

2
�

d lnT
d ln�

� 2
d ln �
d ln�

or, using (d lnT/d ln�)
	�

� � and ��� const:

d ln k
�

d ln �
� 2��

5

3
(6.163)

Using interatomic potentials, Roufosse and Jeanloz (1983) predicted the
effect of phase transitions on the thermal conductivity of alkali halides;
they suggested that the increase in coordination associated with a small
volume change acts to reduce the thermal conductivity at high pressures.
The thermal diffusivity �� k

�
/�C

�
of rock-forming minerals at high

temperatures and pressures have been measured by Kanamori et al. (1968)
and Fujisawa et al. (1968) (Table 6.4). Chai et al. (1996) measured the
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Table 6.4. Thermal diffusivity of some minerals

Mineral T (K) P (kbar)� �(10�� cm�/s) Reference

Quartz � [001] 1100 0.001 1.64 Kanamori et al. (1968)
Quartz � [010] 1100 0.001 1.28 Kanamori et al. (1968)
Olivine � [001] 1100 0.001 1.35 Kanamori et al. (1968)
Forsterite 1100 30 0.94 Fujisawa et al. (1968)

1100 50 1.10 Fujisawa et al. (1968)
NaCl 1000 29 1.20 Fujisawa et al. (1968)
Periclase 1100 0.001 3.23 Kanamori et al. (1968)
Jadeite 1100 0.001 0.96 Kanamori et al. (1968)
Garnet 1100 0.001 0.83 Kanamori et al. (1968)
Spinel 1100 0.001 2.13 Kanamori et al. (1968)

Note: �10 kbar� 1GPa.

thermal diffusivity of olivine and orthopyroxene along the three directions
a, b and c, at ambient pressure and temperature.
We see that for most minerals (and rocks) � is of order 10�� cm�/s. The

pressure derivative d�/dP at 40 kbar (4GPa) for Mg
�
SiO

�
has been found

to be 1.8� 10�� cm�/s kbar at 700K and 0.8� 10�� cm�/s kbar at 1100K
(Fujisawa et al., 1968). Using the volume dependence of the Grüneisen
parameter, Kieffer (1976) built a model for the lattice thermal conductivity
of the mantle: she found it to be minimal at the depth of the olivine—spinel
transition and reach the value k� 0.01 cal/cm s at the core—mantle bound-
ary.

(iii) Electronic conduction

The carriers are electrons instead of phonons but the same general formula
(6.152) applies:

k
�
��

�
Cv

�
� (6.164)

where k
�
is the electronic conductivity,C� nc is the electronic specific heat

per unit volume (n is the number of electrons per unit volume and c is the
specific heat of an electron), v

�
is the velocity of electrons at the Fermi level

and � is their mean free path between collisions. The electrons in a metal
are also the carriers of electric current and the electrical conductivity �was
given in the free-electron approximation by the Drude formula (6.118):

� �
ne��
m

�
v
�

(6.165)

We therefore have:
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k
�

�
�

1

3

m
�
v�
�
c

e�
(6.166)

With c��
�
k
�
, and �

�
m

�
v�
�
��

�
k
�
T, we have:

k
�

�T
�

3

2�
k
�
e �

�
(6.167)

The rigorous quantum mechanical treatment (Ziman, 1965) would give:

k
�

�T
�


�

3 �
k
�
e �

�
� L

�
� 2.45� 10�� [W�/K�] (6.168)

This is the Wiedemann—Franz law. L
�
is known as the Lorentz number.

The Wiedemann—Franz law is generally well verified for metals, with
values of the ratio in rather good agreementwith the theoretical value ofL

�
(2.47� 10�� for Fe and 2.23� 10�� for Cu at 0 °C).
At low temperatures, the mean free path of electrons is constant and

determined by the distribution of defects and impurities; the electrical
conductivity is constant and by theWiedemann—Franz law, we see that the
thermal conductivity varies linearly with T.
At high temperatures, the electrons are scattered by phonons and their

mean free path is proportional to 1/T, hence the electronic thermal conduc-
tivity varies as 1/T.
The order of magnitude of k

�
can be calculated (Animalu, 1977), taking

typical values for v
�
� 10� cm/s, � � 10�� cm and C� 0.1R cal/mol. It is

found to be two orders of magnitude larger than for lattice conductivity:

k
�
�

30R

V
���

Metals are normally much better heat conductors than are electrical
insulators; however, if the maximum of lattice conductivity occurs at
relatively high temperature, the heat conductivity of an electrical insulator
may be quite large. This is the case for diamond, whose heat conductivity at
room temperature is about 2000W/mK, compared to 400W/mK for cop-
per.

(iv) Radiative conductivity

In non-opaque media, a sizeable fraction of energy transfer at high tem-
peratures may occur by thermal radiation (photon transfer). The opacity 

of a medium is defined by the decrease of the intensity, due to absorption
and scattering, of a pencil of radiation passing through a thickness x of
material:
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I� I
�
exp(� 
x) (6.169)

The opacity is the reciprocal of the mean free path of radiation.
In the simplest case, in which the opacity is assumed to be independent of

the wavelength of the radiation, the radiative conductivity k
�
can be written

(Clark, 1957):

k
�
�

16n�ST�

3

(6.170)

where n is the refractive index and S the Stefan—Boltzmann constant. With
n� 1.7 (a typical value for ferromagnesian silicates), one gets:

k
�
� 9.2� 10�


T�



[W/mK] (6.171)

One of the important mechanisms responsible for opacity in the fer-
romagnesian silicates is the absorption of photons causing the charge
transfer from Fe�� to Fe�� (or, equivalently, the excitation of electrons
from one narrow band to another). We have seen that the same charge-
transfer process can be thermally activated and is then responsible for
hopping electrical conduction. High pressure, favoring overlapping of the
electronic orbitals of neighboring ions, increases the optical absorption due
to charge transfer and causes the absorption edge to shift from the ultravio-
let to the visible and infrared regions of the spectrum. It is then possible for
energy transfer by radiation in the lower mantle to be effectively blocked,
the increase of opacity with pressure overriding the T� dependence of the
radiative conductivity (Mao, 1972, 1976).
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7

Earth models

Inferences about the interior of the Earth, so far from being all
inferior to those in the ‘exact’ sciences, range from those which
are indeed flimsily based to inferences that are now as well
established as commonly accepted results in standard physics.

K. E. Bullen, The Earth’s Density (1975)

7.1 Generalities

All the information we have about the inaccessible interior of the Earth is
embodied in Earth models which, if they are well constrained by observa-
tions and physical laws, are, at least in some respects, open to as little doubt
as accepted tenets of, for instance, astronomy.
The previous chapters were devoted to laying the groundwork of the

physics and thermodynamics that apply to the materials constituting the
deep Earth, emphasizing the contribution of laboratory experimentation.
We are now in a position to summarily present the recent view of the inner
Earth that results from the conjunction of these physical constraints with a
corpus of ever-improving geophysical observations.
We will follow the traditional, and convenient, habit of separately con-

sidering seismological, thermal and compositional (mineralogical) Earth
models. It must, of course, be kept in mind that they strongly interact (Fig.
7.1).
The seismological models are based on velocity—depth profiles deter-

mined from the travel-time—distance curves for seismic waves and on
periods of free oscillations (see Bullen and Bolt, 1985 and, for a clear
elementary presentation, Bolt, 1982). Due to the development of world-
wide networks of three-component broad-band seismographs, there are
more and more data, of better and better quality. At the initiative of the
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Figure 7.1 Interrelations between seismological, compositional, and thermal earth
models.

International Association of Seismology and Physics of the Earth’s In-
terior (IASPEI), a Preliminary Reference Earth Model (PREM) was set up
(Dziewonski and Anderson, 1981). Although new global travel-time tables
and velocity models (iasp 91) have since been generated (Kennett and
Engdahl, 1991), PREM is still, in practice, the most currently used global
seismological model.
Seismological models yield pressure, density and elastic moduli as func-

tions of depth and, before introducing the PREMmodel, we will deal with
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the fundamentals of density-profile determination. Bolt (1991) gave a criti-
cal analysis of the precision of density estimations from seismological
models.
Thermal models necessarily depend on experimentally determined ther-

modynamic parameters, as well as observations of heat flux and geomag-
netic variations. The temperature—depth profile (geotherm) has a strong
influence on the compositional models since we need to know the tempera-
ture at a given pressure to infer from the experimentally determined phase
diagrams which minerals are stable.
The compositional models, constrained by the density and velocity

profiles from seismological models, in turn react on the thermal models by
anchoring the geotherm and by allowing or forbidding convective layering,
thus making the introduction of thermal boundary layers necessary or not.

7.2 Seismological models

7.2.1 Density distribution in the Earth

Knowing the mass of the EarthM� 5.974� 10��kg and its mean radius
R� 6371km, it is obvious that its mean density �� � 5.515 is higher than
the average density (2.7 to 3.3) of the rocks found at the surface of the Earth.
Besides, the moment of inertia of the Earth about its rotation axis, deter-
mined from flattening and precession measurements is I� 0.33MR�,
smaller than the value 0.4MR� that would obtain for a homogeneous
sphere of constant density, thus pointing to a concentration of mass near
the center of the Earth. It could, of course, be entirely due to an increase in
density with depth as the rocks are compressed. It is therefore necessary to
examine the variation of density with depth, due to compression alone, of
an isochemical material; it will turn out that it is insufficient to account for
all of the mass concentration toward the center.
We assume that the compression is adiabatic, i.e. that there is no ex-

change of heat which could cause temperature variations and add a ther-
mal expansion contribution to the density variations with pressure. We
also assume that the Earth is in hydrostatic equilibrium and spherically
symmetrical, hence:

dP�� �gdr (7.1)

whereP is the pressure at radius r or depth z (r[km]� 6371� z) and � and
g are the density and acceleration of gravity at radius r respectively, with:

g�Gmr��� 4�Gr���
�

�

�r�dr (7.2)
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where m is the mass of the sphere of radius r and density � and
G� 6.66� 10��SI is the gravitational constant. Hence:

dP

dr
��4�G�r���

�

�

�r�dr (7.3)

By definition of the (adiabatic) bulk modulus K and of the seismic
parameter �, we have:

d�
dP

�
�
K

���� (7.4)

Hence, with (7.3):

d�
dr

�� 4�GK����r���
�

�

�r�dr (7.5)

or:

d

dr�r�K���
d�
dr��� 4�Gr�� (7.6)

N.B. Remembering that:

dU

dr
�� g�

dP

dr
���

where U is the gravitational potential, and with the definition of the Laplacian in
spherical coordinates:

��U�
1

r�

d

dr�r�
dU

dr �
we see that (7.6) is, in fact, Poisson’s equation:

��U� 4�G�

Using an equation of state of the form:

K�C�� (7.7)

where C and n are constants, we obtain Emden’s equation (first established
to calculate the pressure inside stars):

d

dr�r�����
d�
dr���A�r�� (7.8)

with A� � 4�G/C.
We see, from (7.7), that:
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n�
d lnK

d ln�
�
dK

dP
�K�

�
(7.9)

As we have seen before, n� 4 for the second-order Birch—Murnaghan
equation.
Note that Laplace (1825), assuming that the derivative of the pressure

with respect to the density was proportional to the density:

dP

d�
�C� (7.10)

had directly obtained equation (7.8) with n� 2, as immediately follows
from (7.10). In this case Emden’s equation (7.8) has a solution of the form:
���

�
(Ar)�� sin(Ar), but it has no simple solution in the general non-linear

case.
Still assuming that the interior of the Earth is homogeneous and

adiabatic, Williamson and Adams (1923) did not introduce an a-priori
equation of state such as (7.7) into (7.5) to obtain a differential equation
which turns out to be difficult to resolve for �(r). They kept (7.5) under the
form known as Adams and Williamson’s equation:

d�
dr

� � g��K��
�

�� g����
�

(7.11)

or:

ln�
�
�
�
�� ��

�

��

g�K��
�
dr���

�

��

g���
�
dr (7.12)

where �
�
is the density at the surface of the Earth (r� r

�
).

Equation (7.12) relating � and K for a given value of r is indeed an
equation of state.
Using P- and S-wave velocity profiles determined from travel-time

curves and starting from the surface with initial density 3 and 3.5, William-
son and Adams obtained a density—depth profile by approximation and
repeated graphical integration, layer by layer. They find that the density
variation due to compression alone accounts for the density profile in the
lowermantle but that the density does not increase fast enough tomake the
mean density equal to 5.5. They conclude that: ‘‘It is therefore impossible to
explain the high density of the Earth on the basis of compression alone. The
dense interior cannot consist of ordinary rocks compressed to a small
volume; we must therefore fall back on the only reasonable alternative,
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namely, the presence of a heavier material, presumably some metal, which,
to judge from its abundance in the Earth’s crust, in meteorites and in the
Sun, is probably iron.’’
The pressure—depth profile follows immediately by integration of (7.1).

Williamson and Adams find the pressure at the center of the Earth
P
�
� 318GPa, which can be compared to the values P

�
� 308GPa found

by Laplace and P
�
� 364GPa of the PREM model. Departure from the

conditions of homogeneity and adiabaticity, hence from the conditions of
validity of the Adams and Williamson equation can be expressed by the
Bullen parameter � (Bullen, 1963), defined in the following fashion. The
Adams—Williamson equation (7.11) can be written:

� �
�
���g��

d�
dr

� 1 (7.13)

If the conditions of adiabaticity or homogeneity are not fulfilled, the Bullen
parameter is defined as being the value of the left-hand side member of
(7.13), no longer equal to 1, since � then corresponds to a non-homogene-
ous or non-adiabatic region:

� �
�
���g��

d�
dr

� � (7.14)

The pressure derivative of the bulk modulus can be expressed in terms of
the Bullen parameter; starting with the definition of the seismic parameter:
K��� and taking the derivative ofK with respect to pressure, we obtain,
with (7.14):

dK

dP
���

d�
dr

	�
d�
dr�

dr

dP
� � �

1

g

d�
dr

(7.15)

which yields another expression for Bullen’s parameter:

��
dK

dP
	

1

g

d�
dr

(7.16)

Another interesting expression for � immediately results from (7.14), if
we write, on the model of (7.13):

���g��
d�
dr

�����
�

(7.17)

where � is the density of the non-homogeneous or non-adiabatic region; we
then have:
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��

d�
dr

�
d�
dr�


�

(7.18)

The parameter � ‘‘gives the ratio of the actual density gradient to the
gradient that would obtain if the composition remained uniform’’ (Bullen,
1963).
In the non-adiabatic, homogeneous, case, the Adams—Williamson equa-

tion can be corrected from the thermal expansion term, due to the super-
adiabatic gradient:

d�
dr

� � g���
�

�	 ���
dT
dr

�
g�T
C

�
� (7.19)

With (7.18) and (7.17), we see that:

� � 1�

���
dT
dr

�
g�T
C

�
�

�g���
�

� 1 (7.20)

7.2.2 The PREM model

Seismological Earth models typically use the velocity—depth profiles and
an equation of state relating � to K (or � or v

�
) to obtain density, pressure

and elastic moduli profiles. We will deal here only with the Preliminary
Reference Earth Model PREM (Dziewonski and Anderson, 1981).
The Earth is divided into radially symmetrical shells separated by con-

venient seismological discontinuities, of which the principal are situated at
depths of 400, 670, 2890 and 5150km, corresponding to the seismic bound-
aries between uppermost mantle and transition zone, upper and lower
mantle, mantle and core, and outer and inner core, respectively.
It is assumed that Adams and Williamson’s equation is justified in each

region from the center up to the 670km discontinuity and that Birch’s law
�� a	 bv

�
can be applied in the upper mantle. The Earth’s mass and its

moment of inertia are given.
Starting values are assigned to the density below the crust (�� 3.32), at

the base of the mantle (�� 5.5) and to the density jump between inner and
outer core (	�� � 0.5).
The density at the center of the Earth and the jump in density at 670 km
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Figure 7.2 PREM model: Seismic velocities and density profile (after Dziewonski
and Anderson, 1981).

are calculated and found to be �
�
� 12.97 and 	��� 0.35 respectively.

The starting density distribution is then known.
The observed values entering the model are the travel times of P and S

body waves with a period of 1s and the periods of free oscillations, together
with the attenuation factors. The starting model is defined by a set of five
functions of radius: the velocities v

�
and v



; the density; and the attenuation

factors in shear and compression. The inverse problem is solved simulta-
neously for elastic and anelastic parameters and perturbations are intro-
duced into the starting model to satisfy the data. Elastic anisotropy is
introduced in the uppermost 200km of the upper mantle. The parameters
of the final model are given as polynomials in r, or tabulated (see Appen-
dix).
The velocity, density and pressure profiles of the PREMmodel are given

in Figs. 7.2 and 7.3; the variation of the seismic parameter � and of
Poisson’s ratio with depth are given in Figs. 7.4 and 7.5.
Note that the Poisson’s ratio of the outer core is equal to 0.5 as expected

for a liquid, but the Poisson’s ratio of the inner core is also quite high
(
� 0.44). Various explanations have been given, including the possibility
of liquid inclusions in the inner core. However, such conclusions are
unnecessary, since a high Poisson’s ratio does not necessarily imply the
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Figure 7.3 PREMmodel: Pressure profile.

Figure 7.4 PREMmodel: Seismic parameter profile.

Figure 7.5 PREMmodel: Poisson’s ratio profile.
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presence of liquid: Some solidmetals, for instance, have very high Poisson’s
ratios, e.g. 
� 0.42 for gold and 0.45 for indium. Falzone and Stacey (1980)
gave an explanation of the high Poisson’s ratio at high pressure in terms of
the second-order theory of elasticity.

7.3 Thermal models

7.3.1 Sources of heat

For a discussion of the sources of heat and temperatures in the Earth, the
reader will profitably refer to Verhoogen’s (1980) delightful and illumina-
ting little book Energetics of the Earth.
The heat flux coming from inside the Earth can be measured at the

surface; its mean value is about 80mW/m� or 4.2� 10��W (42TW) for the
whole Earth. This is, of course, a boundary condition for any thermal
model but, to infer the temperature profile, onemust also have some idea of
the sources of the heat that is transported through the mantle and finally
radiated out at the surface.
Howmuch of the heat is original and howmuch is currently produced in

the Earth? In other words, is the Earth still cooling from an original hot
state, as was widely thought in the last century, or are there active sources
of heat inside? We now know that radioactivity is the major heat source,
but others may exist, and whether the Earth is still cooling is a matter of
current debate. Let us briefly review the possible sources of heat.

(i) The original heat. This is the heat content of the Earth in the early
stages of its history. It is essentially accretional heat, due to the dissipation
of the gravitational energy when planetesimals bombarded the surface of
the growing Earth, which eventually partly melted. There was also a
contribution of short-lived, now extinct, radioactive elements such as ��Al.
During the differentiation stage that ensued, gravitational energy was
again released when droplets of liquid iron or iron—sulfur eutectic trickled
down to form the core. It is generally thought that the core was formed in a
relatively short time, ending about 0.5 billion (0.5� 10�) years after the
formation of the Earth, the corresponding heat therefore can be said to be
‘‘original’’. It is believed, although not universally, that the original heat
contributes little to the thermal budget, with the exception of the heat
stored in the liquid core.

(ii) Radiogenic heat. Decay of the radioactive elements present in the
mantle is the main source of heat in the Earth. The principal radioactive
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elements are: ���U, ���U, ���Th whose decay eventually gives ���Pb,
���Pb, ���Pb respectively, and ��K whose decay gives ��Ca and ��Ar. The
heat production per mass unit of each element is well known but their
concentration in the Earth is much less certain. One estimate (Verhoogen,
1980) leads to the approximate lower bound of 2.4� 10��W for the total
radiogenic production of heat in the mantle, i.e. about 60% at least of the
total output of heat.

(iii) Other sources of heat. These include: tidal dissipation in the solid
Earth, negligible at the present time, although it may have been important
in the past, when theMoonwas closer to the Earth; frictional dissipation in
the convecting mantle; and latent heat released in exothermal phase transi-
tions (e.g. olivine—spinel). All these contributions are unimportant when
compared to that of radiogenic heat. However, in addition to the secular
cooling of the core, a non-negligible contribution to the heat output of the
core is made by the latent heat released during crystallization of the inner
core and by the gravitational energy released as the fluid enriched in light
elements by crystallization of the inner core rises.

N.B. The latent heat released during crystallization of the inner core is
L � T

�
	S

�
. With the values calculated by Poirier (1986) for the temperature of the

inner core boundary (T
�

� 5000K) and the melting entropy (	S
�

� 5.83 J/molK)
and taking a molar volume at the pressure of the inner core boundary of 4.38 cm�/
mol and density of 12, we find: L � 5.55� 10� J/kg.

The heat flux from the core into the lower mantle is another boundary
condition of the convective problem. It is not known, but lower and upper
bounds of its value can be estimated to be 1TWand 10TW, corresponding
to 6mW/m� and 60mW/m�, respectively (see Buffett et al., 1992 and
Labrosse et al., 1997). Verhoogen (1980) estimates that about 2.6TW come
from the cooling of the whole core, 0.34TW come from the crystallization
of the inner core and 0.66TW correspond to the gravitational energy term.
With these estimates, the total heat output of the core (input into the lower
mantle) could be Q

�
� 3.6TW, about 10% of the total heat output of the

Earth.

7.3.2 Heat transfer by convection

We have seen (Section 6.6) that, due to the opacity of the iron-bearing
minerals under high pressure, radiative transfer of heat is most probably
negligible in the Earth’s mantle. The two remaining mechanisms for heat
transfer are then conduction, consisting in heat transport by thermal
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Figure 7.6 Convective instability in a sheet of fluid heated from below. (a)
Temperature profile. (b) The temperature profile is superadiabatic: a parcel of fluid
displaced upward is lighter than the surrounding fluid and keeps going up
(convective instability). (c) The temperature profile is subadiabatic: a parcel of fluid
displaced upward is heavier than the surrounding fluid and falls back (stable

layering).

vibrations of the mineral lattices, and convection, in which the heat-
containing matter is transported bodily in a fluid-like manner: On the
time-scale of the geophysical phenomena (e.g. plate tectonics) the mantle
can be considered as a fluid endowed with a very high viscosity (10��—
10��Pa s).
It is completely beyond the scope of this book to deal with the fluid

mechanics of convection. However, we will give the physical bases of the
convective phenomenon in the simpler case of a fluid heated from below in
a gravity field (Rayleigh—Bénard convection) (see Tritton, 1977; Turcotte
and Schubert, 1982).
Let us consider a laterally infinite layer of fluid of density � in the

gravitational field of the Earth, bounded by plane surfaces at r� 0 and
r� h (Fig. 7.6(a)). The upper surface is maintained at a fixed temperature
T
�
, while the lower surface is maintained at T

�
� T

�
, thus establishing a

temperature gradient �T � (T
�
� T

�
)/h through the fluid. Let us now

consider a small parcel of fluid at r� 0 and T � T
�
and let it rise rapidly by

�r. It undergoes an adiabatic decompression and its temperature is lowered
by:

�T ���T
��

�r (7.21)

where �T
��

is the adiabatic gradient, given by (2.56). Since
dP� �gdz���gdr, we have:

�T
��

�
dT
dz

�
g�T
C

�

(7.22)

Note that we have:
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�T
��

�
g�

��
�

T (7.23)

where �
��
is the thermodynamic Grüneisen parameter and � the seismic

parameter; the adiabatic gradient in the lower mantle is about 0.3K/km.

• If the temperature gradient in the fluid is subadiabatic, i.e. 
 �T 
�

 � T

��

 (Fig. 7.6(c)), the parcel of fluid is cooler, hence denser, than the

surrounding fluid and sinks again. The fluid is stratified and stable with
respect to convection. Heat is transported by conduction and the heat
flux (per unit time and area) is:

H
�
�� k�T � k

T
�
� T

�
h

(7.24)

where k is the thermal conductivity of the fluid.
• If the temperature gradient in the fluid is superadiabatic, i.e. 
 �T 
�


 � T
��


 (Fig. 7.6(b)), the parcel of fluid is warmer and lighter than the
surrounding fluid, it is buoyant and will go on rising. The situation is
unstable.

The criterion for the onset of convection is therefore that the tempera-
ture gradient be superadiabatic, or that the Bullen parameter be smaller
than unity. The density of a fluid parcel displaced by �r upward is:
�	 �r(d�/dr)

��
, while the density of the surrounding fluid is � 	 �r(d�/dr),

the gravitational force on the parcel is therefore:� g�r[(d�/dr)
��

� (d�/dr)]
and the equation of motion of the parcel is:

�
d��r

dt�
	 g�r��

d�
dr�

��

�
d�
dr�� 0 (7.25)

The fluid parcel oscillates about its original position with the Brunt—
Väisälä frequency N (see Tritton, 1977):

N��
g

���
d�
dr�

��

�
d�
dr��

���
(7.26)

The Brunt—Väisälä frequency can be related to the Bullen parameter �,
by writing (7.26) as:

N��
�

g�
�

�
�

�g ��
d�
dr�

��

�
d�
dr��� 1	 �

which yields:
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N��
g�

�
�

(�� 1) (7.27)

We see that, if the gradient is superadiabatic (�� 1), the frequency is
imaginary and a convective instability sets in and can grow exponentially if
the physical properties of the fluid (essentially its viscosity) are such as to
allow convection. The condition �� 1 is necessary but not sufficient for
convection. A tighter criterion is given by the dimensionless Rayleigh
number Ra, defined, in the case of a fluid heated from below, by:

Ra�
g�h�	T


�
(7.28)

In (7.28), 
� �/� is the kinematic viscosity of the fluid, � is its thermal
diffusivity, � its thermal expansion coefficient and 	T � T

�
� T

�
.

The Rayleigh number measures the relative importance of the buoyancy
force g�	T, favoring convection, and the viscosity drag force 
��V, hinder-
ing convection:

Ra�
g�	T

��V

(7.29)

If we scale velocity V to the value U, length to L and time to L/U, we
have: ��V �UL�� and � � L�(L/U)���UL, hence U��L�� and
��V ��L��. Equation (7.29) is therefore equivalent to (7.28).
In the case of a fluid heated from within, the Rayleigh number is (see

Turcotte and Schubert, 1982):

Ra�
g��qh�


�k
(7.30)

where k is the thermal conductivity of the fluid and q is the rate of internal
heat production.
A linear stability analysis shows that perturbations can grow exponen-

tially when the Rayleigh number is greater than the critical Rayleigh
number Ra

�
. For fluids heated from below as well as from within,

Ra
�
� 2000.

N.B. Let us calculate an order of magnitude value for the Rayleigh number of the
internally heated Earth’s whole mantle, using values of the various parameters:

� � 4� 10�kgm��, �� 3� 10��K��, �� 0.01 cm� s��, �� 10��Pa s,
g� 10ms��, 
 � �/� � 3� 10��m� s��, h� 3000 km,

k� 4Wm��K��, q� 9� 10���Wkg��.

We find a Rayleigh number of about 2� 10�, considerably above the critical
value.
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TheNusselt numberNu, measures the thermal efficiency of heat transfer.
It is equal to the ratio of the total heat fluxH to the heat flux that would be
transported by conduction in the same conditions. With (7.24), we have:

Nu�
Hh

k	T
(7.31)

For Ra�Ra
�
, we have Nu� 1.

In steady state, convection in a viscous fluid is controlled by the coupled
differential equations for conservation of momentum and for transport of
heat:

�
Dv

Dt
��F (7.32)

DT
Dt

����T (7.33)

N.B. The symbol D/Dt represents the material (or convective) derivative, which
must be used when considering the variation with time of a quantity y in a fluid
moving with a velocity v.

Dy

Dt
�

�y
�t

	 �
�

�y
�x

�

�x
�

�t
�

�y
�t

	 �
�

�y
�x

�

v
�

x
�
and v

�
(i� 1, 2, 3) are the components of the position and velocity vectors

respectively. We can write:

Dy

Dt
�

�y
�t

	 v·�y

The term v·�y is called the advective term.

In the equation of conservation of momentum for a viscous fluid, the
forces F to be taken into account are the force resulting from a pressure
gradient and the force needed to overcome viscosity (see equation (6.18)).
We can write (7.32) under the form known as Navier—Stokes equation:

�v

�t
	 (v·�)v��

1

�
�P	 g 	 
��v (7.34)

The heat transport equation in a convecting compressible fluid is found
by writing the continuity equation for heat:

�T
dS

dT
��·(k�T )	H (7.35)
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where S is the entropy and H the heat source.
Using Table 1.2, we find:

dS

dT
��

�
�
dP

dT
	
C

�
T
dT
dt

(7.36)

and we can write:

�T
dS

dT
� � �T�

�P
�t

	 v·�P�	�C
��

�T
�t

	 v·�T� (7.37)

Assuming �P/�t� 0, we have:

�T
dS

dT
��C

��
�T
�t

	 v·��T �
�T
�C

�

�P�� (7.38)

and, with (7.35) and (7.22):

�C
��

�T
�t

	 v·(�T ��T
��
)�� �·(k�T )	H (7.39)

In the case of vigorous convection, the term corresponding to the
diffusion of heat, ���T, is negligible compared to the advective term,
v·(�T ��T

��
). The heat is transported with matter and has no time to

diffuse far. In the steady state, the temperature profile in the convecting
fluid tends toward an adiabat.
At the top and bottom of the convection cells, where heat is tranferred

into the convecting fluid or out of it, or between thermally coupled but
isolated convecting systems, there must exist a thermal boundary layer
through which heat is transferred by conduction and where the gradient is
highly superadiabatic.

7.3.3 Convection patterns in the mantle

Continental drift and plate tectonics are proof enough that the upper
mantle convects. There is no direct evidence for convection in the lower
mantle and it was thought for some time that the viscosity increase with
pressure could be so high as to prevent convection (McKenzie, 1967). This
view, which partly resulted from not taking into account the decrease of
activation volume for creep with increasing pressure (see e.g. Poirier and
Liebermann, 1984), is no longer currently entertained: TheRayleigh numb-
er for the lower mantle is supercritical and the Bullen parameter is close to
1 in most estimates. So, it is now generally agreed that the lower mantle is
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convecting, even though its viscosity may be one or two orders of magni-
tude greater than that of the upper mantle.
The controversy now centers, not on whether the lower mantle convects

or not, but on whether it convects together with the upper mantle (whole-
mantle convection) or separately, with a thermal boundary layer at 670 km
(two-layer convection).
The arguments presented by each school of thought for their favorite

model and against the other one, are generally cogent and persuasive,
which makes the question difficult to decide for an unprejudiced observer,
all the more so since their proponents usually rely, perforce, on various
unverifiable assumptions and on the feeling that the opposite view would
lead, in their opinion, to improbable values of parameters which are,
anyway, very little constrained by observational data. Note also that many
of the arguments brought forward merely say that a given observation or
calculation is consistent with one style of convection but generally do not
prove that another style is excluded.
Reviewing the extant literature on convection, including the experimen-

tal and numerical models, could be the subject of a whole book. It will
suffice here to briefly present the pro and con arguments for the main
contending models and leave the reader to make up her or his own mind.
Note that some authors use a temperature profile to defend a convection
style, while others posit a convection style to derive a temperature profile.
Indeed, the two problems are so intimately linked that it is only for the sake
of convenience that we deal with them in different paragraphs.

(i) Two-layer convection. The principal arguments proposed are:

• The deepest earthquakes stop at 670 km and their focal mechanisms
imply down-dip compression. It is therefore concluded that the subduct-
ing plates cannot penetrate the lower mantle.

• The 670km discontinuity, in addition to being due to a phase transition,
is also a compositional and/or chemical boundary (Liu, 1979). The
density and seismic velocities agree with a lower mantle richer in silica
(Anderson and Bass, 1986; Duffy and Anderson, 1989) and/or richer in
iron (D. L. Anderson, 1989a) than the upper mantle (see Section 7.4).

• The 670 km discontinuity is a sharp seismic reflector that cannot be
produced by a phase transition occurring over a wide depth interval,
hence it must also be a chemical boundary (Lees et al., 1983).

• The mantle has the same composition throughout but the convective
systems of the upper and lower mantle are isolated by the subducted
lithosphere trapped between 600 and 700km (Ringwood and Irifune,
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1988; Ringwood, 1994). A chemically heterogeneous ‘‘mesosphere
boundary layer’’ between upper and lower mantle could be the source of
the Ocean Island Basalts (Allègre and Turcotte, 1987).

• The upper and lower mantle are two different geochemical reservoirs
that separately fractionated to produce the continental crust and the
core, respectively (Allègre, 1982, 1987).

• A thermal boundary layer inside the mantle is required in the thermal
model, in order to avoid using an unreasonably high value of the heat
flux from the core into the mantle (Jeanloz and Richter, 1979).

(ii) Whole-mantle convection. A number of arguments in favor of this
model are negative, i.e. against the two-layer model: They contend either
that it is not required by the data (then, why not accept the simpler
solution?) or that it would lead to unreasonable assumptions.

• A compositional difference between upper and lower mantle is not
required (although not excluded) by the seismological data (Weidner,
1986; Jackson, 1998).

• The analysis of travel-times of deep earthquakes shows that there are
fast (colder) regions below 670km, in the prolongation of some subduct-
ing slabs which are therefore thought to penetrate into the lower mantle
(Creager and Jordan, 1986; Fischer et al., 1988). The seismically ob-
served downward depressions of the 670 km discontinuity — ‘‘topogra-
phy’’ of the discontinuity — (e.g. Wicks & Richards, 1993) can be inter-
preted as resulting from horizontal deflection of the subducting plates
(Shearer andMasters, 1992), inhibiting convection across the boundary,
but they are too small to prevent whole-mantle convection (Phipps
Morgan and Shearer, 1993).

• The seismic constraints on the sharpness of the 670 km discontinuity are
weak (Muirhead, 1985).

• The post-spinel phase transition at 670km is sharp and could account
for a good seismic reflectivity, a compositional difference between upper
and lower mantle is not required (Ito and Takahashi, 1989).

• The existence of a thermal boundary layer at 670 km, where heat is
transferred by conduction between the isolated convection cells, implies
a high temperature gradient, hence a temperature in the lower mantle
higher by about 800 °C than in the case of whole-mantle convection. As
the lower-mantle viscosity is thermally activated, a higher temperature
implies a viscosity of about 6� 10��Pa s for the lower mantle (Kenyon
and Turcotte, 1983), whereas the viscosity deduced from post-glacial
rebound is of the order of 10��Pa s (Peltier and Jarvis, 1982) (Fig. 7.7).
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Note, however, that in the absence of experimental data on the high-
temperature creep of the lower-mantle material, any kind of extrapo-
lated or otherwise calculated viscosity of the lower mantle is largely a
matter of personal choice.

• Three-dimensional spherical models of whole-mantle convection (Ber-
covici et al., 1989) predict upwelling plumes and downwelling sheets
closely resembling the circum-Pacific subduction ring (but so would
presumably 3-D models of two-layer mantle convection). Indeed, seis-
mic tomography of the lower mantle shows a ring of high-velocity
material, which projects to the surface as a circum-Pacific ring and
might be the continuation of the subducting slabs (Olson et al., 1990;
Fukao, 1992; van der Hilst et al., 1997).

Interesting observations of strong correlations between the geoid, the
surface topography and the seismic velocity anomalies in the lower mantle
have recently been presented (Hager et al., 1985; Cazenave et al., 1989); the
geoid anomalies observed at the surface result from interior density con-
trasts (hot and cold matter) driving the convective flow and from the
deformation of the boundaries caused by the flow. The magnitude and sign
of the total effect depend on the viscosity profile and the style of convection.
However, although the results of the analyses are compatible with one style
of convection, they are not incompatible with the other.

• Finally, the study of the nature and composition of inclusions in some
diamonds suggests a deep origin, possibly from the lower mantle (Kes-
son and Fitz Gerald, 1991; Kerr, 1993; McCammon et al., 1997).

(iii) ‘‘Middle of the road’’ convection. Christensen (1984, 1995) modeled
several types of convection and showed that ‘‘with the present uncertainties
about the 670km discontinuity a variety of convection styles are possible’’.
He noted in particular that a phase-transition boundary alone could
marginally produce a kind of leaky two-layer convection for current values
of the Clapeyron slope, not significantly different from the most recent
experimental value of � 3MPa/K (Ito and Takahashi, 1989). The influ-
ence of an endothermic phase transition at 670km was further modeled by
Machetel and Weber (1991) and Tackley et al. (1993), who found that
downwelling cold material could accumulate above the discontinuity and
be discharged at intervals, as avalanches into the lower mantle (see also
Ringwood, 1991).
The seismic evidence that some plates penetrate into the lower mantle is

now well accepted. Seismic tomography (see Montagner, 1994) provides a
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rather convincing picture of the lowermantle (e.g. van derHilst et al., 1997),
and improved 3-D computer modeling points to avalanches through the
670km discontinuity. As a result, the style of convection of the mantle is
now generally seen as intermediate between two-layer and whole-mantle
convection: spatially non-uniform and temporally intermittent (Kerr, 1992,
1997). Some, but not all, plates, could sink down into the lower mantle
through the 670km discontinuity. Some cold material could accumulate
above the discontinuity and intermittently go down in avalanches.
To reconcile the geochemical and seismological view points, Allègre

(1997) proposes a time-dependent model of convection. Up to one billion
years ago, two-layer convection would have taken place, with little ex-
change of matter between upper and lower mantle, then the convection
patternwould have broken down, allowing some whole-mantle convection
cells.

7.3.4 Geotherms

Temperature profiles (geotherms) are usually anchored at the depths of
seismic discontinuities identified with phase transitions whose P,T bound-
aries are experimentally known or extrapolated. The principal discontinui-
ties used are: the inner-core boundary (ICB), identified with the freezing of
the liquid core iron alloy; and the 670km discontinuity, identified with the
post-spinel transition. Starting from these anchoring points, the geotherms
follow an adiabat in the homogeneous regions where the Bullen parameter
is close to 1 (lower mantle and outer core), the adiabatic gradient often
being determined using a value of the acoustic Grüneisen parameter com-
patible with a seismological Earth model. The uncertainty is seldom claim-
ed to be less than a few hundred degrees and often is of the order of 1000K.
The temperatures at various characteristic depths, determined in several
studies, are given in Table 7.1 and the geotherms are shown in Fig. 7.8 (see
also Duffy and Hemley, 1995).
In the lithosphere, the geotherm is often derived from pyroxene ther-

mobarometry measurements made on peridotite xenoliths (e.g. Mercier,
1980).
In the transition zone, themost recent estimates using the phase diagram

of the system Mg
�
SiO

�
—Fe

�
SiO

�
(Ito and Katsura, 1989) give a tempera-

ture of 1400 °C at 350km and of 1600 °C at 655 km.
In the lower mantle, Shankland and Brown (1985), starting from the

temperature at 670 km (1600 °C) and using a seismological adiabatic gradi-
ent, arrive at a temperature of 3300 °C on the outer-core side of the
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Table 7.1. Temperatures inside the Earth (in Kelvin)

z (km) W72 V80 BS81 A82 SS84 BM86 P86 W87 IK89

100 1273 1450
150 1473
350 1400
371 1662
655 1600
671� 1873 1830 1970
671	 1980 2300
1300 2800
2571 3300 2814
2885� 2773 2937 3000
2886	 3573 3637 3800 3800 3800
5156 4676 5000 5000 5000 6600
6371 4805 5000 6600

Source: W72: Wang (1972b). V80: Verhoogen (1980). BS81: Brown and Shankland
(1981). A82: O. L. Anderson (1982). SS84: Spiliopoulos and Stacey (1984). BM:
Brown and McQueen (1986). P86: Poirier (1986). W87: Williams et al. (1987a).
IK89: Ito and Katsura (1989).

core—mantle boundary (CMB), in agreement with the temperature derived
from their measurements of shock melting in iron, provided one assumes
that the D" zone at the base of the mantle is a thermal boundary layer with
	T � 800K. Under these conditions, they do not find it necessary to
introduce a thermal boundary layer at 670 km.
Spiliopoulos and Stacey (1984) start upward from the temperature at the

inner-core boundary, using 	T � 800K in the D" zone, and meet, at
670 km, a profile extrapolated down from the Mg

�
SiO

�
phase transition.

The temperature misfit of 300K which they find is thought to be too small
for a thermal boundary layer to be stable. They conclude that there is
probably no boundary layer at 670 km, although it cannot be ruled out.
A temperature difference of 800K across the D" zone corresponds to a

gradient of 8K/km over 100km; this usually adopted value is derived from
Fourier’s law assuming a heat flux from the core of 0.032W/m� and a
thermal conductivity of the lower mantle k� 4W/mK. Brown (1986),
taking into account the variation of k with temperature and pressure, finds
that it could be three times larger than the currently adopted value at the
core—mantle boundary, and that the need for a thermal boundary layer at
the base of the mantle then disappears, unless one assumes an unrealisti-
cally high value for the heat flux from the core (higher than the heat flux at
the surface of the Earth). Note, however, that there is a trade-off between
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the thermal boundary layers at 670 km and at the core—mantle boundary
and that the geotherms, estimated assuming a homogeneous mantle, can-
not really be used as arguments for or against whole-mantle or two-layer
convection.
Despite the large uncertainty on the temperatures, mostmodels, whether

based on theoretical calculations (Poirier, 1986; Poirier and Shankland,
1993) or extrapolations of the melting temperature of iron at the inner-core
boundary (O. L. Anderson, 1982; Spiliopoulos and Stacey, 1984; Brown
and McQueen, 1986; Anderson and Duba, 1997) generally agree on a
temperature at the inner-core boundary between 5000K and 6000K (see
Section 5.6).

7.4 Mineralogical models

7.4.1 Phase transitions of the mantle minerals

(i) Generalities on phase transitions

Nature’s schemes for building up crystalline edifices from atoms are many,
and compounds with a given crystal structure are generally stable only in a
limited region of the temperature—pressure plane, where their Gibbs free
energy is minimal. Even a simple element like iron has four known solid
phases and the number of structures a polyatomic mineral can adopt at
various pressures and temperatures can indeed be very large, especially if
one considers the additional degree of freedom afforded by the possibility
of partial replacement of one kind of atom by another (e.g. Mg by Fe, Si by
Al, etc.). Descriptions of the atomic architecture of mineral structures can
be found in the specialized volumes of theReviews inMineralogy or in such
books as Wells (1984) or Muller and Roy (1974) for ternary oxides.
The number of thermodynamic degrees of freedom of a system (or

variance) is the number of intensive parameters capable of independent
variation. It is given by the Gibbs phase rule (see Callen, 1985):

V� c	 2�� (7.40)

whereV is the variance, c, the number of independent components, and �,
the number of phases in equilibrium.
In the simplest case of one-component systems, when the only intensive

variables are temperature and pressure, the equilibrium between two
phases is univariant and the domains of stability of two phases in the P—T
plane are separated by a line boundary, i.e. the equilibrium pressure and
temperature cannot be varied independently. The map of the stability
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Figure 7.9 Lever rule: At T � T
�
and P�P

�
and for a compositionC, for example

x mol% of component B, the mole fraction x� of high-pressure phase �, of
composition C�, and the mole fraction x� of low-pressure phase �, of composition

C�, are in the proportion x�/x� � bc/ab.

domains of the phases in the P—T plane is the phase diagram. For binary
(two-component) systems, one usually considers sections of the three-
dimensional phase diagram by planes of constant T or P. The phase-
diagram boundaries are replaced by two-phase loops and at a given P (or
T), for a given global composition, there are equilibrium mixtures of two
phases. The proportion of the phases varies with T (or P) and is given by
the ‘‘lever rule’’ (see Callen, 1985) (Fig. 7.9). The case of ternary systems is
obviously more complicated and one often uses ‘‘pseudo-binary diagrams’’
(e.g.P, Fe%at constantT, between the compositionsMgSiO

�
and FeSiO

�
in the ternary systemMgO—FeO—SiO

�
). One must of course beware not to

reason on pseudo-binary diagrams as if they were binary diagrams.
Phase transitions can be usefully classified according to their order in

Ehrenfest’s sense (see Rao and Rao, 1978). For first-order transitions, there
is a discontinuity in the first derivatives of the Gibbs free energy: entropy S
and specific volume V. Hence, first-order transitions are accompanied by a
volume change 	V and latent heat L � T	S is absorbed (endothermal
transition) or evolved (exothermal transition).
The slope of the phase boundary is given by the Clausius—Clapeyron

relation (5.2):

dT
�

dP
�

	V
	S

(7.41)
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already mentioned in the case of melting (melting is a first-order phase
transition). Here, T

�
is the temperature of transition at pressure P.

The specific volume of the high-pressure phase is always smaller than
that of the low-pressure phase, and the high-temperature phase always has
a higher entropy than the low-temperature phase. In many cases, the
high-pressure phase has a lower entropy than the low-pressure phase and
its stability field is wider at low temperatures, i.e. the slope of the Clapeyron
is positive. However, at very high pressures, when the increase of the
coordinance of the small cations (e.g. silicon going from 4 to 6 coordinance)
is accompanied by an increase in the length of certain bonds, the transition
toward the high-pressure phase may be accompanied by an increase in
entropy. The slope of the Clapeyron is then negative. This was predicted by
Navrotsky (1980) and verified in the case of the very-high-pressure phases
of the mantle silicates (see below).
In a first-order phase transition, the phases are physically separated by a

surface of discontinuity: the phase boundary. In many cases, the transform-
ation operates by nucleation and growth of one phase at the expense of the
other, growth being effected by diffusion-controlled displacement of the
phase boundary.
Martensitic transformations are rapid, diffusionless transformations

characterized by crystallographic orientation (topotactic) relations be-
tween parent and daughter phase and corresponding to a shear of the
lattice.
For second-order phase transitions, the discontinuity in the derivatives

of the Gibbs free energy affects only the second derivatives (e.g. specific
heat, incompressibility) and there is no coexistence of phases on each side
of a phase boundary. These transitions are often displacive transitions, the
change in crystal structure corresponding to a mere distortion of the
bonds, whereas in reconstructive first-order transitions atoms have to
change places.
For more information on the mechanisms and kinetics of phase transi-

tions inminerals, the reader is referred to Putnis andMcConnell (1980) and
Putnis (1992). The phase diagrams of elements, oxides and silicates have
been reviewed by Liu and Bassett (1986).
In the following sections, we will summarize the state of the art concern-

ing the experimental data on the principal isochemical phase transitions
thought to occur in the Earth’s mantle, particularly focusing on the poly-
morphic transitions of MgSiO

�
and Mg

�
SiO

�
. Most of the progress in

recent years (see Akimoto, 1987) has been achieved using two high-pressure
techniques: the multi-anvil apparatus, up to about 25GPa and the laser-
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Figure 7.10 Principle of the diamond—anvil cell. The sample (stippled) is contained
in a small hole (200—400�m) drilled in a metal gasket, compressed by the diamonds.

It can be heated by focusing a laser beam on it.

heated diamond-anvil cell (Fig. 7.10), up to 100GPa (Ming and Bas-
sett,1974; Bassett, 1977; Hemley et al., 1987a).

(ii) The phase transitions of MgSiO3

The phase diagram of MgSiO
�
has been investigated by Ringwood (1967),

Liu (1976), Ito and Yamada (1982), Ito and Navrotsky (1985), Kato and
Kumazawa (1985a), Sawamoto (1987), Irifune (1987), Akaogi et al. (1987)
and Ito and Takahashi (1989) among others. The resulting phase diagram
in the P—T plane (D. L. Anderson, 1987b) is shown in Fig. 7.11, and the
pseudo-binary diagram at 1000 °C (Jeanloz and Thompson, 1983) is given
in Fig. 7.12.
The low-pressure phase with composition MgSiO

�
is enstatite, an or-

thorhombic pyroxene with two formula units per unit cell (Mg
�
Si

�
O

�
); its
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Figure 7.11 P—T phase diagram for MgSiO
�
composition. The approximate

velocity of P-waves (in km/s) is indicated below the names of themineral phases. The
arrows show the direction in which the phase boundaries are expected to move

when Al
�
O

�
is added (after D. L. Anderson, 1987b).

structure can be described as consisting of chains of corner-sharing SiO
�

tetrahedra, with Mg�� cations in the appropriate sites between the chains.
Enstatite forms a continuous solid solution with the pyroxene ferrosilite
FeSiO

�
. The upper-mantle material, found in peridotite xenoliths or in

ophiolites has a composition Mg
��	

Fe
	
Si

�
O

�
, with x� 0.1 in most cases.

At higher pressures, the orthorhombic enstatite changes to monoclinic
clinoenstatite. At pressures between about 17 and 19GPa and above about
2000K, the pyroxene transforms into a phase with a garnet structure
(isolated tetrahedra) and 4 formula units per unit cell (Mg

�
Si

�
O

��
). The

aluminous garnet pyrope has a formula (Mg
�
Al

�
Si

�
O

��
) resulting from the

replacement of one Si�� ion by one Al�� ion and compensating the charge
imbalance by replacing oneMg�� by one Al��. At upper-mantle pressures,
pyrope is soluble in the silicate garnet, giving the aluminous silicate garnet
majorite, first identified in shocked meteorites and later synthesized by
Ringwood and Major (1971). Alumina (Al

�
O

�
) widens the garnet stability

field (Fig. 7.11). At pressures above about 20GPa and temperatures lower
than about 2000K, MgSiO

�
garnet transforms into a phase with the

ilmenite structure (Liu, 1976), that can be described as a corundum (Al
�
O

�
)

structure with Mg�� and Si�� located in an ordered alternate fashion in
the six-coordinated Al�� sites. At lower-mantle pressures, the silicate
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Figure 7.12 Isothermal (T � 1000 °C) phase diagram for the MgSiO
�
—FeSiO

�system. The crystalline structures are Cpx (clinopyroxene), � (�-phase), � (�-spinel),
Mw (magnesiowüstite), St (stishovite), Pv (perovskite) (after Jeanloz and Thompson,

1983).

ilmenite transforms into a phase with the perovskite structure (Fig. 7.13),
that can be described as a 3-D framework of corner-sharing SiO

�
oc-

tahedra, with Mg�� in the dodecahedral sites. The slope of the Clapeyron,
in the range 1000—1600 °C for the ilmenite—perovskite transition is nega-
tive, and is given (Ito and Takahashi, 1989) by: P[GPa]� 26.8�

0.0025T [°C].
The existence of the perovskite phase was proved experimentally by Liu,

who synthesized it in the diamond-anvil cell, first from pyrope (Liu, 1974),
then by decomposition of Mg

�
SiO

�
at high pressure (Liu, 1975a).

(Mg,Fe)SiO
�
perovskite is probably the most abundant mineral in the

Earth, since it constitutes possibly more than 80 vol.% of the lower mantle.
It is orthorhombic, at least up to 100GPa at room temperature, with a
structure derived from the ideal cubic perovskite by tilting of the octahedra
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Figure 7.13 Structure of MgSiO
�
perovskite. The Mg cations are in dodecahedral

sites between tilted corner-sharing SiO
�
octahedra. (The oxygen ions at the corners

and the silicon ions at the centers of octahedra are not represented.)

(see Fig. 7.13) (GdFeO
�
distortion, see Muller and Roy, 1974). Measure-

ment of the evolution of the distortion of the analog oxide perovskites
SrZrO

�
led to the suggestion that MgSiO

�
perovskite might become cubic

at mantle pressures (Andrault and Poirier, 1991). The high density of twins
observed by electron microscopy in (Mg,Fe)SiO

�
perovskite quenched

from high temperature might also point to the existence of a cubic phase at
high temperature (Wang et al., 1992). However, X-ray observation of
MgSiO

�
perovskite at 36GPa and 1900K showed that it remained orthor-

hombic (Funamori and Yagi, 1993), in agreement with ab-initio electronic
structure calculations (Stixrude and Cohen, 1993; Wentzcovitch et al.,
1995). Meade et al. (1995) found experimentally that (Mg, Fe)SiO

�
perov-
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skite at 1850K does indeed stay orthorhombic at 38GPa, but becomes
cubic at 64 and 70GPa.
FeSiO

�
cannot take the perovskite structure, and above a certain con-

centration of iron, depending on temperature (see Fig. 7.12), (Mg, Fe)SiO
�

perovskite decomposes into stishovite SiO
�

and magnesiowüstite
(Mg,Fe)O. Aluminum in solution in (Mg,Fe)SiO

�
perovskite expands its

compositional stability field toward greater iron concentrations, up to
90mol% of the ferrous end member for 25mol% Al

�
O

�
in solution (Kes-

son et al., 1995).
The question arises whether perovskite remains stable in the lower

mantle or decomposes to mixed oxides (which, incidentally, was the
commonly accepted view before perovskite was identified as the high-
pressure phase of enstatite). Indeed, (Mg,Fe)SiO

�
perovskite heated for

more than one hour at 70GPa decomposes into stishovite and mag-
nesiowüstite (Meade et al., 1995). Saxena et al. (1996) found that, at
pressures from 58 to 85GPa and temperatures from 1900 to 3200K, even
ironless MgSiO

�
perovskite breaks down to a mixture of periclase and

stishovite. However the consensus is far from being reached, as other
experiments up to 135GPa and 3000K show that (Mg, Fe)SiO

�
perovskite

remains stable (Serghiou et al., 1998; Kesson et al., 1998).
The principal physical properties of silicate perovskite, insofar as they

have been experimentally determined, are listed in Table 7.2. The density
and the equation of state parameters K

�
and K�

�
are reasonably well

known, having been determined by several investigators. Values of the
thermal expansion coefficient are given in Table 3.4. Melting of perovskite
has been discussed in Section 5.5.1.
Phases with perovskite structure have also been found at high pressures

for CaSiO
�
(Liu and Ringwood, 1975), diopside CaMgSi

�
O

�
, and diop-

side—jadeite solid solutions (CaMgSi
�
O

�
—NaAlSi

�
O

�
) (Liu, 1987). There is,

however, no high-pressure phase with perovskite structure for the compo-
sition FeSiO

�
, which decomposes into FeO and stishovite SiO

�
(Fig. 7.12).

(iii) The phase transitions of Mg2SiO4

Olivine (Mg
��	

Fe
	
)
�
SiO

�
is an important, possibly dominant, mineral of

the upper mantle (with x� 0.1). The magnesian end member Mg
�
SiO

�
,

forsterite forms a continuous series of solid solution with fayalite Fe
�
SiO

�
.

The orthorhombic olivine structure can be described as a slightly distorted
hexagonal close-packed (hcp) sublattice of oxygen ions, with the silicon
ions occupying one-eighth of the tetrahedral sites and forming isolated
SiO

�
tetrahedra, and theMg or Fe ions occupying one-half of the octahed-
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Table 7.2. Physical properties (experimental) of MgSiO
�
perovskite

Experimental
Physical property value Reference

Cell dimensions (Å) a� 4.7787 Ito & Matsui (1978)
b� 4.9313 Ito & Matsui (1978)
c� 6.9083 Ito & Matsui (1978)

Specific mass (g/cm�) 4.108 Ito & Matsui (1978)
Mean atomic mass (g/atom) 20.08 Ito & Matsui (1978)
Molar volume (cm�/mol) 24.4426 Ito & Matsui (1978)
K

�
(GPa) (Hill) 246.4 Yeganeh-Haeri et al. (1989)

K�
�

3.9 Knittle et al. (1987)
�
�
(GPa) (Hill) 184.2 Yeganeh-Haeri et al. (1989)

v
�
(km/s) 10.94 Yeganeh-Haeri et al. (1989)

v


(km/s) 6.69 Yeganeh-Haeri et al. (1989)

�
��
(spectro) 1.9 Williams et al. (1987)

T
�
(K) (at 22GPa) 3000 Heinz & Jeanloz (1987)

� (K��) (298—840K) 4� 10�� Knittle & Jeanloz (1986)
(298—341K) 2.2� 10�� Ross & Hazen (1989)

ral sites. Alternatively, the structure can be considered as that of an
intermetallic compound Mg

�
Si (with the Ni

�
In structure), stuffed with

oxygen ions (O’Keefe and Hyde, 1981).
High-pressure phases of the ferromagnesian olivines were first syn-

thesized by Ringwood andMajor (1966, 1970) and Akimoto and Fujisawa
(1966). Fayalite directly transforms into the spinel structure, still with
isolated SiO

�
tetrahedra, but with a face-centered-cubic packing of oxy-

gens. Forsterite and Mg-rich olivines first transform to an orthorhombic
phase with face-centered-cubic (fcc) packing of oxygens, where the SiO

�
tetrahedra are linked in pairs by a corner. This phase is called �-phase (� is
olivine and � is spinel) or ‘‘modified spinel’’. The P—T phase diagram of the
Mg

�
SiO

�
polymorphs, constrained by thermochemical data (Akaogi et al.,

1984) is given in Fig. 7.14 and the pseudo-binary diagram of Mg
�
SiO

�
—

Fe
�
SiO

�
(Akaogi et al., 1989) in Fig. 7.15 (see also Katsura and Ito, 1989).

Natural high-pressure spinel phase or ringwoodite, was found in shocked
chondritic meteorites (Binns et al., 1969) and unambiguously identified by
transmission electron microscopy by Putnis and Price (1979) and Poirier
and Madon (1979). The high-pressure �-phase (wadsleyite) was also found
in shocked chondrites (Price et al., 1983; Madon & Poirier, 1983).
The mechanism of the olivine—�-spinel transformation in silicates and

analog germanates has been much investigated in recent years. Since the
oxygen sublattice goes from hexagonal close packed in olivine to face-
centered cubic in spinel, Poirier (1981a,b) proposed that, by analogy with

252 7 Earth models



Figure 7.14 P—T phase diagram for the Mg
�
SiO

�
polymorphs (�: olivine, �:

modified spinel phase, �: spinel). Solid lines from Akaogi et al. (1984), dashed lines
from Suito (1977) (after Akaogi et al., 1984).

other hcp—fcc transformations, olivine could transform to �-spinel by shear
restacking of oxygen ions due to invasion of the grains by stacking faults,
the cations falling simultaneously into their new sites by ‘‘synchroshear’’.
This ‘‘martensitic-like’’ mechanism was indeed found to be operative in
experiments conducted in diamond-anvil cells (Lacam et al., 1980; Furnish
and Bassett, 1983; Boland and Liu, 1983), although there exists an inter-
mediate stage, where the cations are disordered, thus ruling out syn-
chroshear (Furnish and Bassett, 1983). However, in experiments conducted
in large-volume apparatus, the transformation was found to take place by
nucleation and growth (Boland and Liebermann, 1983; Vaughan et al.,
1982) with no cation disordering (Yagi et al., 1987), although disordering
was found in experiments conducted in a belt-type apparatus (Lauterjung
and Will, 1986).
Using multi-anvil apparatus and transmission electron microscopy to

study the olivine—�-phase transition in forsterite, Fujino and Irifune (1992)
found that it occurred by nucleation and growth, and Guyot et al. (1991)
observed an intermediate phase filled with stacking faults destroying the
cation long-range order. Brearley et al. (1992) and Rubie and Brearley
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Figure 7.15 Isothermal (T � 1600 °C) calculated phase diagram for the Mg
�
SiO

�
—

Fe
�
SiO

�
system. The crystalline structures are � (olivine), � (�-phase), � (�-spinel).

The boundaries determined experimentally byKatsura and Ito (1989) are shown by
dashed curves (after Akaogi et al., 1989).

(1994) showed that, although the �—� transition occurs by nucleation and
growth, the reverse tranformation occurs by a shear mechanism. Kubo et
al. (1998) directly studied the kinetics of the transformation by X-ray
diffraction using synchrotron radiation.
Kerschhofer et al. (1996) observed two competing mechanisms in the

transformation of (Mg
���

Fe
���

)
�
SiO

�
olivine: incoherent nucleation on

olivine grain boundaries and coherent intracrystalline nucleation of ring-
woodite lamellas on shear-induced stacking faults on (100) planes (in
agreementwith Poirier, 1981b), followed by nucleation of wadsleyite on the
ringwoodite.
Burnley and Green (1989) suggested that the ‘‘martensitic-like’’ mechan-
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ism for the olivine—spinel transition occurs only for experiments conducted
under large shear stresses, as is the case for the diamond-anvil cell. How-
ever, experiments conducted in a large-volume press on the analog
MgGeO

�
showed that the transformation occurs by nucleation and

growth near the Clapeyron and by ‘‘martensitic-like’’ shear restacking of
the oxygen ions at high overpressures (Burnley, 1995). Indeed, the fact that
the ‘‘martensitic-like’’ mechanism is observed in experiments conducted in
diamond-anvil cells but usually not in a multi-anvil apparatus may be due
to the fact that in the latter type of experiments, the pressure and tempera-
ture paths make it easy to perform runs close to the Clapeyron, whereas in
the diamond-cell the high pressure must be applied before laser-heating,
producing a very high overpressure and a high effective stress on the
dislocations responsible for the shear of the lattice (Poirier, 1982).
The seismic discontinuity at 670 km has been, for a long time, attributed

to the transformation of (Mg, Fe)
�
SiO

�
to denser post-spinel phases. It was

first believed that spinel transformed to a mixture of magnesiowüstite
(Mg,Fe)O and stishovite, the high-pressure phase of quartz, where silicon
is in SiO

�
octahedra (‘‘mixed oxide’’ lower-mantle models). Ming and

Bassett (1975) indeed found that the X-ray diffraction patterns of the
disproportionated phase were consistent with the mixed-oxidemodels. Liu
(1975a), however, conclusively showed that the post-spinel phases were a
mixture of magnesiowüstite and the perovskite phase (Mg, Fe)SiO

�
:

(Mg, Fe)
�
SiO

�
� (Mg,Fe)O	 (Mg,Fe)SiO

�

Observations by analytical electron microscopy (Guyot et al., 1988b; Ma-
don et al., 1989b) give direct evidence of the validity of this disproportiona-
tion reaction. At high iron contents, however, (higher than those currently
admitted for the lower mantle) the perovskite is not stable and the dispro-
portionation indeed leads to a mixture of magnesiowüstite and stishovite.
The pressure interval within which the decomposition takes place

(‘‘sharpness’’ of the transition) has long been a subject of controversy,
bearing on the problem of the composition of the lower mantle (e.g. Lees et
al., 1983). Ito and Takahashi (1989) found that magnesian spinel with less
than 26 at.% Fe dissociates within a very narrow pressure interval
(0.15GPa at 1600 °C), thus buttressing the view that the transition is quite
sharp (Fig. 7.16). The negative Clapeyron is given by: P[GPa]�

27.6� 0.0028T [°C]. Calculation of the phase boundaries using thermo-
dynamic data by Akaogi et al. (1998) confirms the results of Ito and
Takahashi (Figs. 7.17 and 7.18). However, a determination of the post-
spinel phase boundary by synchrotron X-ray diffraction under pressure
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Figure 7.16 Isothermal (T � 1600 °C) phase diagram for the post-spinel transform-
ation in the Mg

�
SiO

�
—Fe

�
SiO

�
system. Note that the spinel (Sp) transforms to

perovskite (Pv) and magnesiowüstite (Mw) over a narrow pressure interval; St
indicates stishovite (after Ito and Takahashi, 1989).

and temperature (Irifune et al., 1998) yields a boundary located at 21.1GPa
at 1600 °C, about 2GPa lower than previous estimates.
Iron does not disproportionate equally between magnesiowüstite and

perovskite and goes preferentially into magnesiowüstite (Bell et al., 1979;
Ito et al., 1984). The partition coefficient of iron can be written:

K��
x
��
x
�	
�
�

��
x
��
x
�	
�
��

where x is the Fe or Mg content of the phases, given in at.%. Guyot et al.
(1988b) have measured the value of K as a function of pressure by analyti-
cal transmission electron microscopy and found that it decreases with
increasing pressure and remains constant (K� 3.5) at pressures above
40GPa (Fig. 7.19). For the starting material used, it corresponds to the
reaction:

(Mg
����

Fe
����

)
�
SiO

�
�Mg

����
Fe

����
SiO

�
	Mg

����
Fe

����
O

More recent measurements by analytical transmission electron micro-

256 7 Earth models



Figure 7.17 Isothermal (T � 1600 °C) phase diagram of systemMg
�
SiO

�
—Fe

�
SiO

�system. The phase boundaries were calculated from experimental data (after Akaogi
et al., 1998).

scopy (Martinez et al., 1997) yielded a value of K� 3.8� 0.3 at 26GPa
and 1300 °C and K� 4.3� 0.4 at 26GPa and 1600 °C.
The partitioning of iron between magnesiowüstite and perovskite de-

pends on the alumina concentration in the perovskite. It as been shown
that in presence of alumina, iron enters perovskitemore readily (Wood and
Rubie, 1996). As a result of the dissolution of aluminous garnet into
perovskite, mantle perovskite can contain up to 9wt% Al

�
O

�
. The

measurements of Wood and Rubie suggest that, in the lower mantle,
perovskite might contain as much iron as magnesiowüstite. The stability
limit of Fe in perovskite increases as temperature and pressure increase
(Mao et al., 1997) and perovskite can accept Fe�� in larger concentrations
than Fe��. As a higher proportion of the iron in perovskite tends to
become ferric in the presence of aluminum (McCammon, 1997), it seems
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Figure 7.18 CalculatedP—T phase diagramof (Mg
����

Fe
����

)
�
SiO

�
(after Akaogi et

al., 1998).

Figure 7.19 Variation with pressureP of the partition coefficientK of iron between
magnesiowüstite and perovskite. The error bars on the measurements are shown in

the upper right-hand corner (after Guyot et al., 1988b).
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reasonable to believe that the perovskite of the lower mantle is richer in
iron than the perovskite prepared experimentally by disproportionation of
olivine.
The structure of the disproportionated mixture of magnesiowüstite and

perovskite was investigated as a function of T and P by transmission
electron microscopy of metastable quenched samples recovered from the
diamond-anvil cell (Guyot et al., 1988b; Madon et al., 1989b). Wang et al.
(1997) and Martinez et al. (1997) also used transmission electron micro-
scopy to observe the resulting product of disproportionation of olivine;
their observations led them to suggest a two-step mechanism for the
transformation, involving first the formation of ringwoodite by shear,
followed by break-down to magnesiowüstite and perovskite.

7.4.2 Mantle and core models

(i) Constraints and trade-offs

The compositional Earth models are usually patterned after the descrip-
tion of rocks by petrographers: For each region of the mantle, one must
know the ‘‘norm’’ i.e. the chemical composition expressed in weight % of
oxides and the ‘‘mode’’ i.e. the proportions of the various constituent
minerals.
Compositional models are bound by different types of constraints:

• They are required to agree as much as possible with the seismological
models, i.e. they must account for the velocity and density profiles. This
of course implies that the P—T phase diagrams for the candidate compo-
sitions are known and that the equations of state, elastic moduli and
thermal expansion coefficients, as well as their temperature and pressure
derivatives, are known for the relevant minerals. A geotherm must be
chosen.

• The starting normative composition is usually chosen on the basis of
assumptions about the primitive bulk Earth composition and the chemi-
cal evolution of the Earth.

• Compositional models are often more or less openly tailored to fit other
geophysical requirements: e.g. whole-mantle convection (hence chemi-
cally homogeneous mantle) or two-layer convection (hence possibility
for the upper and lowermantle to be chemically different). Note that this
also conditions the choice of the geotherm.

The construction of a compositional model usually follows one of two
lines:
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(i) The actual density and elastic moduli (often only the bulk modulus) at
depth are adiabatically extrapolated to zero pressure and brought
down from the final temperature to room temperature. A mineral
assemblage is devised so that its density and aggregate elastic proper-
ties fit the decompressed material.

(ii) A mineral assemblage at room temperature and ambient pressure is
devised so that after heating and adiabatically compressing it, its
density and seismic velocities (often only the bulk velocity) fit the
seismological model.

In both cases, the elastic moduli of the high-pressure phases and their
pressure and temperature derivatives, either have been measured at ambi-
ent pressure in the metastable state, or, at any rate, have been estimated
from elastic systematics. The thermal expansion coefficients often are
estimated.
Most of the discrepancies between contending compositional Earth

models come from one of two sources.

(i) The models use different assumptions as to the primitive bulk Earth
composition and its evolution. It is generally assumed that the primitive
composition of the bulk Earth (and terrestrial planets) is that of the
devolatilized solar nebula (Hart and Zindler, 1986). Now, the problem is to
decide what was the composition of the original solar nebula and to what
degree it has lost volatile elements. It is currently thought that the solar
abundance of refractory elements is well reflected in the composition of the
CI chondrites, meteorites that have not been differentiated and are con-
sidered as samples of the primitive nebular material (Anders and Grevesse,
1989). The composition of the primitive upper mantle, however, derived
from the study of mantle peridotites, corresponds to a smaller Mg/Si ratio
than that of the chondrites; it has been proposed that theMg/Si ratio of the
terrestrial planets is more representative of the solar nebula value than that
of the CI chondrites (Ringwood, 1989).
If one believes that the bulk Earth is nevertheless chondritic, one is

drawn to the conclusion that themissing silicon is hidden away in the lower
mantle and/or core and the resulting compositional models are called
chondritic Earth models (e.g. Liu, 1982; D. L. Anderson, 1984; Anderson
and Bass, 1986). In these models, the lower mantle is more silica-rich than
the upper mantle and can be composed almost entirely of (Mg, Fe)SiO

�
perovskite, thus leading to a two-layer convection pattern.
One can also solve the case of the missing silicon by assuming that this
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element, less refractory than calcium and aluminum, was partly volatilized
away. The mantle then need not be chemically heterogeneous and whole-
mantle convection is not precluded (although not required). The most
popular model of a homogeneous mantle is the pyrolite model (see Ring-
wood, 1979): The bulk composition of the mantle is that of ‘‘pyrolite’’, a
non-specific olivine—pyroxene rock, capable of yielding a basaltic magma
and a peridotite residue upon partial melting in the uppermost mantle.
Pyrolite is a fictitious rock in that it is defined by its chemical composition
(norm) only and not by its mineralogy (mode).
D. L. Anderson (1989a), using new estimates of the solar composition,

proposed that the Sun should be richer in iron and calcium than the CI
chondrites. If the bulk Earth composition is solar, it then should be richer
in iron and calcium than the chondritic model. Javoy (1995) presented a
model in which the Earth is essentially built from the material of enstatite
chondrites (EH), resulting in a large difference in chemical composition
between upper and lower mantle.
Allègre et al. (1995) did not a priori assume that the bulk Earth composi-

tion is that of any particular chondrite; they determined it from meteorite
correlations and used the fact that the ratios of elements which do not enter
the core (e.g. Al and Mg) are the same in the mantle (assumed to be
homogeneous) and in the bulk Earth. By difference, they found that the
core should contain silicon.
The composition of the mantle corresponding to the various hypotheses

is given in Table 7.3.

(ii) The other source of discrepancy lies in the choice of the elastic and
thermal parameters of the high-pressure candidate minerals. Most of them
are, if not unknown, at least known with a high degree of uncertainty,
stemming either from the inherent experimental errors and/or from the fact
that we must often rely on only one measurement. Also, the elastic par-
ameters are sensitive to the assumed iron content. As a consequence, many
trade-offs are possible and various mineral assemblages may be fitted to
the velocity and density profiles — themselves known within the resolution
of the seismological methods only, see Bolt (1991) — by choosing an
appropriate geotherm and not unlikely combinations of elastic moduli,
thermal expansion coefficient and P—T derivatives (see Jackson, 1983,
1998).
In recent years considerable progress has been made due to the improve-

ment of high-pressure apparatus and to the possibility of obtaining elastic
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Table 7.3. Composition models for the Earth’s mantle, in wt%, for the five
major oxides

Oxide Pyrolite
 Chondritic� Chondritic� Chondritic
 Solar� �

SiO
�

45.0 50.8 49.52 45.96 45 46.12
MgO 38.8 36.6 35.68 37.78 32.7 37.77
FeO 7.6 6.08 7.14 7.54 15.7 7.49
Al

�
O

�
4.4 3.67 3.56 4.06 3.2 4.09

CaO 3.4 2.89 2.82 3.21 3.4 3.23


Jackson (1983); �Anderson & Bass (1986); �Hart & Zindler (1986); 
Hart &
Zindler (1986): devolatilized chondritic (LOSIMAG); �Anderson (1989a); �Allègre
et al. (1995).

and thermal parameters of mantle phases, as well as their pressure and
temperature derivatives, by simultaneous measurements at high tempera-
ture and high pressure, using synchrotron radiation. However, it still might
be submitted that, at the present time, there is no compelling evidence in
favor of any one of the contending models, such evidence as is usually
presented for one model never really ruling out other models.

(ii) Mantle models

We have some direct knowledge of the composition of the uppermost
mantle from the produce of its partial melting (basalts) and from the
peridotites found in ophiolitic complexes, massifs, and in xenoliths brought
up from as deep as 200 or 250 km by basalts or kimberlites. Ringwood
(1979) drew the conclusion that the uppermost mantle is composed of
residual peridotite strongly depleted in the lowmelting-pointminerals that
went into basalt during partial melting. A typical peridotite is composed of
mostly olivine and orthopyroxene (enstatite) with some calcic
clinopyroxene (diopside) and an aluminous phase (plagioclase, spinel or
pyrope garnet, in that order with increasing depth). Below the lithosphere,
there must exist a primitive source material: pyrolite, defined as we have
seen above by its capacity to produce basalt and residual peridotite. The
phase transitions of the relevant minerals, described above, are compatible
with the following model (for a review, see Gillet, 1995):
At about 350 km, pyroxene and aluminous garnet enter into solid sol-

ution, giving majorite with garnet structure and, at 400 km, olivine goes to
�-phase; then, in the transition zone, �-phase goes to �-spinel, garnet goes
to ilmenite, and the CaSiO

�
component goes to calcic perovskite. Finally,

at 650 km, (Mg,Fe)SiO
�

disproportionates to perovskite and mag-
nesiowüstite. Ringwood (1975) found that these transitions provided a
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satisfactory explanation of the position and magnitude of the seismic
discontinuities and density jumps and that there was no need for changes in
chemical composition and, in particular, no need for an enrichment in iron
of the lowermantle. The 670km seismic discontinuity is then thought to be
due only to phase transitions, but it is seismically marked by the thin
subducted oceanic lithosphere trapped at the interface between upper and
lower mantle (Ringwood and Irifune, 1988).
D. L. Anderson (1984), Anderson and Bass (1986) and Duffy and Ander-

son (1989) account for the seismic velocity profiles by mineralogical assem-
blages consistent with a chondritic mantle having melted (magma ocean)
and differentiated at an early stage of the Earth’s history: low-density
olivine crystallizes first and concentrates into a peridotite uppermost
mantle, the residual fluid freezes to a clinopyroxene garnet-rich assemblage
with less than 50% olivine, termed piclogite, which would constitute the
transition zone. The lower-mantle velocities are found to be consistent with
a silica-rich composition of pure perovskite, as also proposed by Liu (1979).
In a later (Anderson, 1989a) model, the lower mantle is also richer in iron
and there is more diopside in the transition zone. Stixrude et al. (1992) find
that the seismological data are consistent with a lower mantle consisting of
nearly pure perovskite.
The two major classes of upper mantle models are (see Fig. 7.20 and

Table 7.4):

• The ‘‘pyrolite’’ mantle models, with no chemical difference between
upper and lower mantle.

• The ‘‘piclogite’’ mantle models, with a more silica- (and iron-) rich lower
mantle.

Jackson (1983) showed that due to the trade-offs between composition,
temperature and physical properties, pyrolite and chondritic models could
be equally plausible. Experimental investigation of the phase relations of
the MgO—FeO—SiO

�
system (Ito et al., 1984) led the authors to the con-

clusion that a pyrolite lower mantle satisfied the density and bulk modulus
constraints, although a pure perovskite composition or a composition
close to that of E enstatite chondrites could not be ruled out. Poirier (1987)
investigated the variation of Poisson’s ratio of the perovskite—mag-
nesiowüstite assemblage with various perovskite and iron contents and
found that the Poisson’s ratio and the seismic parameter of the lower
mantle were satisfied both by a pyrolite and a chondritic model. Weidner
(1986), investigating the agreement between the upper-mantle models and
the seismological data, found that the phase transitions in the transition
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Figure 7.20(a) The calculated volume fraction of mineral phases for a pyrolite
mantle composition as a function of depth (after Weidner, 1986).

Figure 7.20(b) The calculated volume fraction of mineral phases for a piclogite
mantle composition as a function of depth (after Weidner, 1986).
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Table 7.4.Upper mantle models

Oxide Pyrolite Piclogite

Norm
MgO 40.3 21.0
FeO 7.9 5.7
CaO 3.0 7.0
SiO

�
45.2 48.9

Al
�
O

�
3.5 14.4

Na
�
O 0.0 3.0

Mode
Olivine 61 16
Orthopyroxene 15 3
Clinopyroxene 10 45
Garnet 14 36

Note: Norm in wt% oxides, mode in vol.% minerals.
Source: Weidner (1986).

zone alone could satisfy the data without resorting to mineralogical strat-
ification as in ‘‘piclogite’’ models. The latter, however, cannot be categori-
cally ruled out.
In conclusion, it is difficult to eliminate one of the models on the grounds

that it does not fit the seismological data and it is possible to say with
Weidner (1986) that ‘‘within the uncertainty of the current data-base, we
need look no further than the pyrolite model to find a chemical composi-
tion compatible with the data for the upper mantle’’; as for the lower
mantle it is even less well constrained. Note again that a homogeneous
mantle does not necessarily imply whole-mantle convection.

(iii) The core–mantle boundary and D" layer

The core—mantle boundary (CMB) is possibly the major discontinuity in
the Earth, with a specific mass contrast of 4.4 g/cm� between the core and
the mantle (compared to 2.7 g/cm� between the crust and the atmosphere)
and a viscosity contrast of the order of 10�� poise. The CMB may be
bumpy, with a ‘‘topography’’ of several kilometers amplitude at the scale of
thousands of kilometers (Morelli and Dziewonski, 1987), while it may be
sharp and flat in places (Vidale and Benz, 1992). The analysis of the
correlations between the geoid and the surface topography show that the
amplitude of the topography dynamically maintained by convection at the
CMB should be of about 3 km (Hager et al., 1985). The core—mantle
boundary region is the seat of energetic exchanges and couplings between
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core and mantle that may be of extreme geodynamic importance and it is
becoming the object of a sustained interest. The progress in recent years
can be assessed by reading the special issue ofGeophysical ResearchLetters
(volume 13, no.13, 1986) and the successive reviews by Young and Lay
(1987), Lay (1989), Loper and Lay (1995) and Lay et al. (1998).
Global seismological Earth models exhibit a zone of reduced or even

negative velocity gradient (Lay, 1989, 1995), extending 200 to 300 km
above the CMB, called the D" layer. As, from most estimates, there is a
finite heat flux from the core into the mantle, it was natural to think of the
D" zone as a thermal boundary layer. Numerical simulations lead to the
picture of the D" zone as an unstable thermal boundary layer over the
depth of which the temperature-dependent viscosity can decrease by sev-
eral orders of magnitude, inducing the rise of convective instabilities, or
plumes, (Loper, 1984; Zharkov et al., 1985; Olson et al., 1987). If, as
convincingly argued by Stevenson (1981), the core is not in equilibrium
with the mantle, the core—mantle boundary must indeed be a chemically
active and heterogeneous zone.
Recent seismological investigations, using travel-time residuals of body

waves reflected from the core, transmitted through it, or diffracted near the
boundary show that the structure of the D" layer is rather complicated.
There is evidence of lateral heterogeneities of velocity up to 4% for P- and
S-waves (Wysession et al., 1992; Vidale and Benz, 1993) and of seismic
anisotropy (Kendall and Silver, 1993; Vinnik et al., 1998). The heterogene-
ity and anisotropy can be interpreted as due to rafts of denser subducted
plate material, unevenly distributed at the CMB, much like the continents
at the top of the mantle (Dornboos et al., 1986; Wysession, 1996).
Chemically denser material (dregs) may lie at the bottom of the mantle,

in an uneven layer of variable thickness, interacting with the convection
andmodulating the heat flow from the core (Davies and Gurnis, 1986). The
nature of the dense material is still as speculative as its existence: litho-
spheric plate material coming from above or core material coming from
below. Indeed, there is good evidence that the molten iron alloy of the core
can react with the silicate perovskite and magnesiowüstite (Williams et al.,
1987b; Urakawa et al., 1987; Knittle and Jeanloz, 1989a; Goarant et al.,
1992; Song and Ahrens, 1994). It has been proposed that the accumulation
of infiltrated liquid iron or reaction products between iron and silicates
layer might make up an electrically conducting D" layer, possibly affecting
themagnetic field (Jeanloz, 1990;Knittle and Jeanloz, 1991a). However, the
infiltrated layer, likely to be extremely thin (a few hundred meters at most)
and possibly re-equilibrated, cannot be identified with the D" layer; its
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effects on the magnetic field must be negligible (Poirier and Le Mouël,
1992; Le Mouël et al., 1997).
There is recent seismic evidence for a very thin ultra-low-velocity zone

(ULVZ) lying near the CMB. Its laterally varying thickness is probably of
the order of a few tens of kilometers (Wen and Helmberger, 1998; Garnero
et al., 1998). The ULVZ is unlikely to be caused by infiltration of iron from
the core (Poirier et al., 1998) and it is currently thought to be due to partial
melting at the base of the mantle (Williams and Garnero, 1996; Vidale and
Hedlin, 1998; Wen and Helmberger, 1998). This view is supported by
experimental determinations of the solidus of the magnesiowüstite—perov-
skite assemblage of the lowermantle (Holland andAhrens, 1997; Zerr et al.,
1998).

(iv) The outer core

The physical state and composition of the Earth’s core have been a matter
of considerable controversy up to recent times (see Brush, 1979, 1982) and
there still is some debate as to exactly what elements it contains in addition
to iron. That the core is made of iron is consistent with the large increase in
density at the core—mantle boundary and with the idea that ironmeteorites
constitute the cores of small differentiated planetary bodies.
The view had been entertained (Ramsey, 1949) that the core, like the

mantle, was composed of silicate phases, compressed to a very high density
and having undergone a transition to themetallic state. Birch (1952, 1961b,
1963), using the bulk-velocity—density systematics he had established for a
number of elements and the Hugoniot compression curves obtained ex-
perimentally for iron, conclusively showed that the core was indeed iron
(see Section 4.6.2 and Fig. 4.6). His principal argument was that silicates,
with a mean atomic mass close to 20, could never achieve the density of the
core given by seismological models, unless under pressures much larger
than the pressure at the center of the Earth (or that the bulk sound velocity
of silicates at core pressure densities would be much too high); iron on the
contrary, gave good agreement with the density and seismic velocities, if
alloyed with a small quantity of light elements. Even though Ramsey’s
theory is revived from time to time, it is clearly not tenable (O. L. Anderson,
1985).
By analogy with iron meteorites and from cosmic abundances consider-

ation, it is reasonable to assume that there is some nickel in the core. If the
Earth is of cosmic composition, there should be about 4—5wt% nickel in
the Earth’s core (Brett, 1976; Allègre et al., 1995).
A core of pure iron (and a fortiori a core containing some nickel) would
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have a density about 10% higher than that deduced from seismological
observations (Birch, 1952). The density may be adjusted by assuming that
iron—nickel is alloyed with some proportion of light elements. What the
light elements are is an object of debate (for a review, see Poirier, 1994a). It
must be noted that the arguments pro and con a given element often rely on
assumptions about the bulk Earth composition and the mode of formation
of the core.

• Silicon may be present in the core, although there are some difficulties
regarding core formation processes. Indeed, the presence of silicon in the
core was suggested a long time ago (MacDonald and Knopoff, 1958).

• Oxygen is little soluble in iron near its liquidus at atmospheric pressure,
but its solubility increases with temperature and probably with pressure.
Ringwood (1977, 1979) estimates the oxygen content of the core to be
10� 4wt% (44� 16wt% FeO). The probability for oxygen to be pres-
ent in the core is enhanced by experimental results showing that FeO,
immiscible with Fe at ambient pressure, becomes metallic above 70GPa
and can thus be incorporated in the iron core (Knittle and Jeanloz,
1986). The metallization may be due to a Mott transition (Sherman,
1989).

• Sulfur also remains a good candidate since it easily partitions into iron
and can form a low melting-point eutectic with it (Rama Murthy and
Hall, 1970); 8 to 10wt% S would be enough to account for the core
density (Stevenson, 1981).

• Hydrogen has been found to be highly soluble in iron at high pressure
and to form hydrides (Badding et al., 1991). It has been suggested that
hydrogen might be one of the light elements present in the core (Suzuki
et al., 1984; Fukai and Suzuki, 1986).

• Carbon was suggested by Wood (1993).
• Potassium might be present in the core, especially if there is sulfur. The

radioactive decay of ��Kmight then contribute to the heat flow from the
core (Stacey, 1972). Oversby and Ringwood (1972) found that potassium
did not significantly partition into iron. However, later experimental
and theoretical investigations pointed to the still little understood effects
of pressure and oxygen partial pressure on the solubility of potassium in
iron (Bukowinski, 1976; Ganguly and Kennedy, 1977; Murrell and
Burnet, 1986; Sherman, 1990; Parker et al., 1996). The problem of
whether there is potassium in the core is still not satisfactorily solved.

Of course, as pointed out by Stevenson (1981) there is no reason to
believe that the core is a particularly ‘‘clean’’ system and that there is only
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one light element present in it. Allègre et al. (1995) find about 7.3%Si, 2.3%
S and 4% O (in wt%).
The light elements, whichever they are, partition into the liquid phase

during crystallization of the iron alloy at the inner-core boundary, the
lighter liquid can then rise and the ensuing ‘‘compositional convection’’ is
thought to be essential to the generation of the magnetic field (Braginsky,
1964; Loper, 1978).
The physical, thermal and elastic properties of the core have been

reviewed by Poirier (1994b) and Stacey (1995). Estimates of the dynamic
viscosity of the outer core, from geodetic, seimological, and geomagnetic
studies, as well as theoretical and experimental estimates are listed in Secco
(1995). Extrapolations of experimental measurements of the viscosity of
Fe—S liquids yield values or the order of 10��Pa s (LeBlanc and Secco,
1996; Secco et al., 1998), consistent with estimates of Poirier (1988a) and
ab-initio calculations of de Wijs et al. (1998).

(v) The inner core

The inner core is the most remote region of the Earth and its composition
and structure have been (and sometimes still are) the object of unbridled
and fanciful speculation, involving, for instance, the existence near its
center of a subcore of uranium and thorium, seat of nuclear reactions
(Nanda, 1989; Herndon, 1996).
There is, however, little doubt that inner core freezes out of the outer

core (Jacobs, 1953). It is essentially iron, but the nature of the high-pressure
phase of iron (perhaps �-Fe) is still debated (see Section 5.6). Crystallization
of a liquid alloy leads to a purer solid phase and a liquid enriched in light
elements. However, pure liquid iron is 3—6% denser than the inner core
(Anderson and Ahrens, 1994), implying that several percent of the light
componentmust be present in the inner core, as proposed by Jephcoat and
Olson (1987).
The inner core is seismically anisotropic. The velocity of seismic waves

parallel to the Earth’s rotation axis is 3—4% faster than that of waves
traveling in the equatorial plane (Creager, 1992; Song, 1997). The attenu-
ation is also anisotropic, the direction of strong attenuation coinciding
with the fast direction (Souriau and Romanowicz, 1996).
The origin of the seismic anisotropy is debated. It has been assigned to

lattice preferred orientation of crystals induced by plastic flow during
convection of the inner core (Jeanloz and Wenk, 1988; Romanowicz et al.,
1996). This view rested on the assumption (Wenk et al., 1988) that the �-Fe
inner core deformed primarily on prism planes, like titanium. Poirier and
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Price (1999), however, contend that the primary slip planes of �-Fe should
be basal, and would not lead to the observed anisotropy. Other mechan-
isms were proposed: magnetic field-induced preferred orientation of iron
crystals (Karato, 1993), solidification texturing (Bergman, 1997), alignment
of crystals under the stress field produced by the flow resulting from
isostatic adjustment of the inner core (Yoshida et al., 1996).
Grain size and viscosity of the inner core are parameters entering some

of the above models. Assuming the material of the inner core to be �-Fe
leads Stixrude and Cohen (1995b) to the conclusion that the observed
anisotropy can be explained only if the alignment of the crystals is so
perfect as to make the inner core equivalent to a single crystal. From the
observed seismic attenuation anisotropy, Bergman (1998) estimates that
the smallest grain dimension must be of the order of hundreds of meters.
Buffett (1997) discusses the mechanisms for the production of seismic
anisotropy according to viscosity estimates.

270 7 Earth models



This Page Intentionally Left Blank



Appendix

Table A.1. PREM model (1s) for the mantle and core

z r P � v
�

v
�

� K � � g

24.4 6346 6 3.38 8.11 4.49 38.9 1315 682 0.28 984
40 6331 11.2 3.38 8.11 4.48 38.8 1311 680 0.28 984
60 6311 17.9 3.38 8.09 4.48 38.7 1307 677 0.28 985
80 6291 24.5 3.37 8.08 4.47 38.6 1303 674 0.28 986

115 6256 36.2 3.37 8.03 4.44 38.2 1287 665 0.28 988
185 6186 59.4 3.36 8.01 4.43 38.0 1278 660 0.28 989
220 6151 71.1 3.36 7.99 4.42 37.8 1270 656 0.28 990
220 6151 71.1 3.44 8.56 4.64 44.5 1529 741 0.29 990
265 6106 86.5 3.42 8.65 4.68 45.6 1579 757 0.29 992
310 6061 102 3.49 8.73 4.71 46.7 1630 773 0.30 994
355 6016 118 3.52 8.81 4.74 47.8 1682 790 0.30 995
400 5971 134 3.54 8.91 4.77 49.0 1735 806 0.30 997
400 5971 134 3.72 9.13 4.93 51.0 1899 906 0.29 997
450 5921 152 3.79 9.39 5.08 53.8 2037 977 0.29 998
500 5871 171 3.85 9.65 5.22 56.7 2181 1051 0.29 999
550 5821 191 3.91 9.90 5.37 59.6 2332 1128 0.29 1000
600 5771 210 3.98 10.16 5.51 62.6 2489 1210 0.29 1000
635 5736 224 3.98 10.21 5.54 63.3 2523 1224 0.29 1001
670 5701 238 3.99 10.27 5.57 64.0 2556 1239 0.29 1001
670 5701 238 4.38 10.75 5.95 68.5 2999 1548 0.28 1001
721 5650 261 4.41 10.91 6.09 69.5 3067 1639 0.27 1001
771 5600 283 4.44 11.07 6.24 70.5 3133 1730 0.27 1000
871 5500 328 4.50 11.24 6.31 73.3 3303 1794 0.27 999
971 5400 373 4.56 11.41 6.38 76.1 3471 1856 0.27 997
1071 5300 419 4.62 11.58 6.44 78.7 3638 1918 0.28 996
1171 5200 465 4.68 11.73 6.50 81.3 3803 1979 0.28 995
1271 5100 512 4.73 11.88 6.56 83.8 3966 2039 0.28 994
1371 5000 559 4.79 12.02 6.62 86.2 4128 2098 0.28 993
1471 4900 607 4.84 12.16 6.67 88.5 4288 2157 0.28 993
1571 4800 655 4.90 12.29 6.72 90.8 4448 2215 0.29 993
1671 4700 704 4.95 12.42 6.77 93.1 4607 2273 0.29 994
1771 4600 754 5.00 12.54 6.83 95.3 4766 2331 0.29 995
1871 4500 804 5.05 12.67 6.87 97.4 4925 2388 0.29 996
1971 4400 854 5.11 12.78 6.92 99.6 5085 2445 0.29 999
2071 4300 906 5.16 12.90 6.97 101.7 5246 2502 0.29 1002
2171 4200 958 5.21 13.02 7.01 103.9 5409 2559 0.30 1005
2271 4100 1010 5.26 13.13 7.06 106.0 5575 2617 0.30 1010
2371 4000 1064 5.31 13.25 7.10 108.2 5744 2675 0.30 1016
2471 3900 1118 5.36 13.36 7.14 110.5 5917 2734 0.30 1023
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Table A.1 (cont.)

z r P � v
�

v
�

� K � � g

2571 3800 1173 5.41 13.48 7.19 112.7 6095 2794 0.30 1031
2671 3700 1230 5.46 13.60 7.23 115.1 6279 2855 0.30 1041
2771 3600 1287 5.51 13.67 7.27 117.0 6440 2907 0.30 1052
2871 3500 1346 5.56 13.71 7.26 117.6 6537 2933 0.30 1065
2891 3480 1358 5.57 13.72 7.26 117.8 6556 2938 0.31 1068
2891 3480 1358 9.90 8.06 0 65.0 6441 0 0.5 1068
2971 3400 1442 10.02 8.19 0 67.2 6743 0 0.5 1051
3071 3300 1547 10.18 8.36 0 69.9 7116 0 0.5 1028
3171 3200 1651 10.33 8.51 0 72.5 7484 0 0.5 1005
3271 3100 1754 10.47 8.66 0 75.0 7846 0 0.5 981
3371 3000 1856 10.60 8.80 0 77.4 8202 0 0.5 956
3471 2900 1957 10.73 8.93 0 79.7 8550 0 0.5 930
3571 2800 2056 10.85 9.05 0 81.9 8889 0 0.5 904
3671 2700 2153 10.97 9.17 0 84.0 9220 0 0.5 877
3771 2600 2248 11.08 9.28 0 86.1 9542 0 0.5 850
3871 2500 2342 11.19 9.38 0 88.1 9855 0 0.5 822
3971 2400 2342 11.29 9.48 0 90.0 10158 0 0.5 794
4071 2300 2521 11.39 9.58 0 91.8 10451 0 0.5 766
4171 2200 2607 11.48 9.67 0 93.5 10735 0 0.5 736
4271 2100 2690 11.57 9.75 0 95.1 11009 0 0.5 707
4371 2000 2770 11.65 9.83 0 96.7 11273 0 0.5 677
4471 1900 2848 11.73 9.91 0 98.3 11529 0 0.5 647
4571 1800 2922 11.81 9.99 0 99.1 11775 0 0.5 617
4671 1700 2993 11.88 10.05 0 101.1 12013 0 0.5 586
4771 1600 3061 11.95 10.12 0 102.5 12242 0 0.5 555
4871 1500 3126 12.01 10.19 0 103.8 12464 0 0.5 524
4971 1400 3187 12.07 10.25 0 105.1 12679 0 0.5 494
5071 1300 3245 12.13 10.31 0 106.3 12888 0 0.5 464
5150 1221 3289 12.17 10.36 0 107.2 13047 0 0.5 440
5150 1221 3289 12.76 11.02 3.50 105.3 13434 1567 0.44 440
5171 1200 3300 12.77 11.03 3.51 105.4 13462 1574 0.44 432
5271 1100 3354 12.83 11.07 3.54 106.0 13586 1603 0.44 397
5371 1000 3402 12.87 11.11 3.56 106.5 13701 1630 0.44 362
5471 900 3447 12.91 11.14 3.58 106.9 13805 1654 0.44 326
5571 800 3487 12.95 11.16 3.60 107.3 13898 1676 0.44 291
5671 700 3522 12.98 11.18 3.61 107.7 13981 1696 0.44 255
5771 600 3553 13.01 11.21 3.63 108.2 14053 1713 0.44 217
5871 500 3579 13.03 11.22 3.64 108.3 14114 1727 0.44 182
5971 400 3600 13.05 11.24 3.65 108.5 14164 1739 0.44 146
6071 300 3617 13.07 11.25 3.66 108.7 14203 1749 0.44 110
6171 200 3629 13.08 11.26 3.66 108.8 14231 1755 0.44 73
6271 100 3636 13.09 11.26 3.67 108.9 14248 1759 0.44 37
6371 0 3639 13.09 11.26 3.67 108.9 14253 1761 0.44 0

Note: z: depth, in km; r: radius, in km; P: pressure, in kbar; �: specific mass, in
g/cm�; v

�
: P-wave velocity, in km/s; v

�
: S-wave velocity, in km/s; �: seismic

parameter, in km�/s�; K: bulk modulus, in kbar; �: shear modulus, in kbar;
�: Poisson’s ratio; g: acceleration of gravity, in cm/s�. [10 kbar� 1GPa.]
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Allègre, C. J. (1987). Isotope geodynamics. Earth Planet. Sci. Lett., 86, 175—203.
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Gilvarry, J. J. (1956d). Grüneisen parameter for a solid under finite strain. Phys.

Rev., 102, 331—340.
Gilvarry, J. J. (1957a). Temperature dependent equations of state of solids. J.

Appl. Phys., 28, 1253—1261.
Gilvarry, J. J. (1957b). Temperatures in the Earth’s interior. J. Atm. Terrestr.

Phys., 10, 84—95.
Gilvarry, J. J. (1966). Lindemann and Grüneisen laws and a melting law at high
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Paris, pp. 48—50.

Lasaga, A. C. (1979). Multicomponent exchange and diffusion in silicates.
Geochim. Cosmochim. Acta, 43, 455—469.

Lasocka, M. (1975). On the entropy of melting. Physics Lett., 51A, 137—138.
Lauterjung, J. & Will, G. (1986). The kinetics of the olivine—spinel transformation

in Mg
�
GeO

�
under high pressure and temperature. Physica, 139–140B,

343—346.
Lawson, A. W. (1957). On the high temperature heat conductivity of insulators.

Phys. Chem. Solids, 3, 155.
Lay, T. (1989). Structure of the core—mantle transition zone: A chemical and

thermal boundary layer. EOS Trans. AGU, 70, 49—59.
Lay, T. (1995). Seismology of the lower mantle and core—mantle boundary. Rev.

Geophys. Supplement, (July), 325—328.
Lay, T., Williams, Q. & Garnero, E. J. (1998). The core—mantle boundary layer

and deep Earth dynamics. Nature, 392, 461—468.
LeBlanc, G. E. & Secco, A. R. (1996) Viscosity of an Fe—S liquid up to 1300 °C

and 5GPa. Geophys. Res. Lett., 23, 213—216.
Lees, A. C., Bukowinski, M. S. T. & Jeanloz, R. (1983). Reflection properties of

phase transition and compositional change models of the 670 km
discontinuity. J. Geophys. Res., 88, 8145—8159.
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Anderson—Grüneisen parameter, 26, 61
anharmonicity, 58–59
Arrhenius
law, 162, 185, 203, 206
plot, 162, 163, 165, 200, 204, 205, 208, 209

band, 190–4
bêta-phase (�-Mg

�
SiO

�
) see wadsleyite

Birch’s law, 79–82, 227
Bragg—Williams theory, 133
Brillouin zone, 30, 33, 35, 36, 190—1
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